Subsystems of Second Order Arithmetic

Second Edition

Stephen G. Simpson
February 7, 2006

Department of Mathematics
The Pennsylvania State University
University Park, State College PA 16802
http://www.math.psu.edu/simpson/
simpson@math.psu.edu

This is the second edition of my book on subsystems of second order arithmetic and reverse mathematics. It will be published by the Association for Symbolic Logic in their book series Perspectives in Logic.

PREFACE

Foundations of mathematics is the study of the most basic concepts and logical structure of mathematics, with an eye to the unity of human knowledge. Among the most basic mathematical concepts are: number, shape, set, function, algorithm, mathematical axiom, mathematical definition, mathematical proof. Typical questions in foundations of mathematics are: What is a number? What is a shape? What is a set? What is a function? What is an algorithm? What is a mathematical axiom? What is a mathematical definition? What is a mathematical proof? What are the most basic concepts of mathematics? What is the logical structure of mathematics? What are the appropriate axioms for numbers? What are the appropriate axioms for shapes? What are the appropriate axioms for sets? What are the appropriate axioms for functions? Etc., etc.

Obviously foundations of mathematics is a subject which is of the greatest mathematical and philosophical importance. Beyond this, foundations of mathematics is a rich subject with a long history, going back to Aristotle and Euclid and continuing in the hands of outstanding modern figures such as Descartes, Cauchy, Weierstraß, Dedekind, Peano, Frege, Russell, Cantor, Hilbert, Brouwer, Weyl, von Neumann, Skolem, Tarski, Heyting, and Gödel. An excellent reference for the modern era in foundations of mathematics is van Heijenoort [272].

In the late 19th and early 20th centuries, virtually all leading mathematicians were intensely interested in foundations of mathematics and spoke and wrote extensively on this subject. Today that is no longer the case. Regrettably, foundations of mathematics is now out of fashion. Today, most of the leading mathematicians are ignorant of foundations and focus mostly on structural questions. Today, foundations of mathematics is out of favor even among mathematical logicians, the majority of whom prefer to concentrate on methodological or other non-foundational issues.

This book is a contribution to foundations of mathematics. Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? We undertake a series of case studies to discover which are the appropriate
axioms for proving particular theorems in core mathematical areas such as algebra, analysis, and topology. We focus on the language of second order arithmetic, because that language is the weakest one that is rich enough to express and develop the bulk of core mathematics. It turns out that, in many particular cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context: recursive comprehension, weak König's lemma, arithmetical comprehension, arithmetical transfinite recursion, Π_{1}^{1} comprehension; corresponding to the formal systems $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}$, $\Pi_{1}^{1}-C A_{0}$; which in turn correspond to classical foundational programs: constructivism, finitistic reductionism, predicativism, and predicative reductionism. This is the theme of Reverse Mathematics, which dominates part A of this book. Part B focuses on models of these and other subsystems of second order arithmetic. Additional results are presented in an appendix.

The formalization of mathematics within second order arithmetic goes back to Dedekind and was developed by Hilbert and Bernays in [115, supplement IV]. The present book may be viewed as a continuation of Hilbert/Bernays [115]. I hope that the present book will help to revive the study of foundations of mathematics and thereby earn for itself a permanent place in the history of the subject.

The first edition of this book [249] was published in January 1999. The second edition differs from the first only in that I have corrected some typographical errors and updated some bibliographical entries. Recent advances are in research papers by numerous authors, published in Reverse Mathematics $2001[228]$ and in scholarly journals. The web page for this book is
http://www.math.psu.edu/simpson/sosoa/.
I would like to develop this web page into a forum for research and scholarship, not only in subsystems of second order arithmetic, but in foundations of mathematics generally.

ACKNOWLEDGMENTS

Much of my work on subsystems of second order arithmetic has been carried on in collaboration with my doctoral and postdoctoral advisees at Berkeley and Penn State, including: Stephen Binns, Stephen Brackin, Douglas Brown, Natasha Dobrinen, Qi Feng, Fernando Ferreira, Mariagnese Giusto, Kostas Hatzikiriakou, Jeffry Hirst, James Humphreys, Michael Jamieson, Alberto Marcone, Carl Mummert, Ju Rao, John Steel, Rick Smith, Kazuyuki Tanaka, Robert Van Wesep, Galen Weitkamp, Takeshi Yamazaki, Xiaokang Yu. I also acknowledge the collaboration and encouragement of numerous colleagues including: Peter Aczel, Jeremy Avigad, Jon Barwise, Michael Beeson, Errett Bishop, Andreas Blass, Lenore Blum, Douglas Bridges, Wilfried Buchholz, John Burgess, Samuel Buss, Peter Cholak, Douglas Cenzer, Chi-Tat Chong, Rolando Chuaqui, John Clemens, Peter Clote, Carlos Di Prisco, Rod Downey, Ali Enayat, Herbert Enderton, Harvey Friedman, Robin Gandy, William Gasarch, Noam Greenberg, Petr Hájek, Valentina Harizanov, Victor Harnik, Leo Harrington, Christoph Heinatsch, Ward Henson, Peter Hinman, Denis Hirschfeldt, William Howard, Martin Hyland, Gerhard Jäger, Haim Judah, Irving Kaplansky, Alexander Kechris, Jerome Keisler, Jeffrey Ketland, Bjørn KjosHanssen, Stephen Kleene, Julia Knight, Ulrich Kohlenbach, Roman Kossak, Georg Kreisel, Antonín Kučera, Masahiro Kumabe, Richard Laver, Steffen Lempp, Manuel Lerman, Azriel Lévy, Alain Louveau, Angus Macintyre, Michael Makkai, Richard Mansfield, David Marker, Donald Martin, Adrian Mathias, Alex McAllister, Kenneth McAloon, Timothy McNicholl, George Metakides, Joseph Mileti, Joseph Miller, Grigori Mints, Michael Möllerfeld, Antonio Montalban, Yiannis Moschovakis, Gert Müller, Roman Murawski, Jan Mycielski, Michael Mytilinaios, Anil Nerode, Andre Nies, Charles Parsons, Marian Pour-El, Michael Rathjen, Jeffrey Remmel, JeanPierre Ressayre, Ian Richards, Hartley Rogers, Gerald Sacks, Ramez Sami, Andre Scedrov, James Schmerl, Kurt Schütte, Helmut Schwichtenberg, Dana Scott, Naoki Shioji, Wilfried Sieg, Jack Silver, Ksenija Simic, Saharon Shelah, John Shepherdson, Joseph Shoenfield, Richard Shore, Theodore Slaman, Craig Smoryński, Robert Soare, Reed Solomon, Robert Solovay,

Rick Sommer, Andrea Sorbi, Gaisi Takeuti, Dirk van Dalen, Lou van den Dries, Daniel Velleman, Stanley Wainer, Dongping Yang, Yue Yang, and especially Solomon Feferman, Carl Jockusch, and Wolfram Pohlers.

