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Who am I?

● Company

● Hitachi Data Systems

● Works at Red Hat office as an on-site engineer

● Linux Kernel

● Kprobes related matters maintainer

● Systemtap

● Some enterprise/performance enhancements
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Introduction

● There are many tracing facilities in kernel today

● Ftrace

● Tracepoints

● perf_events

● These provide fixed tracing points or hardware events

● Dynamic event tracing has been introduced in 2.6.33

● A few people knows how to use it.

● This slide will explain it.



5

Tracing Events

● Fixed Events

● Tracepoints - Static event tracing

● Mcount - Function entry(exit) tracing

● Hardware Events

● Performance counters - HW event tracing

● HW Breakpoint - HW memory access tracing

● Dynamic Events

● Kprobes - Dynamic event tracing in kernel

– What's dynamic? - trace events in the function body

● Uprobes - Dynamic event tracing in user space

– Under development
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Kprobe-Tracer

● Dynamic event tracer

● Based on kprobes (kprobe and kretprobe)

● Add/delete new events on the fly

● trace-event/perf-event compatible

– Enable/disable, filter and record by ftrace and perf tools

● Put a new trace-event with register/memory arguments

● Function entry (symbol) + offset / function return

● Fetch various registers/memory/symbols

– Dereferencing(resolving pointer) is also supported
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Kprobe-Tracer: Installation

● Get the latest -tip tree

● Make menuconfig

● Kernel hacking

-> Tracers (CONFIG_FTRACE = y)

-> Enable kprobes-based dynamic events (CONFIG_KPEOBE_EVENT = y)

● Rebuild & install kernel & reboot

● Supported architecture

● x86/x86-64

● s390

● PPC
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Kprobe-Tracer : Usage

● See Documentation/trace/kprobetrace.txt

● Interface

● (debugfs)/tracing/kprobe_events

– Write event definitions

●  echo “command” >> tracing/kprobe_events

(Note: write without O_APPEND (e.g '>') clears all existing 
events)

– Read current event definitions

●  cat tracing/kprobe_events
● (debugfs)/tracing/kprobe_profile

– Check the profile of each events (nhits/nmissed) 

Command)
p[:[GRP/]EVENT] SYMBOL[+offs]|MEMADDR [FETCHARGS]: Set a probe
r[:[GRP/]EVENT] SYMBOL[+0] [FETCHARGS]           : Set a return probe
-:[GRP/]EVENT                                    : Clear a probe
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Kprobe-Tracer: FETCHARGS

● Event arguments can access registers/memory/stack

  %REG          : Fetch register REG
  @ADDR         : Fetch memory at ADDR (ADDR should be in kernel)
  @SYM[+|-offs] : Fetch memory at SYM +|- offs (SYM should be a data symbol)
  $stackN       : Fetch Nth entry of stack (N >= 0)
  $stack        : Fetch stack address.
  $retval       : Fetch return value.(*)
  +|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
  NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
  FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
                  (u8/u16/u32/u64/s8/s16/s32/s64) are supported.

   e.g.
     'foo=+10(%bp):u32'
    fetch u32 value from the address which bp register value plus 10.

     'bar=@tick_usec'
    fetch unsigned long value of tick_usec symbol.
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Kprobe-Tracer : Safeness

● kprobes now checks instruction boundary.

● If a probe puts at the middle or end of a instruction, returrn -EILSQ 

● x86: instruction decoder decodes target function(symbol)

x86 insn decoder

● Support both of x86/x86-64

– Support AVX instructions too

● Easy to maintain: generates attribute maps from x86 opcode map 
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Kprobe-Tracer: Demo

● Probe setting and tracing on vfs_read

<Analyze Binary>
# grep vfs_read /proc/kallsyms
# objdump -Sd vmlinux --start-address=0x.... | less

<Add Event>
# echo 'p vfs_read+..  %di +0x3c(%di):u32' >> kprobe_events

<Show Event>
# cat events/kprobes/p_vfs_read_../format
# cat kprobe_events

<Trace Event>
# echo 1 > events/kprobes/p_vfs_read_../enable
# cat trace

<Delete Event>
# echo '- p_vfs_read_..' >> kprobe_events
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Kprobe-Tracer : Usability Issues

● Flexible, Dynamic, but Painful

● Probepoint : symbol+offset

– No source code lines, no inlined functions

– Objdump helps a bit

● Argument : registers/memory

– No local variables

– Objdump can't help it

● Users have to disassemble binary and analyze it.

