

KVM Live Snapshot support

Jes Sorensen <Jes.Sorensen@redhat.com> LinuxCon Japan, June 1st 2011

Agenda

Snapshot overview

QEMU snapshots

What is next

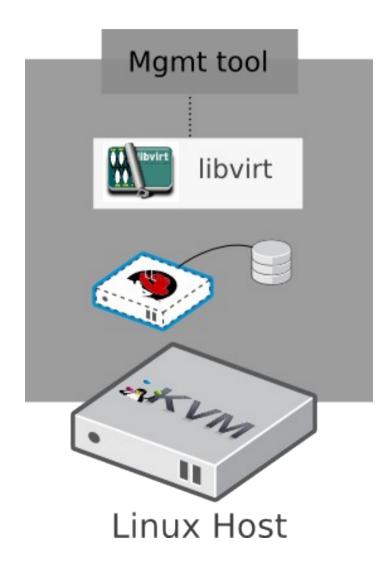
Definitions

- Snapshot vs "check point restart"
 - A check point operation saves the entire system state, including guest memory, processor state, etc.
 - A snapshot creates a coherent copy of a number of block devices at a given time.
 - Live snapshot if a snapshot taken while a virtual machine is running.

This presentation is about live snapshot support!

Snapshot 101

- Usage / why snapshots?
 - Ideal for live backup of guests, without guest intervention (kinda sorta)
 - Disk level roll-back, ideal for system upgrade testing etc



Snapshot types

- COW vs full snapshots:
 - Copy-On-Write snapshots creates a new 'root' block device, referencing original device. Original device becomes 'read-only'
 - Variation "referenced" snapshot: binary tree based storage, such as btrfs: data written to new blocks. Snapshot by copy tree structure – once released, unused data blocks are deleted
 - Full snapshot creates a full copy of block device, original device no longer referenced

System example

Snapshots in the I/O stack

- The snapshot operation can be performed at multiple levels of the I/O stack:
 - QEMU snapshots
 - QCOW2, QED
 - LVM
 - File system snapshots
 - btrfs
 - Enterprise storage snapshots
 - NFS, NetApp, EMC etc.

Note: All examples are for storage attached to the host

Snapshot management

- Guest collaboration (agents)
- Coherent API handling all types of media/snapshot mechanisms
- Collapsing/merging snapshots
 - QEMU Live block copy

Guest collaboration

- Agents
 - Guest applications flush data to disk prior to snapshot
 - Optimize 'validity' of backup
 - Valid for traditional backups as well
 - File system freeze
 - Make guest file systems coherent (clean) before snapshot is issued
- Linux guests 'virtagent', work in progress
- Windows: VSS
- Note guest collaboration can only ever be best effort!
 Guests cannot be trusted!

Managing snapshots

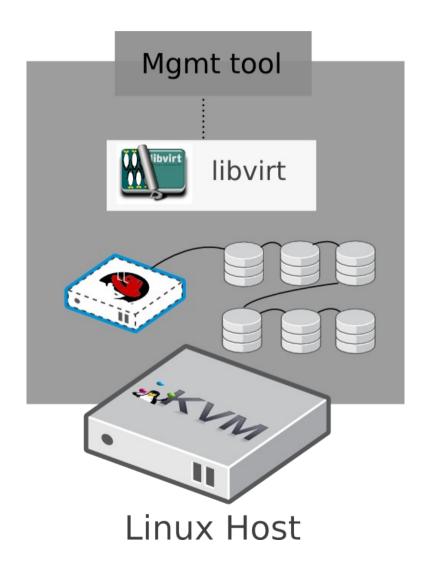
- Coherent API for snapshot management:
 - libvirt
- To issue snapshot, management tool needs to know:
 - Storage devices available (QCOW, BTRFS, LVM, enterprise, etc)
 - 'driver' for each device
 - Preferred storage device for snapshot (if multiple layers can do snapshot)
 - Naming conventions
 - Expected output device

Agenda

Snapshot overview

QEMU snapshots

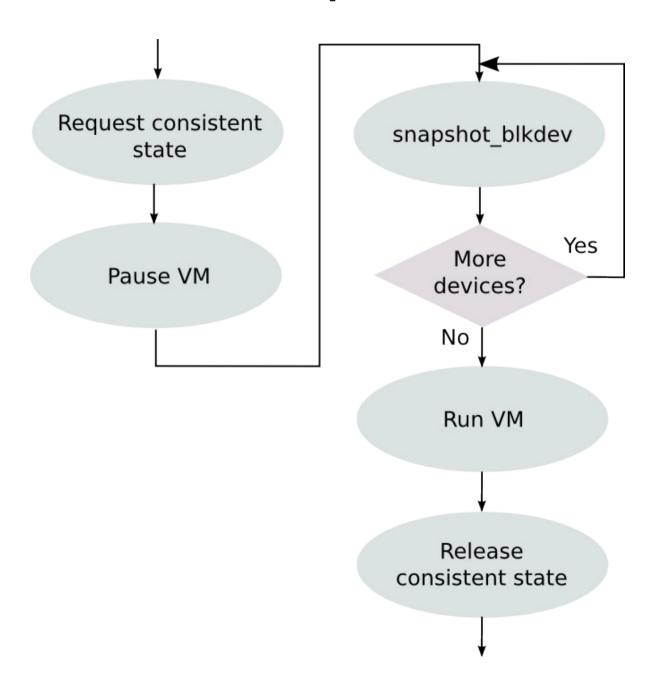
What is next



QEMU snapshots

- Based on COW images
 - References back to previous block image (file, raw device, LVM volume etc.)
 - Supports snapshot of any block format, including raw devices into QCOW2 or QED
 - Results in chain of cow images
 - Snapshot of snapshot of snapshot......
 - Potential performance issue

Snapshot chain



Requirements

- Support existing file formats
- Support QCOW2 on raw block devices or LVM
- Simple to use
- Fast
- Support for snapshot of multiple block devices in parallel

Overall snapshot flow

Implementation


- Implemented by refactoring existing external snapshot code used by qemu-img
- One device at a time
 - Multiple devices supported by pausing QEMU during snapshot operation
- Allows for pre-created target image, or QEMU will create it
- Human monitor command:

```
snapshot_blkdev device [new-image-file] [format]
```

- QMP command
 - In progress / under discussion

QEMU flow of live snapshot

virtagent features

- Added support for
 - fsfreeze
 - Freezes all file systems, marking them 'clean'. All writes to a frozen file system will block/sleep
 - fsthaw
 - Thaws all file systems, allowing pending writes to continue
- Requires careful handling as any write to a frozen file system will cause process to sleep!
 - No logging from guest agent during freeze!

Agenda

Snapshot overview

QEMU snapshots

What is next

What is next

- Support asynchronous parallel snapshots
 - Will require pre-created target image
- virtagent guest application call-out API
 - Notification prior to snapshot, allowing application to write out buffers to disk
 - Notification upon snapshot completion, for application to continue normal operation
- libvirt support (in progress)
 - Support for multiple backends (QEMU, btrfs, LVM etc.)
- Higher level management tools to use libvirt API

Conclusions

- It works!
- Performance is very reasonable, despite simple implementation
 - Once file systems frozen, guests quickly stall
- Still more work to be done for asynchronous support
- More work to be done in management layers

Questions?

