
Getting Memcached Secure

NEC OSS Promotion Center

KaiGai Kohei <kaigai@ak.jp.nec.com>

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 2

Self Introduction

▐ Name KaiGai Kohei

▐ Company NEC, OSS Promotion Center

▐ Works 7 years experiences of OSS development
» SELinux
» PostgreSQL
» Memcached
» Apache (mod_selinux)

▐ Memcached - selinux engine

� A memcached plugin to apply mandatory access control
according to the SELinux policy.

1. Memcached and security

� Background

� Centralized security and SELinux

2. Getting Memcached secure

� Adjustment of security model

� Engine framework performing with libselinux

� The selinux_engine.so plugin

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 4

Recent web-system's architecture

Web servers

RDBMS

Key-Value
store

The Internet

End Users

Web application

Fast, but poor
functionality

Fast, but poor
functionality

Slow, but rich
functionality

Slow, but rich
functionality

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 5

What is Memcached

▐ Memcached

� general purpose, high-performance, distributed memory caches

� Typically, used to backends of high-traffic web systems

� Much faster than RDBMS, but less functionalities

less features
authentication &
access controls

Security

OKOKScript support

badgoodData Integrity

much easiernot easyScaling-out

goodrelatively worsePerformance

badgoodSchemed Data

memcached protocolSQLClient Interface

MemcachedPostgreSQL

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 6

Memcached from security perspective (1/2)

▐ We have few options to keep Memcached secure :-(

� Should never allow to connect from external network

� SASL authentication

� Should never run as root

▐ Memcached Security; by Dustin Sallings
http://dustin.github.com/2010/08/08/memcached-security.html

Memcached

Web Server

Web Apps (1) Firewalling,
always

(1) Firewalling,
always

(2) SASL auth,
if needed

(2) SASL auth,
if needed

(3) Not run as root(3) Not run as root

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 7

Memcached from security perspective (2/2)

▐ Our concern

� No protection from internal threats

� Buggy application turns an external threats
into an internal threat.

It means all the application must be
FREE from BUGS and VULNERABILITIES!

Memcached

Web Server

Web AppsPerhaps,
vulnerable?

Perhaps,
vulnerable?

Any items
accessible!

Any items
accessible!

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 8

Why server software applies access controls

▐ How reliable is the security feature?

� Consistency and Comprehensiveness

▐ Which is more preferable to apply access control?

� If each applications apply access control?

� Some of them may not be right

� Some of them may check nothing...

Access control should be centralized.

Server Application
(Object Manager)

object

object

object

object

Access
Control

A
u
th
e
n
tica

tio
n

Access
Control

Access
Control

Access
Control

A
p
p
lica

tio
n
s

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 9

More centralized access control (1/2)

Linux kernel

Filesystem

File

FileFile

SELinux

Security
Policy

LSM

System
call

SQL memcached
protocol

PostgreSQL

Table
Schema

Table
Table

SE-PgSQL

Memcached

selinux_engine

Item
Item

Item
Item

Security
Server

Security
Server

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 10

More centralized access control (2/2)

domain of
classified processes

domain of
unclassified processes

inter process
communication channels

Filesystem

classified
information

unclassified
information

Networks

memcached RDBMS

S
E
L
in
u
x

Security
Policy

a centralized
security server ie; we don't allow

classified process to write
an object being readable
from unclassified process

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 11

SELinux as a Security Server (1/3)

▐ Interactions with object managers

� Kernel subsystems do queries via LSM.

� Userspace applications do queries via libselinux.

Both of them control user's requests according to the decision.

▐ Security context as a common identifier

system_u:system_r:memcached_t:s0

system_u:object_r:var_log_t:s0

A short formatted text, independent from object classes.

▐ Security policy

� A massive set of access control rules.

� A rule describes a set of actions to be allowed on a pair of
a security context of the subject (process being accessing) and
a security context of the object being accessed.

