
PAGE 1 Open Source. Open Possibilities.

Open Source. Open Possibilities. QuIC Confidential and Proprietary

Multiple Performance
Monitoring Units in Perfevents

Presented by: Ashwin Chaugule
Presentation Date: August 19, 2011

PAGE 2 Open Source. Open Possibilities.

That gravity defying dive!

Photocred: Dominator Fridays http://www.facebook.com/TheUltimatePage

http://www.facebook.com/photo.php?fbid=10150123348217273&set=pu.300060247272&type=1&theater

http://www.facebook.com/TheUltimatePage
http://www.facebook.com/photo.php?fbid=10150123348217273&set=pu.300060247272&type=1&theater

PAGE 3 Open Source. Open Possibilities.

Agenda

 Perfevents overview

 Current hardware PMU support in perfevents

 The missing parts

Where we are in the ARM world

Multiple PMU support added in ARM perfevents

Where we are now

What’s coming up in the near future

PAGE 4

Open Source. Open Possibilities.

Perfevents

PAGE 5 Open Source. Open Possibilities.

Perfevents

 Framework for monitoring the system

 Software events

– Context switches, migrations, page faults…

 Hardware events

– Cycles, instructions, cache stats…

 And much, much more…

 Userspace support

 Sys_perf_event_open(), IOCTL’s EVENT_{DISABLE, ENABLE}

 <kernel src>/tools/perf/

 Struct perf_event_attr

 perf binary includes a ton of sub-tools

– perf stat

– perf record report

– perf top

– New stuff added almost every month!

PAGE 6

Open Source. Open Possibilities.

Perfevents: Hardware PMU
support

PAGE 7 Open Source. Open Possibilities.

 Primarily supported only
CPU-side PMUs

 Easier to support using per-
cpu data structures.

 Easier to sample per task /
per thread / per CPU

CPU side PMUs

CPU 0 CPU 1 CPU 2

L1 PMU L1 PMU L1 PMU

perf stat ls

Performance counter stats for 'ls':

4938636 cycles # 1180.822 M/sec

1124192 instructions # 0.228 IPC

149797 branches # 35.816 M/sec

51796 branch-misses # 34.577 %

<not counted> cache-references

<not counted> cache-misses

0.005561630 seconds time elapsed

PAGE 8 Open Source. Open Possibilities.

Multiple PMUs

 But there are more of these

CPU 0 CPU 1 CPU 2

L1 PMU L1 PMU L1 PMU

L2CC

L2 PMU

PAGE 9 Open Source. Open Possibilities.

Multiple PMUs

 And then some more

CPU 0 CPU 1 CPU 2

L1 PMU L1 PMU L1 PMU

L2CC

L2 PMU

Fabric 1

Fabric 2

Fabric 3

Fabric 4

PAGE 10

Open Source. Open Possibilities.

Current State
of Perfevents in ARM

PAGE 11 Open Source. Open Possibilities.

ARM Perfevents

 Currently supporting ARM

 v6, v6mp

 v7

– Cortex A8,

– Cortex A9

 v11, v11mp

 xscale, xscalemp

 Cortex A15 patches in RFC stage

 All above support is for CPU-side PMUs; L1CC stuff

 Fits well with the design of perf-core code.

 Upstream code only supports one PMU at a time

 Makes it easy to unify such PMU code.

PAGE 12 Open Source. Open Possibilities.

ARM Perfevents

 Code is nicely organized for L1CCs

 Perf-core requires PMU registration via:

 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);

 Perf stat –e rXXX

 Only one struct pmu defined for all ARM variants

 Only one of the ARM variants active at a time

 Each ARM variant has its own way of configuring the PMU,
reading, writing counters, and interrupts

static struct pmu pmu = {

.pmu_enable = armpmu_enable,

.pmu_disable = armpmu_disable,

.event_init = armpmu_event_init,

.add = armpmu_add,

.del = armpmu_del,

.start = armpmu_start,

.stop = armpmu_stop,

.read = armpmu_read,

};

PAGE 13 Open Source. Open Possibilities.

