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ABSTRACT
Search engines are the primary gateways of information ac-
cess on the Web today. Behind the scenes, search engines
crawl the Web to populate a local indexed repository of Web
pages, used to answer user search queries. In an aggregate
sense, the Web is very dynamic, causing any repository of
Web pages to become out of date over time, which in turn
causes query answer quality to degrade. Given the consid-
erable size, dynamicity, and degree of autonomy of the Web
as a whole, it is not feasible for a search engine to maintain
its repository exactly synchronized with the Web.

In this paper we study how to schedule Web pages for se-
lective (re)downloading into a search engine repository. The
scheduling objective is to maximize the quality of the user
experience for those who query the search engine. We be-
gin with a quantitative characterization of the way in which
the discrepancy between the content of the repository and
the current content of the live Web impacts the quality of
the user experience. This characterization leads to a user-
centric metric of the quality of a search engine’s local repos-
itory. We use this metric to derive a policy for scheduling
Web page (re)downloading that is driven by search engine
usage and free of exterior tuning parameters. We then fo-
cus on the important subproblem of scheduling refreshing
of Web pages already present in the repository, and show
how to compute the priorities efficiently. We provide ex-
tensive empirical comparisons of our user-centric method
against prior Web page refresh strategies, using real Web
data. Our results demonstrate that our method requires far
fewer resources to maintain same search engine quality level
for users, leaving substantially more resources available for
incorporating new Web pages into the search repository.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; D.2.8 [Software Engineering]: Metrics—perfor-
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Figure 1: Basic Web search engine architecture.

1. INTRODUCTION
Web search engines, taken together, handle hundreds of

millions of queries each day [19]. They compile responses
to user queries by accessing a local repository that mirrors
the Web, as shown in Figure 1. When a user submits a
query, usually in the form of a list of textual terms, an in-
ternal scoring function is applied to each Web page in the
repository (in practice an inverted index is used to speed up
this process). Applying this function to a page produces a
numerical score, representing the best available estimate of
the usefulness of the page to the user who submitted the
query. Query results are usually presented in the form of a
sequential list of links to pages arranged in descending order
of score. When the user clicks on a link in the query result
list, her Web browser fetches the current copy of the linked
page from the live Web.1

Two factors govern the quality of a search engine, from
the user’s perspective:

1. Scoring function suitability: A plethora of heuris-
tics are used to estimate the usefulness of viewing a
Web page as a result of issuing a particular query, in-
cluding TF-IDF [18], anchortext inclusion [6], and link
analysis [14, 17]. Clearly, use of scoring functions that
are better at estimating actual usefulness leads to a
higher-quality user experience, on the whole.

1In this paper we assume that the search engine does not
serve copies of Web pages directly from its repository.
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2. Repository freshness: A search engine uses its lo-
cal repository to assign scores to the Web pages in
response to a query, with the implicit assumption that
the repository closely mirrors the current Web. How-
ever, it is infeasible to maintain an exact mirror of a
large portion of the Web due to its considerable ag-
gregate size and dynamicity [16], combined with the
autonomous nature of Web servers. If the repository
is not closely synchronized with the Web, then the
search engine may not include the most useful pages
for a query at the top of the result list. Since users’
attention is strongly biased toward the top of query re-
sult lists [13, 15] and they have limited time to inspect
results, users are likely to visit Web pages that are on
the whole less useful than the ones they would visit
if presented with a hypothetical result list generated
from a fully synchronized repository.

In this paper we focus on the second factor, and assume
that a reasonable scoring function is in use. Our work is
in the context of an incremental way of crawling the Web
in which the repository is updated on the fly as Web pages
are downloaded [10]. We assume an incremental crawler
that permits fine-grained control over (re)downloading of
individual Web pages. Our goal is to devise a policy for
scheduling downloading and redownloading of Web pages
into the repository so as to maximize the overall quality of
the user experience.

1.1 Impact of Repository Freshness on User
Experience

We present a simple example to illustrate the ways in
which an out-of-date repository can adversely impact the
user experience. Before proceeding we introduce some no-
tation. Let W refer to the current collective content of the
Web, and let WL refer to the collective content of the search
engine’s local repository. For a Web page p, W[p] denotes
the current live Web copy of p, and WL[p] denotes whatever
copy of p (if any) is currently stored in the repository.

Now, suppose the Web is tiny, such that W = {W[p1],
W[p2],W[p3]}. Suppose the search repository WL contains
copies of two of the three pages currently available on the
Web (namely, pages p1 and p2), plus a copy of one more
page p4, which has been removed from the Web since it
was last downloaded into the repository. Hence, WL =
{WL[p1],WL[p2],WL[p4]}. Suppose furthermore that the
repository copies of p1 and p2 are both out of date, such
that WL[p1] 6= W[p1] and WL[p2] 6= W[p2]. The content of
each copy of each page is shown in Table 1.

Consider the query “cancer.” For the sake of our example
assume a simple Boolean scoring function that returns true
if there is a keyword match, and false otherwise. Observe
four types of discrepancies between the repository and the
live Web, each of which leads to distorted results for this
query: (1) Web pages with increased score not yet reflected
in the repository, e.g., p1, (2) pages with decreased score,
e.g., p2, (3) pages not yet incorporated into the repository,
e.g., p3, and (4) pages that have been removed from the Web
but remain present in the repository, e.g., p4.

