
Outline of Ext4 File System &
Ext4 Online Defragmentation Foresight

LinuxCon Japan/Tokyo 2010
September 28, 2010

Akira Fujita <a-fujita@rs.jp.nec.com>
NEC Software Tohoku, Ltd.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 2

Sendai
●

●

Tokyo

Self Introduction

▐ Name: Akira Fujita

▐ Company: NEC Software Tohoku,
Ltd. in Sendai, Japan.

▐ Since 2004, I have been working at
NEC Software Tohoku developing
Linux file system, mainly ext3 and
ext4 filesystems.

 Currently, I work on the quality
evaluation of ext4 for enterprise
use, and also develop the ext4
online defragmentation.

Japan

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 3

Outline
▐ What is ext4
▐ Ext4 features
▐ Compatibility
▐ Performance measurement
▐ Recent ext4 topics

▐ What is ext4 online defrag
▐ Relevant file defragmentation
▐ Current status / future plan

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 4

What is ext4

▐ Ext4 is the successor of ext3 which is developed to solve
performance issues and scalability bottleneck on ext3 and also
provide backward compatibility with ext3.

▐ Ext4 development began in 2006.
　　 Included in stable kernel 2.6.19 as EXPERIMENTAL (ext4dev).

Since kernel 2.6.28, ext4 has been released as stable
 (Renamed from ext4dev to ext4 in kernel 2.6.28).

▐ Maintainers
Theodore Ts'o tytso@mit.edu , Andreas Dilger adilger.kernel@dilger.ca　

▐ ML
linux-ext4@vger.kernel.org

▐ Ext4 Wiki
http://ext4.wiki.kernel.org

mailto:tytso@mit.edu
mailto:adilger.kernel@dilger.ca
mailto:linux-ext4@vger.kernel.org

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 5

Ext4 features

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 6

Ext4 features

▐ I/O performance improvement: delayed allocation, multi block allocator
extent map and persistent preallocation.

▐ Fast fsck: flex_bg and uninit_bg
▐ Reliability: journal checksumming
▐ Maintenance: online defrag
▐ Misc: backward compatibility with ext2/ext3, nanosec timestamps, subdir

scalability, etc.

Filesystem Max. file size Max. filesystem size

ext3 2TB 16TB

ext4 16TB 1EB

Bigger file/filesystem size support.

Compared to ext3, ext4 is:
8 times larger in file size, 65536 times(!) larger in filesystem
size.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 7

Feature flags

Note: Feature flags are enabled/disabled by tune2fs, except for flex_bg (only by mkfs).

If you set uninit_bg and dir_index feature flags, you need to run e2fsck with –pD
options to enable them.

1 unremovable feature flag

Ext2 features (common) Ext3 features Ext4 features

Ext4 ext_attr resize_inode dir_index
filetype sparse_super

has_journal huge_file uninit_bg dir_nlink
extra_isize extent1 flex_bg1

▐ Feature flags of ext filesystems

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 8

0 1 11 12 13 14

Data
Block

Data
Block

Data
Block

Data
Block

Direct Blocks Indirect Blocks

Data
Block

i_data

Indirect Block Map Extent Map

EH

Data Blocks

i_data

Extent Index

EH

EH EH

Indirect Block Map and Extent Map
▐ Ext4 supports two block maps. Extent map is more efficient and can

handle large file in comparison with indirect block map.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 9

Multiple block allocator

Disk

Block allocate
request

2^0 2^13

#0

#N

Memory (buddy cache)

…
…

.

#N

#N-1

#0
BG

…
…

.

2^1

▐ Contiguous multiple blocks are allocated at once to prevent file fragmentation.
This decreases CPU utilization and seek time.

▐ Contiguous free blocks of block group are managed by the buddy system in
memory (2^0-2^13).

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 10

▐ Blocks unused by the current allocation are added to inode preallocation.
▐ Inode preallocation enables blocks will be assigned preferentially when the next block

allocation comes. Consequently contiguous multiple blocks are used.
▐ For a file smaller than 16 blocks is added to the locality group2 instead.

Multiple block allocator (cont.)

