

Identifying Embedded Real-Time
Latency Issues: I-cache and Locks
Finding and fixing the largest causes of latency in a real-time Linux
system is a somewhat well known craft. Finding the last 10% of the
causes of excessive latency can be a black art. This talk explores
the black art, providing insights into the impact of I-cache and locks
on real-time latency on an SMP ARM embedded system. As a result
of this talk, the audience will be able to identify some signatures of
I-cache and lock issues and will have learned some alternative
approaches to investigate latency.

This talk is accessible to all technical levels. Those with a basic
knowledge of computer architecture will understand the information.
Experts will gain valuable insights to add to their toolkit.

 Frank Rowand, Sony Corporation of America September 28, 2010
 100930_1939

Overview

I am going to describe part of an investigation
of a relatively small code path that contributes
significantly to the maximum interrupts disabled
duration for some of my test systems.

I will discuss tools, some of the detective work,
and some of the conclusions.

The Well Known Craft

Minimizing maximum interrupts disabled duration
is often a crucial part of ensuring adequate
real time latency.

The Well Known Craft

Measuring interrupts disabled duration

Can use existing tools

The next slides are an example report of the
ftrace irqsoff tracer, with the latency-format option
enabled, from Documentation/trace/ftrace.txt

 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)

 | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)

 => started at: __alloc_pages_internal
 => ended at: __alloc_pages_internal

_------=> CPU#
/ _-----=> irqs-off
| / _----=> need-resched
|| / _---=> hardirq/softirq
||| / _--=> preempt-depth
|||| /
||||| delay
cmd pid ||||| time | caller
\ / ||||| \ | /
 ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal)
 ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist)
 ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk)
 ls-4339 0d..1 4us : add_preempt_count (_spin_lock)
 ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue)
[...]
 ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk)
 ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock)
 ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal)
 ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal)

 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)

||||| delay
cmd pid ||||| time | caller
\ / ||||| \ | /
 ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal)
 ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist)
 ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk)
 ls-4339 0d..1 4us : add_preempt_count (_spin_lock)
 ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue)
[...]
 ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk)
 ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue)
 ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest)
 ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk)
 ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock)
 ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal)
 ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal)

My Motivation, part 1

Minimizing maximum interrupts disabled duration
is often a crucial part of ensuring adequate
real time latency.

A significant contributor to maximum interrupts
disabled duration in many of my projects has
been do_local_timer().

The following graphs show an example distribution
of do_local_timer() durations from a modified
2.6.23.17-rt14.

My Motivation, part 1

Things to notice about the graphs:

 - The tails -- the elusive 10%

 - The consistency between test runs

Capturing do_local_timer() data

Custom tool (the “lite tracer”)

Similar to the ftrace irqsoff tracer,
but lower overhead and additional features

 - Reports each new high-water critical period
 (eg IRQs disabled duration)

 - Reports frequency distribution of duration of
 instrumented code paths (histogram)

Digression: do_local_timer() info

- Triggered on each cpu by a per cpu irq source
 (on the boards used for this presentation)

- Periodic, once every 10 msec (100 times/sec)

- Thus ~10 msec of other activity which can impact
 the i-cache between each occurrence of
 do_local_timer()

- Executes in interrupt context with interrupts
 disabled

Moving Forward

 More recent kernel: modified 2.6.29.6-rt14

 A different processor on a different board

 do_local_timer() is still an important portion
 of maximum interrupts disabled duration

 The do_local_timer() duration frequency
 graph looks different, yet still has a tail

My Motivation, part 2

My colleagues added PMU counters to the lite
tracer reports of maximum IRQ disabled duration:

#mark : ----- 9 max: 145 -----
start eip0: c03a8294 __irq_svc+0x34
6 do_local_timer+0x40 284718 284102 27556
96 do_local_timer+0x80 317730 308527 30419
98 _text+0x98 318015 308634 30486
138 _text+0xc0 332232 317411 32512
end eip0: c03a5528 preempt_schedule_irq+0x48