Of course, with real search engines the number of matches
for a given query frequently number in the thousands or mil-
lions. Users typically focus their attention on the top few
results [13, 15], so the crucial factor governing the quality of
search results is the order in which links to result pages are

Page Web copy Search engine copy
p W[p] WL[p]

p1 New Technology: A New Technology: A
new thyroid cancer new chipset designed
therapy for cell phones

p2 Seminar: Important Seminar: Cancer
traffic laws and rules symptoms

p3 Cancer Management: (Not present in the
Early tests to detect repository)
breast cancer

p4 (Removed from the Cancer association
Web) seeking volunteers to

help raise awareness

Table 1: Example scenario.
presented to the user. Next we introduce a model of search
result quality that takes into account the bias in viewing
likelihood, and use it to derive a metric for the quality of a
search engine’s repository with respect to the user experi-
ence. Then we describe how this metric forms the basis for
our new, user-centric Web crawling paradigm.

1.2 User-Centric Search Repository Quality
Metric

We begin by introducing some additional notation. Let
A(q,WL) denote the answer provided by a search engine
in response to query q, which we assume is in the form of
a ranked list, compiled according to scores computed over
copies of Web pages stored in the local repository WL. Let
S(WL[p], q) denote the result of applying the search engine’s
scoring function S to the locally-available repository copy of
p for query q. Similarly, let S(W[p], q) denote the result of
applying the same scoring function to the live Web copy
W[p] of page p for query q. Recall that we assume the
scoring function provides an estimate of the usefulness of a
page to a user who submits a particular query.

If V (p, a) denotes the likelihood with which a typical user
would view page p if presented with result list a (most likely
influenced strongly by the rank position of p within a), then
we can express the expected cumulative usefulness of the
search engine’s answer a = A(q,WL) to query q as:

k ·
∑
p∈a

V (p, a) · S(W[p], q)

where k is an arbitrary constant of proportionality. If we
expect a certain workload Q of queries, with each query
q ∈ Q issued with frequency fq, we can write the expected
average usefulness of querying the search engine as:

∑
q∈Q

fq · k ·
∑

p∈A(q,WL)

V (p, A(q,WL)) · S(W[p], q)

We model the quality of a search repository WL with re-
spect to a particular scoring method S() and an expected us-
age pattern (query workload Q and viewing likelihood func-
tion V ()) as a scalar value Q(WL). In particular we define
Q(WL) to be directly proportional to expected average use-
fulness:

Q(WL) ∝
∑
q∈Q

fq ·
∑
p∈W

V (p, A(q,WL)) · S(W[p], q)
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(Assume V (p, a) = 0 for pages p not present in result list a.)
Note that assessing repository quality via application of a

scoring function places more stringent requirements on the
choice of scoring function than if it were to be used solely for
result ranking purposes (as is the traditional usage). Tuning
the scoring function is the subject of research on Factor 1
stated above, which is beyond the scope of this paper.

1.3 Web Page (Re)download Prioritization
Based on the above user-centric model of search reposi-

tory quality we propose a new Web crawler scheduling policy
that prioritizes (re)downloading of Web pages based on the
expected gain in repository quality. The main difficulty is
that the benefit of downloading a Web page can only be
measured after it has been downloaded. Hence the prin-
cipal challenge is how to estimate the expected improve-
ment in repository quality if a particular page were to be
downloaded, without downloading it. In this paper we fo-
cus on estimating the benefit of re-downloading pages al-
ready present in the repository. We show that the bene-
fit of redownloading a page can be estimated fairly accu-
rately from the measured improvement in repository quality
due to past downloads of the same page. However, näıve
methods of measuring the improvement in repository qual-
ity due to downloading a new or updated page are extremely
inefficient—in practice they would cripple a Web crawler.
We propose a novel approximation scheme for this purpose,
coupled with an implementation technique in which mea-
surements are taken in conjunction with index maintenance
operations. Our technique is efficient enough to use in an
operational Web crawler.

1.4 Contributions
The specific contributions of this paper are as follows:

• We propose a new metric of the quality of a search
engine’s local repository of Web pages, defined with
respect to the quality of the user experience. (Sec-
tion 3)

• We establish a new incremental Web crawling paradigm,
called user-centric crawling, in which the objective is
to maximize the quality of average user’s search expe-
rience directly. (Section 4)

• We provide an efficient method of measuring the ap-
proximate impact of (re)downloading a Web page into
the local repository, in terms of improvement in the
quality of the user experience. Our method is tightly
integrated with the process of updating an inverted in-
dex that is maintained over the repository, and incurs
little additional overhead. (Section 5)

• We evaluate the effectiveness of our user-centric Web
page refresh scheduling policy empirically using real
Web data. In particular we show that the improve-
ment in quality yielded by downloading a particular
page is fairly consistent across time, making our ap-
proach feasible. We also compare our policy against
prior Web page refreshing schemes, and show that
our policy makes much more effective use of resources
when measured according to a user-centric notion of
repository quality. (Section 6)

2. RELATED WORK
Web crawling is a well-studied research problem. The sub-

problem of scheduling page refreshing under resource con-
straints has been studied in [9, 21]. In [9], the optimization
objective is to maximize the average freshness or minimize
the average age of pages in the repository, treating all pages
and changes to pages with uniform importance. Unlike in
our work, neither the manner in which pages change nor the
way in which users query and view results are considered.

In [21] a metric that assesses the level of “embarrassment”
to the search engine was proposed, along with a correspond-
ing page refreshing policy. In the model of [21], embarrass-
ment accrues whenever a user clicks on a search result link,
only to discover that the destination page is not, in fact,
relevant to the query she had issued. While a search engine
with a high embarrassment level clearly does not provide
quality service to its users, minimizing (or even eliminating)
embarrassment is not all that is needed to ensure a good
user experience. Consider that the omission of high-quality,
relevant documents from search results generates no embar-
rassment, although it can degrade the quality of the user
experience substantially (of course the user may not “know
what she is missing”). This point illustrates the difference
in philosophy between embarrassment-based crawling and
our user-centric crawling paradigm. We provide a thorough
empirical comparison of our page refresh scheme with those
of [9] and [21] in Section 6.

