
Real-time Linux – the LWRT Concept

LWRT - a “Light-weight RunTime” environment for multicore devices
that improves Linux real-time performance and provides better real-
time behavioral characteristics for “SOME” networking and
communications applications

Michael Christofferson

Director Marketing, CTO Office

Korea Linux Forum 2012

FOUNDED

1968

TEN OFFICES

IN NORTH

AMERICA,

EUROPE AND

ASIA

REVENUE

67M

USD

NO. OF
EMPLOYEES

426

 Increasing data traffic in communication devices

require new and innovative software solutions to

handle bandwidth, performance and power

requirements.

 Enea software is heavily used in wireless

Infrastructure (Macro, small cell), gateway,

terminal, military, auto, etc.

 More than 250M of the 325M LTE population

coverage is powered by Enea Solutions

 Enea Solutions run in more than 50% of the

world’s 8.2M radio base stations.

 Enea has recently released its first commercial

Linux distribution, built by Yocto, and specially

tailored for networking and communications

 Global presence, global development, and

headquartered in Stockholm, Sweden

Enea - Powering Communications

Numbers for 2011

• Real-time systems
– Have “operational deadlines from event to system response”

– Must guarantee the response to external events within strict time constraints

• Non-real-time systems
– Cannot guarantee response time in any situation

– Are often optimized for best-effort, high throughput performance

• “Real-time response” means deterministic response
– Can mean seconds, milliseconds, microseconds.

– I.e. not necessarily short times, but usually this is the case

• Real-time system classifications:
– Hard: missing a deadline means total system failure

– Firm: infrequent misses are tolerable, but result is useless. QoS degrades quickly

– Soft: infrequent misses are tolerable, increased frequency degrades QoS more slowly

=> Real-time IS NOT the same as high-performance computing!

What Does “Real-time” Mean?

Examples of real-time systems

• Hard real-time applications:
– Automotive: anti-lock brakes, car engine control

– Medical: heart pacemakers

– Industrial: process controllers, robot control

• Firm real-time applications:
– 3G/4G baseband processing/signaling in base stations and radio network controllers

– 3G/4G baseband processing/signaling in wireless modems (phones, tablets)

– Many other examples in the networking space – RRU, optical transport, backhaul, too
numerous to list

• Soft real-time applications:
– IP network control signaling, network servers

– Live audio-video systems

Enea LWRT is about Firm Real-Time Applications

So How about Firm Real-time and
Linux?

Linux Kernel

Vertically partition Linux in two
domains:

Linux Kernel Linux Kernel

Three ways to address real-time in Linux:

 Virtualizes Linux

 Examples includes hypervisor,

Xenomai, RTLinux etc

 Provides a highly deterministic

RTOS environment for RT apps

 Cannot completely utilize the

Linux eco-system (e.g. tools) in

the realtime domain.

 Suitable for very high real-time

requirements, inherited from

classic RTOS domains

Add a thin real-time kernel
underneath Linux:

Rework the internals of Linux:

Realtime Kernel

RT Runtime Environment

 Only on multicore

 “Shield” a set of cores from regular

Linux OS scheduling

 A user mode light-weight runtime

environment for real-time

applications that avoid calling the

kernel and thus resource conflicts

 An “ALL LINUX” solution, but with

additional APIs

 PREEMPT_RT, a patch to the

mainstream Linux

 Taking 3.0.27 as an example,

PREEMPT_RT patches 500+

locations in the kernel, with

11,500+ new lines of code in total.

 Decreases throughput, but offers

full POSIX

 Suitable for low to moderate real-

time requirements

The PREEMPT_RT patch “Thin-kernel” virtualization Vertical Partitioning +
User mode RT Runtime

RT apps

LWRT!!

Linux Interrupt Processing
Delays from external event to response

External
Interrupt
Triggered

Interrupt
Taken

Interrupt
Received in

User/Thread
Context

Critical section
with interrupts
disabled

HW
Exception

“Top Half” / ISR Exit from IRQ Reschedule Context Switch

Something else is
executing
(probably
another ISR)

E.g. locks (xtime lock could
be one example?)

Softirqs, RCUs Priority
inversion/
conflict

Cache misses, etc.

Signal/
Wakeup

Locks,
RCUs, etc.

Resource Conflicts

How can we tackle resource conflicts?

Something else is
executing
(probably
another ISR)

E.g. locks (xtime lock could
be one example?)