Performance Monitor (PMU) counters:
 cycle count
 Instruction cache stall cycles
 Instructions executed

My Motivation, part 2

6 do_local_timer+0x40 284718 284102 27556
96 do_local_timer+0x80 317730 308527 30419

elapsed usec 96 - 6 = 90

PMU counters:
 cycle count 317730 - 284718 = 33012
 I-stall cycles 308527 - 284102 = 24425 74%
 Instructions 30419 - 27556 = 2863

 cycles per instruction 33012 / 2863 = 11.5
I-stall cycles per instruction 24425 / 2863 = 8.5

My First PMU Data

Collecting do_local_timer() PMU data for
some instances of maximum interrupts
disabled provided the following data and
graph

#mark : ----- 1 max: 4 -----
#mark : ----- 2 max: 7 -----
#mark : ----- 3 max: 8 -----
#mark : ----- 4 max: 30 -----
#mark : ----- 5 max: 97 -----
6 do_local_timer+0x40
93 do_local_timer+0x80
#mark : ----- 6 max: 126 -----
6 do_local_timer+0x40
93 do_local_timer+0x80
#mark : ----- 7 max: 132 -----
6 do_local_timer+0x40
92 do_local_timer+0x80
#mark : ----- 8 max: 138 -----
6 do_local_timer+0x40
93 do_local_timer+0x80
#mark : ----- 9 max: 145 -----
6 do_local_timer+0x40
96 do_local_timer+0x80
#mark : ----- 10 max: 147 -----
7 do_local_timer+0x40
98 do_local_timer+0x80

 i-stall
usec ccnt cycles
---- ----- -------

 96 35641 26480
 95 35242 23675
 93 34644 26020
 94 34242 25255
 94 34107 23934

 ...

 85 31006 23436
 85 30911 23472
 83 30576 22745
 81 29142 20106
 72 26209 17026
 68 24752 16127

Observations

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are large when
do_local_timer() duration is large.

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are smaller when
do_local_timer() duration is smaller.

Observations, Question

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are large when
do_local_timer() duration is large.

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are smaller when
do_local_timer() duration is smaller.

Are I-cache misses the cause of long
do_local_timer() duration?

More Instrumentation Needed

Reports of PMU data each time a new
maximum interrupts disabled duration occurs
provides information about a very small
fraction of all executions of do_local_timer().

More Instrumentation Needed

Reports of PMU data each time a new
maximum interrupts disabled duration occurs
provides information about a very small
fraction of all executions of do_local_timer().

Solution:

 Modify the lite tracer to collect PMU data about
 every occurrence of do_local_timer().

Previous Instrumentation

The lite tracer already collected the duration
of an instrumented code path (in this case,
do_local_timer()).

Added Instrumentation

Collect delta of the PMU counters for the
instrumented code path.

Examples of PMU counters:

 - cycle count
 - I-cache misses
 - I-cache miss stall cycles
 - D-cache misses
 - D-cache miss stall cycles
 - instructions executed

Conclusions

 The graphs of duration (usec) and I-cache
 stall cycles appear similar.

Conclusions, Theories

 The graphs of duration (usec) and I-cache
 stall cycles appear similar.

 Increased do_local_timer() duration may be
 caused by increased number of instructions.

 Increased do_local_timer() duration may be
 caused by increased I-cache stall cycles.

Theories – How To Test?

 The graphs of duration (usec) and I-cache
 stall cycles appear similar.

 Increased do_local_timer() duration may be
 caused by increased number of instructions.

Measure number of instructions executed.

Theories – How To Test?

 Increased do_local_timer() duration may be
 caused by increased number of instructions.

Measure number of instructions executed.

For 99.7% of the events, the number of
instructions executed was in the range
2700 .. 3000.

The large range of do_local_timer() duration is
not directly explained by number of instructions.

Theories – How To Test?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Invalidate the I-cache before calling
do_local_timer(). Do I-cache stall cycles
increase?

Theories – How To Test?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Invalidate the I-cache before calling
do_local_timer(). Do I-cache stall cycles
increase?

