
1 © 2010 Hitachi Data Systems

Dynamic Event Tracing in
Linux Kernel

April 15 2010
4th Linux Foundation Collaboration Summit

Masami Hiramatsu
Principal Software Engineer
<masami.hiramatsu@hds.com>

2

Who am I?

● Company

● Hitachi Data Systems

● Works at Red Hat office as an on-site engineer

● Linux Kernel

● Kprobes related matters maintainer

● Systemtap

● Some enterprise/performance enhancements

3

Table of Contents

● Introduction

● Trace Events

● Kprobe-tracer

● Usage

● Usability issue

● Perf probe

● Usage

● Options

● Tips

● Kprobe Jump optimization

● Conclusion

4

Introduction

● There are many tracing facilities in kernel today

● Ftrace

● Tracepoints

● perf_events

● These provide fixed tracing points or hardware events

● Dynamic event tracing has been introduced in 2.6.33

● A few people knows how to use it.

● This slide will explain it.

5

Tracing Events

● Fixed Events

● Tracepoints - Static event tracing

● Mcount - Function entry(exit) tracing

● Hardware Events

● Performance counters - HW event tracing

● HW Breakpoint - HW memory access tracing

● Dynamic Events

● Kprobes - Dynamic event tracing in kernel

– What's dynamic? - trace events in the function body

● Uprobes - Dynamic event tracing in user space

– Under development

6

Kprobe-Tracer

● Dynamic event tracer

● Based on kprobes (kprobe and kretprobe)

● Add/delete new events on the fly

● trace-event/perf-event compatible

– Enable/disable, filter and record by ftrace and perf tools

● Put a new trace-event with register/memory arguments

● Function entry (symbol) + offset / function return

● Fetch various registers/memory/symbols

– Dereferencing(resolving pointer) is also supported

7

Kprobe-Tracer: Installation

● Get the latest -tip tree

● Make menuconfig

● Kernel hacking

-> Tracers (CONFIG_FTRACE = y)

-> Enable kprobes-based dynamic events (CONFIG_KPEOBE_EVENT = y)

● Rebuild & install kernel & reboot

● Supported architecture

● x86/x86-64

● s390

● PPC

8

Kprobe-Tracer : Usage

● See Documentation/trace/kprobetrace.txt

● Interface

● (debugfs)/tracing/kprobe_events

– Write event definitions

● echo “command” >> tracing/kprobe_events

(Note: write without O_APPEND (e.g '>') clears all existing
events)

– Read current event definitions

● cat tracing/kprobe_events
● (debugfs)/tracing/kprobe_profile

– Check the profile of each events (nhits/nmissed)

Command)
p[:[GRP/]EVENT] SYMBOL[+offs]|MEMADDR [FETCHARGS]: Set a probe
r[:[GRP/]EVENT] SYMBOL[+0] [FETCHARGS] : Set a return probe
-:[GRP/]EVENT : Clear a probe

9

Kprobe-Tracer: FETCHARGS

● Event arguments can access registers/memory/stack

 %REG : Fetch register REG
 @ADDR : Fetch memory at ADDR (ADDR should be in kernel)
 @SYM[+|-offs] : Fetch memory at SYM +|- offs (SYM should be a data symbol)
 $stackN : Fetch Nth entry of stack (N >= 0)
 $stack : Fetch stack address.
 $retval : Fetch return value.(*)
 +|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
 NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
 FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
 (u8/u16/u32/u64/s8/s16/s32/s64) are supported.

 e.g.
 'foo=+10(%bp):u32'
 fetch u32 value from the address which bp register value plus 10.

 'bar=@tick_usec'
 fetch unsigned long value of tick_usec symbol.

10

Kprobe-Tracer : Safeness

● kprobes now checks instruction boundary.

● If a probe puts at the middle or end of a instruction, returrn -EILSQ

● x86: instruction decoder decodes target function(symbol)

x86 insn decoder

● Support both of x86/x86-64

– Support AVX instructions too

● Easy to maintain: generates attribute maps from x86 opcode map

11

Kprobe-Tracer: Demo

● Probe setting and tracing on vfs_read

<Analyze Binary>
grep vfs_read /proc/kallsyms
objdump -Sd vmlinux --start-address=0x.... | less

<Add Event>
echo 'p vfs_read+.. %di +0x3c(%di):u32' >> kprobe_events

<Show Event>
cat events/kprobes/p_vfs_read_../format
cat kprobe_events

<Trace Event>
echo 1 > events/kprobes/p_vfs_read_../enable
cat trace

<Delete Event>
echo '- p_vfs_read_..' >> kprobe_events

12

Kprobe-Tracer : Usability Issues

● Flexible, Dynamic, but Painful

● Probepoint : symbol+offset

– No source code lines, no inlined functions

– Objdump helps a bit

● Argument : registers/memory

– No local variables

– Objdump can't help it

● Users have to disassemble binary and analyze it.