ARM Perfevents

 arm_pmu defines lower level plumbing of PMUs

 Similarly for armv6, v11, etc.

 At init, depending on cpuinfo

 Global instance of struct arm_pmu points to one of the above

static struct arm_pmu armv7pmu = {

.handle_irq = armv7pmu_handle_irq,

.enable = armv7pmu_enable_event,

.disable = armv7pmu_disable_event,

.read_counter = armv7pmu_read_counter,

.write_counter = armv7pmu_write_counter,

.get_event_idx = armv7pmu_get_event_idx,

.start = armv7pmu_start,

.stop = armv7pmu_stop,

.raw_event_mask = 0xFF,

.max_period = (1LLU << 32) - 1,

};

PAGE 14 Open Source. Open Possibilities.

ARM Perfevents

 CPU-side PMUs have PERCPU data structs that hold info of events
currently running on that CPU

 PMU has PPIs (Private Peripheral Interrupts)

 L1CC PMU has four event counters and one cycle counter PER CPU

 Easy to profile by task

struct cpu_hw_events {

struct perf_event *events[ARMPMU_MAX_HWEVENTS];

unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];

unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];

};

static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);

PAGE 15

Open Source. Open Possibilities.

Multiple PMU support in
ARM Perfevents

PAGE 16 Open Source. Open Possibilities.

PMU Categories

 CPU-aware PMUs

 Typically per-cpu, accessed via co-proc instructions

 PPIs (private peripheral interrupts)

 Counter outputs attributable to a task and CPU

 e.g., L1CC, VeNum unit PMU

 Shared PMUs

 Shared across CPUs; masters can only be amongst set of CPUs

 Accessible via co-proc instructions

 SPIs (shared peripheral interrupts)

 Counter outputs may or may not be attributable to a task or CPU

 e.g., L2CC PMU

 Peripheral PMUs

 Typically monitor traffic from a master to a slave or have various combinations

 Accessible via mem mapped I/O

 Need at least one CPU to handle interrupts, program the PMU

 e.g., Fabric PMUs

PAGE 17 Open Source. Open Possibilities.

CPU-Aware PMUs

 Qualcomm’s 8x50, 7x30

 ARMv7-based CPUs; L1CC PMUs compatible with PMUv1

 ARM architected 19 events so far

– Codes 0x0 through 0x12 defined

– 0x13 - 0x3f RESERVED

 Qualcomm L1CC PMUs extend event space in the 0x40-0xfe space

– 0xff is the cycle counter

 Piggy back on armv7 pmu fops

– Define own .enable .disable functions of struct arm_pmu

– Access mechanism changes for event codes >= 0x40

– Can reuse a lot of armv7 PMU code

 8x60 and 8x90 L1CC

 MP CPUs

 Similarly define own .enable and .disable functions of arm_pmu

 Have VeNum PMU (also CPU-aware)

– But counting of VeNum events happen using L1CC counters

 One cycle counter + four event counters PERCPU

PAGE 18

Open Source. Open Possibilities.

L2CC PMUs

PAGE 19 Open Source. Open Possibilities.

L2CC PMUs

 Shared PMU category

Qualcomm’s L2CC PMU has

 One cycle counter + four event counters

 Shared across all CPUs

Overflow interrupt is an SPI

 Started off getting this to work on 2.6.35

 No multiple PMU support in perfevents, which came in 2.6.38

 Patches up on Codeaurora

PAGE 20 Open Source. Open Possibilities.

L2CC PMUs (2.6.35)

 Somehow needed to tag an event (perf_event) to the right PMU

 ARM registered only one PMU with perf-core

Made own register_arm_pmu() function

 Define multiple PMUs of type arm_pmu

 Embed struct pmu fops inside struct arm_pmu

 Register embedded .pmu with perf-core

 Access arm_pmu with

– struct arm_pmu *armpmu = container_of(event->pmu, struct arm_pmu, pmu)

struct arm_pmu foo = {

. pmu = { .pmu_enable = bar_enable_event,

.pmu_disable = bar_disable_event,

...