I acknowledge the help of various institutions including: the Alfred P. Sloan Foundation, the American Mathematical Society, the Association for Symbolic Logic, the Centre National de Recherche Scientifique, the Deutsche Forschungsgemeinschaft, the National Science Foundation, the Omega Group, Oxford University, the Pennsylvania State University, the Raymond N. Shibley Foundation, the Science Research Council, SpringerVerlag, Stanford University, the University of California at Berkeley, the University of Illinois at Urbana/Champaign, the University of Munich, the University of Paris, the University of Tennessee, the Volkswagen Foundation.

A preliminary version of this book was written with a software package called MathText. I acknowledge important help from Robert Huff, the author of MathText, and Janet Huff. Padma Raghavan wrote additional software to help me convert the manuscript from MathText to LaTeX. The first edition [249] was published by Springer-Verlag with editorial assistance from the Association for Symbolic Logic. The second edition is being published by the Association for Symbolic Logic. I acknowledge help from Samuel Buss, Ward Henson, Reinhard Kahle, Steffen Lempp, Manuel Lerman, and Thanh-Ha LeThi.

I thank my darling wife, Padma Raghavan, for her encouragement and emotional support while I was bringing this project to a conclusion, both in 1997-1998 and again in 2005.

CONTENTS

Preface VII
AcknowledgMents IX
Contents XI
Chapter I. Introduction 1
I.1. The Main Question 1
I.2. Subsystems of Z_{2} 2
I.3. The System ACA_{0} 6
I.4. Mathematics Within ACA_{0} 9
I.5. $\quad \Pi_{1}^{1}-\mathrm{CA}_{0}$ and Stronger Systems 16
I.6. Mathematics Within $\Pi_{1}^{1}-C A_{0}$ 19
I.7. The System RCA 24
I.8. Mathematics Within RCA_{0} 27
I.9. Reverse Mathematics 33
I.10. The System WKL 36
I.11. The System ATR ${ }_{0}$ 39
I.12. The Main Question, Revisited 43
I.13. Outline of Chapters II Through X 44
I.14. Conclusions 61
Part A. Development of Mathematics Within Subsystems of Z_{2}
Chapter II. Recursive Comprehension 65
II.1. The Formal System RCA_{0} 65
II.2. Finite Sequences 67
II.3. Primitive Recursion 71
II.4. The Number Systems 75
II.5. Complete Separable Metric Spaces 81
II.6. Continuous Functions 87
II.7. More on Complete Separable Metric Spaces 92
II.8. Mathematical Logic 95
II.9. Countable Fields 99
II.10. Separable Banach Spaces 102
II.11. Conclusions 106
Chapter III. Arithmetical Comprehension 109
III.1. The Formal System ACA $_{0}$ 109
III.2. Sequential Compactness 110
III.3. Strong Algebraic Closure 115
III.4. Countable Vector Spaces 116
III.5. Maximal Ideals in Countable Commutative Rings 120
III.6. Countable Abelian Groups 122
III.7. König's Lemma and Ramsey's Theorem 126
III.8. Conclusions 130
Chapter IV. Weak König's Lemma 131
IV.1. The Heine/Borel Covering Lemma 131
IV.2. Properties of Continuous Functions 137
IV.3. The Gödel Completeness Theorem 144
IV.4. Formally Real Fields 145
IV.5. Uniqueness of Algebraic Closure 149
IV.6. Prime Ideals in Countable Commutative Rings 150
IV.7. Fixed Point Theorems 153
IV.8. Ordinary Differential Equations 159
IV.9. The Separable Hahn/Banach Theorem 165
IV.10. Conclusions 170
Chapter V. Arithmetical Transfinite Recursion 173
V.1. Countable Well Orderings; Analytic Sets 173
V.2. The Formal System ATR 179
V.3. Borel Sets 184
V.4. Perfect Sets; Pseudohierarchies. 192
V.5. Reversals 196
V.6. Comparability of Countable Well Orderings 202
V.7. Countable Abelian Groups 206
V.8. Σ_{1}^{0} and Δ_{1}^{0} Determinacy 210
V.9. The Σ_{1}^{0} and Δ_{1}^{0} Ramsey Theorems 217
V.10. Conclusions 222
Chapter VI. Π_{1}^{1} Comprehension 225
VI.1. Perfect Kernels 225
VI.2. Coanalytic Uniformization 229
VI.3. Coanalytic Equivalence Relations 234
VI.4. Countable Abelian Groups 239
VI.5. $\quad \Sigma_{1}^{0} \wedge \Pi_{1}^{0}$ Determinacy 241
VI.6. The Δ_{2}^{0} Ramsey Theorem 245
VI.7. Stronger Set Existence Axioms 248
VI.8. Conclusions 249
Part B. Models of Subsystems of Z_{2}
Chapter VII. β-Models 253
VII.1. The Minimum β-Model of $\Pi_{1}^{1}-\mathrm{CA}_{0}$ 254
VII.2. Countable Coded β-Models 258
VII.3. A Set-Theoretic Interpretation of ATR $_{0}$ 269
VII.4. Constructible Sets and Absoluteness 283
VII.5. Strong Comprehension Schemes 298
VII.6. Strong Choice Schemes 305
VII.7. β-Model Reflection 315
VII.8. Conclusions 320
Chapter VIII. ω-Models 321
VIII.1. ω-Models of RCA_{0} and ACA_{0} 322
VIII.2. Countable Coded ω-Models of WKL_{0} 326
VIII.3. Hyperarithmetical Sets 334
VIII.4. ω-Models of Σ_{1}^{1} Choice 346
VIII.5. ω-Model Reflection and Incompleteness 355
VIII.6. ω-Models of Strong Systems 361
VIII.7. Conclusions. 370
Chapter IX. Non- ω-Models 371
IX.1. The First Order Parts of $R C A_{0}$ and $A C A_{0}$ 372
IX.2. The First Order Part of WKL_{0} 377
IX.3. A Conservation Result for Hilbert's Program 381
IX.4. Saturated Models 392
IX.5. Gentzen-Style Proof Theory 399
IX.6. Conclusions. 401
Appendix
Chapter X. Additional Results 405
X.1. Measure Theory 405
X.2. Separable Banach Spaces 411
X.3. Countable Combinatorics 413
X.4. Reverse Mathematics for RCA_{0} 420
X.5. Conclusions. 421
Bibliography 423

Index . 441
List of TABLES.. 463

Chapter I

INTRODUCTION

I.1. The Main Question

The purpose of this book is to use the tools of mathematical logic to study certain problems in foundations of mathematics. We are especially interested in the question of which set existence axioms are needed to prove the known theorems of mathematics.