$ objdump -Sd kernel/sched.o
...
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
 u64 vruntime = cfs_rq->min_vruntime;
 44b2: 49 8b 45 20 mov 0x20(%r13),%rax

 if (cfs_rq->curr)
 44b6: 48 85 d2 test %rdx,%rdx
 44b9: 48 89 c1 mov %rax,%rcx
...

13

What Can Help?

● Some tools can support source-code level analysis

● Debugger(gdb)

● SystemTap

● Both use debuginfo

● Debuginfo provides the information of probe points and local variables

– Source code information

– Variable/Structure type information

● Analyzing debuginfo requires user space helper

● Perf-tools

– A tool in kernel tree

– Synchronously update with kernel

-> Perf probe subcommand

14

Perf Probe

● Dynamic event control helper

● Add new trace events on kprobe-tracer from source-code level information

– Find inline functions / function relative lines

– Find local variable locations/types

● Delete those trace events by name

● List all trace events with source lines

● Help user to find which lines can be probed

(See tools/perf/Documentation/perf-probe.txt)

15

Perf Probe: Demo

● Probe setting and tracing on vfs_read

<Analyze Binary>
 # perf probe --line vfs_read

<Add Event>
 # perf probe --add 'vfs_read file file->f_mode'

<Show Event>
 # perf probe --list
 # perf list

<Trace Event>
 # perf record -e probe:vfs_read -aRf ls -l
 # perf trace

<Delete Event>
 # perf probe --del '*'

We don't see any registers/memory address, or byte-offsets!

16

Perf Probe: --line

● --line shows which source code lines can be probed

Example)
perf probe --line vfs_read:0+7
<vfs_read:0>
 ssize_t vfs_read(struct file *file, char __user *buf, size_t
 1 {
 ssize_t ret;

 4 if (!(file->f_mode & FMODE_READ))
 return -EBADF;
 6 if (!file->f_op || (!file->f_op->read && !file->f_op-

Lines start with number can be probed.

Syntax)
perf probe --line FUNCTION[:RelNumber[+NumLINES|-EndNumber]]
perf probe --line SOURCE:AbsNumber[+NumLINES|-EndNumber]

17

Perf Probe: --add

● --add adds a new event

– Event name

● This will be created from the probed function name

– Probe point

● Function or File and Line number. Lazy matching is also supported

– Argument

● Function local variables
● Kprobe-tracer syntax is also supported

perf probe --add '[EVENT=]PROBE_POINT [ARG1 ARG2 ...]'
or
perf probe '[EVENT=]PROBE_POINT [ARG1 ARG2 ...]'

18

Perf Probe: Probe Points

● Probe point specifies where new event happens

● Function name base

– Support inline function

– Function relative offset / line-number

– Support function exit (%return)

● Note that this is only for non-inlined functions
● Source file base

– Tail matching: “sched.c” matches “.../kernel/sched.c”

● Lazy matching

– Source line pattern can be specified

Syntax)
[EVENT=]FUNC[@SRC][+Offset|%return|:RelNumber|;Pattern]
or
[EVENT=]SOURCE:AbsNumber|SOURCE;Pattern

19

Perf Probe: Lazy Matching

● Lazy matching

● Put events on every line which matches with the pattern

● Lazy pattern likes a glob('*','?','[]'), but ignores spaces

e.g.
perf probe --add 'schedule;cpu=*'
 ...
perf probe --list
 probe:schedule (on schedule:9@linux-2.6-tip/kernel/sched.c)
 probe:schedule_1 (on schedule:55@linux-2.6-tip/kernel/sched.c)
perf probe --line schedule
 [...]
 9 cpu = smp_processor_id();
 [...]
 55 cpu = smp_processor_id();

20

Perf Probe: Arguments

● Arguments of events

● Local variables are translated by using debuginfo

– Data structure is going to be available

● Name is set from the variable name

– Data structure members has another rule – last field name

● Type casting is going to be supported (u8/16/32/64, s8/16/32/64)

 e.g.
 'count'
 Get a local variable named 'count' (argument name is 'count')

 'file->f_mode'
 Get 'f_mode' member of 'file' local variable as 'f_mode' argument.