$ objdump -Sd kernel/sched.o
...
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
        u64 vruntime = cfs_rq->min_vruntime;
    44b2:       49 8b 45 20             mov    0x20(%r13),%rax

        if (cfs_rq->curr)
    44b6:       48 85 d2                test   %rdx,%rdx
    44b9:       48 89 c1                mov    %rax,%rcx
...
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What Can Help?

● Some tools can support source-code level analysis

● Debugger(gdb)

● SystemTap

● Both use debuginfo

● Debuginfo provides the information of probe points and local variables

– Source code information

– Variable/Structure type information

● Analyzing debuginfo requires user space helper

● Perf-tools

– A tool in kernel tree

– Synchronously update with kernel

-> Perf probe subcommand
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Perf Probe

● Dynamic event control helper

● Add new trace events on kprobe-tracer from source-code level information

– Find inline functions / function relative lines

– Find local variable locations/types

● Delete those trace events by name

● List all trace events with source lines

● Help user to find which lines can be probed

(See tools/perf/Documentation/perf-probe.txt)
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Perf Probe: Demo

● Probe setting and tracing on vfs_read

<Analyze Binary>
 # perf probe --line vfs_read

<Add Event>
 # perf probe --add 'vfs_read file file->f_mode'

<Show Event>
 # perf probe --list
 # perf list

<Trace Event>
 # perf record -e probe:vfs_read -aRf ls -l
 # perf trace

<Delete Event>
 # perf probe --del '*'

We don't see any registers/memory address, or byte-offsets!
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Perf Probe: --line

● --line shows which source code lines can be probed

Example)
# perf probe --line vfs_read:0+7
<vfs_read:0>
         ssize_t vfs_read(struct file *file, char __user *buf, size_t 
      1  {
                ssize_t ret;
         
      4         if (!(file->f_mode & FMODE_READ))
                        return -EBADF;
      6         if (!file->f_op || (!file->f_op->read && !file->f_op-

Lines start with number can be probed.

Syntax)
perf probe --line FUNCTION[:RelNumber[+NumLINES|-EndNumber]]
perf probe --line SOURCE:AbsNumber[+NumLINES|-EndNumber]
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Perf Probe: --add

● --add adds a new event

– Event name

● This will be created from the probed function name

– Probe point

● Function or File and Line number. Lazy matching is also supported

– Argument

● Function local variables
● Kprobe-tracer syntax is also supported

# perf probe --add '[EVENT=]PROBE_POINT  [ARG1 ARG2 ...]'
or
# perf probe  '[EVENT=]PROBE_POINT  [ARG1 ARG2 ...]'
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Perf Probe: Probe Points

● Probe point specifies where new event happens

● Function name base

– Support inline function

– Function relative offset / line-number

– Support function exit (%return)

● Note that this is only for non-inlined functions
● Source file base

– Tail matching: “sched.c” matches “.../kernel/sched.c”

● Lazy matching

– Source line pattern can be specified

Syntax)
[EVENT=]FUNC[@SRC][+Offset|%return|:RelNumber|;Pattern]
or 
[EVENT=]SOURCE:AbsNumber|SOURCE;Pattern
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Perf Probe: Lazy Matching

● Lazy matching

● Put events on every line which matches with the pattern

● Lazy pattern likes a glob('*','?','[]'), but ignores spaces

e.g. 
# perf probe --add 'schedule;cpu=*'
  ...
# perf probe --list
  probe:schedule       (on schedule:9@linux-2.6-tip/kernel/sched.c)
  probe:schedule_1     (on schedule:55@linux-2.6-tip/kernel/sched.c)
# perf probe --line schedule
    [...] 
      9         cpu = smp_processor_id();
    [...] 
    55                 cpu = smp_processor_id();
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Perf Probe: Arguments

● Arguments of events

● Local variables are translated by using debuginfo

– Data structure is going to be available

● Name is set from the variable name

– Data structure members has another rule – last field name

● Type casting is going to be supported (u8/16/32/64, s8/16/32/64)

   e.g.
     'count'
    Get a local variable named 'count' (argument name is 'count')

     'file->f_mode'
    Get 'f_mode' member of 'file' local variable as 'f_mode' argument.
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Perf Probe: --list