60 blocks

64 blocks

Request blocks

Free contiguous blocks

4
Rest of blocks (64-60)

FILE_A’s inode PA list

PA

e.g. Allocate 60 blocks to FILE_A, rest of 4 blocks are added to
inode preallocation(PA) list.

Blocks in inode PA list will
be used when the next block

allocation comes

PA PA

2 Locality group is defined by a CPU the allocation is
running on to pack small files together

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 11

Delayed allocation
▐ Delayed allocation is used by write system call. It delays real

block allocation until written data is flushed from memory to disk.
▐ Prevent file fragmentation and decrease CPU utilization.
▐ Suppress writes to temporary files which exist for short period.

▐ There is a trade-off between performance and reliability.
 There is a known-issue on data loss. If a crash occurs when created or

truncated file is closed, or a file is renamed to replace the previous file, data
may be lost. To avoid the issue, mount ext4 filesystem with “noauto_da_alloc”
option.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 12

ext2/ext3

1. ext4 2. ext4 3. ext4

3 　 Except “extent” feature flag

Create ext4 as a new filesystem, if
you need to get better performance.

Compatibility

Type Method to mount ext4 filesystem Compatibility

1 Mount ext2/3 as ext4 (just do mount –t ext4) ○

2 Mount ext2/3 as ext4 with turning on feature flags ○ 3

3 Create ext4 with mke2fs as new filesystem ×

There are 3 types of ext4. Compatibility differences of them are shown below:

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 13

Performance
measurement

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 14

mkfs / fsck time with large filesystem
▐ e2fsck time on empty 16TB filesystem

Kernel: 2.6.35, e2fsprogs: 1.41.12, Arch: x86_64, CPU: Xeon 3.00GHz, Memory: 3.5GB

Pass1Pass2 Pass3 Pass4 Pass5
ext4
ext4(̂ extent,̂ unint_bg,̂ flex_bg)
ext3 0

5000
10000
15000
20000
25000
30000
35000
40000
45000

ext4 1.82 0.25 0.08 9.17 83.51
ext4(̂ extent,̂ unint_bg,̂ flex_bg) 15125.72 1.33 0.07 9.17 1692.71
ext3 15062.03 0.82 0 18.35 1682.29

Pass1 Pass2 Pass3 Pass4 Pass5

sec

e2fsck for ext3 and
ext4(^extent,　
^uninit_bg,　

^flex_bg) takes about
4.5 hours.

“^” means without feature flag

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 15

mkfs / fsck time with large filesystem
▐ e2fsck time on 16TB filesystem using 4TB (10MB x 4096000files)

Kernel: 2.6.35, e2fsprogs: 1.41.12, Arch: x86_64, CPU: Xeon 3.00GHz, Memory: 3.5GB

Pass1Pass2 Pass3 Pass4 Pass5
ext4
ext4(̂ extent,̂ unint_bg,̂ flex_bg)
ext3 0

5000
10000
15000
20000
25000
30000
35000
40000
45000

ext4 59.57 40.89 0.08 9.19 149.15
ext4(̂ extent,̂ unint_bg,̂ flex_bg) 17741.86 16.04 0.07 9.18 1659
ext3 28020.18 46.42 0.15 18.36 1690.71

Pass1 Pass2 Pass3 Pass4 Pass5

sec

As file size gets
bigger, ext3 fsck

takes longer

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 16

▐ e2fsck time on 16TB filesystem using 8TB (10MB x 8129000files)

▐ uninit_bg feature influences fsck performance a lot.

Pass1Pass2 Pass3 Pass4 Pass5
ext4
ext4(̂ extent,̂ unint_bg,̂ flex_bg)
ext3 0

5000
10000
15000
20000
25000
30000
35000
40000
45000

ext4 117.74 78.06 0.08 9.2 215.58
ext4(̂ extent,̂ unint_bg,̂ flex_bg) 21230.18 31.69 0.07 9.19 1665.94
ext3 40740.56 91.98 0.15 18.38 1743.44

Pass1 Pass2 Pass3 Pass4 Pass5

sec

mkfs / fsck time with large filesystem

Ext4 is extremely
faster than others.

Ext3 fsck takes about
12 hours!!

