
1

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

1

HISAO MUNAKATA
RENESAS SOLUTIONS CORP
hisao.munakata.vt(at)renesas.com

Are you Really Helped by
Upstream Kernel Code?

2

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

who am I

Working for Renesas (semiconductor)

Over 15 years “real embedded Linux business field” experience
Provide “free Linux starter code (BSP)” for our platform
Support Linux newbie's but important customer
(who asks everything about Linux to us)

Over 5 years experience working with the community
Working with industry at CELF (now “CE working group” at LF)
Invited some key community developers to my team, to shape
our upstream activity

We have learned to adopt “upstream first strategy” now

3

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

2010 kernel patch contribution ranking
(If you measure performance by contribution no.)

Linux Foudation “Linux Kernel Development 2010”
How Fast it is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It

4

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Lesson learned from upstream work

Use community standard development method
use public ML for code review and patch submission
use git (not to make unreadable jumbo patch)

eliminate in-house kernel repository
(almost all) drivers are in upstream

Sync with upstream kernel migration schedule
test RC stage kernel and send feedback if any
continuous kernel development to support latest version

However, is it directly helping embedded product development ?

5

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Common production team complaints

Poor driver functional coverage

insufficient performance optimization (DMA support)
hardware error handle support is missing
Want to add private kernel function that never discussed at
upstream (It might be corporate differentiator function)

Insufficient document for QA team review
device driver document
test case and test report

No milestone for future migration
Too fast kernel migration
(need more time to whole system stabilization)

Production team likely sticks on verified old kernel

6

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Common community complaints

Contribution from embedded is still relatively inactive

Sticking on very old kernel

Need more collaborative work with upstream community

Need more code consolidation to eliminate vendor kernel

Community await more feedback from embedded forks

7

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

point of this talk

Analyze each party’s behavioral principle
upstream community development
embedded production development team

Clarify conflicting factor and its root cause
low upstream contribution
stick on old kernel
needs for document
unclear community development plan

Propose best practice for embedded Linux use
embedded LTS version
backport strategy
forward port trial

8

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Upstream principals = divergence

Think sustainable evolution
random technical improve
no specific shred narrow target
allow diversity

Ever lasting development
no specific due date
Think for better future
incremental improve
moving target depends on demand

Fair governance
Completely open
purely technical (for best)
volunteer contribution basis

memory
management File System

pow
er

m
anagem

ent

USBALSA

W
iFi / BT CPU ARCH

V4L2

Upstream guys work for unified better future for all

9

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Production principals = convergence

Clear production goal
strict release due date
sever performance target
high cost pressure

One shot development
allow interim solution
average skilled engineer
relatively large team

Quality requirement
product liability demand
limited use case
reset is not allowed

product
schedule
budget

Industry developer work for their current particular product

10

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

completely controversial mentality
“Upstream work can not be a part of production development”

It is hard to share upstream development and production
development together, as their motivation is completely
opposite.

Upstream Production

This circumstances should not be specific for embedded forks

11

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Why only embedded still struggles

Enterprise forks might already educated how to coordinate
conflictive two task, upstreaming development and
productization together to drive Linux innovation.

What is missing for embedded ?
How enterprise forks manage this ?

I have given one hint

Enterprise distro accept already mainlined patch only
It motivated enterprise developer to write upstream
patch as a extended part of their productization task.

Need more motivation and “consolidation point” for embedded

mainlined
kernel patch

private
local patch

can be merged by
major distributor Reject

Not to make vendor
specific distribution

12

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Trial clarification for embedded characteristics

As a witness of real embedded Linux field, I would like to give
my shot for several confusion happening in embedded Linux
world. I hope this helps to find best practice to tackle them.
Some questions might be form community side, others from
production team (as I head almost everyday).

