
LSH Forest: Self-Tuning Indexes for Similarity Search

Mayank Bawa
Stanford University
Stanford, CA 94305

bawa@db.stanford.edu

Tyson Condie
U. C. Berkeley

Berkeley, CA 94720

tcondie@eecs.berkeley.edu

Prasanna Ganesan
Stanford University
Stanford, CA 94305

prasanna@db.stanford.edu

ABSTRACT
We consider the problem of indexing high-dimensional data for an-
swering (approximate) similarity-search queries. Similarity index-
es prove to be important in a wide variety of settings: Web search
engines desire fast, parallel, main-memory-based indexes for simi-
larity search on text data; database systems desire disk-based simi-
larity indexes for high-dimensional data, including text and images;
peer-to-peer systems desire distributed similarity indexes with low
communication cost. We propose an indexing scheme called LSH
Forest which is applicable in all the above contexts. Our index us-
es the well-known technique of locality-sensitive hashing (LSH),
but improves upon previous designs by (a) eliminating the differ-
ent data-dependent parameters for which LSH must be constant-
ly hand-tuned, and (b) improving on LSH’s performance guaran-
tees for skewed data distributions while retaining the same storage
and query overhead. We show how to construct this index in main
memory, on disk, in parallel systems, and in peer-to-peer systems.
We evaluate the design with experiments on multiple text corpora
and demonstrate both the self-tuning nature and the superior per-
formance of LSH Forest.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: search process; H.3.4
[Systems and Software]: Distributed systems, information net-
works, Performance evaluation (efficiency and effectiveness)

General Terms
Algorithms, Performance, Similarity, Search

Keywords
Similarity indexes, peer-to-peer (P2P)

1. INTRODUCTION
Performing similarity search to find objects most similar to a giv-

en object is a classical problem with many practical applications.
For example, a Web search engine wants to find pages most similar
to a given Web page. A database system wants to support similar-
ity queries over text, image or video data. A peer-to-peer content-
sharing system wants to support queries that find content, or peers
themselves, that are most similar to a given content instance. Other
application domains [20] include data compression, data mining,
machine learning, pattern recognition and data analysis.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

Given a small dataset size, one could simply compare each object
to the query in order to find the most similar objects. However, such
an approach becomes infeasible due to linear querying costs even
for medium-sized datasets. Furthermore, if the cost of computing
similarity between pairs of objects is high, then even a partial scan
of the dataset can overwhelm the processing resources available.

The solution is to develop indexes that, given any query, will
select only a small set of “candidate” objects to compare the query
against. The “best” indexes have the following properties:
A Accuracy: The set of candidates retrieved by the index should

contain the most similar objects to the query.
B Efficient Queries: The number of candidates retrieved must be

as small as possible, to reduce I/O and computation costs.
C Efficient Maintenance: The index should be built in a single

scan of the dataset, and subsequent inserts and deletes of objects
should be efficient.

D Domain Independence: The index should require no effort on
the part of an administrator to get it working on any data do-
main; there should be no special tuning of parameters required
for each specific dataset.

E Minimum Storage: The index should use as little storage as
possible, ideally linear in the data size.

The B+ Tree is a classic example of one of the “best” indexes for
range queries on one-dimensional ordered domains. The B+ tree
is always accurate, returning exactly the query results. Queries are
efficient, requiring at most O(log n) disk reads, and one sequential
scan, in an n-object dataset. It supports efficient inserts and deletes
of data with O(log n) disk writes per insert/delete, while keeping
the tree balanced at all times. It is completely domain-independent,
requiring only a specification of the comparison function in the do-
main. Finally, it uses only O(n) storage space, thus providing all
five properties listed above.

In this paper, we design an index for approximate similarity-
search queries that meets the desiderata listed above. Our index is
based on the influential locality-sensitive hashing (LSH) scheme of
Indyk and Motwani [23]. The basic idea behind LSH is the follow-
ing: objects are hashed using special locality-sensitive hash func-
tions, such that “similar” objects are much more likely to collide
(hash to the same bucket) than dissimilar objects. Many similar-
ity measures have corresponding LSH functions that provide this
property. Examples of such similarity measures include the Jac-
card coefficient, the Hamming metric and the l1 and l2 norms [23].

At query time, the query q is also hashed to a bucket; objects
which hash to the same bucket are retrieved as “candidate” answers,
their actual similarity to the query is computed, and the most sim-
ilar among them are returned as answers to the query. The results
returned by LSH are guaranteed to have a similarity within a small
error factor ε of the optimal, for any fixed ε > 0.

651

The basic LSH scheme as described above satisfies Properties
[A], [B] and, to some extent, [C]. However, it fails in Property [D]
as an administrator must tune various index parameters (size of sig-
natures k, distance to nearest neighbors r, and number of indexes
l), which are a function of the data domain, for the accuracy guaran-
tees to hold [23, 20]. These parameters also depend on the number
of objects being stored, and thus may have to be changed if the
corpus size changes over time (violating Property [C]). In addition,
there is a trade-off between the storage space required (Property
[E]) and the accuracy that can be guaranteed for queries (Property
[A]). Guaranteeing accuracy for all queries requires a large number
of indexes, each tuned with a different set of parameters, making
the storage requirement proportional to 1

ε
[20] which violates Prop-

erty [E]; on the other hand, with limited storage space, one cannot
guarantee good accuracy for all queries which can be a problem
especially in domains with skewed data distributions.

Summary of Results: We present a new indexing scheme called
the LSH Forest which uses locality-sensitive hashing while avoid-
ing the problems listed above. The LSH Forest improves the the-
oretical guarantees on query performance, ensuring accuracy for
all queries without a corresponding blow-up in storage space (thus
simultaneously offering Properties [A] and [E]). It also eliminates
the need for tuning the index in a domain-dependent fashion, or
whenever the corpus size changes (thus offering Properties [C] and
[D]). All these properties are achieved while retaining the efficient
querying offered by the basic LSH scheme (Property [B]).

The LSH Forest can be implemented in a variety of settings.
In this paper, we describe how it may be constructed as a main-
memory index, as a disk-based index, as a parallel index, and as
a distributed index for P2P systems. One particularly interesting
application we consider is in P2P systems where the objects being
indexed are the peers themselves, and queries attempt to find the
most similar peers to a given object/peer; we describe an efficient
implementation for this case where the overlay network intercon-
necting peers is structured to reflect similarity information, avoid-
ing the need for an explicit similarity index entirely.

We evaluate the LSH Forest in the context of similarity search
over text documents, using the standard test collections from TREC
and Reuters. We demonstrate that the LSH Forest offers a clear
improvement over even the best-tuned standard LSH index in terms
of answer quality, while retaining the same storage and query costs
and avoiding the need for all parameter-tuning.

Organization: We discuss related work in Section 2. Section 3 de-
fines the basic problem, and Section 4 presents an overview of the
basic LSH scheme for similarity search. We present our LSH For-
est indexing scheme in Section 5 and discuss how it may be imple-
mented in different contexts. Section 6 describes the experimental
methodology evaluating the use of the LSH Forest for the problem
of text similarity search. We present our experimental evaluation
of the index in Section 7.