Kernel: 2.6.35, e2fsprogs: 1.41.12, Arch: x86_64, CPU: Xeon 3.00GHz, Memory: 3.5GB

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 17

0

5000
10000

15000

20000
25000

30000

35000

40000

ext4 6245.457 26203.097 350.235
ext4(̂ extent,̂ uninit_bg,̂ flex_bg) 6390.16 30054.575 5311.013
ext3 6411.976 35779.71 15801.707

create 16TB FS create 4TB file delete 4TB file

Misc operation time with large filesystem
- File create: dd if=/dev/zero of=fille bs=1048576 count=10

- File delete: rm –rf *

▐ There is no difference on filesystem creation time (1h)
▐ Ext4 gets better performance on file creation/deletion than ext3

sec

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 18

FFSB Benchmark Result

Test Environment:
Arch: x86_64
Kernel: 2.6.35 (default mount option)
CPU: Intel(R) Core(TM)2 CPU 6320 @ 1.86GHz
Memory: 2GB
IO scheduler: CFQ
Device: ST3500641AS(500GB), 3.AAB, Serial ATA 2
TP: The Flexible Filesystem Benchmark (FFSB) 6.0-rc2
Target filesystem: ext3, ext4, xfs and btrfs (xfs and btrfs are for

reference).

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 19

Large file sequential write using FFSB

▐ 1GB sequential write with1thread and 16threads (average of 10 trials)

15

17

19

21

23

25

27

29

31

1thread 27.2 27.89 29.63 28.01
16threads 22.34 27.15 28.13 27.41

ext3 ext4 xfs btrfs

MB/sec

Write performance on ext4 is 21.5% greater than ext3 in
case of 16thread.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 20

Large file random read using FFSB
▐ 100MB x 1024files random read with1thread and 16threads (average of 10 trials)

300

350

400

450

500

550

600

650

700

750

1thread 695.4 706.2 711 699.8
16threads 426.8 452.8 444.8 529.8

ext3 ext4 xfs btrfs

KB/sec

Read performance of ext4 is slightly better than ext3

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 21

Write performance with typical ext4 options

▐ Large file sequential write using FFSB with typical ext4
options

 Mount option (except for block map)

Journal mode writeback, ordered (default), journal

Delayed allocation delalloc (default), nodelalloc, noauto_da_alloc

Barrier barrier=1 (default), barrier=0

Block map 4 extent (default), indirect

4 Block map is not tuned with mount option

1GB sequential write with 1thread (average of 3 trials)
Each measuring time is 5 minutes.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 22

28.20 27.07 28.47

0.00

5.00

10.00

15.00

20.00

25.00

30.00

delalloc nodelalloc noauto_da_lalloc

Write Throughput(MB/sec)

27.87 28.20

13.30

0.00

5.00

10.00

15.00

20.00

25.00

30.00

writeback ordered journal

Write Throughput(MB/sec)
▐ Journal mode MB/sec

▐ Delayed allocation

Write performance with typical ext4 options

When “journal” mode,
is used, twice amount
of data (metadata +

data) is written.

Write throughput
performance with
dealloc is 4.1%

greater than
nodelalloc.

MB/sec

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 23

28.67 28.20

0.00
5.00
10.00

15.00
20.00
25.00
30.00

barreir=0 barrier=1

Write Throughput(MB/sec)
▐ Barrier

MB/sec

29.97 28.73

0.00
5.00
10.00
15.00
20.00
25.00
30.00

extent êxtent

Write Throughput(MB/sec)▐ Block map
MB/sec

Write performance with typical ext4 options

Using barrier makes
write performance
slower. In this case,

it’s comparable.

Using extent map is
4.2% faster than using

indirect map.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 24

Ext4 performance conclusion
▐ Read and write performance of ext4 is faster than ext3, especially in

the case of using multi thread operation.

