FY 2007 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE -- WINNERS OF TECHNICAL COMPETITION Page 1 of 6

Lead Institution * Team Member Institutions 1	State	Principal Investigator (PI)	Project Title	Funding Agency
<u>To</u>	pic #1: E	xploiting Nonlinear Dynamics	for Novel Devices	
University of Maryland–College Park * Duke University 1	MD NC	Edward Ott	Exploiting Nonlinear Dynamics for Novel Sensor Networks	ONR
University of California–San Diego * California Institute of Technology ¹ * University of Pittsburgh ¹	CA CA PA	H. Abarbanel	Chemical Discrimination and Localization Using Biologically Based Olfactory Processing	ONR
Topic #2:	Toward	ls Trust Management in Service	Oriented Architectures	•
University of Pennsylvania * Columbia University ¹ * Georgia Institute of Technology ¹	PA NY GA	Sampath Kannan	Foundational and Systems Support for Quantitative Trust Management	ONR
State University of New York–Stony Brook	NY	Scott D. Stoller	A Framework for Analyzing and Ensuring Trust in Service-Oriented Architectures	ONR
Topic #	3: Dispa	rate Sensor Network Based Sit	uation Understanding	
Stanford University * Carnegie Mellon University ¹	CA PA	Andrew Y. Ng	From Individuals to Populations: Biologically-Informed Multi-Modal Situation Understanding with Sensor Networks	ONR
	Topic	#4: Underwater Acoustic Comr	<u>nunications</u>	
Woods Hole Oceanographic Institution * Massachusetts Institute of Technology ¹ * University of California–Scripps Institution of Oceanography ¹ * University of Rhode Island ¹ * University of Illinois–Urbana-Champaign ¹	MA MA CA RI IL	J.C. Preisig	Underwater Acoustic Propagation and Communications: A Coupled Research Program	ONR
University of California–Scripps Institution of Oceanography * Arizona State University ¹ * University of Washington–Applied Physics Laboratory ¹ * University of Delaware ¹	CA AZ WA DE	W.S. Hodgkiss	Impact of Oceanographic Variability on Acoustic Communications	ONR

Team member institutions are those included in the lead institution's research proposal. They are subject to change at the discretion of the lead institution (e.g., if the final negotiated amount of the award is less than the amount the institution proposed).

A Canadian team member is identified in the lead institution's proposal, with support for that institution's participation to be provided by a Canadian research funding agency as part of a Defense Research and Development Canada initiative to promote collaboration between Canadian and U.S. researchers in areas of mutual interest.

FY 2007 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE -- WINNERS OF TECHNICAL COMPETITION Page 2 of 6

Lead Institution * Team Member Institutions 1	State	Principal Investigator (PI)	Project Title	Funding Agency		
	Topic #5: Radiation Belt Dynamics and Energetics					
University of Maryland–College Park * Stanford University ¹ * University of California–Los Angeles ¹ * Dartmouth College ¹ * Virginia Polytechnic Institute and State University ¹ * Boston College ¹	MD CA CA NH VA	Dennis Papadopoulos	Fundamental Physics Issues on Radiation Belt Dynamics and Remediation	ONR		
<u>Topic</u>	#6: The	mal Management for Advanced	Electrical Systems			
University of Virginia * Arizona State University ¹ * University of California–Berkeley ¹ * University of Illinois–Urbana-Champaign ¹ * Rensselaer Polytechnic Institute ¹	VA AZ CA IL NY	P.M. Norris	System-Level Approach for Multi-Phase, Nanotechnology-Enhanced Cooling of High- Power Microelectronic Systems	ONR		
<u> </u>	opic #7:	Light Cellular Structures for Fo	orce Protection			
University of Virginia * Massachusetts Institute of Technology * University of California–Santa Barbara * Harvard University 1	VA MA CA MA	H. Wadley	An Integrated Cellular Materials Approach to Force Protection	ONR		
Topic #8: Human-Robot Interac	tion in L	ittoral and Urban Military Doma	ins: Human-Unmanned Systems Interactions			
Massachusetts Institute of Technology * University of Massachusetts–Amherst ¹ * University of Washington ¹ * Stanford University ¹ * Vanderbilt University ¹	MA MA WA CA TN	Cynthia Breazeal	Cognitively Compatible and Collaboratively Balanced Human-Robot Teaming in Urban Military Domains	ONR		
University of Notre Dame * Arizona State University ¹ * Stanford University ¹	IN AZ CA	Matthia Scheutz	Effective Human-Robot Interaction under Time Pressure through Robust Natural Language Dialogue and Dynamic Autonomy	ONR		