2. RELATED WORK
Similarity search has been a topic of much research in recent

years. The work in literature can be broadly classified into four
categories based on the following notions of similarity:
• Nearest-neighbor queries,
• Duplicate detection,
• Link-based similarity search, and
• Defining object representation

Nearest Neighbors: Much work in the database literature has con-
sidered tree-based indexing methods for efficiently indexing tuples

represented as points in a metric space. The indexes have proven
to be useful for low and moderate dimensional spaces. A com-
mon strategy for indexing high dimension points is to map the data
points to lower dimensional space and perform similarity search-
es in that space [15]. Some strategy is then used to group data
together using a bounding object. The bounding objects are orga-
nized in a tree structure to support efficient querying. The type of
bounding object and the method of constructing and maintaining
the trees vary widely: minimum bounding rectangles (e.g., K-D-
B-Trees [30], R-Trees [21], R*-Trees [24], X-trees [4]), polyhedra
(e.g., Pyramid-Trees [3]), and hyperspheres (e.g., SS-Trees [33]).
Any fixed bounding object however never fits real data tightly, caus-
ing data to be sparse, and not necessarily uniformly distributed,
within bounding objects. In high dimensions, the query point over-
laps with a lot of bounding objects, many of which contain no rele-
vant data points, resulting in non-trivial paging costs at query time.
In particular, Weber et. al. [32] show, both empirically and theoret-
ically, that all current indexing techniques based on space partition-
ing degrade to linear search for sufficiently high dimensions. This
situation poses a serious obstacle to the development of Web-scale
content similarity search systems based on spatial indexing.

Duplicate Detection: Several algorithms (e.g., [5, 6, 8, 10, 16, 31])
have been studied to find nearly identical documents in a large cor-
pus. In all algorithms, there is a user-provided threshold parameter,
that bounds the “dissimilarity” beyond which documents are of no
interest, which is empirically adjusted to suit the target domain.
The algorithms rely heavily on the threshold parameter being very
low to aggressively prune possible candidate pairs of similar docu-
ments. If the threshold parameter is higher (as for general similarity
search), processing is overwhelmed with large numbers of (false)
candidates, making the algorithms unscalable for our domain.

Link-Based Similarity Search: Many commercial search engines
provide a “find related pages” feature for pages on the Web, but
the details of their algorithms are not publicly available. Dean and
Henzinger [14] present two algorithms (Companion and Cocita-
tion) that rely only on the hyperlink structure of the Web to identify
related Web pages. Companion extends Kleinberg’s HITS algo-
rithm [25] while Cocitation finds pages that frequently co-occur
with the query page, to find related pages. The algorithms suffer
from the drawback that pages with few in-links will not have suf-
ficient co-citations to either be allowed in queries, or be returned
as results to queries. Furthermore, the vicinity graph of the query
page has to be constructed (to compute hubs and authority scores
in Companion, and to count co-occurrences in Cocitation) resulting
in non-trivial processing costs at query time.

Defining Object Representation: Often, deducing a compact rep-
resentation of an object is an interesting problem by itself. Again
in the Web context, the ideas of “topical locality” provided by co-
occurring hyperlinks have been used and studied in several works [9,
13, 19]. Haveliwala et al. [22] show that using words appearing in-
side or near an anchor of a hyperlink to represent a linked Web page
is most useful for similarity search on the Web. In [22], a Web crawl
is pre-processed to construct an LSH-based index [7, 11] that maps
each page p to a set of pages S that are similar to p above a certain
threshold parameter. At query time, the index is used to retrieve S
and return the most similar documents. Our focus in this work is
on replacing the simple LSH-based index by a better structure that
avoids all the drawbacks of LSH discussed earlier.

3. PROBLEM SETUP
Our objective is to design an index to perform similarity search

on a dynamic set of objects. As is conventional, we refer to objects

652

as points in some high-dimensional space, and the distance between
a pair of points is defined by some distance function D(., .). (Sim-
ilarity between points is inversely related to their distance.)

A similarity search query q that desires m results is called an
m−nearest neighbor query, and is required to return the m points
in the data set that are closest to q according to the distance function
D. Finding the exact solution to an m-nearest-neighbor query is
known to be hard [23]. We relax our requirements to find only
approximate nearest neighbors: for a pre-specified value ε > 0, we
wish to find m neighbors, such that the distance from q to the ith

nearest neighbor returned is at most (1+ε) times the distance from
q to its true ith nearest neighbor.

Our problem is to design an index structure that enables effi-
cient ε-approximate nearest-neighbor queries, efficient building of
the index, efficient insertion and deletion of points, and complete
domain independence, all while ensuring minimal use of storage.
We note that our solution (and, for that matter, any solution) will
not work for an arbitrary choice of the distance function D; how-
ever, it does work for any choice of D for which there is a corre-
sponding LSH family, as we discuss later on.

4. LSH: OVERVIEW AND PROBLEMS
We first present an overview of locality-sensitive hashing (LSH),

and how it is used in constructing indexes for similarity search. We
will then describe the difficulties that emerge in using such index-
es, in order to motivate our solution that we present in the next
section. Our treatment of LSH is drawn from, and follows the no-
tation of [23, 20] with simplifications where appropriate; we refer
the reader to these papers for more details.

The intuition behind LSH-based indexes is to hash points into
buckets, such that “nearby” points are much more likely to hash to
the same bucket than points that are far apart. We could then find
the approximate nearest neighbors of any point, simply by finding
the bucket that it hashes to, and returning the other points in the
bucket. In fact, Broder et al. [8] use this intuition to find near-
ly identical documents in Web crawls. Translating this intuition
to find similar documents requires a concrete definition of which
points are “nearby”, and special, locality-sensitive hash functions
that ensure that only nearby points collide.

4.1 Locality-Sensitive Hash Families
We start by defining the requirements for a hash function family

to be considered locality-sensitive.

DEFINITION 1. [23, 20] A family H of functions from a domain
S to a range U is called (r, ε, p1, p2)-sensitive, with r, ε > 0, p1 >
p2 > 0, if for any p, q ∈ S , the following conditions hold:
• if D(p, q) ≤ r then PrH[h(p) = h(q)] ≥ p1,
• if D(p, q) > r(1 + ε) then PrH[h(p) = h(q)] ≤ p2.

Intuitively, the definition states that “nearby” points within a dis-
tance r of each other are likely to collide (with probability p1),
while “distant” points more than r(1+ ε) apart have only a smaller
probability (p2) of colliding. (The probabilities are computed over
the random choice of hash function h from H.) It is possible to
define such locality-sensitive hash families for many different dis-
tance functions D, including the Jaccard measure, the Hamming
norm, and the l1 and l2 norms [23]. We will discuss the LSH fami-
ly for the Jaccard measure in greater detail in Section 6.

4.2 The LSH Index
Assume that there is some family of LSH functions H available.

We can then use H to construct a set of hash tables as below, that
we collectively refer to as an LSH index.

1. Choose k functions h1, h2, . . . hk uniformly at random (with
replacement) from H. For any p ∈ S, place p in the bucket
with label g(p) = (h1(p), h2(p), . . . hk(p)). Observe that if
each hi outputs one “digit”, each bucket has a k-digit label.

2. Independently perform step (1) l times to construct l separate
hash tables, with hash functions g1, g2, . . . gl.

Step (1) concatenates k different hash functions together to iden-
tify the hash bucket; if two “distant” points had a probability p2 of
collision with one hash function, their collision probability drops to
just pk

2 with the concatenation, which becomes negligibly small for
large k. It is easy to see that a small value of k increases the number
of false positives created by dissimilar points colliding. However,
a larger value of k has the side-effect of lowering the chances of
even nearby points colliding. Therefore, to ensure enough “good”
collisions occur, step (2) constructs multiple hash tables.