▐ Ext3 fsck time on the large filesystem takes a so long time that it is
useless. Ext4 solves this issue. (ext3: 12h ext4: 7min)

▐ There is no difference on filesystem creation time between ext3 and
ext4. (1.5h)

▐ Default mount option of ext4 gives better performance. In addition,
there is room for the consideration on trade-off between
performance and reliability.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 25

Transition of ext4 patches
The Linux Kernel Archives: http://www.kernel.org/

of patches

0
10
20
30
40
50
60

70
80
90

jbd2 10 12 3 6 6 5 2 2
ext4 60 68 49 72 84 64 41 40

2.6.28 2.6.29 2.6.30 2.6.31 2.6.32 2.6.33 2.6.34 2.6.35

of patches

In the point of view of the transition, many bug fixes and feature
additions have been merged so far. Recently it shows tendency that
number of patches become slightly a few.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 26

Recent ext4 topics

▐SSDs
▐Reduce mkfs time
▐Snapshot for ext4

etc.

ext4 TODO list: https://ext4.wiki.kernel.org/index.php/TODO_list

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 27

Ext4 online
defragmentation

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 28

What is ext4 online defragmentation
▐ Ext4 online defrag solves fragmentation on mounted ext4

filesystem.

▐ EXT4_IOC_MOVE_EXT ioctl which exchanges blocks between
two inodes and e4defrag command have been merged into Linux
kernel and e2fsprogs each so far.

 Therefore we can solve single file fragmentation on current ext4
with following steps :
 1.Create a donor file
 2.Allocate contiguous blocks to donor file
 3.Call EXT4_IOC_MOVE_EXT ioctl to exchange data blocks between target

file and donor_file
 4. Remove donor file

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 29

Relevant file defragmentation
▐ e4defrag -r solves relevant file fragmentation.

 Usage: e4defrag -r directory...| device...

Relevant file defrag is solved by moving related files under specified
directory closer together on ext4 filesystem.

▐ e4defrag -r uses new ioctl EXT4_IOC_COTROL_PA5 to set inode
preallocation (PA) to specified inode.

▐ If inode has inode PA, block allocator tries to use blocks from there.

 5 　 EXT4_IOC_COTROL_PA is new ioctl which gets free blocks from specified physical 　　
offset and sets these blocks to the inode.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 30

Types of fragmentation

▐There are three types of fragmentation.

1. Single file fragmentation
 Single file fragmentation occurs when a single file is broken into multiple pieces.

This decreases the performance of accessing a single file.

2. Relevant file fragmentation
 Files frequently accessed by an application at the same time, are stored to

different physical locations individually on ext4. It makes application
performance slower especially in case of small file access.

3. Free space fragmentation
 Free space fragmentation occurs when filesystem has many small free areas and

there is no large free area which consists of contiguous blocks.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 31

Disk1

N

DIR_A

DIR_B

FILE_A

FILE_B

FILE_C

DIR_A (target)

FILE_A

DIR_A

FILE_B

FILE_C

DIR_B

Mount point

Detail of relevant file defragmentation

1. Execute relevant file defrag (e4defrag –r) to
DIR_A. by issuing the following command.

e4defrag -r DIR_A

Files under DIR_A are defraged in order
(FILE_A, FILE_B, FILE_C).

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 32

Disk1

N

DIR_A

DIR_B

FILE_A

FILE_B

FILE_C

For example, target file is FILE_A.

2. e4defrag creates a donor file and allocate inode
PA based on physical offset of DIR_A with
EXT4_IOC_CONTROL_PA to the donor file.
If it is succeed, it calls fallocate to assign inode
PA to the blocks from the next offset of DIR_A.

Donor File

FILE_A

DIR_A (target)

FILE_A

DIR_A

FILE_B

FILE_C

DIR_B

Mount point

Detail of relevant file defragmentation (cont.)

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 33

Disk1

N

3. It calls EXT4_IOC_MOVE_EXT6 to　
exchange blocks between FILE_A and Donor
　 File. As the result, data blocks of FILE_A
are　 moved close to DIR_A. Donor File

FILE_A

DIR_A (target)

DIR_A

DIR_B

FILE_A

FILE_B

FILE_C

FILE_A

DIR_A

FILE_B

FILE_C

DIR_B

Mount point

Detail of relevant file defragmentation (cont.)