The scope of this initial question is very broad, but we can narrow it down somewhat by dividing mathematics into two parts. On the one hand there is set-theoretic mathematics, and on the other hand there is what we call "non-set-theoretic" or "ordinary" mathematics. By set-theoretic mathematics we mean those branches of mathematics that were created by the set-theoretic revolution which took place approximately a century ago. We have in mind such branches as general topology, abstract functional analysis, the study of uncountable discrete algebraic structures, and of course abstract set theory itself.

We identify as ordinary or non-set-theoretic that body of mathematics which is prior to or independent of the introduction of abstract set-theoretic concepts. We have in mind such branches as geometry, number theory, calculus, differential equations, real and complex analysis, countable algebra, the topology of complete separable metric spaces, mathematical logic, and computability theory

The distinction between set-theoretic and ordinary mathematics corresponds roughly to the distinction between "uncountable mathematics" and "countable mathematics". This formulation is valid if we stipulate that "countable mathematics" includes the study of possibly uncountable complete separable metric spaces. (A metric space is said to be separable if it has a countable dense subset.) Thus for instance the study of continuous functions of a real variable is certainly part of ordinary mathematics, even though it involves an uncountable algebraic structure, namely the real number system. The point is that in ordinary mathematics, the real

I. Introduction

line partakes of countability since it is always viewed as a separable metric space, never as being endowed with the discrete topology.

In this book we want to restrict our attention to ordinary, non-settheoretic mathematics. The reason for this restriction is that the set existence axioms which are needed for set-theoretic mathematics are likely to be much stronger than those which are needed for ordinary mathematics. Thus our broad set existence question really consists of two subquestions which have little to do with each other. Furthermore, while nobody doubts the importance of strong set existence axioms in set theory itself and in set-theoretic mathematics generally, the role of set existence axioms in ordinary mathematics is much more problematical and interesting.

We therefore formulate our Main Question as follows: Which set existence axioms are needed to prove the theorems of ordinary, non-set-theoretic mathematics?

In any investigation of the Main Question, there arises the problem of choosing an appropriate language and appropriate set existence axioms. Since in ordinary mathematics the objects studied are almost always countable or separable, it would seem appropriate to consider a language in which countable objects occupy center stage. For this reason, we study the Main Question in the context of the language of second order arithmetic. This language is denoted L_{2} and will be described in the next section. All of the set existence axioms which we consider in this book will be expressed as formulas of the language L_{2}.

I.2. Subsystems of Z_{2}

In this section we define Z_{2}, the formal system of second order arithmetic. We also introduce the concept of a subsystem of \mathbf{Z}_{2}.

The language of second order arithmetic is a two-sorted language. This means that there are two distinct sorts of variables which are intended to range over two different kinds of object. Variables of the first sort are known as number variables, are denoted by i, j, k, m, n, \ldots, and are intended to range over the set $\omega=\{0,1,2, \ldots\}$ of all natural numbers. Variables of the second sort are known as set variables, are denoted by X, Y, Z, \ldots, and are intended to range over all subsets of ω.

The terms and formulas of the language of second order arithmetic are as follows. Numerical terms are number variables, the constant symbols 0 and 1 , and $t_{1}+t_{2}$ and $t_{1} \cdot t_{2}$ whenever t_{1} and t_{2} are numerical terms. Here + and \cdot are binary operation symbols intended to denote addition and multiplication of natural numbers. (Numerical terms are intended to denote natural numbers.) Atomic formulas are $t_{1}=t_{2}, t_{1}<t_{2}$, and $t_{1} \in X$ where t_{1} and t_{2} are numerical terms and X is any set variable.
(The intended meanings of these respective atomic formulas are that t_{1} equals t_{2}, t_{1} is less than t_{2}, and t_{1} is an element of X.) Formulas are built up from atomic formulas by means of propositional connectives \wedge, \vee, \neg, $\rightarrow, \leftrightarrow$ (and, or, not, implies, if and only if), number quantifiers $\forall n, \exists n$ (for all n, there exists n), and set quantifiers $\forall X, \exists X$ (for all X, there exists $X)$. A sentence is a formula with no free variables.

Definition I.2.1 (language of second order arithmetic). L_{2} is defined to be the language of second order arithmetic as described above.

In writing terms and formulas of L_{2}, we shall use parentheses and brackets to indicate grouping, as is customary in mathematical logic textbooks. We shall also use some obvious abbreviations. For instance, $2+2=4$ stands for $(1+1)+(1+1)=((1+1)+1)+1,(m+n)^{2} \notin X$ stands for $\neg((m+n) \cdot(m+n) \in X), s \leq t$ stands for $s<t \vee s=t$, and $\varphi \wedge \psi \wedge \theta$ stands for $(\varphi \wedge \psi) \wedge \theta$.

The semantics of the language L_{2} are given by the following definition.
Definition I.2.2 (L_{2}-structures). A model for L_{2}, also called a structure for L_{2} or an L_{2}-structure, is an ordered 7-tuple

$$
M=\left(|M|, \mathcal{S}_{M},+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right),
$$

where $|M|$ is a set which serves as the range of the number variables, \mathcal{S}_{M} is a set of subsets of $|M|$ serving as the range of the set variables, $+_{M}$ and \cdot_{M} are binary operations on $|M|, 0_{M}$ and 1_{M} are distinguished elements of $|M|$, and ${<_{M}}_{M}$ is a binary relation on $|M|$. We always assume that the sets $|M|$ and \mathcal{S}_{M} are disjoint and nonempty. Formulas of L_{2} are interpreted in M in the obvious way.

In discussing a particular model M as above, it is useful to consider formulas with parameters from $|M| \cup \mathcal{S}_{M}$. We make the following slightly more general definition.