Work on focused crawling [8] concentrates on how to ob-
tain an initial crawl of the portion of the Web likely to be
of interest to a particular community of users. Our work
is complementary. Our user-centric approach to incremen-
tal crawling can be used to keep the repository of a focused
search engine up-to-date as the Web evolves.

3. SEARCH REPOSITORY QUALITY
Recall from Section 1.2 that in our user-centric model, the

quality of search repository WL is expressed as:

Q(WL) ∝
∑
q∈Q

fq ·
∑
p∈W

V (p, A(q,WL)) · S(W[p], q) (1)

where V (p, a) denotes the likelihood of a user viewing page p
when presented with result list a. Empirical measurements
taken during an extensive user study [13] indicate that the
expected viewing likelihood V (p, a) depends primarily on
the rank of p in a, denoted R(p, a). This property appears
to stem from the tendency of users to scan search result
lists linearly starting from the top, regardless of the content
of the list [13]. Furthermore, users typically cease explo-
ration well before reaching the end of the list, especially
for very large result sets. In light of these observations we
model viewing likelihood purely as a function of rank, so
that V (p, a) = I(R(p, a)) for some function I(r). We believe
this model serves as a reasonable first-order approximation
of true user behavior (the same model was adopted in [11]).
The function I(r) can be estimated by monitoring user be-
havior and fitting a curve. For example, AltaVista usage
logs analyzed in [11, 15] reveal that the following relation-
ship holds quite closely:

I(r) = c · r−3/2 (2)
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where c is a normalization constant.2 By substituting into
Equation 1 we obtain:

Q(WL) ∝
∑
q∈Q

fq ·
∑
p∈W

I(R(p, A(q,WL))) · S(W[p], q) (3)

(The rank of a page not present in a result list is taken to
be ∞, with I(∞) = 0.)

3.1 Ideal Repository Quality
It is instructive to formulate an expression for the upper

bound on search repository quality. As long as the inspec-
tion likelihood function I(r) is monotonically nonincreasing,
the expected cumulative score of visited pages is maximized
when pages are always presented to users in descending or-
der of their true score S(W[p], q). This ideal situation occurs
when a search engine’s repository is exactly synchronized
with the Web at all times, such that WL = W. Hence,
we denote the highest possible search repository quality as
Q(W), where:

Q(W) ∝
∑
q∈Q

fq ·
∑
p∈W

I(R(p, A(q,W))) · S(W[p], q) (4)

It is not difficult to construct a formal proof that present-
ing search results in descending order of true score (based on
the live Web copy) does indeed achieve a tight upper bound
on quality. To understand intuitively why it is the case that
ranking results in any other order results in a lower quality
score, consider the following two cases. First, if a page is
assigned a worse rank than its true score reflects, users will
reach that page less often, statistically, than they would had
the page been ranked correctly. Second, if a page is assigned
a better rank than it merits based on its true score, users will
tend to visit that page at the expense of not visiting other
pages with higher scores. Presenting results in descending
order of true score makes most effective use of users’ limited
attention span.

3.2 Normalized Quality Metric
It is convenient to represent search repository quality on a

known, bounded scale. Hence we define the quality of repos-
itoryWL relative to the upper bound on quality correspond-
ing to the case in which WL = W, such that Q(WL) ∈ [0, 1].
In this way we arrive at our final, normalized expression for
Q(WL):

Q(WL) =

∑
q∈Q fq ·

∑
p∈W I(R(p, A(q,WL))) · S(W[p], q)∑

q∈Q fq ·
∑

p∈W I(R(p, A(q,W))) · S(W[p], q)

(5)

Observe that in practice it is effectively impossible to com-
pute the exact quality value of a large repository of Web
pages. Measuring Q(WL) exactly would require access to
a fully up-to-date snapshot of the corresponding pages on
the live Web, and obtaining such a snapshot is precisely the
problem we are trying to solve. Our quality metric serves
primarily as a conceptual tool for now; we will explain how
to translate it into a practical implement later in Section 5.

2User views were measured at the granularity of groups of
ten results in [15], and later extrapolated to individual pages
in [11].

3.3 Change in Quality
To motivate and describe our user-centric Web crawling

scheme we require a metric for the change in repository qual-
ity upon (re)downloading the latest copy of a particular Web
page into the repository. We extend our notation to incorpo-
rate time as follows. Let Wt and WL

t refer to the state of the
live Web and of the local repository, respectively, at time t.
Now consider a page p and let WL+p

t refer to the state of the
repository if it is altered by incorporating the latest version
of p, such that WL+p

t [p] = Wt[p]. (We assume for simplic-
ity of our formal notation that the process of downloading
a page and incorporating it into the repository occurs in-
stantaneously.) We define the change in repository quality
∆Q(p, t) due to downloading page p at time t as:

∆Q(p, t) = Q(W L+p
t )−Q(W L

t )

=

∑
q∈Q fq ·

∑
p′∈W ∆I(p′, q,WL

t ,WL+p
t ) · S(Wt[p

′], q)∑
q∈Q fq ·

∑
p′∈W I(R(p′, A(q,Wt))) · S(Wt[p′], q)

(6)

where ∆I(p, q,W1,W2) denotes the change in the expected
frequency with which users inspect page p as a consequence
of issuing query q, if repository W2 is used instead of W1 to
construct query answers. Formally:

∆I(p, q,W1,W2) = I(R(p, A(q,W2)))− I(R(p, A(q,W1)))

