
Performance Improvement of Btrfs

Miao Xie <miaox@cn.fujitsu.com>
Li Zefan <lizf@cn.fujitsu.com>

2

Agenda

 Comparison between Btrfs and Ext3/4

 Issue analysis (We have investigated)
 Small file sequential read

 Large file random write (Direct I/O and fsync)

 File creation/deletion

 Future work

3

Comparison between Btrfs and Ext3/4

 Performance test environment
 Hardware

• CPU ： Xeon(TM) X5260 　 3.33G X 2 （ 4 cores ）
• Memory ： 4GB

• Disk ： 20GB

 Software
• OS ： RHEL6(x86_64)

• Kernel ： 2.6.38

• Glibc ： 2.12

• Btrfs-progs ： 0.9

• Sysbench: 0.4.12

4

Comparison between Btrfs and Ext3/4

 73 cases in total
 72 file I/O cases, mix the following conditions:

• Small file / Large file

• Write / Read

• Random / Sequential

• Sync / Async / Direct I/O

• Single-thread / Multi-thread

• Different block size (1Kb, 4Kb, 32Kb) *

 File creation/deletion
• Measure the speed of empty file creation/deletion

* Block size (bs): read or write BYTES bytes at a time.

5

Small file random read performance

0

1000

2000

3000

4000

5000

6000

bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K

1 Thread 8 Threads 1 Thread 8 Threads

DirectI/O General Read

IO
 S

pe
ed

 (U
ni

t:
 K

b/
s)

EXT3

EXT4

BTRFS

6

Small file random write performance

Write (fsync): write data into the file, and do fsync every 100 requests

0

500

1000

1500

2000

2500

3000

bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K

1 Thread 8 Threads 1 Thread 8 Threads

DirectI/O Write (fsync)

IO
 S

pe
ed

 (U
ni

t:
 K

b/
s)

EXT3

EXT4

BTRFS

7

Small file sequential read performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K

1 Thread 8 Threads 1 Thread 8 Threads

DirectI/O General Read

IO
 S

pe
ed

 (U
ni

t:
M

b/
s)

EXT3

EXT4

BTRFS

8

Small file sequential write performance

Write (fsync): write data into the file, and do fsync every 100 requests

0

1000

2000

3000

4000

5000

6000

bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K

1 Thread 8 Threads 1 Thread 8 Threads

DirectI/O Write (fsync)

IO
 S

p
ee

d
 (U

n
it:

 K
b

/s
)

EXT3

EXT4

BTRFS

9

Large file random read performance

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads 1 Thread 8 Threads

DirectIO General Read

IO
 S

pe
ed

 (U
ni

t:
M

b/
s)

EXT3

EXT4

BTRFS

10

Large file sequential read performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads 1 Thread 8 Threads

DirectIO General Read

IO
 S

pe
ed

 (U
ni

t:
M

b/
s)

EXT3

EXT4

BTRFS

11

Large file random write performance
(1/2)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads 1 Thread 8 Threads

DirectIO Write (fsync)

IO
 S

pe
ed

 (U
ni

t:
M

b/
s)

EXT3

EXT4

BTRFS

12

Large file random write performance
(2/2)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads

General Write

IO
 S

pe
ed

 (U
ni

t:
M

b/
s)

EXT3

EXT4

BTRFS

13

Large file sequential write performance
(1/2)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads

DirectIO

IO
 S

pe
ed

 (U
ni

t:
M

b/
s)

EXT3

EXT4

BTRFS

14

Large file sequential write performance
(2/2)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads 1 Thread 8 Threads

Write (fsync) General Write

IO
 S

pe
ed

 (U
ni

t:
M

b/
s)

EXT3

EXT4

BTRFS

15

File creation/deletion performance

 Create/delete lots of empty files to measure the speed of
file creation and deletion.

0

20000

40000

60000

80000

100000

120000

140000

Creation Deletion

(U
ni

t:
fil

es
/s

ec
)

Ext3

Ext4

Btrfs

16

Comparison between Btrfs and Ext3/4

 The performance of Btrfs is quite poor in the
following cases (> 20% lower than Ext3/4)
 Small file random read (Not inline file)

 Small file sequential read

 Small file random/sequential write

 Large file random write (Direct I/O and fsync)

 Large file random write (general write, bs = 4Kb)

 File creation and deletion

17

Agenda

 Comparison between Btrfs and Ext3/4

 Issue analysis (We have investigated)
 Small file sequential read

 Large file random write (Direct I/O and fsync)

 File creation/deletion

 Future work

18

Small file sequential read

 Reasons
 Metadata fragment -> The file extent reading latency -> The delay of

file data reading
• Btrfs must read file extent before reading file data (no matter the small file is inlined

or not), but the disk has to reposition the reading offset frequently because of the
fragment, and the readahead function can’t work well. So …

Fs/file tree

Disk

19

Small file sequential read

 Reason verification
 Do small file sequential read after defragment

0.00

5.00

10.00

15.00

20.00

25.00

30.00

bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K

1 Thread 8 Threads 1 Thread 8 Threads

DirectI/O General Read

IO
 S

p
e

e
d

 (
U

n
it

:
M

b
/s

)

No Defrag

After Defrag

20

Small file sequential read

 Solution
 Pre-allocation for b+ tree: Introduce free space clusters for each

node in the tree, then we can allocate contiguous free space from
the parent node’s cluster to store the sibling leaves closely

(The patch of this solution is still under test, hasn’t be posted)

Fs/file tree

Disk

Cluster

Cluster

Cluster

21

Small file sequential read

 Improvement result

0.00

10.00

20.00

30.00

40.00

50.00

60.00

bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K bs = 1K bs = 4K

1 Thread 8 Threads 1 Thread 8 Threads

DirectI/O General Read

IO
 S

p
e

e
d

 (
U

n
it

:
M

b
/s

)

EXT3

EXT4

BTRFS

BTRFS + Patch

 Further Improvement
 Introduce the auto defragment for metadata

 Apply the new metadata readahead API written by Arne

22

Agenda

 Comparison between Btrfs and Ext3/4

 Issue analysis (We have investigated)
 Small file sequential read

 Large file random write (Direct I/O and fsync)

 File creation/deletion

 Future work

23

Large file random write (Direct IO and fsync)

 Background – What is tree logging?

