


Identifying Embedded Real-Time
Latency Issues: I-cache and Locks
Finding and fixing the largest causes of latency in a real-time Linux
system is a somewhat well known craft.  Finding the last 10% of the
causes of excessive latency can be a black art.  This talk explores
the black art, providing insights into the impact of I-cache and locks
on real-time latency on an SMP ARM embedded system.  As a result
of this talk, the audience will be able to identify some signatures of
I-cache and lock issues and will have learned some alternative
approaches to investigate latency.

This talk is accessible to all technical levels.  Those with a basic
knowledge of computer architecture will understand the information.
Experts will gain valuable insights to add to their toolkit.

      Frank Rowand, Sony Corporation of America     September 28, 2010
                                                                                                                                                                                                 100930_1939



Overview

I am going to describe part of an investigation
of a relatively small code path that contributes
significantly to the maximum interrupts disabled
duration for some of my test systems.

I will discuss tools, some of the detective work,
and some of the conclusions.



The Well Known Craft

Minimizing maximum interrupts disabled duration
is often a crucial part of ensuring adequate
real time latency.



The Well Known Craft

Measuring interrupts disabled duration

Can use existing tools

The next slides are an example report of the
ftrace irqsoff tracer, with the latency-format option
enabled, from Documentation/trace/ftrace.txt



 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: __alloc_pages_internal
 => ended at:   __alloc_pages_internal

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
      ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
      ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
      ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
      ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
      ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
[...]
      ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
      ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
      ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
      ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)



 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)

#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
      ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
      ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
      ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
      ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
      ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
[...]
      ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
      ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
      ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
      ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)



My Motivation, part 1

Minimizing maximum interrupts disabled duration
is often a crucial part of ensuring adequate
real time latency.

A significant contributor to maximum interrupts
disabled duration in many of my projects has
been do_local_timer().

The following graphs show an example distribution
of do_local_timer() durations from a  modified
2.6.23.17-rt14.



My Motivation, part 1

Things to notice about the graphs:

   - The tails -- the elusive 10%

   - The consistency between test runs







Capturing do_local_timer() data

Custom tool (the “lite tracer”)

Similar to the ftrace irqsoff tracer,
but lower overhead and additional features

  - Reports each new high-water critical period
    (eg IRQs disabled duration)

  - Reports frequency distribution of duration of
    instrumented code paths (histogram)



Digression: do_local_timer() info

- Triggered on each cpu by a per cpu irq source
  (on the boards used for this presentation)

- Periodic, once every 10 msec (100 times/sec)

- Thus ~10 msec of other activity which can impact
  the i-cache between each occurrence of
  do_local_timer()

- Executes in interrupt context with interrupts
  disabled



Moving Forward

    More recent kernel: modified 2.6.29.6-rt14

    A different processor on a different board

    do_local_timer() is still an important portion
    of maximum interrupts disabled duration

    The do_local_timer() duration frequency
    graph looks different, yet still has a tail





My Motivation, part 2

My colleagues added PMU counters to the lite
tracer reports of maximum IRQ disabled duration:

#mark           : -----  9  max:      145 -----
# start eip0: c03a8294 __irq_svc+0x34
#      6 do_local_timer+0x40  284718 284102 27556
#     96 do_local_timer+0x80  317730 308527 30419
#     98 _text+0x98           318015 308634 30486
#    138 _text+0xc0           332232 317411 32512
# end   eip0: c03a5528 preempt_schedule_irq+0x48

Performance Monitor (PMU) counters:
  cycle count
  Instruction cache stall cycles
  Instructions executed



My Motivation, part 2

#      6 do_local_timer+0x40  284718 284102 27556
#     96 do_local_timer+0x80  317730 308527 30419

elapsed usec          96 -      6 =    90

PMU counters:
  cycle count     317730 - 284718 = 33012
  I-stall cycles  308527 - 284102 = 24425  74%
  Instructions     30419 -  27556 =  2863

        cycles per instruction  33012 / 2863 = 11.5
I-stall cycles per instruction  24425 / 2863 =  8.5