(7)

As an aside, we highlight two important yet subtle charac-
teristics of ∆Q(p, t). First, the value of ∆Q(p, t) for a given
page p depends on the current state of the Web at large
(Wt), because our quality metric is normalized relative to
the quality of a hypothetical ideal search engine that has
perfect and instantaneous access to the live Web. Second,
∆Q(p, t) also depends on the current state of pages other
than p in the search engine repository WL

t . Consequently,
if we consider two pages p1 and p2 that are downloaded
nearly simultaneously although in some serial order, the im-
provement in quality attributed to the action of downloading
each page may depend on the order in which they are down-
loaded. Both of these characteristics imply the following
property: Given a page p and two moments of time t1 and
t2 such that page p is never updated or downloaded during
the interval [t1, t2] (i.e., both Wt[p] and WL

t [p] remain un-
changed for all t ∈ [t1, t2]), it is not necessarily the case that
∆Q(p, t1) = ∆Q(p, t2).

4. USER-CENTRIC WEB CRAWLING
Our user-centric Web crawling scheme is driven directly

by our user-centric metric of search repository quality in-
troduced in Section 3. Given limited resources available for
downloading pages (but unlimited space for storing copies
of Web pages), the objective of user-centric crawling is to
schedule page downloading in such a way as to maximize
repository quality.

Suppose that, due to resource limitations, it is only pos-
sible to download and (re)index up to B pages per time
unit. (As in [12, 21], we assume uniform resource cost
across all pages, since the fixed overhead of the operations
required typically constitutes the dominant factor.) With
user-centric crawling, page downloading is scheduled on the
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basis of priorities. Each page p is assigned a numeric pri-
ority P (p, t) proportional to the expected improvement in
repository quality if p is (re)downloaded into the repository
at time t. Page priorities may change with time. At the
beginning of each time unit, the B pages of highest cur-
rent priority are scheduled for downloading, along with the
operations necessary to maintain the index up to date.

Ideally, we would set P (p, t) = ∆Q(p, t). However, since
it is generally far from feasible to determine the precise
value of this expression, we substitute the best available es-
timate of the expected change in repository quality due to
(re)downloading page p. Stated formally, we set P (p, t) =
E(∆Q(p, t)), where E() denotes our estimation procedure.
For pages that are already present in the repository, and
hence have been downloaded at least once in the past, the
expected benefit in terms of repository quality of download-
ing the page again in the future can be estimated using in-
formation observed during previous downloads of the same
page. For such pages we propose to estimate ∆Q(p, t) for
present or future values of t based on the value of ∆Q(p, t′)
measured at one or more times t′ at which page p was down-
loaded in the past (t′ < t).

We expect that for many (although not all) Web pages, a
reasonable ballpark estimate of ∆Q can be made based on
past measurements of the same quantity. We provide em-
pirical evidence to justify this expectation later in Section 6;
here we give some intuition. Many Web pages contain a set
of “identifying” terms, which constitute the keywords used
by most people to locate the page. These terms usually per-
sist over a long period of time, even if other aspects of the
page are volatile. For example, consider a page listing open
access hours, rules and regulations, etc. for the Carnegie
Mellon gymnasium. The terms “Carnegie Mellon gymna-
sium” are likely to remain on the page at all times, allowing
people to locate it consistently by querying for these terms.
Other terms such as “1:30pm” may come and go, but these
changes are unlikely to impact user searching significantly.
For such a page, ∆Q would consistently be small. For some
pages, however, the volatile content plays a large role in user
search. Consider, for example, a page listing weekly semi-
nar announcements. Assuming the seminar topics generally
align with the interests of many search engine users, ∆Q
would tend to be fairly large, consistently. Of course there
are bound to be Web pages that do not behave in any con-
sistent way with respect to our metric, as is the case with
any metric of content evolution.

As for newly-discovered pages that have not been down-
loaded even once, we leave the problem of how to estimate
∆Q as future work. Observe that given a suitable method of
doing so, downloading of new pages can be scheduled jointly
with redownloading of old ones, with resource allocation be-
tween these two tasks taken care of automatically.

In the remainder of this paper we focus on the important
subproblem of how to prioritize redownloading, or refresh-
ing of Web pages already present in a search engine reposi-
tory. The main challenge is how to estimate the change in
repository quality each time a page is downloaded, without
incurring substantial additional overhead. We address this
issue next.

5. ESTIMATING CHANGES IN QUALITY
DURING CRAWLER OPERATION

Our approach to page refresh scheduling hinges on the
ability to measure the change in repository quality, ∆Q(p, t),
each time page p is downloaded. Clearly, a highly efficient
method of measuring this quantity is needed. We focus
on measuring the numerator of our expression for ∆Q(p, t)
(Equation 6), since the denominator is the same across all
pages and does not affect relative differences in priorities.
Hence our goal is to measure the absolute change in quality,
∆QA(p, t), defined as:

∆QA(p, t) =
∑
q∈Q

fq ·
∑

p′∈W

∆I(p′, q,WL
t ,WL+p

t ) · S(Wt[p
′], q)

where WL
t denotes the contents of the search engine repos-

itory before page p is refreshed, and WL+p
t denotes its con-

tents afterward. From Equation 7, ∆I(p, q,W1,W2) =
I(R(p, A(q,W2)))− I(R(p, A(q,W1))).

The anticipated workload Q can be estimated using re-
cent query logs, and the function I(r) can be determined
from usage logs. For the remainder of this paper we assume
I(r) = c · r−3/2, following [11]. Furthermore in the remain-
der of this paper we restrict the scoring function S() to be
one in which the score of a page depends on the content of
that page only. (The score may also incorporate a global
notion of “importance,” e.g., PageRank [17], that is recom-
puted on occasion, at a time-scale that is large relative to
the rate of downloading pages.) We also assume the score
of a page is zero if it does not contain at least one instance
of every term in a query.