Softirqs, RCUs Priority
inversion/
conflict

Cache misses, etc. Locks,
RCUs, etc.

Resource Conflicts

Try to mitigate the effect of
resource conflicts

(e.g. make ISRs preemptable, add priority
inheritance, etc.).

Try to avoid resource conflicts
(e.g. partition the system, avoid shared

resources in kernel etc.).

Resource conflicts “2”

Try to mitigate the effect of
resource conflicts

(e.g. make ISRs preemptable, add priority
inheritance, etc.).

Try to avoid resource conflicts
(e.g. partition the system, avoid shared

resources in kernel etc.).

PREEMPT_RT Vertical Partitioning

Vertical Partitioning
+

PREEMT_RT

The CONFIG_PREEMPT_RT patch set

• Developed by a team led by Ingo Molnar
– Primarily before multicore evolution; unicore optimized technology

• Can be seen as a kind of added virtualization on HAL level

• Replaces most kernel spinlocks with mutexes with priority inheritance

• Move all interrupt handling to kernel threads
– This means many drivers must be modified

• Taking 3.0.27 as an example, PREEMPT_RT patches 500+ locations in
the kernel, with 11,500+ new lines of code in total.

• Good when the worst case response latency requirement is low to
moderate, around 50-100 us.

How to avoid kernel resource conflicts?

Multiple interrupt sources
competing for privilege
(Adding delay to the interrupt path)

Multiple Posix
threads/processes competing
for CPU time
(Might be preempted in a non-deterministic
way)

Multiple cores competing for
memory
(For example, what if we hit a mutex or a
RCU write-side lock?)

Partition the system
– handle interrupts with core
affinity

Partition the system
– only one thread per core

Avoid mechanisms that rely
on shared memory (e.g. the
Linux scheduler)

The Vertical Partitioning Concept

• Partitioning of the system into
separate realtime critical (shielded
cores) an non-critical domains.

• It is often the Linux kernel itself
that introduces realtime problems.

• Realtime partition does not need
full POSIX/Linux API

• A combination of partitioning,
combined with a user-mode
environment that allow us to avoid
using the kernel can improve
performance and realtime
characteristics compared to a
standard Linux.

“Improve performance and
realtime characteristics
under Linux by partitioning
the system into logical
domains, and by avoiding
usage of the Linux kernel and
its resources more than
necessary”

The Vertical Partitioning Concept (2)

• Configure processes and interrupts to run with
core affinity

• Make minor modifications to the kernel to avoid
running kernel threads/timers on real-time
cores

• Avoid using/calling the kernel, and rely on a
user-mode execution runtime environment

• When targeting interrupt latency at a 3-10 us
average and 15-30 us worst case requirements

LWRT
Linux User Space Runtime Environment

For complex networking and communications systems
that demand firm real-time performance and behavior

LWRT == Light-weight Runtime environment

What is LWRT?

• LWRT is a “Light-Weight Runtime (Environment)” built upon Linux.

• LWRT runs in most part in user-space,
and is a essentially a library linked to the application.

• The LWRT environment provides better performance
and realtime characteristics compared to the standard
POSIX/Linux environment.

Core

0

Core

N

Linux Kernel

LWRT Environment

Application

How does LWRT work?

Pthread

Core

0

Core

N

Linux Kernel

Pthread

LWRT Environment

LWRT Kernel

Module

Realtime Processes Non-realtime Processes

LWRT partitions the system into one realtime
domain and one non-realtime domain.

LWRT adds a user-mode runtime environment,
including an optimized user-mode scheduler.

LWRT adds a kernel module to catch and forward
interrupts to the user-mode environment.

LWRT migrates some specific kernel functionality
(e.g. timers) away from the realtime domain.

What are the benefits of LWRT?

Pthread

Core

0

Core

N

Linux Kernel

Pthread

LWRT Environment

LWRT Kernel

Module

Realtime Processes Non-realtime Processes
LWRT provides a solution that is unencumbered by
GPL, even for interrupt driven code which can be
placed in user-space without any major penalty.

LWRT provides very good (i.e. low-latency) interrupt
response time, all the way up to user-mode.

LWRT provides low latency and high throughput. LWRT
does not depend on the PREEMPT_RT patch, and does
not affect throughput negatively.

LWRT provides optimized APIs for realtime
applications, and allows the same application to use
the POSIX/Linux APIs when realtime doesn’t matter.

LWRT is an “all-Linux” solution, based on a single Linux
Kernel. Thus, almost all tools from the existing Linux
ecosystem will be available.