Decrease I-cache stall cycles by “pre-fetching”
do_local_timer() text while interrupts are enabled.
Do I-cache stall cycles decrease?

What about IRQs disabled?

Duration of do_local_timer() appears to be
correlated to I-cache miss stall cycles.

What about IRQs disabled?

Duration of do_local_timer() appears to be
correlated to I-cache miss stall cycles.

Does this theory help solve the original problem
of large maximum interrupt disabled duration?

(Only have data for baseline and worst case.
“Pre-fetch” case was not pursued because the
processor being tested does not have an
instruction to pre-load cache.)

Theories – How To Test?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Previous results are consistent with the
conclusions, but not proof.

Need more new instrumentation...

 Add a trace of PMU data to the lite tracer.

Results

The next graphs are scattergrams of
cycle count vs I-cache stall cycles

Theories – How To Test?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

With this data, I was finally felt there was proof
of the theory.

Theories – How To Test?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Further instrumentation and analysis of the PMU
trace data results in a more nuanced and complex
understanding of the do_local_timer() duration
graphs, with implications for further improvements.

Unfortunately time constraints preclude including
that analysis in this presentation.

How To Fix?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

The focus of this presentation is finding the causes
of the performance problem, not fixing them. But a
few possible solutions will be listed.

Then an actual solution will be presented that
will lead to more questions about the data.

How To Fix (1)?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Reduce number of I-cache misses by increasing
I-cache size.

 (Exercise for the student:
 why are L1 caches typically so small?)

How To Fix (2)?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Reduce number of I-cache misses by locking
critical period code into I-cache.

 Not tested because the processor on the target
 board does not implement cache locking.

How To Fix (3)?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Decrease cost of I-cache miss by placing the
critical section code in high speed memory.

 Not tested because the processor on the target
 board does not implement high speed memory.

How To Fix (4)?

 Increased do_local_timer() duration may be
 caused by increased I-cache miss stall cycles.

Decrease cost of I-cache miss by adding an
L2 cache.

Move to different hardware

The previous tests were conducted on a processor
that does not have an L2 cache.

Will try some experiments on a processor with an
L2 cache.

The previous graphs are for a 400 Mhz processor.

The following graphs are for a 210 Mhz processor.

Result

L2 cache is effective for this scenario.

The L1 I-cache misses are often serviced from
the L2 cache, which has a much lower latency
than memory.

But there is still a long tail on the latency graph.

What is causing the tail?

The Well Known Craft may provide some
theories, but not a conclusive answer.

Number of Instructions Tail

instruction count tail outlier =~ 2.9 * peak

I-cache miss stall tail outlier =~ 1.2 * peak

 This suggests that the instruction tail has a
 low I-cache miss stall rate.

Number of Instructions Tail

instruction count tail outlier =~ 2.9 * peak

I-cache miss stall tail outlier =~ 1.2 * peak

 This suggests that the instruction tail has a
 low I-cache miss stall rate.

 This is consistent with code spinning in a loop.

Number of Instructions Tail

instruction count tail outlier =~ 2.9 * peak

I-cache miss stall tail outlier =~ 1.2 * peak

 This suggests that the instruction tail has a
 low I-cache miss stall rate.

 This is consistent with code spinning in a loop.

 This is consistent with waiting on a spinlock.

Aside

Adding the L2 cache reduces the magnitude
of the number of instructions tail, but does not
eliminate it.