● --list shows current events with source code line numbers

● Note: arguments are shown by name

e.g.
# perf probe --list
  probe:schedule     (on schedule:36@linux-2.6-tip/kernel/sched.c with rq)
  probe:vfs_read     (on vfs_read@linux-2.6-tip/fs/read_write.c with file)
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Perf Probe : --del

●  --del deletes events matching a given glob pattern

●   glob expression can be used in other commands (e.g. perf-record) 

e.g.
# perf probe --del 'schedule*'

Remove dynamic events which name start with 'schedule'

# perf probe --del '*'       

Remove ALL dynamic events.
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Perf Probe: Options

● --force

● Forcibly add new events on the function in where there are already other events

● Event name will be “function_N” (N is an index)

● --dry-run

● Don't change kprobe-tracer

● Only --add/--del are affected

● --verbose

● Show more messages
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Perf Probe: Tips

● Don't Forget you're on the command-line!

● Special characters can be translated by shell

– Kprobe-tracer syntax includes '$'

– Perf probe syntax includes ';' '>' '*'

● Using  ' (single-quote) is recommended

● Test before executing

● -fnv (force, dry-run, verbose) is recommend
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Perf Probe : Requirements

● Kernel built options

● Enabling dynamic perf/trace event

– CONFIG_KPROBE_EVENT

– CONFIG_PERF_EVENT

● Building kernel with debuginfo

– CONFIG_DEBUG_INFO

● Will get a bigger binary ... don't upset :)

● Elfutils(Libdw)

● Dwarf format (debuginfo) analysis library

– Developed closely with GCC.

● Without elfutils, perf probe can't support debuginfo

● Architecture

● x86/x86-64

● PPC is proposed.
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Perf Probe : TODOs

● Opened TODOs

● String type support

– String allows us to trace pathname etc

● Module support

– Kernel modules are not supported yet

– Modules can be relocatable

● Dynamic indexed array

– array[i] is commonly used in loops

● %next

– Probe the next step line, or just use post_handler
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Changelog

● 2.6.33

● Kprobe-tracer

● Perf probe: prototype feature

● Note: Requires libdwarf

● 2.6.34 (expecting)

● Adding --line/lazy matching support

● Note: Move onto elfutils (from libdwarf)

– Elfutils works better with newer gcc

● Jump optimized kprobes

● -tip (ongoing)

● Data structure member support

● Type support
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Kprobes Jump Optimization (x86)

● Kprobes enhancement feature by replacing a breakpoint with a jump 
instruction.

Kprobes

Optimized
Kprobes

int3

Relative jump

Die notifier

Kprobes

Single step

Direct execution

Jump in Jump back

Emulate int3/Handler call

Die notifier

Post Kprobes

Optimize
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Performance Improvements

● Overheads/probe (usec) : smaller is better

Kprobe(x86-32) Kprobe(x86-64) Kretprobe(x86-32) Kretprobe(x86-64)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normal
Booster
Optimization

Xeon 2.33Ghz

Kprobes  (x10 faster)
Kretprobes (x3 faster)
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Kprobes Jump Optimization: Usage

● Optimization is transparently done

● Don't require any user-side changes

● No kABI change

– Just add a flag bit on internal kprobe->flags

● Not all probes are optimized

● Sysctl interface

● Disabling/Enabling optimization via sysctl “debug.kprobes-optimization”

– Enabling(default): debug.kprobes-optimization = 1

– Disabling: debug.kprobes-optimization = 0
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Conclusion

● Dynamic event tracing

● In-kernel flexible probe framework

● Events can trace registers/memory

● Safety checks can check the instruction boundary

● Perf probe

● Debuginfo analyzer for helping dynamic event setting from source code info

● User friendly interface for dynamic event tracing

● In kernel tree tool

● Kprobe jump optimization

● Reduce kprobe's overhead drastically

● No user change: Transparently optimized
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Related Articles

● LWN.net

● Dynamic probes with ftrace (kprobe-tracer)

– http://lwn.net/Articles/343766/

● Minimizing instrumentation impacts (kprobes jump optimization)

– http://lwn.net/Articles/365833/

http://lwn.net/Articles/343766/
http://lwn.net/Articles/365833/


Thank You
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Questions/Discussion
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Trademarks

● Linux is a trademark of Linus Torvalds in the United States, other 
countries, or both.

● Other company, product, or service names may be trademarks or service 
marks of others.
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