Index Maintenance and Usage: Maintaining the index as points
are inserted and deleted is straightforward. When a query q is is-
sued desiring m nearest neighbors, it is hashed to find collisions in
each of the hash tables. A fixed number cl of colliding points (for
some pre-determined choice of constant c) are examined, and the
m nearest points among them are returned as the answers to q.

Index Properties: Assume that the query q requires only one near-
est neighbor, and that we somehow knew the distance r from q to
its true nearest neighbor. If H is (r, ε, p1, p2)−sensitive, it can be
shown that, for suitable choices of k and l as a function of r, ε and
the number of points n, the index returns an ε-approximate nearest
neighbor for q. Furthermore, the number of points examined by
the query is strictly sub-linear in n and the storage overhead for the
index is sub-quadratic in n.

Observe the important caveat however: we need to know the dis-
tance r from the query to the nearest neighbor in order to select k
and l. In other words, once we have frozen a definition of what con-
stitutes a “nearby” point (distance less than r) and what constitutes
a far-away point (distance greater than r(1 + ε)), it is possible to
construct a tuned index that returns approximate nearest neighbors.
However, if different queries have their nearest neighbors at differ-
ent distances, the LSH index cannot provide good performance for
all of them.

A theoretical work-around for this problem is to construct many
LSH indexes, each tuned for a different value of r, say r = r0, r0(1+
ε), r0(1 + ε)2, . . ., thus ensuring that there is one index that works
well for every query. Unfortunately, this results in a large blow-up
in the storage cost. (An alternative theoretical solution is to con-
struct a structure known as ring-cover trees [23] but it does not
appear feasible in practice.)

In practice, it is recommended [20] to just choose a “good” val-
ue of r that captures the nearest-neighbor distance for most queries,
and construct the LSH index with this value of r. When nearest-
neighbor distances are relatively uniform, this turns out to be suffi-
cient to obtain good results. We also note that, while the theoreti-
cal arguments are for 1-nearest neighbor queries, the indexes work
well for m-nearest neighbors as well (with the number of retrieved
candidates changing appropriately).

4.3 Difficulties with the LSH Index
We now summarize the key theoretical and practical difficulties

with the use of the LSH index. On the theoretical side, the LSH
index suffers from the following problems:

A Each index has two parameters k and l which depend on the
number of points n, as well as r and ε. Therefore, the in-
dex may need to be reconstructed with different parameters

653

whenever n changes by a sufficiently large amount, or when
the data characteristics change.

B Obtaining ε-approximate nearest neighbors for all queries re-
quires the construction of a large number of indexes, which
can be expensive, in both storage and processing costs.

On the practical side, the first problem could be tackled simply
by setting k and l to be constants, and hoping that variations in the
different parameters does not affect performance too badly. It turns
out that the performance does not depend crucially on l, so long as
l is chosen to be large enough, say 10 [20].

The value of k, on the other hand, is critically dependent on the
data characteristics; in some cases (like the ones we present in Sec-
tion 7), it is also strongly affected by n. Thus, the LSH index needs
to be (a) tuned carefully, using data analysis to find the right value
of k, which is a non-trivial task; and (b) re-tuned periodically to
sustain performance with changing data size and characteristics.

The second problem – avoiding constructing a large number of
indexes – can be combated by building just one index for a good
choice of r. However, the price we must pay is the need to set
yet another tuning parameter r that can critically affect the index
performance. Moreover, the index will not work well for all queries
if data is skewed with high variance in nearest-neighbor distances.

5. THE LSH FOREST
Having seen that the LSH index suffers from the need for tuning,

continuous re-tuning, as well as the inability to provide strong qual-
ity guarantees for all queries, we describe how these problems may
be overcome by a different LSH-based approach to constructing in-
dexes that we call the LSH Forest. We will first present the logical
data structure to be constructed, explaining how queries are execut-
ed, and the structure maintained. Later, we discuss how the logical
structure may be realized in different implementation scenarios.

5.1 A Logical View
Recall that the LSH index placed each point p into a bucket with

label g(p) = (h1(p), h2(p), . . . , hk(p)), where h1, h2, . . . , hk are
chosen randomly with replacement from H. We could think of g(p)
as being a k-digit label assigned to point p. Now, instead of assign-
ing fixed-length labels to points, we let labels be of variable length;
specifically, each point’s label is made long enough to ensure that
every point has a distinct label.

It is possible that some points are so similar that assigning dis-
tinct labels to them would make the labels very long. To avoid this
problem, we impose a maximum label length km

1. The variable-
length label of a point is generated in the obvious fashion: We let
h1, h2, . . . , hkm

be a sequence of km hash functions drawn inde-
pendently and uniformly at random from H. The length-x label of
a point p is given by g(p, x) = (h1(p), h2(p), . . . , hx(p)).

The Data Structure: We can then construct a (logical) prefix tree
on the set of all labels, with each leaf corresponding to a point. We
call this tree the LSH Tree. Our indexing structure simply consists
of l such LSH Trees, each constructed with an independently drawn
random sequence of hash functions from H. We call this collection
of l trees the LSH Forest.

EXAMPLE 5.1. Figure 1 shows an LSH Tree that contains
four points, with each hash function producing one bit as output.
1This problem arises in the LSH index too, where the correspond-
ing assumption is that all points are a minimum distance r0 apart.
In both cases, the core difficulty is that it is impossible to distin-
guish between two points that are arbitrarily close to each other by
means of hashing.

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

0

0 1

11

111

00

110

01

0 1

Figure 1: A prefix tree on the set of LSH labels

ALGORITHM DESCEND(q,xi, s)
. Args: query q at level xi on node s
if (s is leaf) {

Return (s, xi)
} else {

y = xi + 1
Evaluate gi(q, y)
t = Child node from branch labeled hy(q)
(p, z) = DESCEND(q, y, t)
Return (p, z)

}

Figure 2: The top-down phase in query processing on LSH Tree
Ti initiated with DESCEND(q,0, rooti).

The leafs of the tree correspond to the four points, with their labels
marked inside. The shaded circles correspond to internal nodes.
Observe that the label of each leaf simply represents the path to it
from the root. Also observe that not all internal nodes need to have
two children; some internal nodes may have only one child (for ex-
ample, the right child of the root). In general, there is no limit on
the number of internal nodes in a prefix tree with n leaves, since we
can have long chains of internal nodes. Later on, we will discuss
how to represent such prefix trees compactly.

Queries: Consider an LSH Forest consisting of l prefix trees built
on a set of points. A query for the m nearest neighbors of a point
q is answered by traversing the LSH Trees in two phases. In the
first top-down phase, we descend each LSH Tree Ti to find the leaf
having the largest prefix match with q’s label as shown in Figure 2.

Let x := maxl
i{xi} be the maximum (bottom-most) level of

leaf nodes across all l trees. In the second bottom-up phase, we
collect M points from the LSH Forest, moving up from level x
towards the root synchronously across all LSH Trees as shown in
Figure 3. For 1-nearest neighbor queries, we simply set M = cl
for a small constant c (we count duplicates as part of M). For m-
nearest neighbor queries, we have more choices; for example, M
can be set dynamically at runtime to ensure that there are at least
m distinct points returned and M ≥ cl. The M points are then
ranked in order of decreasing similarity with q from which the top
m distinct points are returned as an answer to the query q.