}

. read_counter =

. write_counter = ..

};

PAGE 21 Open Source. Open Possibilities.

L2CC PMUs (2.6.38)

 Add new perf_type_id: PERF_TYPE_SHARED

 Avoid collision with PERF_TYPE_RAW

 Change perf userspace tool to parse differently

– Perf stat –e rsXXX

– attr::type changed to PERF_TYPE_SHARED if “s” exists

– Separates event namespace from L1 events which have attr::type == PERF_TYPE_RAW

 perf_pmu_register(&l2_pmu, “L2", PERF_TYPE_SHARED);

 Skip struct cpu_hw_events completely, since this is not a PERCPU PMU

 Define

 Add new arm_pmu_type :: ARM_PMU_DEVICE_L2

 Treat L2 PMU as a separate platform driver

struct hw_l2_pmu {

struct perf_event *events[MAX_L2_CTRS];

unsigned long active_mask[BITS_TO_LONGS(MAX_L2_CTRS)];

raw_spinlock_t lock;

};

PAGE 22 Open Source. Open Possibilities.

L2CC PMUs

Qualcomm L2CC PMU can filter according to origin

 Each counter has origin filter

 Makes task-based filtering possible

 Perf core calls:

 SYSCALL perf_event_open() - > Event init (called once)

 pmu_disable

 event_add (filter here)

– event_start

 pmu_enable

Only one cycle counter

 First CPU to “init” L2 cycle counting wins access

 In perf stat “-a” mode, deny event “allocation” if cycle counter already active

PAGE 23

Open Source. Open Possibilities.

Fabric PMUs

PAGE 24 Open Source. Open Possibilities.

Fabric PMUs

WIP

 Challenges:

 Multiple masters, multiple slaves, multiple fabrics

 64 bits of event attr:: config_base not enough

 perf sampling modes “-a” (systemwide), task-based may not
apply to all fabrics

– But still need a CPU to config fabric PMU

– Experimenting with task = -1 and cpu = -1 in perf tools

 Typically start multiple counters at once

– perf reads only one per “event”

PAGE 25

Open Source. Open Possibilities.

Event Naming

PAGE 26 Open Source. Open Possibilities.

Event Naming

 perf stat –e rXXX

 Need to define most commonly used events

 e.g., perf stat –e cycles

 A lot of these are esoteric

 Keep raw event encoding

 Useful for controlling distribution of events

 Pfmlib4

 Event string to raw encoding

 Does pmu detection

 Sets up perf attr:: members

PAGE 27

Open Source. Open Possibilities.

Coming Up!

PAGE 28 Open Source. Open Possibilities.

Next Steps

Wait for ARM code re-org to settle

 A9 L2CC PL310 patches from Will Daecon

 Scrap PERF_TYPE_XX stuff, dynamic PMU id detection

 Use sysfs hierarchy to list common events

 Unify SHARED PMU code

 Fabric type PMUs require some more thinking

PAGE 29 Open Source. Open Possibilities.

Next Steps

Qualcomm L1CC and L2CC code for 7x30, 8x50, 8x60, 8x90 code
available on Codeaurora.org

 https://www.codeaurora.org/gitweb/quic/le/?p=kernel/msm.git;
a=shortlog;h=refs/heads/msm-2.6.38

 2.6.35 stuff is at:

 https://www.codeaurora.org/patches/quic/qsd/

– PATCH_M8260AAABQNLZA3055_6842_ScorpionMP-L2-cache-perfevents_
20110616.tar.gz

 Re-org according to latest perf framework and RFC to LKAML

PAGE 30 Open Source. Open Possibilities.

Nothing in these materials is an offer to sell any of the components or devices referenced

herein. Certain components for use in the U.S. are available only through licensed suppliers.

Some components are not available for use in the U.S.

Disclaimer

PAGE 31

Open Source. Open Possibilities.

Thank You

