
System Wide Tracing
User Need

dominique <dot> toupin <at> ericsson <dot> com
April 2010

2009-07-062 (13)

About me
Developer Tool Manager at Ericsson, helping Ericsson sites
to develop better software efficiently
Background in telecommunication systems
A standards-based communications-class server:

– Open, standards-based common platform
– High availability (greater than 99.999%)
– Broad range of support for both infrastructure and value-added

applications
– Multimedia, network and application processing capabilities
– Product life-cycle of 7 years

2009-07-063 (13)

About me
Improving development tools with research projects, open
source tools, tool vendors and other companies
GDB improvements, non-stop, multi-process, global breakpoint,
dynamic tracepoint, core awareness, OS awareness, … with
CodeSourcery
Eclipse GDB integration, debug analysis with CDT
community e.g. WindRiver
Linux tracing research project with Ecole Polytechnique
(Prof. Michel Dagenais)

2009-07-064 (13)

About me
Linux tracing: user space tracing, GDB integration, binary
format, buffering scheme, … with EfficiOS (Mathieu
Desnoyers)

Eclipse Linux tracing integration and analysis with Red Hat

Organizing Linux Tracing Summit:
2008: https://ltt.polymtl.ca/tracingwiki/index.php/TracingSummit2008
2009: http://www.linuxsymposium.org/2009/view_abstract.php?content_key=108

2010: http://events.linuxfoundation.org/events/linuxcon/minisummits

2009-07-065 (13)

Some Context

Not only enterprise use cases

Not the amount of memory/disk like enterprise, not the
small amount of data of small devices like camera

Facilitate Linux usage in big embedded systems

Always have host – target scenario

Analyse trace on host without the target kernel

2009-07-066 (13)

Some Context

Autodesk, C2 Microsystems, Cisco, Ericsson,
Freescale, Fujitsu, IBM, Mentor Graphic,
MontaVista, Nokia, Siemens, Sony, ST
Microelectronics, TI, WindRiver, etc.

Linux at its best, efficient tracing solution can only
benefit enterprise/IT/parallel computing

2009-07-067 (13)

Static Tracepoint
E.g. kernel tracepoints, trace_event APIs

Created by designer before compilation at development time

Static tracepoints represent wisdom of developers who are
most familiar with the code

Helps developers to think about tracing (using only trial-error
dynamic traces is not efficient)

The rest of the world can use them to extract a great deal of
useful information without having to know the code

2009-07-068 (13)

Trace Data Transport
Trace data initially stored in shared memory buffers
Tracing daemon then writes to the chosen trace-store:

circular “flight recorder” buffer
local disk
remote disk via network interface or serial port

Streaming, i.e. live monitoring
CPU should be allowed to stay in sleep state in order to save
energy
No periodic check to wake up a CPU
Able to analyse/view data on host while it is gathered, impacts the
tracer and the analyser

2009-07-069 (13)

Trace Data Transport
Event compactness decreases overhead, e.g. PID,
event size, etc. should be optional

Maximum event size should be configurable

Self describing trace format

Generate events with arbitrary number of arguments
i.e. variable event sizes

2009-07-0610 (13)

Trace Data Transport

Trace buffers flushing in core dump when process crash, post
mortem analysis

Flight recorder mode: event backlog size should be
configurable per event group e.g. IRQ, signals

Huge traces > 10 GB

Can be efficiently accessed based on time e.g. binary search

Multi-node tracing

2009-07-0611 (13)

Scalability

Scalable to high core numbers

Wait-free Read-Copy-Update mechanism

Per-CPU buffers

Non-blocking atomic operations
Create and run more than one trace session in parallel at
the same time, e.g.:

– system administrator monitoring
– field engineered to troubleshoot a specific problem

2009-07-0612 (13)

Reliability

In production systems, no corruption of data

Lost events must be accounted for

Algorithms have to be robust

Formal verification provides correctness and
reliability guarantees

2009-07-0613 (13)

Low Overhead
Low overhead is key, better tracing means more
troubleshooting in field and quicker resolution of problems

Don’t want to change behaviour of the system

Minimal impact on network bandwidth, i.e. telecom system not
a tracing system

Very efficient probes with static jump, no trap, no system call

Zero copy from event generation to disk write.

Trying to keep per-CPU-core operation without un-needed
synchronization

2009-07-0614 (13)

Low Overhead

Almost zero performance impact with
instrumentation points disabled

Enable instrumentation points needs to have low
performance impact

Conditional tracing can tremendously reduce
overhead

2009-07-0615 (13)

User Space Tracing

Very low disturbance, highly scalable

Same binary format as the kernel

Merge kernel and user space traces, e.g. with timestamp

Same features, (e.g. low overhead, robustness, scalability,
…) as the kernel tracer

Node-wide, i.e. multiple processes, multiple processors

Conditional tracing in userspace

2009-07-0616 (13)

Time

Accurate event ordering is key to enable trace
synchronization or correlation of traces from

– different CPU, cores
– traffic exchanged between nodes
– virtual machine, etc.

