
The Ongoing Evolution of Ext4 file system
New features and Performance Enhancements

Red Hat

Lukáš Czerner

October 24, 2011



Copyright © 2011 Lukáš Czerner, Red Hat.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included
in the COPYING file.



Part I

Statistics



Agenda

1 Who works on Ext4?

2 Lines of code



Who works on Ext4?

Agenda

1 Who works on Ext4?

2 Lines of code



Who works on Ext4?

Last year of Ext4 development

250 non merge changes

from 72 developers

9 developers has at least 10 commits

8512 lines of code inserted

5675 lined of code deleted



Who works on Ext4?

Comparison with other local file systems

File system Number of commits Developers Developers*
Ext4 250 72 9

Ext3 95 34 2

Xfs 294 34 4

Btrfs 506 60 11

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

EXT3 EXT4 XFS BTRFS

D
ur

at
io

n 
[s

]

File system

Number of commits
Developers



Lines of code

Agenda

1 Who works on Ext4?

2 Lines of code



Lines of code

Development of the number of lines

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

01/01/05

01/01/06

01/01/07

01/01/08

01/01/09

01/01/10

01/01/11

01/01/12

Li
ne

s 
of

 c
od

e

Ext3
Xfs

Ext4
Btrfs



Part II

What’s new in Ext4?



Agenda

3 Faster file system creation

4 Discard support

5 Support for file systems beyond 16TB

6 Punch hole support

7 Scalability improvements

8 Clustered allocation



Faster file system creation

Agenda

3 Faster file system creation

4 Discard support

5 Support for file systems beyond 16TB

6 Punch hole support

7 Scalability improvements

8 Clustered allocation



Faster file system creation

Lazy inode table initialization

This operation takes more than 80% of mkfs time

For quite some time there is an option -E lazy itable init

Problems while repairing corrupted file system

New kernel thread to initialize inode tables instead of mkfs

Turned on by default

e2fsprogs since v1.41.12-50-g210fd2c

kernel since v2.6.36-rc6-12-gbfff687



Faster file system creation

Ext4 mkfs time improvements

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Ext4 with lazyinit Xfs Btrfs

D
ur

at
io

n 
[s

]

File system

Duration



Faster file system creation

Creating ext4 file system on SSD’s

Automatic detection of discard support

Configurable via options and mke2fs.conf setting

mkfs.ext4 -E [discard | nodiscard] device

If discard ”zeroes data”, there is no need to initialize inode
table - speed-up



Discard support

Agenda

3 Faster file system creation

4 Discard support

5 Support for file systems beyond 16TB

6 Punch hole support

7 Scalability improvements

8 Clustered allocation



Discard support

Periodic discard

Easy to implement

File system support

1 ext4 (v2.6.27-5185-g8a0aba7)
2 btrfs (since upstream)
3 gfs2 (v2.6.29-9-gf15ab56)
4 fat, swap, nilfs

mount -o discard /dev/sdc /mnt/test

TRIM is non-queueable command - implications ?



Discard support

Batched discard support

File system specific solution

Provide ioctl() interface - FITRIM

Do not disturb other ongoing IO too much

1 Prevent allocations while trimming
2 How to handle huge filesystem ?

File system support

1 ext4 (v2.6.36-rc6-35-g7360d17)
2 ext3 (v2.6.37-11-g9c52749)
3 xfs (v2.6.37-rc4-63-ga46db60)



Support for file systems beyond 16TB

Agenda

3 Faster file system creation

4 Discard support

5 Support for file systems beyond 16TB

6 Punch hole support

7 Scalability improvements

8 Clustered allocation



Support for file systems beyond 16TB

File system size over 16TB

e2fsprogs support since 1.42-WIP-0702

On-line resize for huge file system coming soon

Off-line resize does not exists (yet?)

Still experimental state

More testing needed
Scalability issues for huge file systems
Metadata overhead
Huge fsck time and memory requirements



Punch hole support

Agenda

3 Faster file system creation

4 Discard support

5 Support for file systems beyond 16TB

6 Punch hole support

7 Scalability improvements

8 Clustered allocation



Punch hole support

Punch hole support

Allows to free space from the middle of the file

Useful for trimming down the size of fs images

Possibly mapping discard to punch hole in virtualization
environment

qemu
loop device



Scalability improvements

Agenda

3 Faster file system creation

4 Discard support

5 Support for file systems beyond 16TB

6 Punch hole support

7 Scalability improvements

8 Clustered allocation



Scalability improvements

Scalability improvements

Many thanks to Eric Whitney for extensive testing

Improvements in jbd2 layer (locking scalability)

Using bio layer directly instead of buffer layer



Scalability improvements

Scalability improvements

 12

 14

 16

 18

 20

 22

 24

 26

 28

1 thread 24 threads 96 threads

C
P

U
 U

til
iz

at
io

n 
%

2.6.35
3.1.0-rc10



Clustered allocation

Agenda

3 Faster file system creation

4 Discard support

5 Support for file systems beyond 16TB

6 Punch hole support

7 Scalability improvements

8 Clustered allocation



Clustered allocation

Block size limitations

File system block size limited by page size

On bigger file systems, higher metadata overhead

Higher block allocation overhead

Ext4 block allocation

Ext4 has bitmap based allocation
Each bit represents one file system block
Bitmap stored in one file system block
One bitmap address 128MB (4096kB fs block)



Clustered allocation

Clustered allocation

Each bit represents power of two fs blocks

Less allocation bitmaps to maintain - smaller overhead

One bitmap can address 2GB (64KB cluster size)

Downsides:

No sub-cluster allocation
Small files, directories, extent tree blocks will consume more
space

Still in dev branch of ext4



Part III

Some benchmark results



Scalability improvements

 12

 14

 16

 18

 20

 22

 24

 26

 28

1 thread 24 threads 96 threads

C
P

U
 U

til
iz

at
io

n 
%

2.6.35
3.1.0-rc10



Scalability - comparison

 0

 50

 100

 150

 200

 250

 300

1 thread 24 threads 96 threads

C
P

U
 U

til
iz

at
io

n 
%

ext3
ext4

xfs



Large file create - comparison

 85

 90

 95

 100

 105

 110

 115

 120

 125

1 thread 24 threads 96 threads

W
rit

e 
th

ro
ug

hp
ut

 M
B

/s

ext3
ext4

xfs



Metadata intensive workload - comparison

 0

 10

 20

 30

 40

 50

 60

 70

small medium big

W
rit

e 
th

ro
ug

hp
ut

 M
B

/s

ext3
ext4

xfs



The end.
Thanks for listening.


	Statistics
	Who works on Ext4?
	Lines of code

	What's new in Ext4?
	Faster file system creation
	Discard support
	Support for file systems beyond 16TB
	Punch hole support
	Scalability improvements
	Clustered allocation

	Some benchmark results