 6 Block exchange ioctl which is used to solve single file
defragmentation by e4defrag.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 34

Disk1

N

DIR_A

DIR_B

FILE_A

FILE_B

FILE_C

4. Remove Donor file.

Continue doing steps from 2 to 4 for the
rest of files (FILE_B and FILE_C).

FILE_A

DIR_A (target)

Donor File

FILE_A

DIR_A

FILE_B

FILE_C

DIR_B

Mount point

Detail of relevant file defrag (cont.)

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 35

Disk1Disk1

N N

Before After
5.Compare the previous physical locations
 of data blocks of each file with the
 current physical locations. Relevant file
 fragmentation is resolved.

 As the result, read performance of
 DIR_A gets improved due to enabling
 sequential read.

DIR_A

DIR_B

FILE_A

FILE_B

FILE_C

Detail of relevant file defragmentation (cont.)

“ “ is movement of disk head

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 36

Result of relevant file defragmentation

▐ Result of relevant file defrag to kernel tree
 # e4defrag -r linux-2.6.35

Before After

Extent count 33342 33342

Read time (sec) 204.8 164.3

Make time (sec) 379.5 374.4

▐ Extent count is not changed, but resolved relevant file
defrag brings 25% improved read performance.

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 37

▐ Patches related to relevant file defrag (e4defrag -r) are
under review.

▐ Accelerate e4defrag patches (include bug fixes) to be
merged into e2fsprogs.

▐ e4defrag needs more feedbacks !

▐ Implement free space defragmentation (e4defrag -f)
　 We might implement this feature when the relevant

defrag development is completed.

Current status / future plan

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 38

How to start ext4 online defragmentation

▐ Kernel: 2.6.31 or later (EXT4_IOC_MOVE_EXT of ioctl has been
merged)

▐ Command: e4defrag (e2fsprogs-1.41.8 or later)
 To use the latest e4defrag command, apply the following patches to

the e2fsprogs git tree (http://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git).
 http://marc.info/?l=linux-ext4&m=128272678710600&w=2

▐ Usage: e4defrag [-v] file...| directory...| device...
 e4defrag -c file...| directory...| device...
 e4defrag -r directory...| device...

▐ Any feedbacks of ext4 online defrag are welcome.

http://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git
http://marc.info/?l=linux-ext4&m=128272678710600&w=2
http://marc.info/?l=linux-ext4&m=128272678710600&w=2
http://marc.info/?l=linux-ext4&m=128272678710600&w=2

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 39

EXT4_IOC_CONTROL_PA (new ioctl)

#define EXT4_IOC_CONTROL_PA _IOWR('f', 16, struct ext4_prealloc_info)
struct ext4_prealloc_info {

__u64 pi_pstart; /* physical offset for the start of the PA from
 * the beginning of the file (in/out) */

__u32 pi_lstart; /* logical offset for the start of the PA from
 * the beginning of the disk (in/out) */

__u32 pi_len; /* length for this PA (in/out) */
__u32 pi_free; /* the number of free blocks in this PA (out) */
__u16 pi_flags; /* flags for the inode PA setting ioctl (in) */

};
There are three flags for pi_flags entry
-EXT4_MB_MANDATORY Get blocks for inode PA from specified range, if not
 returns error.
- EXT4_MB_ADVISORY Get blocks from arbitrary range.
- EXT4_MB_DISCARD_PA Discard inode PA

▐ EXT4_IOC_CONTROL_PA ioctl sets/discards inode PA to
specified inode.

Appendix

Copyright(C) 2010 NEC Software Tohoku, Ltd. All Rights Reserved.Page 40

#define EXT4_IOC_GET_PA _IOWR('f', 17, struct ext4_prealloc_list)

struct ext4_prealloc_list {
__u32 pl_count; /* size of pl_space array (in) */
__u32 pl_mapped; /* number of PAs that were mapped (out) */
__u32 pl_entries; 　　　　　　 /* number of PAs the inode has (out) */
struct ext4_prealloc_info pl_space[0];　 /* array of mapped PAs (out) */

};

EXT4_IOC_GET_PA (new ioctl)

▐ EXT4_IOC_GET_PA ioctl gets inode PA of specified inode.
 This ioctl is used for debug.

Thank you for listening !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