Inserts: Point insertions are executed independently on each LSH
Tree. A significant part of the process of inserting a point p is the
top-down search just described. When a leaf node with point p′ is
reached, the labels of both p and p′ are extended with additional
digits until they become distinct and occupy unique leaf nodes.

Deletes: Deletions are the converse operation of inserts. The top-
down phase of the search algorithm is executed to reach the ap-
propriate leaf node, which can then be removed from the tree. A
bottom-up traversal of the tree towards the root potentially con-
tracts the labels of internal and leaf nodes.

654

ALGORITHM SYNCHASCEND(x[1, . . . , l], s[1, . . . , l])
. Args: xi values and corresponding leaf nodes si for each Ti

x = maxl
i{x[i]}

P = φ
while (x > 0 and (|P | < cl or |distinct(P)| < m)) {

for (i = 1 ; i ≤ l ; i + +)
if (x[i] == x) {

P = P ∪ Descendants(s[i])
s[i] = Parent(s[i])
x[i] = x[i] − 1

}
x = x − 1

}
Return P

Figure 3: The synchronous bottom-up phase in query process-
ing initiated with arguments returned by DESCEND.

Theoretical Guarantees: For a proper choice of H and l and with
c = 3, we can show that queries using the LSH Forest return ε-
approximate neighbors, irrespective of the distance of the query
from its nearest neighbor. We start by defining the special class of
LSH functions H that we require for the LSH Forest.

DEFINITION 2. A family H of functions from S to U is called
(ε, f(ε))-sensitive in the range (a, b), if for any p, q ∈ S , with
a < D(p, q) < b, and any r : a < r < b, there exist p1 > p2 ≥ 0
such that the following conditions hold:
• if D(p, q) ≤ r then PrH[h(p) = h(q)] ≥ p1,
• if D(p, q) > r(1 + ε) then PrH[h(p) = h(q)] ≤ p2

• log(1/p1) > f(ε) log(1/p2)

Note that the above definition is almost identical to the earlier
definition of LSH families, except that the parameter r has been
eliminated. We also note that all the “typical” LSH families used
in the basic LSH scheme (and that we describe later) satisfy the
more restrictive definition above. Then, with such a choice of H
the theorem below shows that LSH Forest returns ε-approximate
nearest neighbors for a suitable choice of l (with say, c = 3.)

THEOREM 5.1. With an (ε, f(ε))-sensitive hash family H in
the range (a, b), setting l = nf(ε) ensures that any nearest-neighbor
query q returns ε-approximate neighbors using the LSH Forest with
a non-zero probability greater than a constant C, so long as the
distance from q to its nearest neighbor is in the range (a, b).2 2

The above theorem is almost exactly identical to the correspond-
ing theorem for the LSH Index [23, 20], with the only difference
being that the parameter k has been eliminated, and the guarantee
holds for all queries. The restriction on the distance from q to its
nearest neighbor is a technical condition arising from the fact that,
with limited storage space, it is hard to distinguish between nearby
and far-away points when r is too small or too large. The same
technical conditions manifest themselves in the original LSH index
structure as well, and do not affect us in practice.

Practical Implications: We note that the guarantees provided by
the theorem are fairly weak; the number of points examined by the

2Repeating the construction O(1/δ) times leads to a high probabil-
ity of success greater than 1 − δ for any δ > 0 in theory. However,
this means building more copies of the index, which turn out to be
unnecessary in practice [20].

query is only guaranteed to be sub-linear in n, the storage cost is
sub-quadratic (as we will show in the next subsection), and l is
also a sub-linear function of n. All these guarantees are identical
to that for the LSH index [20]. In reality, however, the picture is
much brighter. A small value of l, say l = 10, proves sufficient
to obtain excellent performance, requiring examination of only a
constant number of points per query and only a small linear storage
overhead. One of the reasons for this practical improvement is that
the theorems are proved for arbitrary sets of points; real data sets
exhibit much more structure which makes them easier to index.

5.2 Main-Memory Implementation
The LSH Tree as we have described it is not efficient in its usage

of storage space, since the number of internal nodes could poten-
tially be very large. For example, if there were just two points
which shared a common 100-bit prefix, 102 internal nodes would
be created to support just the two points. However, this problem
is easily fixed: a long chain of “logical” internal nodes is com-
pressed into just one node that stores the path to it from the pre-
vious node. For example, in Figure 1, we can compress the right
child and grandchild of the root into a single node, without affect-
ing any of the LSH Tree operations. In fact, this compression trick
is well-known and prefix trees constructed in this fashion are called
PATRICIA tries [29].

With this modification, the number of internal nodes become ex-
actly one less than the number of leaf nodes, thus ensuring that the
storage cost of a single tree is linear in the number of points n.

Note that even the resulting prefix tree may not be balanced, and
queries can therefore require many pointer traversals to navigate to
the bottom of the tree. We note two things however: (a) The num-
ber of downward pointer traversals is never too large, being bound-
ed by km. (In some of our experiments, km was as small as 15.)
(b) The primary bottleneck in main-memory similarity search is the
computation of similarity between the candidates and the query.
The query cost is therefore dominated by the number of candidates
returned and not by pointer traversals.

5.3 An Efficient Disk-based Implementation
Let us now consider how to implement the LSH Forest as a disk-

based index for large data sets. The core problem in developing
an efficient disk-based index is to lay out the prefix tree on disk in
such a fashion as to minimize the number of disk accesses required
to navigate down the tree for a query, and also to minimize the
number of random disk seeks required for all index operations.

There are a slew of disk-based data structures for storing and
querying string data (e.g., Prefix B-Trees [2], paginated B-Trees [28],
String B-Trees [17], Index Fabric [12]), which can all be used in
our context. Of these, Prefix B-Trees are the simplest and enjoy the
most usage, and we describe them here.

A Prefix B-Tree is essentially a B-tree that stores strings sorted
in lexicographic order. However, the storage cost of the B-tree is
reduced by using two compression schemes at internal nodes [27]:
head compression that factors out a common prefix from all index
entries, and tail compression that selects a short index term to act as
separators for keys of one data node from those of its siblings. The
compression produces significant improvements in performance;
the size of the index is smaller overall, branching factor at each
internal node is increased, and hence fewer disk I/O’s are required
to reach data at the leaf nodes. Ferragina et al. [17] mention that
Prefix B-Tree performance is good for bounded-length keys (≤ 255
bytes) 3: a single key search or update takes O(logB n) disk access-

3This bound accommodates labels with k = 2040 and will be suf-
ficiently large for most domains we foresee.

655

ALGORITHM ASYNCHASCEND(xi, si)
. Args: xi value and corresponding leaf node si for Ti

P = φ
while (xi > 0 and |P | < max(c,m)) {

P = P ∪ Descendants(si)
si = Parent(si)
xi = xi − 1

}
Return P

Figure 4: The asynchronous bottom-up phase in query pro-
cessing on LSH Tree Ti initiated with arguments returned by
DESCEND on Ti.

es where B is the branching factor of an internal node and n is the
number of points in the dataset.

We now show how the logical operations can be efficiently im-
plemented on a Prefix B-Tree, augmented appropriately with addi-
tional information at each interior node.