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 12

File X File Y

SELinux as a Security Server (2/3)

▐ Case of Linux Kernel

user process A

staff_u:staff_r:staff_t:s0

user process B

user_u:user_r:user_t:s0

VFS LSM

SELinux

Security
Policy

system_u:object_r:etc_t:s0 user_u:object_r:user_home_t:s0

read(2)read(2)
write(2)write(2)

Linux kernel

ApplicationsSubject: user_u:user_r:user_t:s0
Object: user_u:object_r:user_home_t:s0

Target class: file

Subject: user_u:user_r:user_t:s0
Object: user_u:object_r:user_home_t:s0

Target class: file

file:{getattr read write ...}file:{getattr read write ...}

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 13

Item X Item Y

SELinux as a Security Server (3/3)

▐ Case of Memcached

user process A

staff_u:staff_r:staff_t:s0

user process B

user_u:user_r:user_t:s0

SELinux

Security
Policy

system_u:object_r:system_ro_item_t:s0

user_u:object_r:user_item_t:s0

lib
se
lin

u
x

GETGET
SETSET

Linux kernel

Applications

Memcached
Subject: user_u:user_r:user_t:s0

Object: user_u:object_r:user_item_t:s0
Target class: kv_item

Subject: user_u:user_r:user_t:s0
Object: user_u:object_r:user_item_t:s0

Target class: kv_item

selinux_engine.so

Protocol Parser

kv_item:{read write ...}kv_item:{read write ...}

1. Memcached and security

� Background

� Centralized security and SELinux

2. Getting Memcached secure

� Adjustment of security model

� Engine framework performing with libselinux

� The selinux_engine.so plugin

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 15

Needed features to be enhanced

▐ Memcached needs to get enhanced

1. Facility to retrieve security context of client process

2. Facility to assign security context on key-value item

3. Facility to ask SELinux its access control decision

Item

Item

Item

P
ro
to
co

l
P
a
rs
e
r

E
n
g
in
e
 M

o
d
u
le

SELinux

Security
Policy

web application

system_u:system_r:user_webapp_t:s0

system_u:system_r:guest_webapp_t:s0

system_u:object_r:memcached_item_t:s0system_u:object_r:memcached_item_t:s0

query

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 16

Security context of the clients

▐ getpeercon(int sockfd, security_context_t *con)

� It allows to retrieve security context of the client process
that connected to the server using sockfd.

� If UNIX domain socket, no configurations are necessary

� If TCP/IP socket, also need to set up labeled IPsec.

▐ Labeled IPsec

� It uses an enhanced version of key-exchange daemon
that transfers peer security context during IKE exchanges.

� getpeercon(3) enables to retrieve the delivered one.

� For more details:
Introduction to Labeled Networking on Linux (Paul Moore, HP)
http://www.linuxfoundation.jp/jp_uploads/seminar20080709/paul_moore-r1.pdf

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 17

Security context of key/value item

▐ SELinux needs key-value item to be labeled

� But original hash_item is not designed to store a security context.

▐ Revised data format that allows to point a certain security context

� Large number of objects tend to share small number of security contexts

uint32_t nbytes

uint16_t nkey

uint16_t iflag

Key of item

Value of item

hash_item structure

uint16 flags

uint32_t datalen

uint32_t secid

uint16_t keylen

Key of item

Value of item

mchunk_t.item

security context
in text form

mchunk_t.label

uint32_t secid

uint32_t refcount

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 18

memcached - storage engine interface (1/2)

▐ What is the storage engine interface?

� An upcoming feature in memcached v1.6.x

� It allows a plugin to provide its mechanism to manage key/value pair.

� Well designed protocol between the core and engine plugin.

• Some plugins may provide persistent storage support.

• Some plugins may provide access control.

:

P
ro
to
co

l
P
a
rs
e
r

st
o
ra
g
e
 e
n
g
in
e

in
te
rf
a
ce

xxx
plugin

selinux
plugin

SELinux

memcached

memcached
protocol

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 19

memcached - storage engine interface (2/2)

typedef struct engine_interface_v1 {
:

/**
* Retrieve an item.
*
* @param handle the engine handle
* @param cookie The cookie provided by the frontend
* @param item output variable that will receive the located item
* @param key the key to look up
* @param nkey the length of the key
* @param vbucket the virtual bucket id
*
* @return ENGINE_SUCCESS if all goes well
*/

ENGINE_ERROR_CODE (*get)(ENGINE_HANDLE* handle,
const void* cookie,
item** item,
const void* key,
const int nkey,
uint16_t vbucket);

:
}

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 20

Flow-chart in GET command

Protocol
Parser

Storage Engine
Interface

selinux_get()

Storage Engine
Interface

Item exists?
ENGINE_KEY_ENOENT

security_compute_av()

Allowed?
ENGINE_EACCESS

Return the item

ENGINE_SUCCESS

/selinux/access

SELinux

Security
Policy

GET xxx

Client
Application Memcached Kernel

No

No

decision

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 21

selinuxfs and libselinux (1/2)

▐ selinuxfs

� A pseudo filesystem as an interface to applications

� Eg; write and read on /selinux/access

� it asks selinux its access control decision

▐ libselinux

� A set of wrapper functions for selinuxfs and configuration files.