My First PMU Data

Collecting do_local_timer() PMU data for
some instances of maximum interrupts
disabled provided the following data and
graph



#mark           : -----  1  max:        4 -----
#mark           : -----  2  max:        7 -----
#mark           : -----  3  max:        8 -----
#mark           : -----  4  max:       30 -----
#mark           : -----  5  max:       97 -----
#                6 do_local_timer+0x40
#               93 do_local_timer+0x80
#mark           : -----  6  max:      126 -----
#                6 do_local_timer+0x40
#               93 do_local_timer+0x80
#mark           : -----  7  max:      132 -----
#                6 do_local_timer+0x40
#               92 do_local_timer+0x80
#mark           : -----  8  max:      138 -----
#                6 do_local_timer+0x40
#               93 do_local_timer+0x80
#mark           : -----  9  max:      145 -----
#                6 do_local_timer+0x40
#               96 do_local_timer+0x80
#mark           : ----- 10  max:      147 -----
#                7 do_local_timer+0x40
#               98 do_local_timer+0x80



           i-stall 
usec  ccnt cycles  
---- ----- ------- 

  96 35641   26480 
  95 35242   23675 
  93 34644   26020 
  94 34242   25255 
  94 34107   23934 

  ...

  85 31006   23436 
  85 30911   23472 
  83 30576   22745 
  81 29142   20106 
  72 26209   17026 
  68 24752   16127





Observations

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are large when
do_local_timer() duration is large.

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are smaller when
do_local_timer() duration is smaller.



Observations, Question

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are large when
do_local_timer() duration is large.

I-cache misses and I-cache stall cycles for the
do_local_timer() code path are smaller when
do_local_timer() duration is smaller.

Are I-cache misses the cause of long
do_local_timer() duration?



More Instrumentation Needed

Reports of PMU data each time a new
maximum interrupts disabled duration occurs
provides information about a very small
fraction of all executions of do_local_timer().



More Instrumentation Needed

Reports of PMU data each time a new
maximum interrupts disabled duration occurs
provides information about a very small
fraction of all executions of do_local_timer().

Solution:

   Modify the lite tracer to collect PMU data about
   every occurrence of do_local_timer().



Previous Instrumentation

The lite tracer already collected the duration
of an instrumented code path (in this case,
do_local_timer()). 





Added Instrumentation

Collect delta of the PMU counters for the
instrumented code path.

Examples of PMU counters:

   - cycle count
   - I-cache misses
   - I-cache miss stall cycles
   - D-cache misses
   - D-cache miss stall cycles
   - instructions executed







Conclusions

    The graphs of duration (usec) and I-cache
     stall cycles appear similar.



Conclusions, Theories

    The graphs of duration (usec) and I-cache
     stall cycles appear similar.

     Increased do_local_timer() duration may be
     caused by increased number of instructions.

     Increased do_local_timer() duration may be
     caused by increased I-cache stall cycles.



Theories – How To Test?

    The graphs of duration (usec) and I-cache
     stall cycles appear similar.

     Increased do_local_timer() duration may be
     caused by increased number of instructions.

Measure number of instructions executed.







Theories – How To Test?

     Increased do_local_timer() duration may be
     caused by increased number of instructions.

Measure number of instructions executed.

For 99.7% of the events, the number of
instructions executed was in the range
2700 .. 3000.

The large range of do_local_timer() duration is
not directly explained by number of instructions.



Theories – How To Test?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Invalidate the I-cache before calling
do_local_timer().  Do I-cache stall cycles
increase?



Theories – How To Test?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Invalidate the I-cache before calling
do_local_timer().  Do I-cache stall cycles
increase?

Decrease I-cache stall cycles by “pre-fetching”
do_local_timer() text while interrupts are enabled.
Do I-cache stall cycles decrease?









What about IRQs disabled?