Insertions: The insertion of a point p is just the regular Prefix B-
Tree insert of p’s label with additional operations at the leaf node.
The labels of p and other points at the leaf node are extended until
they become distinct. This requires changes of keys recorded at the
leaf node only; the internal nodes are unaffected as the label pre-
fixes remain unchanged. The cost of an insert is thus O(l logB n)
disk accesses followed by at most lB label extensions.

Deletions: The deletion of a point p is just the regular Prefix B-Tree
delete of p’s label with no additional operations at the leaf node.
Specifically, we do not shrink the labels of other nodes remaining
in the tree. The cost of a delete is thus O(l logB n) disk accesses.

Queries: A query asking for m nearest neighbors to a point q is
executed in two phases. In the first phase, we descend the trees
searching for a Prefix B-Tree key with label digits gi(q, xi). The
search terminates at a leaf node where we locate the point si with
the largest prefix overlap (of xi − 1 digits) with q’s label. In the
second phase, some M points are to be collected across all trees
synchronously. Let x = maxl

i{xi} be the maximum overlapping
prefix length. Most of the M points will share a prefix with si and
hence are expected to lie within the leaf node of the LSH Trees, or
its siblings. If the leaf node is exhausted, we step back to the parent
node to fetch and explore siblings of the leaf. The process is re-
peated until M points are collected with m distinct points. The M
points are ranked by similarity scores, and the top m are returned
as answer. The cost of a query is the sum of its first phase (a total
of O(l logB n) disk accesses and O(l log B) comparisons in a bi-
nary search to locate si) and its second phase (a total of O(M/B)
disk accesses). Observe that the number of block accesses for the
second phase is optimal within constant factors.

Asynchronous Queries: Observe that the query operation dis-
cussed above performs a synchronous exploration of the l LSH
Trees. The nearest neighbors are retrieved in lock-step from each
successive level in the different trees, causing random disk I/O re-
quests. We now present a variant that breaks synchrony by relax-
ing the requirements imposed by Theorem 5.1. Instead of selecting
M=cl points from across l LSH Trees, the variant picks max(c,m)
points independently from each LSH Tree as shown in Figure 4.
Although the variant does not guarantee ε-approximate neighbors,
we show in Section 7 that it works almost as well in practice.

Asynchronous Sequential Queries: We next explore another op-

timization that eliminates random disk I/Os completely from the
second phase of query processing. The query processing algorithm
in Figure 4 performs random I/Os because of Step [3] P = P ∪
Descendants(si) where sibling nodes on the left and right are
alternately read after reading the initial leaf node. We can convert
these random I/Os into sequential scans by maintaining extra infor-
mation at the intermediate nodes. Specifically, with each pointer at
an intermediate node, we maintain the size of the subtree (number
of descendant points) hanging off that branch and a pointer to the
rightmost left node in its level.

When descending the Prefix B-Tree in the first phase, we com-
pare the size of the subtree with y = max(c,m) at each branch.
When the size of the branch bz being taken becomes less than y for
the first time, we step left over branches bz−1, bz−2, . . . , b0 until
branch b when the sum of subtrees we have stepped over exceeds
y or b is the left most branch of the tree. We then reach the least
point in the subtree of b and perform a sequential scan collecting
2y points. It can be shown that all the y points which ASYNCHAS-
CEND would have collected will be picked up in the sequential scan.
Furthermore, since a sequential read is up to ten times faster than a
random read, a sequential read of twice as many blocks as ASYN-
CHASCEND is still more efficient.

5.4 Parallelization
Both the main-memory and disk-based LSH Forest indexes can

be parallelized to work over a large number of servers. For upto l
servers, one option for parallelization is to simply place the l LSH
Trees in round-robin order at participant servers.

A more interesting alternative – which works for any degree of
parallelism – is to partition each LSH tree over all available nodes.
The best way to do this partitioning is to use range partitioning, in
which the points are sorted lexicographically by their LSH labels,
and broken into contiguous ranges; each node is responsible for
storing all the points falling in one particular range. Within each
node, the set of points can be stored “independently” in an LSH
Tree or Prefix B-Tree as discussed earlier. With such a range par-
titioning strategy, queries are easily parallelized and can usually be
directed to just one node, helping achieve inter-query parallelism
and linear speed-up. In fact, it is also possible to ensure efficient
and dynamic load balancing across the different nodes, and even
add or remove nodes on the fly [18].

5.5 Finding Similar Peers in a P2P System
A particularly interesting use of similarity search arises in peer-

to-peer systems, where one may desire to find peers that are most
similar to a given query, or peer. That is, each peer maps to a point,
and we want to find the most similar peers to a given query. For
example, each peer may correspond to a repository of documents,
and a user may be interested in finding other peers similar to the
one she is currently browsing, or similar to the specific document
she is currently reading. In either case, we would like to use our
LSH Forest index structure to enable efficient similarity search.

Of course, our notion of “efficient” in the P2P setting is very
different from that in a single-disk system. We require the P2P
similarity index to have two desiderata:
• The index should not be centralized; in fact, all peers should

ideally perform an equal amount of work in handling queries,
inserts and deletes.

• The number of messages exchanged between peers for queries
as well as index maintenance (with peers joining and leaving
the system) should be as small as possible.

It turns out that there is a natural embedding of LSH Forest in
a P2P system that provides us with the above desiderata. We can

656

exploit the fact that the objects being indexed are the peers them-
selves, and embed the LSH Forest in the structure of the overlay
network connecting peers. Peers can open and maintain connec-
tions to other peers many of whom are similar to themselves, elim-
inating the need for an explicit index storage as described next:

Embedding the LSH Forest: Let us first consider how to embed
a single LSH Tree in a P2P network. Recall that each peer (point)
is a leaf in the LSH Tree and has a label of length k ≤ km. For
simplicity and w.l.o.g let us assume that each digit in the label is a
single bit. We call the peer’s label its hostID, and set up an overlay
network connecting peers based on these hostIDs. The objective is
to enable “emulation” of the logical operations on the prefix tree,
while only having connections between the leaf nodes.

The overlay network is identical to an existing P2P structure
called P-Grid [1], and is formed as follows: a peer p with hostID
l1l2 . . . lk connects to a random peer pi with whose hostID p shares
exactly an i-length prefix, i.e., pi has a hostID prefix l1l2 . . . lili+1,
for each 0 ≤ i < k. Intuitively, the peer can “jump” to its sibling
branch at any level of the prefix tree using these links. We show
next that all LSH Tree operations can be performed efficiently in
this prefix-based network. The LSH Forest is constructed by sim-
ply forming l such overlay networks, one for each LSH tree.

Forest Maintenance in the presence of joins and leave of peers
is performed by the regular P-Grid protocol [1] with no additional
operations. It can be shown that peer joins and leaves require just
O(log n) messages in an n-node overlay network. Of course, all
peers need to be aware of the hash function sequence used to con-
struct the different hostIDs, and have to apply the hash function to
their own content in order to construct the hostIDs.

Queries: Recall that queries are answered by a bottom-up traversal
of the different logical LSH Trees (synchronously or asynchronous-
ly), starting from a leaf that has the largest prefix match with the
query. Consider a query q initiated by any peer P . For each LSH
Tree, P starts out by hashing q to compute its label4; P then us-
es the overlay network’s routing mechanism to find a peer P ′ that
most closely matches q’s label. (Note that, in the special case where
a peer is looking for other peers most similar to itself, P ′ = P .)
It can be shown that this routing process requires only O(log n)
messages, no matter the shape of the LSH Tree [1].