Team member institutions are those included in the lead institution's research proposal. They are subject to change at the discretion of the lead institution (e.g., if the final negotiated amount of the award is less than the amount the institution proposed).

A Canadian team member is identified in the lead institution's proposal, with support for that institution's participation to be provided by a Canadian research funding agency as part of a Defense Research and Development Canada initiative to promote collaboration between Canadian and U.S. researchers in areas of mutual interest.

FY 2007 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE -- WINNERS OF TECHNICAL COMPETITION Page 3 of 6

Lead Institution * Team Member Institutions 1	State	Principal Investigator (PI)	Project Title	Funding Agency
Topic #9: Exploiting the Documented Pla	sticity o	f the Adult Brain to Create Supe	rior Warfighters in Fast-Paced Close Quarters Co	mbat
University of Illinois–Urbana-Champaign * Massachusetts Institute of Technology ¹ * University of Minnesota ¹ * Pennsylvania State University ¹	IL MA MN PA	A. F. Kramer	Capitalizing on Research on Animal and Human Brain Plasticity to Enhance Warfighter Training and Performance	ONR
University of Rochester * University of Minnesota ¹ * University of California–San Diego ¹ * Massachusetts Institute of Technology * Carnegie Mellon University ¹ * Rensselaer Polytechnic Institute ¹	NY MN CA MA PA NY	D. Bavelier	Complex Learning and Skill Transfer with Video Games	ONR
Topic #10: Reactive	Materia	I Dynamic Response and Energ	y Release for MOUT Applications	
University of California–San Diego * Georgia Institute of Technology ¹ * Johns Hopkins University ¹	CA GA MD	Vitali Nesterenko	Tailoring Multiscale Processes and Mechanisms to Control Energy Release of Energetic Materials	ONR
<u>Topic #11: P</u>	rocessii	ng and Production Science for N	lext Generation Fuel Cells	
University of Texas–Austin * Stanford University 1	TX CA	Arumugam Manthiram	Materials and Manufacturing Science and Engineering of Direct Methanol Fuel Cells	ONR
Topic #12: Science-Bas	ed Desi	gn of Fuel-Flexible Chemical Pro	opulsion/Energy Conversion Systems	
Princeton University * University of Illinois-Chicago ¹ * Pennsylvania State University ¹ * Case Western Reserve University ¹	NJ IL PA OH	Frederick L. Dryer	Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels	AFOSR
Topic #13: Enterprise Health: Self-Regenerative Incorruptible Enterprise				
George Mason University * Columbia University ¹ * Pennsylvania State University ¹	VA NY PA	Anup K. Ghosh	Autonomic Recovery of Enterprise-Wide Systems After Attack or Failure with Forward Correction	AFOSR
University of Virginia * University of California–Davis ¹ * University of California–Santa Barbara ¹ * University of New Mexico ¹	VA CA CA NM	John C. Knight	Helix: A Self-Regenerative Architecture for the Incorruptible Enterprise	AFOSR

Team member institutions are those included in the lead institution's research proposal. They are subject to change at the discretion of the lead institution (e.g., if the final negotiated amount of the award is less than the amount the institution proposed).