Even if we sidestep the difficulty that true scores S(Wt[p
′], q)

of pages p′ 6= p are unavailable, say by substituting esti-
mates, it is still very expensive to compute ∆QA(p, t) di-
rectly. Doing so requires materializing the result list of ev-
ery query affected by the change in content of page p, and
for each list examining the scores and ranks of every page
whose rank has changed. Therefore we seek an efficient ap-
proximation scheme.

5.1 Approximation Scheme

5.1.1 Approximating the Workload
Since most search engine queries consist of only one or two

terms, we approximate the query workload by breaking each
multiple-term query into a set of single-term queries. (We
leave more sophisticated treatment of multiple-term queries
as future work.) The resulting simplified workload, Q′, con-
sists of only single-term queries and their frequencies, where
the frequency fq′ of a single-term query q′ ∈ Q′ is set equal
to the sum of the frequencies of the queries in Q in which q′

occurs. Now, observe that for any single-term query q con-
sisting of a term that occurs in neither WL

t [p] nor WL+p
t [p],

S(WL+p
t [p], q) = S(WL

t [p], q) = 0 so the result of q remains
unchanged by the update to page p. Hence we arrive at the
following approximate expression for ∆QA(p, t):

∆QA(p, t) ≈
∑
q∈S

fq ·
∑

p′∈W

∆I(p′, q,WL
t ,WL+p

t ) · S(Wt[p
′], q)

where S = Q′ ∩ (WL
t [p] ∪WL+p

t [p]).
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5.1.2 Approximating the Score-Rank Correspondence
To avoid computing result lists directly, we use precom-

puted functions, each of which provides an approximate
mapping between score and rank among the results of a par-
ticular query. In particular, for each query q ∈ Q′ we main-
tain an invertible piecewise linear function Fq from result
scores to ranks, on log-log scale. The function pieces are of
equal length on the log scale, so that scores corresponding to
small rank values are approximated most accurately. Since
they are only intended to provide an approximate mapping
between score and rank, these functions need only be up-
dated periodically, and can be made very small so as to fit
in main memory (in our experiments described in Section 6,
we used three pieces per function; the space requirement is
just 20 bytes per query).

Let Fq(s) denote the result of using function Fq to esti-
mate the rank in the result of query q of a page whose score
is s. Conversely let F−1

q (r) denote the result of using the in-
verse of Fq to estimate the score of a page appearing at rank
position r in the result of query q. Using our technique of
approximating the relationship between score and rank for
a particular query using a piecewise function, we estimate
∆QA(p, t) as follows.

At the time page p is refreshed, suppose we are able to
determine the set S of queries affected by the changes in p,
as well as for each q ∈ S the scores for p both before and
after the refresh is applied, i.e., S(WL

t [p], q) and S(WL+p
t , q).

(We describe how to obtain these quantities efficiently later
in Section 5.2.) For notational ease let s1 = S(WL

t [p], q)

and s2 = S(WL+p
t [p], q). For each query q ∈ S we estimate

R(p, A(q,WL
t )) and R(p, A(q,WL+p

t )) as r1 = Fq(s1) and
r2 = Fq(s2), respectively. Our expression for the component
of ∆QA(p, t) corresponding to query q becomes:

∑
p′∈W

∆I(p′, q,WL
t ,WL+p

t ) · S(Wt[p
′], q)

≈
(
(I(r2)− I(r1)) · s2

)
+∑

p′∈W,p′ 6=p

∆I(p′, q,WL
t ,WL+p

t ) · S(Wt[p
′], q)

Now we focus on transforming the second term into a form
that is amenable to efficient evaluation. Assume r1 < r2

(the case in which r1 > r2 is symmetric). We transform
the summation over pages into a summation over rank po-
sitions affected by the shift in rank of page p, and invoke
our piecewise function to obtain a ballpark estimate of true
scores:

∑
p′∈W,p′ 6=p

∆I(p′, q,WL
t ,WL+p

t ) · S(Wt[p
′], q)

≈
r2∑

r=r1+1

(
I(r − 1)− I(r)

)
· F−1

q (r)

Assume now that r1 and r2 fall into the same piece P of
piecewise function Fq (it is straightforward to extend our
method to handle the case in which r1 and r2 span multiple
pieces). Let δi denote the average difference between the
scores for two consecutive rank positions in piece P . Sim-
plifying the above expression, we obtain:
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Figure 2: Overhead of our measurement scheme.

(
I(r1) · F−1

q (r1 + 1)
)
−

r2−1∑
r=r1+1

(
I(r) · δi

)
−

(
I(r2) · F−1

q (r2)
)

For cases in which (r2−r1) is small we evaluate the above

expression exactly, using I(r) = c · r−3/2. When (r2 − r1) is
large we use an approximate form of the middle term derived
by substituting a definite integral in place of the summation.
A closed-form solution for the integral is easy to obtain. The
net result of applying the integral approximation is:

j∑
k=i

k−3/2 ≈ 2 ·
(

1√
i
− 1√

j − 1

)
We found our experimental results (Section 6) not to be

very sensitive to the settings of our approximation parame-
ters, such as the number of pieces to use in each Fq.

5.2 Taking Measurements During Index
Maintenance

Our scheme for estimating the change in repository quality
upon refreshing page p described in Section 5.1 takes as in-
put the set S ⊆ Q′ of single-term queries (constructed from
the original multiple-term query log) affected by the changes
in p, and for each q ∈ S the scores for p both before and af-
ter the refresh is applied, i.e., S(WL

t [p], q) and S(WL+p
t , q).