In the case of synchronous query operation, all that remains to
answer the query is specify how to find all peers which share a
hostID prefix of at least x bits with P ′, for any value of x. (In case
of asynchronous operation, what is required is a primitive that can
find the c closest peers to P ′. The rest of this discussion extends
in an obvious fashion to this case.) It turns out that, given the link
structure of the P-Grid, the number of messages used to find the y
closest peers to P ′ is at most y − 1, for any value of y.

To see how, let us consider how P ′ can discover all peers with
which it shares an x-bit prefix. Let P ′’s hostID be of length k,
and let it maintain overlay-network links to a set of peers Py , x ≤
y < k, with P ′ and Py sharing exactly a y-bit prefix. To collect
all peers with which it shares at least an x-bit prefix, P ′ simply
contacts each Py and recursively requires Py to discover all peers
that share at least a (y + 1)-bit prefix with Py .

Since all the Pys themselves are part of the final list of near-
est neighbors, we can see that each message produces at least one
addition to the list of neighbors, showing that the total number of
messages needed for finding y neighbors is at most y − 1. A query
that needs to retrieve cl nearest neighbors from the l LSH Trees re-

4The label can either be computed to length km in the beginning,
or it can be computed lazily on demand.

quires only O(l(c + log n)) messages, irrespective of the shape of
the LSH Trees, thus being efficient in communication costs.

6. EVALUATION METHODOLOGY
We implemented both the basic LSH scheme and the LSH Forest

schemes (both SYNCHASCEND and ASYNCHASCEND) and stud-
ied their performance for similarity search in the text domain. We
also evaluated the efficacy of the implementation for finding similar
peers in a P2P system. We now describe the set-up of our evalua-
tion, in terms of datasets, similarity functions, and LSH functions
used, and quality metrics measured.

Datasets: The index structures are populated with one of the fol-
lowing two text data sets:
A TREC-1,2-AP: 506 MB of documents from AP Newswire in

TREC CDs 1 and 2 comprising of 93,978 documents. Exclud-
ing documents without a valid author (for P2P experiments) led
to 49,180 documents and 1,034 unique authors.

B Reuters: 798MB of news articles that comprise the Reuters
Corpus (Vol. 1). The data set contains 124,010 documents and
1,568 unique authors.

For our standard indexing tests, the text of each news report was
treated as a separate document to be indexed. For the P2P experi-
ments, we associated each peer with all the documents written by
a single author; thus, the objects being indexed were authors, with
each author being treated as a giant document consisting of a con-
catenation of all news reports written by that author. All tests were
run on all the datasets; where the results are similar, we present
results on one of the datasets for brevity.

Terms: The documents are pre-processed to perform stemming
and stop-word elimination. Each remaining term forms a distinct
dimension in a high-dimensional space; each document is a vector
in this space, with components along the terms present in that doc-
ument. Each term in a document is weighted in proportion to its
significance. We experimented with three weighting functions: TF
(the number of occurrences of the term in the document), log TF
(set to 1 + log TF if a term occurs in the document, and 0 other-
wise) and TF-IDF (set to TF log(N/DF) where DF is the number
of documents in which the term occurs, and N is the total number
of documents). Our experiments showed that the performance of
indexing schemes is independent of the specific weighting function
used; the experiments reported here all use log TF .

As we will see momentarily, our similarity measures operate on
sets of terms. We therefore convert the weighted vector into a set
of terms by assigning each term a number of unique termIDs ac-
cording to its term weight. Thus an entry < t1, 3 > in a vector
representing a term t1 with weight 3 is (logically) represented as
three termIDs (t11, t

2
1, t

3
1) in the set.

Similarity Metric: The degree of similarity between documents
−→v1 and −→v2 is measured by a similarity function sim(−→v1 ,−→v2). Pop-
ular similarity functions for text include the Jaccard coefficient and
Cosine similarity. The Jaccard coefficient treats vectors −→v1 and
−→v2 as sets of terms b1 and b2 (with weighted terms being repre-
sented by an appropriate number of distinct term IDs), and is de-
fined as [simJ (b1, b2) = |b1∩b2|

|b1∪b2|
]. (The Jaccard distance is simply

1 − simJ (b1, b2).) The Cosine similarity is the normalized inner
product of the two vectors defined as [simC(−→v1 ,−→v2) = −→v1 �−→v2].

We will focus on the Jaccard metric in this work. Previous work
has shown that the Jaccard metric yields comparable results on a
Web crawl [22] or even outperforms Cosine similarity on an AP
newswire corpus [26]. Furthermore, it turns out to be far easier

657

to develop LSH families H for the Jaccard measure. Creating a
corresponding family of LSH functions for the Cosine measure to
support practical and efficient indexing is a hard problem [20].

LSH Functions H are used to hash document vectors in a locality-
sensitive fashion. We use a locality sensitive technique for Jaccard
distance measure called min-hashing [7] which works as follows.
We begin with a family H of random linear functions (linear min-
wise independent) of the form h(x) = (ax + b) mod p. Each
termID xi in the document vector −→v is hashed using a function h
drawn from H, to obtain h(xi). Let y = mini{h(xi)}, that is, y
is the minimum of the different termID hashes.

The value y is then hashed down to a single bit – 0 or 1 – using a
second random hash function h′ that maps each of 0, 1, 2, . . . (p −
1) to 0 or 1. Thus, with two levels of hashing, each document is
reduced to a single bit. (It can be shown that this hashing scheme
is indeed locality sensitive for the Jaccard distance measure.) Of
course, generating a k-bit signature entails the use of k different
hash functions to produce one bit each.

Queries and Competing Algorithms: The index structures are
used to answer top-m queries: given a query q, find m documents
from the dataset that are most similar to q. The queries were ob-
tained by picking random documents from the dataset. The follow-
ing competing algorithms were used to find answers for the query:
LSH(K): The basic LSH scheme with fixed k in which candidate

points are chosen at random from all points within the buckets
to which query was hashed.

LSH S: The LSH Forest index in which candidate points are cho-
sen synchronously across all LSH Trees.

LSH A: The LSH Forest index in which candidate points are cho-
sen independently from each LSH Tree.

Random: As a frame of reference, a naive algorithm was designed
that picks candidate points at random from the dataset.

Each algorithm picks as many as N candidate documents from the
dataset. The candidates are ranked by computing their similarity
with the query document, and the top m are returned as an answer.

Wherever possible, we also compare the results against an OR-
ACLE that compares q against all documents in the dataset to pick
the most similar documents (the ideal answer). Of course, such an
oracular algorithm is too expensive to be feasible in practice.

Quality Measures: We measure the quality of an answer set A re-
turned by algorithms by computing the average similarity of A to

the query document, i.e., sim(A, q) =
�

d∈A
sim(

−→
d ,−→q)

|A|
. We com-

pare the “goodness” of A against an ideal answer I by computing
the relative error defined as err(A, I, q) = sim(I,q)−sim(A,q)

sim(I,q)
.