Definition I. 2.3 (parameters). Let \mathcal{B} be any subset of $|M| \cup \mathcal{S}_{M}$. By a formula with parameters from \mathcal{B} we mean a formula of the extended language $L_{2}(\mathcal{B})$. Here $L_{2}(\mathcal{B})$ consists of L_{2} augmented by new constant symbols corresponding to the elements of \mathcal{B}. By a sentence with parameters from \mathcal{B} we mean a sentence of $\mathrm{L}_{2}(\mathcal{B})$, i.e., a formula of $\mathrm{L}_{2}(\mathcal{B})$ which has no free variables.

In the language $\mathrm{L}_{2}\left(|M| \cup \mathcal{S}_{M}\right)$, constant symbols corresponding to elements of \mathcal{S}_{M} (respectively $|M|$) are treated syntactically as unquantified set variables (respectively unquantified number variables). Sentences and formulas with parameters from $|M| \cup \mathcal{S}_{M}$ are interpreted in M in the obvious way. A set $A \subseteq|M|$ is said to be definable over M allowing parameters from \mathcal{B} if there exists a formula $\varphi(n)$ with parameters from \mathcal{B} and no free
variables other than n such that

$$
A=\{a \in|M|: M \models \varphi(a)\} .
$$

Here $M \models \varphi(a)$ means that M satisfies $\varphi(a)$, i.e., $\varphi(a)$ is true in M.
We now discuss some specific L_{2}-structures. The intended model for L_{2} is of course the model

$$
(\omega, P(\omega),+, \cdot, 0,1,<)
$$

where ω is the set of natural numbers, $P(\omega)$ is the set of all subsets of ω, and $+, \cdot, 0,1,<$ are as usual. By an ω-model we mean an L_{2}-structure of the form

$$
(\omega, \mathcal{S},+, \cdot, 0,1,<)
$$

where $\emptyset \neq \mathcal{S} \subseteq P(\omega)$. Thus an ω-model differs from the intended model only by having a possibly smaller collection \mathcal{S} of sets to serve as the range of the set variables. We sometimes speak of the ω-model \mathcal{S} when we really mean the ω-model $(\omega, \mathcal{S},+, \cdot, 0,1,<)$. In some parts of this book we shall be concerned with a special class of ω-models known as β-models. This class will be defined in §I.5.

We now present the formal system of second order arithmetic.
Definition I.2.4 (second order arithmetic). The axioms of second order arithmetic consist of the universal closures of the following L_{2}-formulas:
(i) basic axioms:

$$
\begin{aligned}
& n+1 \neq 0 \\
& m+1=n+1 \rightarrow m=n \\
& m+0=m \\
& m+(n+1)=(m+n)+1 \\
& m \cdot 0=0 \\
& m \cdot(n+1)=(m \cdot n)+m \\
& \neg m<0 \\
& m<n+1 \leftrightarrow(m<n \vee m=n)
\end{aligned}
$$

(ii) induction axiom:

$$
(0 \in X \wedge \forall n(n \in X \rightarrow n+1 \in X)) \rightarrow \forall n(n \in X)
$$

(iii) comprehension scheme:

$$
\exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

where $\varphi(n)$ is any formula of L_{2} in which X does not occur freely.
Intuitively, the given instance of the comprehension scheme says that there exists a set $X=\{n: \varphi(n)\}=$ the set of all n such that $\varphi(n)$ holds. This set is said to be defined by the given formula $\varphi(n)$. For example, if $\varphi(n)$
is the formula $\exists m(m+m=n)$, then this instance of the comprehension scheme asserts the existence of the set of even numbers.

In the comprehension scheme, $\varphi(n)$ may contain free variables in addition to n. These free variables may be referred to as parameters of this instance of the comprehension scheme. Such terminology is in harmony with definition I.2.3 and the discussion following it. For example, taking $\varphi(n)$ to be the formula $n \notin Y$, we have an instance of comprehension,

$$
\forall Y \exists X \forall n(n \in X \leftrightarrow n \notin Y)
$$

asserting that for any given set Y there exists a set $X=$ the complement of Y. Here the variable Y plays the role of a parameter.

Note that an L_{2}-structure M satisfies I.2.4(iii), the comprehension scheme, if and only if \mathcal{S}_{M} contains all subsets of $|M|$ which are definable over M allowing parameters from $|M| \cup \mathcal{S}_{M}$. In particular, the comprehension scheme is valid in the intended model. Note also that the basic axioms I.2.4(i) and the induction axiom I.2.4(ii) are valid in any ω-model. In fact, any ω-model satisfies the full second order induction scheme, i.e., the universal closure of

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \varphi(n)
$$

where $\varphi(n)$ is any formula of L_{2}. In addition, the second order induction scheme is valid in any model of I.2.4(ii) plus I.2.4(iii).

By second order arithmetic we mean the formal system in the language L_{2} consisting of the axioms of second order arithmetic, together with all formulas of L_{2} which are deducible from those axioms by means of the usual logical axioms and rules of inference. The formal system of second order arithmetic is also known as Z_{2}, for obvious reasons, or $\Pi_{\infty}^{1}-C A_{0}$, for reasons which will become clear in \S I. 5 .

In general, a formal system is defined by specifying a language and some axioms. Any formula of the given language which is logically deducible from the given axioms is said to be a theorem of the given formal system. At all times we assume the usual logical rules and axioms, including equality axioms and the law of the excluded middle.

This book will be largely concerned with certain specific subsystems of second order arithmetic and the formalization of ordinary mathematics within those systems. By a subsystem of Z_{2} we mean of course a formal system in the language L_{2} each of whose axioms is a theorem of Z_{2}. When introducing a new subsystem of Z_{2}, we shall specify the axioms of the system by writing down some formulas of L_{2}. The axioms are then taken to be the universal closures of those formulas.

If T is any subsystem of \mathbf{Z}_{2}, a model of T is any L_{2}-structure satisfying the axioms of T. By Gödel's completeness theorem applied to the twosorted language L_{2}, we have the following important principle: A given
L_{2}-sentence σ is a theorem of T if and only if all models of T satisfy σ. An ω-model of T is of course any ω-model which satisfies the axioms of T, and similarly a β-model of T is any β-model satisfying the axioms of T. Chapters VII, VIII, and IX of this book constitute a thorough study of models of subsystems of Z_{2}. Chapter VII is concerned with β-models, chapter VIII is concerned with ω-models other than β-models, and chapter IX is concerned with models other than ω-models.