1) Why embedded forks stick on ancient version kernel ?
2) Why upstream code does not contain full SoC functionality ?
3) Why there is no written document for Linux driver ?
4) Why you can not commit schedule for upstream migration ?
5) Why embedded likely develop private device driver code ?
6) Why embedded require more time for system validation ?

13

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Why embedded forks stick on ancient kernel ?

Essential initial delay problem

Set producer want to adopt latest SoC device.
Each SoC device include slightly (or heavily) modified IP blocks
So upstream device driver does not include its support then.

upstream development
(6 – 9 month min.)

production development

device
release

previous kernel

device
support
added

add private extension
to support new device

Essential initial delay

We can not provide mainlined Linux support at device release point

14

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Why upstream code is not fully SoC functional ?

When if you attempt to add your device support to the upstream
code, it should be simplified. Otherwise community maintainer
will not accept too big full functional patch.

To improve more wider functional support (like add DMA
support), you need continued work to add them. It should be
generic (not device specific) as much as possible not to cause
unnecessary per device fragment. It may take some time.

full SoC function
covered jumbo patch

series 1 series 2 series 3

All device functions
covered in unified way

This might be poor
functional coverage

RejectX

Early stage upstream driver might be intentionally simplified.

15

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Why there is no written document for Linux driver ?

Initially Linux kernel includes various nice document inside

See /document directory
Some document are also translated (jp, cn, …)

Linux is moving target, driver API may change if it is really
needed. So there is no common document.

“Linux Device Driver” has migrated 3 times

Production team, especially QA team want to
review driver document to verify its behavior.
Error recovery capability should be interested.

Nice to have driver document targeting particular version, but

16

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Why you can not commit development competition ?

If you develop your code as a part of upstream code (this is
really recommended), you must go through pre-defined
community “public review / improve / approve” process.

If your proposal does require coordination with existing
kernel design, it may take some longer time. Also you may
requested to modify your code not to conflict with others.

Everything production team needed should be in place up front

propose

ver 2

ver 3

ver 4
queued merged

feedback
comment

flame

unpredictable period
latency for

kernel release

17

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

lead time
6-9 monthpropose merged

predict
near future

demand

can not wait upstream driver/framework support

Upstream team can hardly fulfill the immediate demands
comes from production team, because each development
takes some time. So it need to be developed in advance.

Ideally upstream team should predict future production
demand trends from its marketing strategy.

lead time
6-9 month

propose merged

in house
code

dem
and from

 product
write once

private code

too late !

Upstream team should predict future production demand

18

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Why embedded need more time for system validation ?

Not all embedded device connected to the Internet.
Not all mobile device are ready for field firmware update.
Many embedded device are expected run 24-365 basis.
Product user might not be familiar with reset / reboot.

There is no standard tiny Linux userland for embedded,
and each production developer need to validate their
userland with their own application on certain environment.

Dynamic fundamental software (kernel, toolchain) change
require whole system re-validation. So they want to keep
use same base environment as much as possible.

Embedded forks eager to have common solid Linux base

19

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

And yet, embedded forks need to migrate

It is quite certain that embedded developer need to migrate
their kernel to support new feature that market requires.

1

3

2

need to migrate
at some point

Then, how you can minimize kernel version migration cost ?

20

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

embedded best practice

It seems there is almost no chance for current embedded
developer to join upstream activity as they are too busy.

However production developer eager to utilize latest kernel
advanced capability to make their product competitive.
(like advanced power management, SMP utilization,.. etc)

Upstream team can hardly fulfill the demands of production
team when it is demanded, because each development
takes some time. So it need to be developed up front.