7. EMPIRICAL EVALUATION
In this section, we present results from our evaluation of LSH

Forest on the above datasets, both for building a centralized index,
as well as in the P2P setting. The focus of our study is on the ac-
curacy of the query results obtained, and the number of candidates
retrieved to achieve that accuracy. We do not present results on
the number of disk accesses required since Prefix B-trees are well-
understood indexing structures that have been studied for a number
of years. Our simulations show the following results:
A The basic LSH scheme needs to be tuned carefully, based on

the size and nature of the data being indexed, and the number
of results desired.

B The LSH Forest consistently outperforms LSH(K), which was
optimally tuned for a given static dataset and fixed number of
desired results, by at least 15%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
v
e
ra

g
e
 s

im
ila

ri
ty

Length of label (k)

Random
LSH(K) fill

LSH(K) no fill
 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

A
v
e
ra

g
e
 r

e
s
u
lt
 s

iz
e

Length of label (k)

Figure 6: (a) The Jaccard coefficient of the top-5 peers from 25
candidate peers obtained using the LSH(K) algorithm. (b) The
average number of results returned for the top-5 query.

C The LSH Forest outperforms LSH(K) by more than 33% when
answering ad hoc queries with varying number of desired re-
sults (when retrieving twice the number of candidates as the
number of desired results).

D The LSH A underperforms LSH S only by a slight margin, sug-
gesting that the heuristic relaxation has good payoff.

E The P2P version of the LSH Forest is seen to return consis-
tently high-quality results for all queries, while exploring fewer
candidates, and exhibiting much lower variance in query result
quality, as compared to the optimized LSH(K) scheme.

LSH Tree Structure
We start with a study of the structure of LSH Trees. Recall that
our logical data structure is a prefix binary tree prone to imbal-
ance caused by data skews. An imbalanced prefix tree will result
in longer labels and increase the average insert, delete and query
costs per tree. Furthermore, imbalances across LSH Trees can lead
to slower synchronous bottom-up traversals.

Interestingly, all the LSH Trees that we built using our TREC and
Reuters datasets were fairly well balanced. Figure 5(a) plots the
average number of documents found at level i or below in a single
LSH tree (Y -axis) for each value of i on a logarithmic scale (X-
axis), using a set of 100, 000 documents from the Reuters corpus to
populate the tree. Observe that there is a clear exponential decrease
in the number of documents with increasing levels, suggesting that
the tree is well-balanced.

Tuning The Basic LSH Index
Recall that the basic LSH scheme requires the label length k, and
the number of indexes l as input parameters. We now study the
effects of varying k on the behavior of the basic LSH scheme to
highlight the importance of tuning k for good results. Figure 6(a)
plots the average similarity of answers returned (Y -axis) against the
corresponding k value (X-axis) for a top-5 query on the Reuters
dataset with l = 5. The curve labeled LSH(K) no fill and
LSH(K) fill plot the performance of two variants of the ba-
sic LSH scheme. The LSH(K) no fill scheme returns m best
documents from n candidates for a top-m query. However, if it is
only able to retrieve m′ < m candidates from its indexes, it only
returns these m′ documents. The LSH(K) fill scheme, on the
other hand, always returns m documents in its answer. If m′ < m,
it picks m − m′ random documents from the dataset to complete
its answer. Figure 6(b) plots the average number of answers re-
turned by the LSH(K) no fill scheme (Y -axis) against the
corresponding k values (X-axis).

We observe in Figure 6(a) that both LSH(K) fill and LSH(K)
no fill schemes perform identically for small k values. The

658

2^{0}

2^{2}

2^{4}

2^{6}

2^{8}

2^{10}

2^{12}

2^{14}

2^{16}

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 d

oc
um

en
ts

Level of LSH Tree

 0

 0.2

 0.4

 0.6

 0.8

 1

128643216842

A
ve

ra
ge

 s
im

ila
rit

y

results desired (m)

Random
LSH A
LSH S

LSH(13)
 0

 0.2

 0.4

 0.6

 0.8

 1

453525155

A
ve

ra
ge

 s
im

ila
rit

y

Candidate set size

Random
LSH A
LSH S

LSH(13)

Figure 5: (a) The distribution of documents across levels in a LSH Tree. (b) The average similarity measures for LSH Forest and
basic LSH for top-m queries. (c) The average similarity of top-5 queries with varying candidate set sizes.

schemes improve with increasing k, since there is a corresponding
drop in collisions with distant points. As k increases beyond 13,
the probability of collision decreases to the point where even near-
by points stop colliding, and the number of collisions in a bucket
drops below m = 5. The points that do lie in a bucket are highly
similar, leading to a steady increase in the average similarity scores
of LSH(K) no fill. However, the results returned begin to
be less than 5 as shown by the knee in the curve of Figure 6(b).
The LSH(K) fill responds by adding random points from the
dataset, causing a drop in the average similarity score.

We note that the performance of basic LSH is critically deter-
mined by the value of k. If the k value is too small, the quality of
results suffer. If the k value is too large, results are either incom-
plete or have poor quality. Furthermore, k depends on the under-
lying data distribution, the number of points n, and on the value
of m. For example, if there are only 1000 documents in the data
set, the optimal value of k shifts down to 8; similarly, a top-100
query would cause the “hump” in LSH(K) fill curve to shift
left, requiring a low k value for optimal performance.

Comparing Optimal LSH(K) with LSH Forest
We are now ready to compare the competing algorithms: LSH For-
est (LSH S and LSH A) with LSH(K). We first consider the per-
formance of the indexes for top-m queries for various values of m
on the Reuters data set. We again use l = 5 as we discover that the
incremental performance improvement from higher l values is very
small. All schemes use a candidate set size of M = 2m. We use
k = 13 for LSH(K), which is optimal for top-5 queries as seen
from the earlier experiments. For comparison, we also plot the per-
formance of Random, which simply picks up M random points
and returns the closest m of these, for comparison.

Figure 5(b) plots the average similarity measure for the Jaccard
coefficient (Y -axis) against the value of m (X-axis). Note that the
X-axis is on a log scale. We see that both LSH Forest schemes out-
perform LSH(K) by a large amount (around 33%) across the board.
LSH S outperforms LSH A, but the margin is very small. We also
see that there is a mild “hump” in all the curves: this is explained
by the fact that, for low m, we are picking up too few candidates,
some of which could be poor matches, while towards the end, the
average similarity of the top m has to drop as m increases (since
less and less similar peers are being added to the result set.)

Figure 5(c) compares the indexing schemes by plotting the aver-
age similarity for top-5 queries on Reuters, varying the number of
query candidates on the x-axis. We see that as the candidate size
varies from 5 to 45, there is a linear increase in the average simi-
larity obtained by all the schemes. We do see however, that there is
a significant gap of at least 15% in performance between the LSH
Forest schemes and LSH(K) with an optimal k value.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Ja
cc

ar
d

S
im

ila
rit

y

Candidate set size

Ideal
Random

LSH A
LSH S

LSH(K)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Ja
cc

ar
d

S
im

ila
rit

y

Candidate set size

Ideal
Random

LSH A
LSH S

LSH(K)

Figure 7: The average similarity measures for a top-5 query
using (a) TREC and (b) Reuters to populate a P2P network.

P2P Experiments
We now consider the P2P setting where each peer is associated
with all the news articles written by a single author, and similarity
search is conducted over peers rather than over news articles. Our
experiments focus on the accuracy of query results rather than on
efficiency metrics for which we refer the interested reader to [1].