Duration of do_local_timer() appears to be
correlated to I-cache miss stall cycles.



What about IRQs disabled?

Duration of do_local_timer() appears to be
correlated to I-cache miss stall cycles.

Does this theory help solve the original problem
of large maximum interrupt disabled duration?

(Only have data for baseline and worst case.
“Pre-fetch” case was not pursued because the
processor being tested does not have an
instruction to pre-load cache.)







Theories – How To Test?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Previous results are consistent with the
conclusions, but not proof.

Need more new instrumentation...

     Add a trace of PMU data to the lite tracer.



Results

The next graphs are scattergrams of
cycle count vs I-cache stall cycles 







Theories – How To Test?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

With this data, I was finally felt there was proof
of the theory.



Theories – How To Test?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Further instrumentation and analysis of the PMU
trace data results in a more nuanced and complex
understanding of the do_local_timer() duration
graphs, with implications for further improvements.

Unfortunately time constraints preclude including
that analysis in this presentation.



How To Fix?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

The focus of this presentation is finding the causes
of the performance problem, not fixing them.  But a
few possible solutions will be listed.

Then an actual solution will be presented that
will lead to more questions about the data.



How To Fix (1)?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Reduce number of I-cache misses by increasing
I-cache size.

     (Exercise for the student:
      why are L1 caches typically so small?)



How To Fix (2)?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Reduce number of I-cache misses by locking
critical period code into I-cache.

     Not tested because the processor on the target
     board does not implement cache locking.



How To Fix (3)?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Decrease cost of I-cache miss by placing the
critical section code in high speed memory.

     Not tested because the processor on the target
     board does not implement high speed memory.



How To Fix (4)?

     Increased do_local_timer() duration may be
     caused by increased I-cache miss stall cycles.

Decrease cost of I-cache miss by adding an
L2 cache.



Move to different hardware

The previous tests were conducted on a processor
that does not have an L2 cache.

Will try some experiments on a processor with an
L2 cache.

The previous graphs are for a 400 Mhz processor.

The following graphs are for a 210 Mhz processor.















Result

L2 cache is effective for this scenario.

The L1 I-cache misses are often serviced from
the L2 cache, which has a much lower latency
than memory.

But there is still a long tail on the latency graph.



What is causing the tail?

The Well Known Craft may provide some
theories, but not a conclusive answer.













Number of Instructions Tail

instruction count  tail outlier =~ 2.9  * peak

I-cache miss stall tail outlier =~ 1.2  * peak

   This suggests that the instruction tail has a
   low I-cache miss stall rate.



Number of Instructions Tail

instruction count  tail outlier =~ 2.9  * peak

I-cache miss stall tail outlier =~ 1.2  * peak

   This suggests that the instruction tail has a
   low I-cache miss stall rate.

   This is consistent with code spinning in a loop.



Number of Instructions Tail

instruction count  tail outlier =~ 2.9  * peak

I-cache miss stall tail outlier =~ 1.2  * peak

   This suggests that the instruction tail has a
   low I-cache miss stall rate.

   This is consistent with code spinning in a loop.

   This is consistent with waiting on a spinlock.



Aside

Adding the L2 cache  reduces the magnitude
of the number of instructions tail, but does not
eliminate it.





The Well Known Craft (mostly)

/proc/lock_stat

lock_stat version 0.3.2
---------------------------------------------------------------------------------------
                              -- contention --- --------- wait time -------------------
                  class name    bounce    count     min     avg        max        total
----------------------------- -------- -------- ------- ------- ---------- ------------

(raw_spinlock_t *)(&rq->lock):       0       94    7.32   14.18      32.22      1333.29
             |---  cpu  0    :       0       35    7.32   14.05      32.22       491.73
             |---  cpu  1    :       0       59    9.45   14.26      30.09       841.56
-----------------------------
(raw_spinlock_t *)(&rq->lock)                94     [<c016cbbc>] task_rq_lock+0x38/0x78
-----------------------------
(raw_spinlock_t *)(&rq->lock)                94     [<c016cbbc>] task_rq_lock+0x38/0x78



The Well Known Craft (mostly)

/proc/lock_stat

But modified to

   - only collect data during do_local_timer()
   - report wait and hold time histograms





Result

The rq->lock wait time tail is consistent with the
theory that the number of instructions tail is
caused by lock contention.  Both tails have a
small number of events spread randomly across
the tail, with a small number of occurrences of
any specific value.