All of the subsystems of Z_{2} which we shall consider consist of the basic axioms I.2.4(i), the induction axiom I.2.4(ii), and some set existence axioms. The various subsystems will differ from each other only with respect to their set existence axioms. Recall from §I. 1 that our Main Question concerns the role of set existence axioms in ordinary mathematics. Thus, a principal theme of this book will be the formal development of specific portions of ordinary mathematics within specific subsystems of Z_{2}. We shall see that subsystems of Z_{2} provide a setting in which the Main Question can be investigated in a precise and fruitful way. Although Z_{2} has infinitely many subsystems, it will turn out that only a handful of them are useful in our study of the Main Question.

Notes for $\S \mathbf{I}$.2. The formal system Z_{2} of second order arithmetic was introduced in Hilbert/Bernays [115] (in an equivalent form, using a somewhat different language and axioms). The development of a portion of ordinary mathematics within Z_{2} is outlined in Supplement IV of Hilbert/Bernays [115]. The present book may be regarded as a continuation of the research begun by Hilbert and Bernays.

I.3. The System $A C A_{0}$

The previous section contained generalities about subsystems of Z_{2}. The purpose of this section is to introduce a particular subsystem of Z_{2} which is of central importance, namely ACA_{0}.

In our designation ACA_{0}, the acronym ACA stands for arithmetical comprehension axiom. This is because ACA_{0} contains axioms asserting the existence of any set which is arithmetically definable from given sets (in a sense to be made precise below). The subscript 0 denotes restricted induction. This means that ACA_{0} does not include the full second order induction scheme (as defined in §I.2). We assume only the induction axiom I.2.4(ii).

We now proceed to the definition of ACA_{0}.
Definition I.3.1 (arithmetical formulas). A formula of L_{2}, or more generally a formula of $\mathrm{L}_{2}\left(|M| \cup \mathcal{S}_{M}\right)$ where M is any L_{2}-structure, is said to be arithmetical if it contains no set quantifiers, i.e., all of the quantifiers appearing in the formula are number quantifiers.

Note that arithmetical formulas of L_{2} may contain free set variables, as well as free and bound number variables and number quantifiers. Arithmetical formulas of $\mathrm{L}_{2}\left(|M| \cup \mathcal{S}_{M}\right)$ may additionally contain set parameters and number parameters, i.e., constant symbols denoting fixed elements of \mathcal{S}_{M} and $|M|$ respectively.

Examples of arithmetical formulas of L_{2} are

$$
\forall n(n \in X \rightarrow \exists m(m+m=n))
$$

asserting that all elements of the set X are even, and

$$
\forall m \forall k(n=m \cdot k \rightarrow(m=1 \vee k=1)) \wedge n>1 \wedge n \in X
$$

asserting that n is a prime number and is an element of X. An example of a non-arithmetical formula is

$$
\exists Y \forall n(n \in X \leftrightarrow \exists i \exists j(i \in Y \wedge j \in Y \wedge i+n=j))
$$

asserting that X is the set of differences of elements of some set Y.
Definition I.3.2 (arithmetical comprehension). The arithmetical comprehension scheme is the restriction of the comprehension scheme I.2.4(iii) to arithmetical formulas $\varphi(n)$. Thus we have the universal closure of

$$
\exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

whenever $\varphi(n)$ is a formula of L_{2} which is arithmetical and in which X does not occur freely. ACA_{0} is the subsystem of Z_{2} whose axioms are the arithmetical comprehension scheme, the induction axiom I.2.4(ii), and the basic axioms I.2.4(i).

Note that an L_{2}-structure

$$
M=\left(|M|, \mathcal{S}_{M},+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right)
$$

satisfies the arithmetical comprehension scheme if and only if \mathcal{S}_{M} contains all subsets of $|M|$ which are definable over M by arithmetical formulas with parameters from $|M| \cup \mathcal{S}_{M}$. Thus, a model of ACA_{0} is any such L_{2}-structure which in addition satisfies the induction axiom and the basic axioms.

An easy consequence of the arithmetical comprehension scheme and the induction axiom is the arithmetical induction scheme:

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \varphi(n)
$$

for all L_{2}-formulas $\varphi(n)$ which are arithmetical. Thus any model of ACA_{0} is also a model of the arithmetical induction scheme. (Note however that ACA_{0} does not include the second order induction scheme, as defined in §I.2.)

Remark I.3.3 (first order arithmetic). We wish to remark that there is a close relationship between $A C A_{0}$ and first order arithmetic. Let L_{1} be the language of first order arithmetic, i.e., L_{1} is just L_{2} with the set variables omitted. First order arithmetic is the formal system Z_{1} whose language is L_{1} and whose axioms are the basic axioms I.2.4(i) plus the first order induction scheme:

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \varphi(n)
$$

for all L_{1}-formulas $\varphi(n)$. In the literature of mathematical logic, first order arithmetic is sometimes known as Peano arithmetic, PA. By the previous paragraph, every theorem of Z_{1} is a theorem of ACA_{0}. In model-theoretic terms, this means that for any model $\left(|M|, \mathcal{S}_{M},+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right)$ of ACA_{0}, its first order part $\left(|M|,+_{M},{ }_{M}, 0_{M}, 1_{M},<_{M}\right)$ is a model of Z_{1}. In §IX. 1 we shall prove a converse to this result: Given a model

$$
\begin{equation*}
\left(|M|,+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right) \tag{1}
\end{equation*}
$$

of first order arithmetic, we can find $\mathcal{S}_{M} \subseteq P(|M|)$ such that

$$
\left(|M|, \mathcal{S}_{M},+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right)
$$

is a model of ACA_{0}. (Namely, we can take $\mathcal{S}_{M}=\operatorname{Def}(M)=$ the set of all $A \subseteq|M|$ such that A is definable over (1) allowing parameters from $|M|$.) It follows that, for any L_{1}-sentence σ, σ is a theorem of ACA_{0} if and only if σ is a theorem of \mathbf{Z}_{1}. In other words, ACA_{0} is a conservative extension of first order arithmetic. This may also be expressed by saying that Z_{1}, or equivalently PA, is the first order part of ACA_{0}. For details, see §IX.1.