A Canadian team member is identified in the lead institution's proposal, with support for that institution's participation to be provided by a Canadian research funding agency as part of a Defense Research and Development Canada initiative to promote collaboration between Canadian and U.S. researchers in areas of mutual interest.

FY 2007 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE -- WINNERS OF TECHNICAL COMPETITION Page 4 of 6

Lead Institution * Team Member Institutions ¹	State	Principal Investigator (PI)	Project Title	Funding Agency	
	Topic #	14: Atmospheric Neutral Densi	ty Prediction	, .geey	
University of Colorado * University of Alabama–Huntsville ¹ * University of New Hampshire ¹ * University of Texas–San Antonio ¹ * United States Air Force Academy ¹	CO AL NH TX CO	Jeffrey M. Forbes	Neutral Atmosphere Density Interdisciplinary Research	AFOSR	
Topic #15: Building	Bridge	s between Neuroscience, Cogni	tion, and Human Decision Making		
Stanford University * Princeton University ¹ * Carnegie Mellon University ¹	CA NJ PA	James L. McClelland	Dynamic Decision Making in Complex Task Environments: Principles and Neural Mechanisms	AFOSR	
Topic #1	6: Beha	vior of Systems with Humans ar	nd Unmanned Vehicles		
Boston University * Princeton University ¹ * University of Washington ¹ * University of California–Santa Barbara ¹	MA NJ WA CA	John Baillieul	Behavioral Dynamics in the Cooperative Control of Mixed Human/Robotic Teams	AFOSR	
Topic #	17: Biol	ogically-Inspired Flight for Micro	o Air Vehicles (MAVs)		
Brown University * Oregon State University ¹ * Massachusetts Institute of Technology ¹ * University of Maryland–College Park ¹	RI OR MA MD	Kenneth Breuer	Biologically-Inspired Flight for Micro Air Vehicles	AFOSR	
University of Michigan * University of Florida ¹ * University of Maryland–College Park ¹ * California Institute of Technology ¹	MI FL MD CA	Wei Shyy	Biologically-Inspired, Anisotropic Flexible Wing for Optimal Flapping Flight	AFOSR	
Topic #18: Quantum Simulations of Condensed Matter Systems using Ultra-Cold Atomic Gases					
Harvard University * Massachusetts Institute of Technology ¹ * University of Michigan ¹ * Stanford University ¹	MA MA MI CA	Markus Greiner	Quantum Simulations of Condensed Matter Systems Using Ultra-Cold Atomic Gases	AFOSR	
Topic #19: Bioinspired Supramolecular Enzymes					
Northwestern University * University of California–Los Angeles ¹	IL CA	Chad A. Mirkin	Bioinspired Supramolecular Enzymatic Systems	AFOSR	
Topic #20: Biologically Synthesized Quantum Electronic Systems					

Team member institutions are those included in the lead institution's research proposal. They are subject to change at the discretion of the lead institution (e.g., if the final negotiated amount of the award is less than the amount the institution proposed).

A Canadian team member is identified in the lead institution's proposal, with support for that institution's participation to be provided by a Canadian research funding agency as part of a Defense Research and Development Canada initiative to promote collaboration between Canadian and U.S. researchers in areas of mutual interest.

FY 2007 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE -- WINNERS OF TECHNICAL COMPETITION Page 5 of 6