 Tree logging is a special write ahead log of dirty
metadata.
 Purpose: Reduce the write requests of the metadata when

fsyncs and O_SYNCs happen.

 Implementation: Copy the changed items into a special
tree (log tree, one per fs/file tree), and then write that tree
to disk. After a crash, Btrfs recover the fs/file tree by that
tree.

24

Large file random write (Direct IO and fsync)

 Reasons
 Log lots of unchanged metadata (Ex. Csum, File extent)

File

Application

Extent 1 Extent 2 Extent 3

Csum tree

… Extent N

Change the relative
Checksums

Checksum of the file’s extent

Log all the csum
data of this file

The extent that be changed

Checksum of the file’s extent that be changed

Write to diskDisk

Log tree

Extent1
Csum

Extent2
Csum

Extent3
Csum

ExtentN
Csum

25

Large file random write (Direct IO and fsync)

 Reason verification
 Do large file random write test after closing tree log function

(mount with -o notreelog)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads 1 Thread 8 Threads

DirectIO Write (fsync)

IO
 S

p
ee

d
 (

U
n

it
:

M
b

/s
)

BTRFS

BTRFS(no treelog)

26

File

Application

Extent 1 Extent 2 Extent 3

Csum tree

… Extent N

Change the relative
Checksums

Checksum of the file’s extent

Log all the csum
data of this file

The extent that be changed

Checksum of the file’s extent that be changed

Write to diskDisk

Log tree

Extent1
Csum

Extent2
Csum

Extent3
Csum

ExtentN
Csum

Large file random write (Direct IO and fsync)

 Solution
 Don’t log unchanged metadata: Introduce sub-

transaction id to filter the unchanged metadata (v2.6.41)

27

File

Application

Extent 1 Extent 2 Extent 3

Csum tree

… Extent N

Change the relative
Checksums

Checksum of the file’s extent

Log all the csum
data of this file

The extent that be changed

Checksum of the file’s extent that be changed

Write to diskDisk

Log tree

Extent1
Csum

Extent2
Csum

Extent3
Csum

ExtentN
Csum

Large file random write (Direct IO and fsync)

 Solution
 Don’t log unchanged metadata: Introduce sub-

transaction id to filter the unchanged metadata (v2.6.41)

28

File

Application

Extent 1 Extent 2 Extent 3

Csum tree

… Extent N

Change the relative
Checksums

Checksum of the file’s extent

Log the changed csum
data of this file

The extent that be changed

Checksum of the file’s extent that be changed

Write to diskDisk

Log tree

Extent1
Csum

Extent2
Csum

Extent3
Csum

ExtentN
Csum

Large file random write (Direct IO and fsync)

 Solution
 Don’t log unchanged metadata: Introduce sub-

transaction id to filter the unchanged metadata (v2.6.41)

29

Large file random write (Direct IO and fsync)

 Improvement result

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K bs = 4K bs = 32K

1 Thread 8 Threads 1 Thread 8 Threads

DirectIO Write (fsync)

IO
 S

p
ee

d
 (

U
n

it
:

M
b

/s
)

EXT3

EXT4

BTRFS

BTRFS + Patch

30

Agenda

 Comparison between Btrfs and Ext3/4

 Issue analysis (We have investigated)
 Small file sequential read

 Large file random write (Direct I/O and fsync)

 File creation/deletion

 Future work

31

File creation/deletion

 Reasons
 Btrfs does more metadata insertion and deletion.

 Btrfs must search the b+ tree to look up the place, where the inode
will be stored, when updating inode.

(Time complexity: O(log(n)), But Ext3/4 is O(1))

 Searching nodes/leaves in the rb-tree spends lots of time

　 Btrfs Ext4(Not Sure)

File Creation

inode
name back reference
ACL
directory item
directory name index

inode
ACL
directory entry

File Deletion

inode
inode back reference
ACL
directory item
directory name index
logged directory item
logged directory name index

inode
ACL
directory entry

32

File creation/deletion

 Solution
 Batch operation -- Insert/delete a batch of the directory name indexes

(v2.6.40)

 Delay operation -- Delay to update the inode information in the b+
tree (v2.6.40)

 Using radix tree instead of rb-tree (v2.6.37)

33

File creation/deletion

 Improvement result
 Create/delete lots of empty files to measure the speed of file creation

and deletion.

0

20000

40000

60000

80000

100000

120000

140000

Creation Deletion

(U
n

it
:

fi
le

s/
se

c)

Ext3

Ext4

Btrfs

Btrfs + Patch

34

Agenda

 Comparison between Btrfs and Ext3/4

 Issue analysis (We have investigated)
 Small file sequential read

 Large file random write (Direct I/O and fsync)

 File creation/deletion

 Future work

35

Future work

 Improve small file sequential read performance
further

 Improve small file random read performance (Not
inline file)

 Improve small file random/sequential write
performance

 Do other benchmarks and improve bad cases

36

Q/A

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31
	页 32
	页 33
	页 34
	页 35
	页 36