The Well Known Craft (mostly)

/proc/lock_stat

lock_stat version 0.3.2

 -- contention --- --------- wait time -------------------
 class name bounce count min avg max total
----------------------------- -------- -------- ------- ------- ---------- ------------

(raw_spinlock_t *)(&rq->lock): 0 94 7.32 14.18 32.22 1333.29
 |--- cpu 0 : 0 35 7.32 14.05 32.22 491.73
 |--- cpu 1 : 0 59 9.45 14.26 30.09 841.56

(raw_spinlock_t *)(&rq->lock) 94 [<c016cbbc>] task_rq_lock+0x38/0x78

(raw_spinlock_t *)(&rq->lock) 94 [<c016cbbc>] task_rq_lock+0x38/0x78

The Well Known Craft (mostly)

/proc/lock_stat

But modified to

 - only collect data during do_local_timer()
 - report wait and hold time histograms

Result

The rq->lock wait time tail is consistent with the
theory that the number of instructions tail is
caused by lock contention. Both tails have a
small number of events spread randomly across
the tail, with a small number of occurrences of
any specific value.

But this is not proof.

Where Is The Lock Attempt?

Determined through existing tools

 - /proc/lock_stat
 provided the site of the lock

 - ftrace function trace
 provided the call graph from do_local_timer()
 to the site of the lock

Where Is The Lock Attempt?

Extracted from the ftrace call graph:

 run_local_timers()
 raise_softirq(TIMER_SOFTIRQ)
 wakeup_softirqd()
 wake_up_process()
 try_to_wake_up()
 task_rq_lock()
 spin_lock_irqsave(&rq->lock, *flags)

How To Eliminate Lock Wait?

Experiment to determine whether contended
rq->lock is the cause of the number of instructions
tail.

How To Eliminate Lock Wait?

Experiment to determine whether contended
rq->lock is the cause of the number of instructions
tail.

While trying to acquire the rq->lock, on this
specific code path, give up after a short number
of failed attempts. Thus do not wake up the
TIMER_SOFTIRQ process.

The TIMER_SOFTIRQ wakeup will be woken up
at the next tick, so some timers will occur late.

Result

Reducing lock contention greatly shrank the
number of instructions executed tail.

The experimental implementation is not likely
to be accepted in mainline, but shows that
reducing rq->lock contention can reduce
maximum interrupts disabled duration in
some scenarios.

The correct solution is likely an enhancement of
the scheduler locking algorithms.

Implications

Does eliminating or reducing the magnitude of
the number of instruction tail reduce the
maximum interrupts disabled duration?

 On some test boards: YES

 On other test boards: NO

Reality Check - Life Is Not Simple

The next slides show that when the same test is
measured many times, there are several distinct
patterns that can be seen.

This presentation has ignored such complexity and
only presented a single pattern of most graphs.

When you measure your own system, expect to
have to analyze the messier picture.

Review and Loose Ends

Existing kernel instrumentation sometimes
provides imprecise or insufficient data for finding
the last 10% of the causes of excessive latency.

This may result in guessing about the causes
(aka “informed theories”).

Review and Loose Ends

The data required to confirm or disprove the
informed theories can be acquired by extending
existing tools or creating new tools.

Improved tools can also provide the insights
needed to be able to ask the correct question.

Hardware performance monitor data can be
extremely useful.

Review and Loose Ends

This presentation provided some examples of
making inferences, creating theories, ruling out
incorrect theories, collecting data to confirm
correct theories, and gaining new insights from
enhanced data collection.

Review and Loose Ends

I-cache issues can have a negative impact
on maximum interrupts disabled duration.

An L2 cache can decrease maximum interrupts
disabled duration.

runqueue lock contention can have a negative
impact on maximum interrupts disabled duration.

How To Collect PMU Data?

Older Kernels

 - “Roll Your Own”

 - Out of Tree Tools

 perfmon2
 http://perfmon2.sourceforge.net/

How To Collect PMU Data?

Newer Kernels

 - “Roll Your Own”

How To Collect PMU Data?

Newer Kernels

 - perf

 $KERNEL_SRC/tools/perf

 $KERNEL_SRC/tools/perf/Documentation/

 https://perf.wiki.kernel.org/index.php/Main_Page

How To Collect PMU Data?

Newer Kernels

 - perf

 It should be possible to create a PMU trace
 of do_local_timer() using the perf kernel API.

 I have not tried this yet.

 Questions?

 How to get a copy of the slides

1) leave a business card with me

2) frank.rowand@am.sony.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118