� Eg; security_getenforce() � read /selinux/enforce

� Userspace access vector cache

[kaigai@saba ~]$ ls /selinux

access context load reject_unknown

avc/ create member relabel
booleans/ deny_unknown mls status

checkreqprot disable null user
class/ enforce policy_capabilities/

commit_pending_bools initial_contexts/ policyvers

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 22

selinuxfs and libselinux (2/2)

▐ security_compute_av

� scon ... security context of the user process

� tcon ... security context of the item to be referenced

� tclass ... code of object class

� required... an obsolete argument

� avd ... result shall be set in this structure

It writes scon, tcon and tclass to /selinux/access,

then SELinux returns allowed actions on a pair of them.

extern int security_compute_av(const security_context_t scon,

const security_context_t tcon,

security_class_t tclass,

access_vector_t required,

struct av_decision *avd);

It contains bitmask of
allowed permissions.

It contains bitmask of
allowed permissions.

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 23

Flow-chart in ADD command

Protocol
Parser

Storage Engine
Interface

selinux_allocate()

security_compute_create()

Allowed?
ENGINE_EACCESS

security_compute_av()

ENGINE_SUCCESS

/selinux/create

SELinux

Security
Policy

ADD xxx

Client
Application Memcached Kernel

No

OPERATION_ADD

create a new item
with security context

/selinux/access

selinux_store()

link the new item
to btree-index

Storage Engine
Interface

decision

default
context

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 24

Memcached - selinux engine

▐ To obtain the source code

git clone git://github.com/trondn/memcached.git -b engine

svn co http://sepgsql.googlecode.com/svn/trunk/memcached

▐ Features

� Mandatory access control with SELinux policy

� Using B+tree index

� Persistent storage support

▐ Future works

� Waiting for Memcached v1.6.x release :-)

� Pushing the package to Fedora project

� Scalability improvement

� Comprehensive statistical information

� Documentations

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 25

Userspace access vector cache (avc)

▐ security_compute_xxx() always invokes a system-call

AVC enables to cache access control decisions recently used.

avc_has_perms()

validation check of
userspace cache

/selinux/status

selinux_kernel_status

mmap(2)

validation check of
userspace cache

reset avc cache

make an avc entry

/selinux/access

/selinux/create

lookup an avc
entry from the cache

check access permissions

SELinux

Security
Policy

invalid

invalidstill valid

not found

st
ill
 v
a
lid

F
o
u
n
d

System
call

System
call

Memory
reference

Memory
reference

DecisionDecision

QueryQuery

In heuristic,
the rate to hit
overs 99.9%

In heuristic,
the rate to hit
overs 99.9%

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 26

Benchmark

▐ Iteration of GET/SET mixture, 8threads-client, 4core server x 2, Gb-ether

▐ Less significant differences in same network environment

� default = no access control, selinux = mandatory access control

▐ Penalties in IPsec(AH) communication (~20%?)

0 100000 200000 300000

No IPsec

IPsec(AH)

IPsec(ESP)

number of commands in 30sec

default selinux

0 100000 200000 300000

No IPsec

IPsec(AH)

IPsec(ESP)

number of commands in 30sec

default selinux

251,485251,485

191,409191,409

LinuxCon Japan/Tokyo 2010 - Memcached getting securePage 27

Summary

▐ Why object managers apply access controls

� Access control should be centralized

• Consistency

• Coverage

� Server is better than applications, Kernel is better than servers.

▐ SELinux as a Security Server

� SELinux returns its access control decision,
then object manager control accesses according to the decision.

� User and data object need to be identified with security context.

▐ Using libselinux

� Libselinux encapsulates raw accesses to selinuxfs.

� Userspace access vector cache reduces number of kernel invocations

Any Questions?

Thank you!

