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Agenda

 Comparison between Btrfs and Ext3/4

 Issue analysis (We have investigated)
 Small file sequential read

 Large file random write (Direct I/O and fsync)

 File creation/deletion

 Future work
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Comparison between Btrfs and Ext3/4

 Performance test environment
 Hardware

• CPU ： Xeon(TM) X5260 　 3.33G X 2 （ 4 cores ） 
• Memory ： 4GB

• Disk ： 20GB

 Software
• OS ： RHEL6(x86_64)

• Kernel ： 2.6.38

• Glibc ： 2.12

• Btrfs-progs ： 0.9

• Sysbench: 0.4.12
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Comparison between Btrfs and Ext3/4

 73 cases in total
 72 file I/O cases, mix the following conditions:

• Small file / Large file

• Write / Read

• Random / Sequential

• Sync / Async / Direct I/O

• Single-thread / Multi-thread

• Different block size (1Kb, 4Kb, 32Kb) *

 File creation/deletion
• Measure the speed of empty file creation/deletion

* Block size (bs): read or write BYTES bytes at a time.
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Small file random read performance
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Small file random write performance

Write (fsync): write data into the file, and do fsync every 100 requests
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Small file sequential read performance
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Small file sequential write performance

Write (fsync): write data into the file, and do fsync every 100 requests
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Large file random read performance
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Large file sequential read performance
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Large file random write performance 
(1/2)
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Large file random write performance 
(2/2)
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Large file sequential write performance 
(1/2)
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Large file sequential write performance 
(2/2)
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File creation/deletion performance

 Create/delete lots of empty files to measure the speed of 
file creation and deletion.
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Comparison between Btrfs and Ext3/4

 The performance of Btrfs is quite poor in the 
following cases (> 20% lower than Ext3/4)
 Small file random read (Not inline file) 

 Small file sequential read

 Small file random/sequential write 

 Large file random write (Direct I/O and fsync)

 Large file random write (general write, bs = 4Kb)

 File creation and deletion
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Agenda

 Comparison between Btrfs and Ext3/4

 Issue analysis (We have investigated)
 Small file sequential read

 Large file random write (Direct I/O and fsync)

 File creation/deletion

 Future work
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Small file sequential read

 Reasons
 Metadata fragment -> The file extent reading latency -> The delay of 

file data reading
• Btrfs must read file extent before reading file data (no matter the small file is inlined 

or not), but the disk has to reposition the reading offset frequently because of the 
fragment, and the readahead function can’t work well. So …

Fs/file tree

Disk
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Small file sequential read

 Reason verification
 Do small file sequential read after defragment
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Small file sequential read

 Solution
 Pre-allocation for b+ tree: Introduce free space clusters for each 

node in the tree, then we can allocate contiguous free space from 
the parent node’s cluster to store the sibling leaves closely

(The patch of this solution is still under test, hasn’t be posted)

Fs/file tree

Disk

Cluster

Cluster

Cluster
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Small file sequential read

 Improvement result
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 Further Improvement
 Introduce the auto defragment for metadata

 Apply the new metadata readahead API written by Arne
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Large file random write (Direct IO and fsync) 

 Background – What is tree logging?

    Tree logging is a special write ahead log of dirty 
metadata.
 Purpose: Reduce the write requests of the metadata when 

fsyncs and O_SYNCs happen.

 Implementation: Copy the changed items into a special 
tree (log tree, one per fs/file tree), and then write that tree 
to disk. After a crash, Btrfs recover the fs/file tree by that 
tree.
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Large file random write (Direct IO and fsync) 

 Reasons
 Log lots of unchanged metadata (Ex. Csum, File extent)

File

Application

Extent 1 Extent 2 Extent 3

Csum tree

… Extent N

Change the relative 
Checksums

Checksum of the file’s extent

Log all the csum 
data of this file

The extent that be changed

Checksum of the file’s extent that be changed

Write to diskDisk

Log tree

Extent1 
Csum

Extent2 
Csum

Extent3 
Csum

ExtentN 
Csum



25

Large file random write (Direct IO and fsync)

 Reason verification
 Do large file random write test after closing tree log function

(mount with -o notreelog)
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File

Application

Extent 1 Extent 2 Extent 3

Csum tree

… Extent N

Change the relative 
Checksums

Checksum of the file’s extent

Log all the csum 
data of this file

The extent that be changed

Checksum of the file’s extent that be changed

Write to diskDisk

Log tree

Extent1 
Csum

Extent2 
Csum

Extent3 
Csum

ExtentN 
Csum

Large file random write (Direct IO and fsync)

 Solution
 Don’t log unchanged metadata: Introduce sub-

transaction id to filter the unchanged metadata (v2.6.41)



27

File

Application
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 Solution
 Don’t log unchanged metadata: Introduce sub-

transaction id to filter the unchanged metadata (v2.6.41)
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File

Application

Extent 1 Extent 2 Extent 3

Csum tree

… Extent N

Change the relative 
Checksums

Checksum of the file’s extent

Log the changed csum 
data of this file

The extent that be changed

Checksum of the file’s extent that be changed

Write to diskDisk

Log tree

Extent1 
Csum

Extent2 
Csum

Extent3 
Csum

ExtentN 
Csum

Large file random write (Direct IO and fsync)

 Solution
 Don’t log unchanged metadata: Introduce sub-

transaction id to filter the unchanged metadata (v2.6.41)
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Large file random write (Direct IO and fsync)

 Improvement result
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File creation/deletion

 Reasons
 Btrfs does more metadata insertion and deletion.

 Btrfs must search the b+ tree to look up the place, where the inode 
will be stored, when updating inode.

(Time complexity: O(log(n)), But Ext3/4 is O(1))

 Searching nodes/leaves in the rb-tree spends lots of time

　 Btrfs Ext4(Not Sure)

File Creation

inode
name back reference
ACL
directory item
directory name index

inode
ACL
directory entry

File Deletion

inode
inode back reference
ACL
directory item
directory name index
logged directory item
logged directory name index

inode
ACL
directory entry
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File creation/deletion

 Solution
 Batch operation -- Insert/delete a batch of the directory name indexes 

(v2.6.40) 

 Delay operation -- Delay to update the inode information in the b+ 
tree (v2.6.40)

 Using radix tree instead of rb-tree (v2.6.37)
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File creation/deletion

 Improvement result
 Create/delete lots of empty files to measure the speed of file creation 

and deletion.
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Future work

 Improve small file sequential read performance 
further

 Improve small file random read performance (Not 
inline file)

 Improve small file random/sequential write 
performance

 Do other benchmarks and improve bad cases
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Q/A
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