REmark I.3.4 (ω-models of ACA $_{0}$). Assuming familiarity with some basic concepts of recursive function theory, we can characterize the ω-models of ACA_{0} as follows. $\mathcal{S} \subseteq P(\omega)$ is an ω-model of ACA_{0} if and only if
(i) $\mathcal{S} \neq \emptyset$;
(ii) $A \in \mathcal{S}$ and $B \in \mathcal{S}$ imply $A \oplus B \in \mathcal{S}$;
(iii) $A \in \mathcal{S}$ and $B \leq_{\mathrm{T}} A$ imply $B \in \mathcal{S}$;
(iv) $A \in \mathcal{S}$ implies $\operatorname{TJ}(A) \in \mathcal{S}$.
(This result is proved in §VIII.1.)
Here $A \oplus B$ is the recursive join of A and B, defined by

$$
A \oplus B=\{2 n: n \in A\} \cup\{2 n+1: n \in B\}
$$

$B \leq_{\mathrm{T}} A$ means that B is Turing reducible to A, i.e., B is recursive in A, i.e., the characteristic function of B is computable assuming an oracle for the characteristic function of $A . \mathrm{TJ}(A)$ denotes the Turing jump of A, i.e., the complete recursively enumerable set relative to A.

In particular, ACA_{0} has a minimum (i.e., unique smallest) ω-model, namely

$$
\mathrm{ARITH}=\left\{A \in P(\omega): \exists n \in \omega\left(A \leq_{\mathrm{T}} \mathrm{TJ}(n, \emptyset)\right)\right\}
$$

where $\operatorname{TJ}(n, X)$ is defined inductively by $\operatorname{TJ}(0, X)=X, \operatorname{TJ}(n+1, X)=$ $\operatorname{TJ}(\mathrm{TJ}(n, X))$. More generally, given a set $B \in P(\omega)$, there is a unique smallest ω-model of ACA_{0} containing B, consisting of all sets which are arithmetical in B. (For $A, B \in P(\omega)$, we say that A is arithmetical in B if $A \leq_{\mathrm{T}} \mathrm{TJ}(n, B)$ for some $n \in \omega$. This is equivalent to saying that A is definable in some or any ω-model $(\omega, \mathcal{S},+, \cdot, 0,1,<), B \in \mathcal{S} \subseteq P(\omega)$, by an arithmetical formula with B as a parameter.)

Models of ACA_{0} are discussed further in $\S \S V I I I .1$, IX.1, and IX.4. The development of ordinary mathematics within ACA $_{0}$ is discussed in \S I. 4 and in chapters II, III, and IV.

Notes for $\S \mathbf{I}$.3. By remark I.3.3, the system ACA $_{0}$ is closely related to first order arithmetic. First order arithmetic is one of the best known and most studied formal systems in the literature of mathematical logic. See for instance Hilbert/Bernays [115], Mendelson [185, chapter 3], Takeuti [261, chapter 2], Shoenfield [222, chapter 8], Hájek/Pudlák [100], and Kaye [137]. By remark I.3.4, ω-models of ACA_{0} are closely related to basic concepts of recursion theory such as relative recursiveness, the Turing jump operator, and the arithmetical hierarchy. For an introduction to these concepts, see for instance Rogers [208, chapters 13-15], Shoenfield [222, chapter 7], Cutland [43], or Lerman [161, chapters I-III].

I.4. Mathematics Within $A C A_{0}$

The formal system $A C A_{0}$ was introduced in the previous section. We now outline the development of certain portions of ordinary mathematics within ACA_{0}. The material presented in this section will be restated and greatly refined and extended in chapters II, III, and IV. The present discussion is intended as a partial preview of those chapters.

If X and Y are set variables, we use $X=Y$ and $X \subseteq Y$ as abbreviations for the formulas $\forall n(n \in X \leftrightarrow n \in Y)$ and $\forall n(n \in X \rightarrow n \in Y)$ respectively.

Within ACA_{0}, we define \mathbb{N} to be the unique set X such that $\forall n(n \in X)$. (The existence of this set follows from arithmetical comprehension applied to the formula $\varphi(n) \equiv n=n$.) Thus, in any model

$$
M=\left(|M|, \mathcal{S}_{M},+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right)
$$

of $\mathrm{ACA}_{0}, \mathbb{N}$ denotes $|M|$, the set of natural numbers in the sense of M, and we have $|M| \in \mathcal{S}_{M}$. We shall distinguish between \mathbb{N} and ω, reserving ω to
denote the set of natural numbers in the sense of "the real world," i.e., the metatheory in which we are working, whatever that metatheory might be.

Within ACA_{0}, we define a numerical pairing function by

$$
(m, n)=(m+n)^{2}+m .
$$

Within ACA_{0} we can prove that, for all $m, n, i, j \in \mathbb{N},(m, n)=(i, j)$ if and only if $m=i$ and $n=j$. Moreover, using arithmetical comprehension, we can prove that for all sets $X, Y \subseteq \mathbb{N}$, there exists a set $X \times Y \subseteq \mathbb{N}$ consisting of all (m, n) such that $m \in X$ and $n \in Y$. In particular we have $\mathbb{N} \times \mathbb{N} \subseteq \mathbb{N}$.

For $X, Y \subseteq \mathbb{N}$, a function $f: X \rightarrow Y$ is defined to be a set $f \subseteq X \times Y$ such that for all $m \in X$ there is exactly one $n \in Y$ such that $(m, n) \in f$. For $m \in X, f(m)$ is defined to be the unique n such that $(m, n) \in f$. The usual properties of such functions can be proved in ACA_{0}. In particular, we have primitive recursion. This means that, given $f: X \rightarrow Y$ and g : $\mathbb{N} \times X \times Y \rightarrow Y$, there is a unique $h: \mathbb{N} \times X \rightarrow Y$ defined by $h(0, m)=f(m)$, $h(n+1, m)=g(n, m, h(n, m))$ for all $n \in \mathbb{N}$ and $m \in X$. The existence of h is proved by arithmetical comprehension, and the uniqueness of h is proved by arithmetical induction. (For details, see §II.3.) In particular, we have the exponential function $\exp (m, n)=m^{n}$, defined by $m^{0}=1$, $m^{n+1}=m^{n} \cdot m$ for all $m, n \in \mathbb{N}$. The usual properties of the exponential function can be proved in ACA_{0}.

In developing ordinary mathematics within ACA_{0}, our first major task is to set up the number systems, i.e., the natural numbers, the integers, the rational number system, and the real number system.