Timestamp precision 1-100ns range, i.e. cycle counter

2009-07-0617 (13)

Traceable Data
Everything should be traceable

User space
Kernel
Non-Maskable Interrupt (NMI)
Thread and signal safe
Events may not be lost because of race conditions
Collect large trace data > 10GB
Static tracepoint integration with dynamic tracepoint: GDB
dynamic tracepoint+LTTng UST, kernel kprobes+LTTng kernel

2009-07-0618 (13)

Analysis
What do we do with all this data?

Resource view
Per thread execution state (control flow view)
Event rate histogram
Detailed event list, filtering
View synchronization
IRQ latency

2009-07-0619 (13)

2009-07-0620 (13)

Eclipse IDE, what for?

Debug multi-process, non-stop with cmd line?

Performance analysis?

What is your reason to use an IDE?

2009-07-0621 (13)

Context switching, bug, e-mail, new feature, interruptions, etc?
Code at the speed of thought? try Eclipse Mylyn
http://en.wikipedia.org/wiki/Task-focused_interface
http://www.tasktop.com/videos/mylyn/webcast-mylyn-3.0.html
http://tasktop.com/videos/w-jax/kersten-keynote.html

2009-07-0622 (13)

Linux Eclipse projects
C/C++ Development Tools, Linux Tools, Remote System Explorer, Mylyn, Egit, Sequoyah

Linux

gcov, Oprofile/gprof/perf CPPunit

Linux Tools
http://www.eclipse.org/linuxtools

C/C++ Development Tool
http://www.eclipse.org/cdt/

Target Management
http://www.eclipse.org/dsdp/tm

Parallel Tools Platform
http://www.eclipse.org/ptp/

Tools for Mobile Linux / Sequoyah
http://www.eclipse.org/dsdp/tml

Mylyn, code at the speed of thought
http://www.eclipse.org/mylyn

EGit
http://www.eclipse.org/egit

All
http://www.eclipse.org/projects/listofprojects.php

2009-07-0623 (13)

Eclipse Foundation, 200 members

2009-07-0624 (13)

perf

2009-07-0625 (13)

Eclipse Linux Tools project

- Managed build for various toolchains, standard make build
- Source navigation, type hierarchy, call graph, include browser, macro definition browser, code
editor with syntax highlighting, folding and hyperlink navigation,
- Source code refactoring, static analysis
- Visual debugging tools, including memory, registers, and disassembly viewers

2009-07-0626 (13)

Analysis
Trace synchronization

– Time correction
– Multi-core
– Multi-level
– Multi-node, distributed

Dependency analysis, delay analyzer
– Dependencies among processes
– How total elapsed time is divided into main

components

2009-07-0627 (13)

Analysis
Pattern matching

– Security
– Performance
– Testing lock acquisitions

Correlation
– Other format
– Text base logs
– Multi-level

2009-07-0628 (13)

Multi-Core Troubleshooting
Major software redesign is normally required to benefit from
multi-core architectures
Software development industry and individual developers are
facing problems whose resolution requires to understand the
interaction between all layers, including third party products e.g.

Hypervisor
Operating system
Virtual machines
System libraries
Applications
Operation and maintenance
Many languages: C/C++, Java, Erlang, …

2009-07-0629 (13)

A typical system these days
– SMP Linux on a few cores
– Low-level RTOS on another core
– DSP's, etc.

Developed in different context
– In-house development
– Consultant
– Reusable components
– Third party products

Understanding what is happening on the system requires
compatible tools, i.e. de facto standard

Complex systems
Domain knowledge

– Telecom
– Financial
– Automotive
– Consumer electronics
– Industrial
– Military
– Medical
– Etc.

2009-07-0630 (13)

In addition to file system, memory, etc, companies switching
to Linux also need a tracing infrastructure

Distributions like MontaVista, WindRIver, etc. need to apply
large patches to enable tracing

Patching commercial kernel leads to unsupported distribution!

Linux Tracing Systems?

2009-07-0631 (13)

Open source contributions are growing exponentially, contributions can
sometimes be incompatible or result in duplicated work:

– forks of GDB
– competing projects have emerged, e.g. frysk, EDC
– Linux trace initiatives e.g. LTTng, ftrace, perf, utrace, SystemTap, etc.
– Very hard to plan cross project features

Let's take this to the next level
– not only contribute the parts needed for one company, plan together
– avoid incompatible data, inconsistent work, and duplicated efforts
– e.g. Executable and Linkable Format (ELF), DWARF debug format
– create an industry de-facto standard for tools
– Budget cycle! Ecosystem of tool improvements, support
– Linux foundation tool work group?

Linux Tool Work Group

We can do better than printf