We repeated our experiments on basic LSH(K) to identify the
optimal value of k for both TREC and Reuters data sets. (For
the Reuters data, we found that the optimal value of k was 8 for
top-5 queries, as opposed to the value 13 in the earlier 100, 000-
document case.) Figures 7(a) and (b) plot the average similarity
measures (Y -axis) against different candidate set sizes M (X-axis)
for top-5 queries on TREC and Reuters data sets.

The LSH Forest schemes continue to perform better than the op-
timal LSH(K) scheme, even when LSH(K) picks up 5× as many
candidates. We do note, however, that LSH(K) receives a perfor-
mance boost as the candidate set size increases. We also observe
that the ideal similarity value is 0.97, and the LSH Forest schemes
approach within 2% of ideal as the candidate set size increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

1059585756555453525155

M
e

a
n

 r
e

la
ti
v
e

 e
rr

o
r

Candidate set size

LSH A
LSH S

LSH(K)

 0

 0.2

 0.4

 0.6

 0.8

 1

1059585756555453525155

M
e

a
n

 r
e

la
ti
v
e

 e
rr

o
r

Candidate set size

LSH A
LSH S

LSH(K)

Figure 8: The mean relative error of basic LSH and LSH Forest
schemes for top-5 queries on (a) TREC and (b) Reuters dataset.

We next designed an experiment in which each peer performed
a top-5 query using its own site vector as the query point. Fig-
ures 8(a) and (b) plot the mean relative error for queries (Y -axis)

659

against varying candidate set size M (Y -axis) for top-5 queries on
both TREC and Reuters. The points represent the mean relative er-
ror, averaged over all queries, while the error bars reflect the 95%
probability intervals for the error, i.e., 95% of the queries had rela-
tive errors within the plotted range.

The graphs clearly demonstrate that the LSH forest not only has
lower relative error, but it also has lower variance in relative error.
This means that it provides consistent performance for all queries.
On the other hand, the LSH(K) scheme has both a higher relative
error, and a higher variance in relative error, suggesting that some
queries perform poorly with LSH(K).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

F
ra

c
ti
o

n
 o

f
q

u
e

ri
e

s

Relative error

Set size 35
Set size 65
Set size 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

F
ra

c
ti
o

n
 o

f
q

u
e

ri
e

s

Relative error

Set size 35
Set size 65
Set size 95

Figure 9: The distribution of each peer’s relative error when
using (a) LSH A, and (b) LSH(K).

To reinforce this point further, Figure 9(a) plots the cumulative
distribution of queries (Y -axis) against relative error (X-axis) for
the Reuters data set observed for different candidate set sizes using
LSH A. Figure 9(b) plots a similar graph for LSH(K). We observe
that even with a set size of 95, nearly 7% of queries in LSH(K)
have a relative error greater than 0.5. On the other hand, with the
same candidate set size, practically no queries using LSH A have
a relative error greater than 0.3. This conclusively demonstrates
the advantages of LSH Forest over LSH(K) in providing accurate
answers for all queries.

8. CONCLUSIONS
We have presented a self-tuning index for similarity search called

LSH Forest. The LSH Forest can be applied for constructing main-
memory, disk-based, parallel and peer-to-peer indexes for similar-
ity search. We have shown that the LSH Forest improves on the
basic LSH scheme in terms of the accuracy of the results returned
and, perhaps more importantly, by eliminating the need for various
data-dependent tuning parameters. In consequence, we have devel-
oped a practical plug-and-play solution for similarity indexing that
only requires an LSH-compatible similarity function as input.

9. REFERENCES
[1] K. Aberer. Scalable data access in p2p systems using

unbalanced search trees. In Proc. WDAS, 2002.
[2] R. Bayer and K. Unterauer. Prefix b-trees. ACM Transactions

on Database Systems, 2(1), 1977.
[3] S. Berchtold, C. Bohm, and H.-P. Kriegel. The

pyramid-technique: Towards breaking the curse of
dimensionality. In Proc. of SIGMOD, 1998.

[4] S. Berchtold, D. Keim, and H.-P. Kriegel. The x-tree: An
index structure for high-dimensional data. In Proc. of VLDB,
1996.

[5] K. Bharat and A. Broder. Mirror, mirror, on the web: A study
of host pairs with replicated content. In Proc. of WWW, 1999.

[6] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection
mechanisms for digital documents. In Proc. of SIGMOD,
1995.

[7] A. Broder. On the resemblance and containment of
documents. In Proc. of Compression and Complexity of
Sequences, 1998.

[8] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proc. of WWW, 1997.

[9] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan,
D. Gibson, and J. Kleinberg. Automatic resource compilation
by analyzing hyperlink structure and associated text. In Proc.
of WWW, 1998.

[10] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding
replicated web collections. In Proc. of SIGMOD, 2000.

[11] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. Ullman, and C. Yang. Finding interesting
associations without support pruning. In Proc. of ICDE,
2000.

[12] B. Cooper, N. Sample, M. Franklin, and M. Shadmon. A fast
index for semistructured data. In Proc. of VLDB, 2001.

[13] B. Davison. Topical locality in the web. In Proc. of SIGIR,
2000.

[14] J. Dean and M. Henzinger. Finding related pages in the
world wide web. In Proc. of WWW, 1999.

[15] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. In Proc. of SIGMOD, 1995.

[16] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani,
and J. Ullman. Computing iceberg queries efficiently. In
Proc. of VLDB, 1998.

[17] P. Ferragina and R. Grossi. The string b-tree: A new data
structure for string search in external memory and its
applications. Journal of the ACM, 46(2), 1999.

[18] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
balancing of range-partitioned data with applications to
peer-to-peer systems. In Proc. VLDB, 2004.

[19] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. In Proc. of Hypertext and
Hypermedia, 1998.

[20] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proc. of VLDB, 1999.

[21] A. Gutman. R-trees: A dynamic index structure for spatial
searching. In Proc. of SIGMOD, 1997.

[22] T. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating
strategies for similarity search on the web. In Proc. of WWW,
2002.

[23] P. Indyk and R. Motwani. Approximate nearest neighbor -
towards removing the curse of dimensionality. In Proc. of
STOC, 1998.

[24] N. Katayama and S. Satoh. The r*-tree: An efficient and
robust access method for points and rectangles. In Proc. of
SIGMOD, 1997.

[25] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proc. of SODA, 1998.

[26] L. Lee. Measures of distributional similarity. In Proc. of
ACL, 1999.

[27] D. Lomet. The evolution of effective b-tree: Page
organization and techniques: A personal account. SIGMOD
Record, 30(3), 2001.

[28] E. McCreight. Pagination of b*-trees with variable-length
records. Communications of the ACM, 20(9), 1977.

[29] D. Morrison. PATRICIA - practical algorithm to retrieve
information coded in alphanumeric. Journal of the ACM,
15(4):514–534, 1968.

[30] J. Robinson. The k-d-b tree: A search structure for large
multidimensional indexes. In Proc. of SIGMOD, 1981.

[31] N. Shivakumar and H. Garcia-Molina. Building a scalable
and accurate copy detection mechanism. In Proc. of ACM
DL, 1996.

[32] R. Weber, H. Schek, and S. Blott. A quantitative analysis and
performance study for similarity search methods in high
dimensional spaces. In Proc. VLDB, 1998.

[33] D. White and R. Jain. Similarity indexing with ss-tree. In
Proc. of ICDE, 1996.

660