Conveniently, it is possible to compute these scores effi-
ciently by coupling the measurement procedure closely with
the process of updating the inverted index, which is a neces-
sary operation that makes newly-downloaded content “search-
able.”

An inverted index contains lists of postings extracted from
the repository. A posting corresponds to a unique term/page
pair, and typically contains the number of times the term
appears in the page, font sizes, and any other information
required to evaluate the scoring function. Postings are typ-
ically updated in batches, after a set of pages have been
(re)downloaded into the repository. During the index up-
dating process, postings corresponding to terms no longer
present in pages are removed, and new postings are added
corresponding to new terms. With our measurement tech-
nique, whenever a posting corresponding to term T in page
p is added or removed, the resulting shift (if any) in the score
of p for query q = {T } is recorded in a special in-memory
buffer. After processing of the batch of updates has com-
pleted, ∆QA estimates are computed using the procedure of
Section 5.1.
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5.3 Overhead of Measurement Scheme
We integrated our quality change measurement scheme

with the indexing component of Lucene [2], a publicly-available
document indexing and retrieval system. Figure 2 shows the
time it takes to index a batch of HTML pages, both with
and without our special measurement code. Batch size (in
megabytes) is plotted on the x-axis. Total running time is
plotted on the y-axis. Our measurement scheme incurs very
modest overhead of 7− 8%.

6. EXPERIMENTS
We compared our user-centric page refreshing scheme with

other schemes proposed in the literature, using simulations
over real Web evolution data. We used two different data
sets (both from the UCLA WebArchive project data[4, 16]):

1. Boston Data Set (BDS): A 48-week archive of a sin-
gle Web site, www.boston.com. The complete Web
site was crawled once every week. Since our focus is
on refreshing the pages that persist over an extended
period of time, pages not present in all 48 weekly snap-
shots were removed. The remaining Web pages num-
ber around 16, 000.

2. Multiple site Data Set (MDS): A 48-week archive of
15 different Web sites, each sampled from a different
OpenDirectory topic area [3]. As with BDS, pages
not present in every weekly snapshot were removed.
Furthermore, in order to emphasize the role played by
Web page refreshing in the relatively short duration of
the Web evolution data we had access to, and also to
reduce the time required to perform each run of our
experiments, we only retained pages that changed in
some way (as determined by a checksum) at least once
during the 48-week period. The final data set consists
of around 19, 000 pages.

To obtain query workloads for our experiments we used
the publicly-available AltaVista query log [1]. It consists of
around seven million single- and multi-term queries. Since
our data sets are concentrated around fairly specific topics,
whereas the topics represented in the query log are quite
broad, we created workloads specific to each data set by
filtering queries based on relevance to the pages in each data
set. In particular, we eliminated queries for which the sum
of TF-IDF scores across all pages in a data set was below
a certain threshold. The threshold was chosen based on
observing a knee in the distribution that we felt would serve
as a natural cutoff point for query relevance.

Next we describe each of the three page refreshing strate-
gies we evaluated in turn.

6.1 Web Page Refreshing Schemes Evaluated

6.1.1 Staleness-Based Refreshing
With staleness-based refreshing (SBR) [9], the objective

is to minimize the number of stale pages in the search en-
gine repository.3 It is shown in [9] that under the staleness
3In [9] an alternative optimization objective, minimizing av-
erage age, is also proposed. Our preliminary experiments
showed that age-based refreshing did not perform as well as
staleness-based refreshing under our metric, so we did not
consider it further.

objective, when resources are limited it is best to abandon
refreshing of frequently updated pages in favor of refreshing
of other, less frequently updated pages.

In the simplest implementation of SBR, the repository
copy of a page is considered stale if it is not identical to
the current Web copy. Since Web pages are often updated
in fairly minor ways (e.g., advertisements, timestamps) we
used the standard method of shingling [5, 7] as a heuristic
for discriminating between significant and insignificant up-
dates. A page is considered stale if the fraction of shingles
that differ between the repository copy and Web copy of the
page exceeds a particular threshold τSBR ∈ [0, 1]. In our
experiments we tested values of τSBR throughout the range
[0, 1].

The work in [9] focuses uniquely on determining with
which frequency to refresh each page. No algorithm is pro-
vided for scheduling refreshes in the presence of a hard re-
source constraint. We used the transportation algorithm
suggested in [21] for this purpose.

6.1.2 Embarrassment-Based Refreshing
With embarrassment-based refreshing (EBR) [21], the ob-

jective is to minimize the level of “embarrassment” to a
search engine provider. Embarrassment accrues whenever
a user clicks on a search result link, only to discover that
the destination page is not, in fact, relevant to the query
she had issued. (A Boolean notion of relevance is assumed.)

The work in [21] applies to a wide variety of page up-
date models, including the fairly general quasi-deterministic
model. (In the quasi-deterministic model, time is divided
into discrete slices, and the probability that a particular
page undergoes an update may be different at each time-
slice.) We did not feel that our 48-week data set contained a
sufficient duration of data to fit a reliable quasi-deterministic
model, so we used the simpler Poisson update model, as
done in [9].

An important parameter in EBR is d(p), which denotes
the probability that if the repository copy of page p is out
of date with respect to the current Web copy (i.e., WL[p] 6=
W[p]), whenever the search engine presents page p to a user,
p turns out to be an irrelevant response for the query that
was issued (note that d(p) is a query-independent parame-
ter). No method of estimating this parameter is provided
in [21]. Since the shingling technique is a widely-accepted
way of measuring the difference between two Web pages, or
two copies of the same page, we apply it here. In particular,
we assume that if a page undergoes an update, it becomes
irrelevant to an average query if the fraction of shingles that
change exceeds a configurable threshold τEBR. We compute
d(p) as the fraction of updates to page p that induce at least
τEBR fraction of the shingles to change. In our experiments
we tested values of τEBR throughout the range [0, 1].