The natural number system is essentially already given to us by the language and axioms of ACA_{0}. Thus, within ACA_{0}, a natural number is defined to be an element of \mathbb{N}, and the natural number system is defined to be the structure $\mathbb{N},+_{\mathbb{N}}, \cdot_{\mathbb{N}}, 0_{\mathbb{N}}, 1_{\mathbb{N}},<_{\mathbb{N}},=_{\mathbb{N}}$, where $+_{\mathbb{N}}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined by $m+_{\mathbb{N}} n=m+n$, etc. (Thus for instance $+_{\mathbb{N}}$ is the set of triples $((m, n), k) \in(\mathbb{N} \times \mathbb{N}) \times \mathbb{N}$ such that $m+n=k$. The existence of this set follows from arithmetical comprehension.) This means that, when we are working within any particular model $M=\left(|M|, \mathcal{S}_{M},+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right)$ of ACA_{0}, a natural number is any element of $|M|$, and the role of the natural number system is played by $|M|,+_{M},{ }_{M}, 0_{M}, 1_{M},<_{M},=_{M}$. (Here $=_{M}$ is the identity relation on $|M|$.)

Basic properties of the natural number system, such as uniqueness of prime power decomposition, can be proved in ACA_{0} using arithmetical induction. (Here one can follow the usual development within first order arithmetic, as presented in textbooks of mathematical logic. Alternatively, see chapter II.)

In order to define the set \mathbb{Z} of integers within (any model of) $A C A_{0}$, we first use arithmetical comprehension to prove the existence of an equivalence relation $\equiv_{\mathbb{Z}} \subseteq(\mathbb{N} \times \mathbb{N}) \times(\mathbb{N} \times \mathbb{N})$ defined by $(m, n) \equiv_{\mathbb{Z}}(i, j)$ if and only if $m+j=n+i$. We then use arithmetical comprehension again, this time with $\equiv_{\mathbb{Z}}$ as a parameter, to prove the existence of the set \mathbb{Z} consisting of all $(m, n) \in \mathbb{N} \times \mathbb{N}$ such that that (m, n) is the minimum element of its equivalence class with respect to $\equiv_{\mathbb{Z}}$. (Here minimality is taken with respect to $<_{\mathbb{N}}$, using the fact that $\mathbb{N} \times \mathbb{N}$ is a subset of \mathbb{N}. Thus \mathbb{Z} consists of one element of each $\equiv_{\mathbb{Z}}$-equivalence class.) Define $+_{\mathbb{Z}}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ by letting $(m, n)+_{\mathbb{Z}}(i, j)$ be the unique element of \mathbb{Z} such that $(m, n)+_{\mathbb{Z}}(i, j) \equiv_{\mathbb{Z}}(m+i, n+j)$. Here again arithmetical comprehension is used to prove the existence of $+_{\mathbb{Z}}$. Similarly, define $-_{\mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{Z}$ by $-_{\mathbb{Z}}(m, n) \equiv_{\mathbb{Z}}(n, m)$, and define $\cdot \mathbb{Z}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ by $(m, n) \cdot \mathbb{Z}(i, j) \equiv_{\mathbb{Z}}(m i+n j, m j+n i)$. Let $0_{\mathbb{Z}}=(0,0)$ and $1_{\mathbb{Z}}=(1,0)$. Define a relation $<_{\mathbb{Z}} \subseteq \mathbb{Z} \times \mathbb{Z}$ by letting $(m, n)<_{\mathbb{Z}}(i, j)$ if and only if $m+j<n+i$. Finally, let $=_{\mathbb{Z}}$ be the identity relation on \mathbb{Z}. This completes our definition of the system of integers within ACA_{0}. We can prove within ACA_{0} that the system $\mathbb{Z},+_{\mathbb{Z}},-_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, 0_{\mathbb{Z}}, 1_{\mathbb{Z}},<_{\mathbb{Z}},=_{\mathbb{Z}}$ has the usual properties of an ordered integral domain, the Euclidean property, etc.

In a similar manner, we can define within ACA_{0} the set of rational numbers, \mathbb{Q}. Let $\mathbb{Z}^{+}=\left\{a \in \mathbb{Z}: 0<_{\mathbb{Z}} a\right\}$ be the set of positive integers, and let $\equiv_{\mathbb{Q}}$ be the equivalence relation on $\mathbb{Z} \times \mathbb{Z}^{+}$defined by $(a, b) \equiv_{\mathbb{Q}}(c, d)$ if and only if $a \cdot \mathbb{Z} d=b \cdot \mathbb{Z} c$. Then \mathbb{Q} is defined to be the set of all $(a, b) \in \mathbb{Z} \times \mathbb{Z}^{+}$such that (a, b) is the $<_{\mathbb{N}}$-minimum element of its $\equiv_{\mathbb{Q}}$-equivalence class. Operations $+_{\mathbb{Q}},-_{\mathbb{Q}}, \cdot \mathbb{Q}$ on \mathbb{Q} are defined by $(a, b)+_{\mathbb{Q}}(c, d) \equiv_{\mathbb{Q}}\left(a \cdot \mathbb{Z} d+_{\mathbb{Z}} b \cdot \mathbb{Z} c, b \cdot \mathbb{Z} d\right)$, $-_{\mathbb{Q}}(a, b) \equiv_{\mathbb{Q}}\left(-_{\mathbb{Z}} a, b\right)$, and $(a, b) \cdot \mathbb{Q}(c, d) \equiv_{\mathbb{Q}}(a \cdot \mathbb{Z} c, b \cdot \mathbb{Z} d)$. We let $0_{\mathbb{Q}} \equiv_{\mathbb{Q}}$ $\left(0_{\mathbb{Z}}, 1_{\mathbb{Z}}\right)$ and $1_{\mathbb{Q}} \equiv_{\mathbb{Q}}\left(1_{\mathbb{Z}}, 1_{\mathbb{Z}}\right)$, and we define a binary relation $<_{\mathbb{Q}}$ on \mathbb{Q} by letting $(a, b)<_{\mathbb{Q}}(c, d)$ if and only if $a \cdot_{\mathbb{Z}} d<_{\mathbb{Z}} b \cdot \mathbb{Z} c$. Finally $=_{\mathbb{Q}}$ is the identity relation on \mathbb{Q}. We can then prove within ACA_{0} that the rational number system $\mathbb{Q},+_{\mathbb{Q}},-_{\mathbb{Q}}, \cdot_{\mathbb{Q}}, 0_{\mathbb{Q}}, 1_{\mathbb{Q}},<_{\mathbb{Q}},=_{\mathbb{Q}}$ has the usual properties of an ordered field, etc.