21

Perf Probe: --list

● --list shows current events with source code line numbers

● Note: arguments are shown by name

e.g.
perf probe --list
 probe:schedule (on schedule:36@linux-2.6-tip/kernel/sched.c with rq)
 probe:vfs_read (on vfs_read@linux-2.6-tip/fs/read_write.c with file)

22

Perf Probe : --del

● --del deletes events matching a given glob pattern

● glob expression can be used in other commands (e.g. perf-record)

e.g.
perf probe --del 'schedule*'

Remove dynamic events which name start with 'schedule'

perf probe --del '*'

Remove ALL dynamic events.

23

Perf Probe: Options

● --force

● Forcibly add new events on the function in where there are already other events

● Event name will be “function_N” (N is an index)

● --dry-run

● Don't change kprobe-tracer

● Only --add/--del are affected

● --verbose

● Show more messages

24

Perf Probe: Tips

● Don't Forget you're on the command-line!

● Special characters can be translated by shell

– Kprobe-tracer syntax includes '$'

– Perf probe syntax includes ';' '>' '*'

● Using ' (single-quote) is recommended

● Test before executing

● -fnv (force, dry-run, verbose) is recommend

25

Perf Probe : Requirements

● Kernel built options

● Enabling dynamic perf/trace event

– CONFIG_KPROBE_EVENT

– CONFIG_PERF_EVENT

● Building kernel with debuginfo

– CONFIG_DEBUG_INFO

● Will get a bigger binary ... don't upset :)

● Elfutils(Libdw)

● Dwarf format (debuginfo) analysis library

– Developed closely with GCC.

● Without elfutils, perf probe can't support debuginfo

● Architecture

● x86/x86-64

● PPC is proposed.

26

Perf Probe : TODOs

● Opened TODOs

● String type support

– String allows us to trace pathname etc

● Module support

– Kernel modules are not supported yet

– Modules can be relocatable

● Dynamic indexed array

– array[i] is commonly used in loops

● %next

– Probe the next step line, or just use post_handler

27

Changelog

● 2.6.33

● Kprobe-tracer

● Perf probe: prototype feature

● Note: Requires libdwarf

● 2.6.34 (expecting)

● Adding --line/lazy matching support

● Note: Move onto elfutils (from libdwarf)

– Elfutils works better with newer gcc

● Jump optimized kprobes

● -tip (ongoing)

● Data structure member support

● Type support

28

Kprobes Jump Optimization (x86)

● Kprobes enhancement feature by replacing a breakpoint with a jump
instruction.

Kprobes

Optimized
Kprobes

int3

Relative jump

Die notifier

Kprobes

Single step

Direct execution

Jump in Jump back

Emulate int3/Handler call

Die notifier

Post Kprobes

Optimize

29

Performance Improvements

● Overheads/probe (usec) : smaller is better

Kprobe(x86-32) Kprobe(x86-64) Kretprobe(x86-32) Kretprobe(x86-64)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normal
Booster
Optimization

Xeon 2.33Ghz

Kprobes (x10 faster)
Kretprobes (x3 faster)

30

Kprobes Jump Optimization: Usage

● Optimization is transparently done

● Don't require any user-side changes

● No kABI change

– Just add a flag bit on internal kprobe->flags

● Not all probes are optimized

● Sysctl interface

● Disabling/Enabling optimization via sysctl “debug.kprobes-optimization”

– Enabling(default): debug.kprobes-optimization = 1

– Disabling: debug.kprobes-optimization = 0

31

Conclusion

● Dynamic event tracing

● In-kernel flexible probe framework

● Events can trace registers/memory

● Safety checks can check the instruction boundary

● Perf probe

● Debuginfo analyzer for helping dynamic event setting from source code info

● User friendly interface for dynamic event tracing

● In kernel tree tool

● Kprobe jump optimization

● Reduce kprobe's overhead drastically

● No user change: Transparently optimized

32

Related Articles

● LWN.net

● Dynamic probes with ftrace (kprobe-tracer)

– http://lwn.net/Articles/343766/

● Minimizing instrumentation impacts (kprobes jump optimization)

– http://lwn.net/Articles/365833/

http://lwn.net/Articles/343766/
http://lwn.net/Articles/365833/

Thank You

33

Questions/Discussion

34

35

Trademarks

● Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

● Other company, product, or service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