Lead Institution * Team Member Institutions ¹	State	Principal Investigator (PI)	Project Title	Funding Agency	
University of Minnesota * New York University ¹ * University of Texas–Austin ¹ * University of California–Los Angeles ¹ * Columbia University ¹	MN NY TX CA NY	Richard Kiehl	Biologically Assembled Quantum Electronic Arrays	ARO	
	Topic #2	1: Attosecond Subwavelength	Optical Pulses		
Kansas State University * Texas A&M University ¹ * University of Ottawa ²	KS TX 	Zenghu Chang	Attosecond Optical Technology Based on Recollision and Gating	ARO	
<u>Topic #22: De</u>	esigning	and Prescribing an Efficient Na	tural-like Language for Bots		
University of Pennsylvania * University of Massachusetts–Amherst ¹ * University of Massachusetts–Lowell ¹	PA MA MA	Mitchell Marcus	Situation Understanding Bot through Language and Environment	ARO	
	Topic #2	3: Ionic Liquid Containing Polyn	neric Materials		
Virginia Polytechnic Institute and State University * Pennsylvania State University ¹ * University of Pennsylvania ¹ * Drexel University ¹	VA PA PA PA	Timothy Long	Ionic Liquids in Electro-Active Devices	ARO	
Topic #24: Self-	healing F	Polymer Composites through Me	echanochemical Transduction		
University of Illinois–Urbana-Champaign * University of Texas–Austin ¹ * Duke University ¹	IL TX NC	Jeffrey S. Moore	Mechanochemically-Active Polymer Composites	ARO	
Topic #25: Engineering of Phase Transforming EMO Materials					
California Institute of Technology * University of Minnesota ¹ * University of Washington ¹ * University of California–Santa Barbara ¹ * Rutgers University ¹ * University of Maryland–College Park ¹	CA MN WA CA NJ MD	Kaushik Bhattacharya	Materials on the Brink: Unprecedented Transforming Materials	ARO	
Topic #26: Robust and Resilient Tactical MANETs					
University of California–Davis * Brigham Young University ¹	CA UT PA	Prasant Mohapatra	ARSENAL: A Cross Layer Architecture for Secure Resilient Tactical Mobile ad hoc Networks	ARO	

Team member institutions are those included in the lead institution's research proposal. They are subject to change at the discretion of the lead institution (e.g., if the final negotiated amount of the award is less than the amount the institution proposed).

A Canadian team member is identified in the lead institution's proposal, with support for that institution's participation to be provided by a Canadian research funding agency as part of a Defense Research and Development Canada initiative to promote collaboration between Canadian and U.S. researchers in areas of mutual interest.

FY 2007 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE -- WINNERS OF TECHNICAL COMPETITION Page 6 of 6

Lead Institution * Team Member Institutions 1	State	Principal Investigator (PI)	Project Title	Funding Agency
 * University of Pittsburgh ¹ * University of California–Riverside ¹ * University of California–Santa Cruz ¹ * University of Utah ¹ * Pennsylvania State University ¹ 	CA CA UT PA			
University of Maryland–College Park * Carnegie Mellon University ¹ * University of Illinois–Urbana-Champaign ¹ * University of Washington ¹	MD PA IL WA	Virgil Gligor	Designing Reliable and Secure Tactical MANETs	ARO
Top	oic #27: l	Urban Sensor Network Structure	e for Data Fusion	i
Pennsylvania State University * Harvard University ¹ * Duke University ¹ * Ohio State University ¹ * University of British Columbia ²	PA MA NC OH	Shashi Phoha	Engineering of Sensor Network Structure for Dependable Fusion	ARO
	Topic #	#28: Dynamic Modeling of 3D Ur	ban Terrain	ū
University of South Carolina * University of California–Los Angeles ¹ * Virginia Polytechnic Institute and State University ¹ * University of California–Irvine ¹ * University of Texas–Austin ¹ * Texas A&M University ¹ * Princeton University ¹ * Rice University ¹	SC CA VA CA TX TX NJ TX	Ronald DeVore	Model Classes, Approximation, and Metrics for Dynamic Processing of Urban Terrain Data	ARO

Team member institutions are those included in the lead institution's research proposal. They are subject to change at the discretion of the lead institution (e.g., if the final negotiated amount of the award is less than the amount the institution proposed).

A Canadian team member is identified in the lead institution's proposal, with support for that institution's participation to be provided by a Canadian research funding agency as part of a Defense Research and Development Canada initiative to promote collaboration between Canadian and U.S. researchers in areas of mutual interest.