LWRT Architecture and Services

 Multiple threads per core

 Deterministic scheduling

 Low scheduling overhead

 Low inter-thread messaging overhead

 Cheap thread creation

 Low overhead buffer management

 Timer services

LWRT Architecture

So LWRT is a Different Multi-threading Model

 A Light-weight thread Environment implemented in

user-space over a single pthread

 A user-mode scheduler in the scope of a Linux process

 - No kernel thread context switch

 - Preemptive, priority based scheduler

 - 100% Linux, utilizes same Linux tools as rest

of system

 - Complete access to normal POSIX/libC

 Support for message-passing between threads (and

processes). With simple buffer management (for

messages), and interrupt handling

Linux Process

PThread PThread PThread

“LWRT” “LWRT” “LWRT”

Core Core Core

LWRT Performance

Preliminary Results

Some Hard Numbers

• WCDMA/LTE Base Station Performance Requirements:
– Average interrupt latency 3-5 usec.

– Maximum interrupt latency 20-30 usec.

– Approx. ~30 context switches/TTI or LTE 2

– WCDMA frame sync interrupt every 66.66… usec.

– WCDMA TTI interrupt (every 2 msec for HSDPA).

– LTE 2 interrupts per slot (every 0.5 msec)

– Interrupt overhead < 10,000 cycles for A15 @ 1.5 GHz.

Context Switching and Inter-thread Communications
LWRT vs Pthreads Benchmark Setup

Core

0

Core
1

Core
2

Enea LWRT
Demo

PThreads
Demo

Start

Ping
LWT

Pong
LWT

Ping
PThread

Pong
PThread

GUI

Shared Memory
Spawn

Spawn

Fork

 Measurements done on x86 using TSC (time stamp counter)

 Demo HW: AMD Phenom II N620 Dual-Core processor @ 2.8GHz.

 Linux: OpenSuSE 12.1, 32 bit

0

20000

40000

60000

80000

100000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Pthreads
LWRT

LWRT has much better
performance i.e. lower
scheduling latency

Clock cycles

LWRT vs Pthreads - Context Switch Overhead

LWRT has much better real-time
characteristics, i.e. less variance.

LWRT vs Pthreads
Scheduling Behavior under System Load

Scheduling Jitter Due to Load

1000 2000 3000 4000 5000

LWRT vs Pthreads
Inter-thread Communications

 Ping-Pong benchmark

measuring scheduling

time/latency

 Histogram show one-trip

latency LWT example

based on signaling

 Pthread example based on

semaphores

 In the demo, the user can

interactively play with core

affinity and scheduling

policy 1000 2000 3000 4000

Mean - 2838 cycles Mean – 209 cycles

LWRT and PREEMPT_RT
Interrupt Latency under System Load

Interrupt latency measured for Linux 3.0.28 on an Intel Core 2 T5500 @ 1.66GHz.
Min/max/average in μ-seconds

Using ”Stress” open source for Load
“End to End” Measure – from HW interrupt raised to user application start

Comparing LWRT and PREEMPT_RT

• PREEMPT_RT applies to the entire system, whereas
LWRT partitions the system.

• PREEMPT_RT improves latency at the expense of
throughput. LWRT on the other hand is built upon the
idea that one part of the system might be optimized
for latency, and one part might be more focused on
throughput.

• PREEMPT_RT makes significant modifications to the
Linux kernel (e.g. 500+ locations, 11,500+ lines). LWRT
makes minimal modifications, and tries to use as much
of “standard” kernel as possible.

• PREEMPT_RT assumes that all device drivers have
been adapted to the patch. LWRT puts no special
requirements on device driver.

• LWRT achieves same interrupt latency as PREEMP_RT,
with better end-to-end performance (time)

Current Status of LWRT

• LWRT is a “PROTOTYPE”
– No real build environment

– Manual configuration for vertical partitioning

– Still exist some non-RT parts (timeouts, timers, …)

– API’s are not standard

– Limited ways to use POSIX API “safely”

– Interrupt handling is but one example

– Thin documentation

• Moving forward
– Add build and configuration capability

– POSIX API “wrapper” for LWRT functions

– Move non-RT critical parts to non-RT domain

– Safe usage of full POSIX

– Much more work on interrupt handling

Linux Process

PThread PThread PThread

“LWRT” “LWRT” “LWRT”

Core Core Core

Thank you for attending

Questions?