6.1.3 User-Centric Refreshing
Our user-centric page refreshing scheme is parameterized

by a scoring function S(). While our approach is compatible
with a wide variety of possible scoring functions, for our
experiments we needed to use a specific scoring method.
Since no standard exists, we used two well-accepted methods
that we feel constitute two extremes among the spectrum of
options: (1) the well-known TF-IDF metric [18], using the
variant employed in the popular Lucene software [2], and (2)
inlink count obtained by querying Google, which we used
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Figure 3: Amenability to forecasting of time-normalized change in quality (δQA(p)). The four graphs shown
correspond to (a) BDS data set with TF-IDF scoring function, (b) BDS with inlink count scoring function,
(c) MDS data set with TF-IDF, and (d) MDS with inlink count. All graphs are on a log-log scale.

as a surrogate for PageRank [17] due to lack of adequate
data (it has been suggested that inlink count and PageRank
yield similar results [20]). In both cases the result of a query
consists of a list of all pages that contain every term in the
query, arranged in descending order of score.

In our user-centric page refreshing scheme, each page p is
assigned an associated priority value P (p, t), which may vary
over time. Page refreshing is scheduled according to priority.
The priority of a page is set equal to the expected change
in repository quality if that page is refreshed, as estimated
by extrapolating from past measurements of this quantity
taken during previous refreshes of the same page. These
measurements are obtained using the estimation procedure
of Section 5.

A variety of extrapolation methods can be used. The
option we selected for our experiments is as follows. Given
a set R(p)4 of time instants of past refreshes of page p, let:

δQA(p) =
1

|R(p)|
∑

t∈R(p)

∆QA(p, t)

t− LR(p, t)

where LR(p, t) denotes the time of the most recent refresh
of page p prior to t. Set P (p, t) = δQA(p) · (t− LR(p, t)).

4We envision that in a real deployment the set R(p) would
be determined based on a sliding window of recent refreshes
of page p. (Other heuristics for favoring recent observations,
such as exponentially-decayed averaging, warrant investiga-
tion as well; we leave this topic as future work.)

6.2 Estimation of Page Change
Characteristics

Each of the page refreshing schemes we consider relies on
forecasting of Web page change behavior based on behavior
observed in the past. In particular, for each page p SBR re-
quires a Poisson change rate parameter λ(p), EBR requires
a query irrelevance probability parameter d(p), and user-
centric refreshing requires a time-normalized quality change
value δQA(p). We opted against splitting our data sets to
perform parameter fitting and evaluation over different por-
tions (say, 24 weeks each), because shortening our somewhat
short 48-week data any further would make it difficult to ob-
tain reliable performance measurements. Plus, in this paper
we do not focus on the forecasting problem, and we seek to
compare all three methods on equal footing, independent of
the forecasting method used. Therefore, for all three policies
we used the entire 48-week data set to estimate the necessary
parameter for each page p.5

Still, we wanted to check that quality change values δQA(p)
are amenable to forecasting based on past measurements.
For this purpose we estimated δQA(p) values (using our ap-
proximation method of Section 5.1) for each page, once over

5Note that for SBR and EBR, different settings for the
shingles threshold τSBR (τEBR, respectively) result in po-
tentially different λ(p) (d(p)) values, which is precisely the
purpose of varying the threshold.
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Figure 4: Repository quality versus resource usage. The different graphs are for (a) BDS data set with
TF-IDF scoring function, (b) BDS with inlink count scoring function, (c) MDS data set with TF-IDF, and
(d) MDS with inlink count.

the first 24 weeks of our data set, and again over the sec-
ond 24 weeks, under the scenario in which every update to
a page triggers an immediate refresh. We then compared
the δQA(p) estimates across the two 24-week periods. Fig-
ure 3 shows the outcome, for each of our two data sets under
each of the two scoring functions we tested. In each graph,
δQA(p) over weeks 1−24 is plotted on the x-axis, and δQA(p)
over weeks 25−48 is plotted on the y-axis. Each dot in each
graph corresponds to one page. When δQA(p) = 0, that
indicates no change in repository quality due to updates to
page p. Beyond that the scale of the axes is immaterial (since
we are not measuring normalized quality). Each graph is
plotted on a log-log scale, with pages with a value of 0 for
one of the two δQA(p) measurements inserted artificially
along the edges. Pages with δQA(p) = 0 for weeks 1 − 24
as well as weeks 25− 48 are not plotted (hence these graphs
present a conservative view of amenability to forecasting).
Dots are colored according to quantiles of proximity to the
diagonal; see the key below the graphs. Points that are
close to the diagonal (y = x line) correspond to pages whose
δQA(p) values remain fairly consistent in both halves of the
data set, implying that they can be forecasted accurately at
this time-scale based on past measurements. These findings
are in accord with those presented in [16], which assessed
amenability to forecasting of Web page change characteris-
tics as measured by TF-IDF cosine similarity directly.

6.3 Comparison of Page Refreshing Schemes
We compared the three page refreshing schemes (SBR,

EBR, and user-centric crawling) using our user-centric repos-
itory quality metric which, as we have argued, we believe
serves as a suitable metric for evaluating a crawler serving
a search engine. Of course, crawling can also be used for
other purposes (archival, mining, etc.), in which case our
metric is not appropriate. For the purpose of evaluating the
performance of a refreshing scheme we applied the precise
formula for repository quality (Equation 5), and did not rely
on any approximation techniques.

