
© CodeSourcery

Mark Mitchell
mark@codesourcery.com

GCC's New Frontiers: Performance and Plug-ins



Performance

18-Apr-10 © CodeSourcery 2



GCC Performance: Silicon Vendor Perspective

What is this GCC 
thing?

A few people 
seem to want to 
use GCC with my 
CPU. 

Linux matters to 
my users.
I need a working 
GCC port.

GCC is used by 
all my customers.

Thus, CPU 
performance is a 
function of GCC 
performance..

18-Apr-10 © CodeSourcery 3

1997 2001 2004 2009



Link-Time Optimization: See The Big Picture
Traditional Optimization

• Optimizing
• But everything we can’t 

see is assumed horrible
Compile 

a.c

• Just like a.cCompile 
b.c

• No optimization
• Mechanical gluing onlyLink

Link-Time Optimization

• Optimize a bit
• And generate 

bytecode
Compile 

a.c

• Just like a.cCompile 
b.c

• Load in all the 
bytecode

• Optimize it all at once
Link

18-Apr-10 © CodeSourcery 4



Profile-Guided Optimization
Basic Concept

Compile

RunProfile

Future Uses
• Place data so as to maximize 

cache performance
• Minimize code size for cold 

code
• Optimistically replace variables 

by constants
• Auto-tune optimization 

parameters

18-Apr-10 © CodeSourcery 5

Smarter this time:
•Branch prediction
•Hot/cold sections

Know more! 
Guess less!



Thoughts for GCC Developers

• Optimization patches should not be posted without quantitative data

Optimization is a quantitative exercise

• On multiple platforms
• In a scientific, methodical, reproducible way.

Benchmarking is part of the development process

• Optimization work is not complete until all the parameters have been tuned
• In a scientific, methodical, reproducible way

Tuning is vital

• Machine-specific oddities require machine-specific optimizations
• Machine-specific parameters are needed at all optimization stages

Good performance requires awareness of the target machine

18-Apr-10 © CodeSourcery 6



Thoughts for Silicon Vendors
Why You Must Invest
Your customers will 
not invest in 
compiler 
development.

Because GCC is Free 
Software, neither will 
ISVs.

Therefore, you must 
bear the cost.

Why You Must Invest Broadly

You would like to 
benefit only your 
CPUs.

Machine-independent 
improvements are 
needed to optimize 
for novel CPUs.

Therefore, you must 
invest broadly – or 
stop building novel 
CPUs.

18-Apr-10 © CodeSourcery 7



Plug-Ins

18-Apr-10 Confidential 8



Compilers Are Black (and Blue?) Boxes

18-Apr-10 © CodeSourcery 9

C/C++

GNU C/C++ 
Compiler 
(GCC)

Assembly

What’s going on in here?



Compilers Should Be White Boxes

18-Apr-10 © CodeSourcery 10

C/C++
GNU C/C++ Compiler 

(GCC) Assembly

Abstract Syntax 
Tree

Parsed 
Representation

Control Flow 
Graph

Loop Nests Program 
Invariants

Performance 
Estimates

Data Flow 
Graph

Footprint 
Estimates

Guidance

Reports & 
Analysis



Requirements for A Plug-In API

• Python
• Java
• C++

• Source code compatibility
• Binary compatibilityStable

• Appropriate level of 
abstraction for use

• Internals not 
unnecessarily exposed

• API clearly documented

Sensible

18-Apr-10 © CodeSourcery 11



© CodeSourcery

Mark Mitchell
mark@codesourcery.com

GCC's New Frontiers: Performance and Plug-ins


	GCC's New Frontiers: Performance and Plug-ins
	Slide Number 2
	GCC Performance: Silicon Vendor Perspective
	Link-Time Optimization: See The Big Picture
	Profile-Guided Optimization
	Thoughts for GCC Developers
	Thoughts for Silicon Vendors
	Slide Number 8
	Compilers Are Black (and Blue?) Boxes
	Compilers Should Be White Boxes
	Requirements for A Plug-In API
	GCC's New Frontiers: Performance and Plug-ins