But this is not proof.







Where Is The Lock Attempt?

Determined through existing tools

   - /proc/lock_stat
        provided the site of the lock

   - ftrace function trace
        provided the call graph from do_local_timer()
        to the site of the lock



Where Is The Lock Attempt?

Extracted from the ftrace call graph:

   run_local_timers()
      raise_softirq(TIMER_SOFTIRQ)
         wakeup_softirqd()
            wake_up_process()
               try_to_wake_up()
                  task_rq_lock()
                     spin_lock_irqsave(&rq->lock, *flags)



How To Eliminate Lock Wait?

Experiment to determine whether contended
rq->lock is the cause of the number of instructions
tail.



How To Eliminate Lock Wait?

Experiment to determine whether contended
rq->lock is the cause of the number of instructions
tail.

While trying to acquire the rq->lock, on this
specific code path, give up after a short number
of failed attempts.  Thus do not wake up the
TIMER_SOFTIRQ process.

The TIMER_SOFTIRQ wakeup will be woken up
at the next tick, so some timers will occur late.



























Result

Reducing lock contention greatly shrank the
number of instructions executed tail.

The experimental implementation is not likely
to be accepted in mainline, but shows that
reducing rq->lock contention can reduce
maximum interrupts disabled duration in
some scenarios.

The correct solution is likely an enhancement of
the scheduler locking algorithms.



Implications

Does eliminating or reducing the magnitude of
the number of instruction tail reduce the
maximum interrupts disabled duration?

   On some test boards:  YES

   On other test boards:   NO











Reality Check - Life Is Not Simple

The next slides show that when the same test is
measured many times, there are several distinct
patterns that can be seen.

This presentation has ignored such complexity and
only presented a single pattern of most graphs.

When you measure your own system, expect to
have to analyze the messier picture.







Review and Loose Ends

Existing kernel instrumentation sometimes
provides imprecise or insufficient data for finding
the last 10% of the causes of excessive latency.

This may result in guessing about the causes
(aka “informed theories”).



Review and Loose Ends

The data required to confirm or disprove the
informed theories can be acquired by extending
existing tools or creating new tools.

Improved tools can also provide the insights
needed to be able to ask the correct question.

Hardware performance monitor data can be
extremely useful.



Review and Loose Ends

This presentation provided some examples of
making inferences, creating theories, ruling out
incorrect theories, collecting data to confirm
correct theories, and gaining new insights from
enhanced data collection.



Review and Loose Ends

I-cache issues can have a negative impact
on maximum interrupts disabled duration.

An L2 cache can decrease maximum interrupts
disabled duration.

runqueue lock contention can have a negative
impact on maximum interrupts disabled duration.



How To Collect PMU Data?

Older Kernels

   - “Roll Your Own”

   - Out of Tree Tools

         perfmon2
         http://perfmon2.sourceforge.net/



How To Collect PMU Data?

Newer Kernels

   - “Roll Your Own”



How To Collect PMU Data?

Newer Kernels

   - perf

     $KERNEL_SRC/tools/perf

     $KERNEL_SRC/tools/perf/Documentation/

     https://perf.wiki.kernel.org/index.php/Main_Page



How To Collect PMU Data?

Newer Kernels

   - perf

     It should be possible to create a PMU trace
     of do_local_timer() using the perf kernel API.

     I have not tried this yet.



                 Questions?



  How to get a copy of the slides

1) leave a business card with me

2) frank.rowand@am.sony.com
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