For this experiment we provided each refreshing scheme
with a fully synchronized repository at week 1, and then
allowed a fixed number of pages, B, to be refreshed every
week for the remaining 47 weeks. We compared page refresh-
ing schemes in terms of the resource requirement (B value)
necessary to achieve a certain level of repository quality ac-
cording to our user-centric metric, for two different scoring
functions, TF-IDF and inlink count, over each of our two
data sets, BDS and MDS. The results are plotted in Fig-
ure 4. In each graph, repository quality is plotted on the
x-axis, and the resource requirement B is plotted on the y-
axis. For each of SBR and EBR, for each B value the best
repository quality level obtained using shingle threshold val-
ues τ ∈ {0.1, 0.2, . . . , 0.9, 1.0} is plotted. For both data sets
and both scoring functions, our user-centric page refresh-
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(a)

(b)

Figure 5: Examples drawn from our real-world data sets (boston.com and washingtonpost.com, respectively).

ing scheme requires substantially fewer resources to achieve
the same level of repository quality than either of SBR and
EBR.

We highlight the primary underlying reasons for this re-
sult using the following two examples taken from our data
sets:

Example 1: Figure 5(a) shows an advertisement added
to a Web page in the boston.com data set. As it turned
out, although the new advertisement consists of a large tex-
tual segment, none of the terms in the advertisement match
frequently-issued queries in the AltaVista query workload.
Hence, from the perspective of our user-centric notion of
repository quality it is not important to capture the con-
tent of the advertisement. Consequently our user-centric re-
freshing scheme did not devote resources to refreshing this
page (which turned out not to be updated in any way other
than changing of advertising material), leaving more re-
sources available for other tasks. This example illustrates
that heuristics for estimating the importance of an update
based on the number of words that change do not always
work well.

Example 2: Figure 5(b) shows a portion of a Web page
containing seminar announcements, that was updated to
remove outdated announcements and replace them with a
new announcement of an upcoming law seminar series. If
this page is not refreshed in a timely fashion, users querying
for, say “Washington campaign finance”, would not see this
page among the query results even though it should appear
(and be placed at a good rank position under at least some
scoring functions). Our user-centric repository quality met-
ric is particularly good at characterizing the importance of
keeping this page up to date in the repository, by noting the
high degree of match between frequent queries and evolving
content (for example, the query “cancer” occurs frequently
in the AltaVista query workload). This example illustrates
(1) the importance of accounting for false negatives as well

as false positives, and (2) that certain frequently-updated
pages merit the devotion of precious refreshing resources, if
it is the case that the updates tend to have a large impact
on the user experience.

One may be inclined to suppose that, say, 95% reposi-
tory quality is sufficient, and that there is no need to shoot
for quality values very close to 100%. However, the differ-
ence between 95% and 99% repository quality can have a
significant impact on the user experience. In fact, we came
across Example 2 by examining a scenario in which SBR
and EBR each achieved ∼ 95% quality, whereas our user-
centric scheme attained over 99% quality under the same
resource constraint. Both SBR and EBR neglected to re-
fresh this important seminar announcement page, leading
to a substantial degradation in the quality of search results
for a large number of (simulated) users.

7. SUMMARY AND FUTURE WORK
The capability to query the content of the World Wide

Web instantaneously and accurately using search engines is
invaluable, so it is very important that we understand how to
deploy highly effective Web crawlers. Given the sustained
growth in size and dynamicity of the Web as a whole, it
appears that Web crawling will remain, in relative terms,
a resource-starved activity for the foreseeable future. This
property is especially true for the growing number of topic-
specific search engines, which are often sustained by modest
budgets.

In this paper we introduced a new Web crawling paradigm
designed specifically for search engines, in which the objec-
tive is to allocate resources to crawling tasks in such a way as
to maximize the quality of the user experience, given a fixed
resource allowance. Scheduling of crawler tasks is driven en-
tirely by usage, in terms of which queries are issued, with
what frequency, and which results are inspected by users, so
our scheme does not rely on external tuning parameters.
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After introducing and formalizing our overall user-centric
crawler scheduling policy we focused on the important sub-
problem of scheduling refreshing of Web pages already present
in a local search repository, in order to keep them up to
date. We showed that the benefit of refreshing a particular
page, measured in terms of impact on the user experience, is
amenable to prediction based on measurements of the ben-
efit of downloading the page in the past. We devised an
efficient, yet approximate method for taking these measure-
ments that is tightly integrated with the process of updat-
ing an inverted index maintained over the repository, and
incurs little additional overhead. Lastly we compared our
user-centric page refreshing scheme against prior schemes
empirically using real Web data. Our results demonstrate
that our scheme requires substantially fewer resources to
achieve the same user experience quality, leaving more re-
sources for other important tasks such as downloading new
pages.

7.1 Future Work
Our user-centric page refreshing scheme can be extended

to make it compatible with scoring functions in which the
score of a page depends partially on the content of other
pages (as with anchortext inclusion methods [6]). In prin-
ciple such an extension can be made without compromising
the crucial ability to estimate changes in repository quality
in tandem with index maintenance operations (Section 5.2).
Evaluating the viability of extending our techniques in this
way is an important topic of future work. Another prob-
lem left as future work is to determine the most effective
method of forecasting the change in quality due to refresh-
ing a page, based on historical observations. Finally, the
most significant topic of future work is to devise methods of
gauging the benefit of downloading newly-discovered pages,
to enable downloading of new pages to be scheduled jointly
with refreshing of old ones (as done in [12] under a different
optimization objective).
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