So we need to establish “unlinked but coordinated” relation
between upstream and production developer.

reciprocal, bi-directional interaction between two separate teams

21

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Use eLTS for embedded consolidation point

2.6.35 is current “embedded LTS (eLTS)” version
confirmed at kernel summit 2010, based on request
from embedded industry demand
Andi Kleen is maintaining this version
Industry can share this as common base kernel

We need to establish future eLTS selection policy
How long one eLTS version can be maintained
How many eLTS can exist at same time
Which version should be selected as next eLTS
How and who maintains each eLTS

20122011 2013 2014
2.6.35 (eLTS1)

2.6.xx (eLTS2)
2.6.yy (eLTS3)

22

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

If you hit any problem with eLTS kernel
back to today’s latest (even under develop) kernel

If you find any problem on eLTS kernel, the first thing you
should do is “backport from current latest kernel”.

eLTS

+1

+2

+3

+4

continuous fix by upstream community

Your problem might be already fixed in latest kernel
2.6.35

2.6.36

2.6.37

2.6.38

2.6.39
check diff against today’s latest kernel

and try backport related fix if found

23

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

kernel migration category

There are various code update on mainline kernel code

B: Bug fix / Correctness Fix
C: Clean-up / Infrastructure Change / Documentation Change
F: New Feature (not performance related)
P: Performance Enhancement
U: Usability Enhancement
X: Unclassified

Limited sense of eLTS = “B” only
Extended sense of eLTS = “C”, “F”, “P”, “U”, “X” out of “B”

Embedded forks can work
together to make extended
eLTS kernel for production

development cost reduction

24

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Forward port (new concept)

To minimize gap between production kernel (= eLTS) and
community upstream (=latest development version), every
fix, optimization done by each production company should
be gathered and verified to make patch against
current development version kernel. latest

company A
bug fix

eLTS

company B
enhance

company C
clean up

code gather
each fix review
patch creation

25

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

ideal reciprocal action

“back port” and “forward port” should happen concurrently
to minimize future kernel migration cost

eLTS

+1

+2

+3

latest

Your problem might be already fixed in latest kernel

use “eLTS” with required “backport”

“forward” each local fix patch to latest

26

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

How and who make this happen

[Down Stream (back port)]
choose eLTS version : community and industry
maintain eLTS version : dedicated eLTS maintainer
use eLTS for production : production developer
apply latest fix, improve : production developer

[Upstream (forward port)]
send fix to eLTS maintainer : production developer
verify each local patch : eLTS maintainer
write patch : eLTS maintainer
review, correct patch : community, eLTS maintainer
apply embedded patch : community

27

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

role of eLTS maintainer

backport

apply latest bug-fix on eLTS version
apply latest security-fix on eLTS version
apply some new feature from new kernel (optional)

forward port
collect each vendor’s local work result
review and consolidate each patch
migrate base kernel to current development version
write patch to upstream and attempt to mainline it

eLTS maintainer has key role to make new scheme workable

28

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

LF CEWG aims to drive this new scheme

Linux Foundation start more focus on embedded
Yocto project
CE Working group (AKA CELF)

I want to add “eLTS” maintenance as part of CE WG task
propose eLTS selection scheme to community
maintain eLTS kernel for embedded user
manage forward porting task

Yocto CE WG

Linux Foundation

eLTS
maintainer

industry

industry
industry

industry

community

29

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

New strategy summary

Community already define and maintain eLTS version

LF CEWG try to hire eLTS maintainer for future eLTS kernel
maintenance

Embedded production developer can utilize eLTS kernel

If hit any issues, check latest kernel for community update
If you needed private fix, please send it to eLTS maintainer

eLTS maintainer can review each feedback from embedded
production to pick up common proposal for latest kernel

30

Are you Really Helped by Upstream Kernel Code ? Linux Con Japan 2011 : 2011-6-1

Conclusion

Upstreaming and productization have completely separate
motivation for their development. And embedded team can
hardly send code to community upstream as a part of job.

Embedded forks has not established any collaboration
scheme that connects upstream and production. This is
the reason behind the relatively low rate of embedded
upstream contribution.

We want to utilize eLTS for embedded common base and
expect feedback from industry to feed forward good code
made by industry developer work to latest kernel.

LF CEWG try to make this new scheme workable.