We make the usual identifications whereby \mathbb{N} is regarded as a subset of \mathbb{Z} and \mathbb{Z} is regarded as a subset of \mathbb{Q}. (Namely $m \in \mathbb{N}$ is identified with $(m, 0) \in \mathbb{Z}$, and $a \in \mathbb{Z}$ is identified with $\left(a, 1_{\mathbb{Z}}\right) \in \mathbb{Q}$.) We use + ambiguously to denote $+_{\mathbb{N}},+_{\mathbb{Z}}$, or $+_{\mathbb{Q}}$ and similarly for $-, \cdot, 0,1,<$. For $q, r \in \mathbb{Q}$ we write $q-r=q+(-r)$, and if $r \neq 0, q / r=$ the unique $q^{\prime} \in \mathbb{Q}$ such that $q=q^{\prime} \cdot r$. The function $\exp (q, a)=q^{a}$ for $q \in \mathbb{Q} \backslash\{0\}$ and $a \in \mathbb{Z}$ is obtained by primitive recursion in the obvious way. The absolute value function $\|: \mathbb{Q} \rightarrow \mathbb{Q}$ is defined by $|q|=q$ if $q \geq 0,-q$ otherwise.

Remark I.4.1. The idea behind our definitions of \mathbb{Z} and \mathbb{Q} within $A C A_{0}$ is that $(m, n) \in \mathbb{N} \times \mathbb{N}$ corresponds to the integer $m-n$, while $(a, b) \in \mathbb{Z} \times \mathbb{Z}^{+}$ corresponds to the rational number a / b. Our treatment of \mathbb{Z} and \mathbb{Q} is
similar to the classical Dedekind construction. The major difference is that we define \mathbb{Z} and \mathbb{Q} to be sets of representatives of the equivalence classes of $\equiv_{\mathbb{Z}}$ and $\equiv_{\mathbb{Q}}$ respectively, while Dedekind uses the equivalence classes themselves. Our reason for using representatives is that we are limited to the language of second order arithmetic, while Dedekind was working in a richer set-theoretic context.

A sequence of rational numbers is defined to be a function $f: \mathbb{N} \rightarrow \mathbb{Q}$. We denote such a sequence as $\left\langle q_{n}: n \in \mathbb{N}\right\rangle$, or simply $\left\langle q_{n}\right\rangle$, where $q_{n}=f(n)$. Similarly, a double sequence of rational numbers is a function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$, denoted $\left\langle q_{m n}: m, n \in \mathbb{N}\right\rangle$ or simply $\left\langle q_{m n}\right\rangle$, where $q_{m n}=f(m, n)$.

Definition I. 4.2 (real numbers). Within ACA_{0}, a real number is defined to be a Cauchy sequence of rational numbers, i.e., a sequence of rational numbers $x=\left\langle q_{n}: n \in \mathbb{N}\right\rangle$ such that

$$
\forall \epsilon\left(\epsilon>0 \rightarrow \exists m \forall n\left(m<n \rightarrow\left|q_{m}-q_{n}\right|<\epsilon\right)\right) .
$$

(But see remark I.4.4 below.) Here ϵ ranges over \mathbb{Q}. If $x=\left\langle q_{n}\right\rangle$ and $y=\left\langle q_{n}^{\prime}\right\rangle$ are real numbers, we write $x=\mathbb{R}_{\mathbb{R}} y$ to mean that $\lim _{n}\left|q_{n}-q_{n}^{\prime}\right|=0$, i.e.,

$$
\forall \epsilon\left(\epsilon>0 \rightarrow \exists m \forall n\left(m<n \rightarrow\left|q_{n}-q_{n}^{\prime}\right|<\epsilon\right)\right),
$$

and we write $x<_{\mathbb{R}} y$ to mean that

$$
\exists \epsilon\left(\epsilon>0 \wedge \exists m \forall n\left(m<n \rightarrow q_{n}+\epsilon<q_{n}^{\prime}\right)\right)
$$

Also $x+_{\mathbb{R}} y=\left\langle q_{n}+q_{n}^{\prime}\right\rangle, x \cdot \mathbb{R} y=\left\langle q_{n} \cdot q_{n}^{\prime}\right\rangle,-_{\mathbb{R}} x=\left\langle-q_{n}\right\rangle, 0_{\mathbb{R}}=\langle 0\rangle, 1_{\mathbb{R}}=\langle 1\rangle$.
Informally, we use \mathbb{R} to denote the set of all real numbers. Thus $x \in \mathbb{R}$ means that x is a real number. (Formally, we cannot speak of the set \mathbb{R} within the language of second order arithmetic, since it is a set of sets.) We shall usually omit the subscript \mathbb{R} in $+_{\mathbb{R}},-_{\mathbb{R}},,_{\mathbb{R}}, 0_{\mathbb{R}}, 1_{\mathbb{R}},<_{\mathbb{R}},=_{\mathbb{R}}$. Thus the real number system consists of $\mathbb{R},+,-, \cdot, 0,1,<,=$. We shall sometimes identify a rational number $q \in \mathbb{Q}$ with the corresponding real number $x_{q}=$ $\langle q\rangle$.

Remark I.4.3. Note that we have not attempted to select elements of the $=\mathbb{R}_{\mathbb{R}}$-equivalence classes. The reason is that there is no convenient way to do so in ACA_{0}. Instead, we must accustom ourselves to the fact that $=$ on $\mathbb{R}\left(\right.$ i.e., $\left.=_{\mathbb{R}}\right)$ is an equivalence relation other than the identity relation. This will not cause any serious difficulties.

REmark I.4.4. The above definition of the real number system is similar but not identical to the one which we shall actually use in our detailed discussion of ordinary mathematics within ACA_{0}, chapters II through IV. The reason for the discrepancy is that the above definition, while suitable for use in ACA_{0} and intuitively appealing, is not suitable for use in weaker systems such as $R C A_{0}$. (RCA_{0} will be introduced in $\S \S \mathrm{I} .7$ and I. 8 below.)

The definition used for the detailed development is slightly less natural, but it has the advantage of working smoothly in weaker systems. In any case, the two definitions are equivalent over $A C A_{0}$, equivalent in the sense that the two versions of the real number system which they define can be proved in $A C A_{0}$ to be isomorphic.

Within ACA_{0} one can prove that the real number system has the usual properties of an Archimedean ordered field, etc. The complex numbers can be introduced as usual as pairs of real numbers. Within ACA_{0}, it is straightforward to carry out the proofs of all the basic results in real and complex linear and polynomial algebra. For example, the fundamental theorem of algebra can be proved in ACA_{0}.

A sequence of real numbers is defined to be a double sequence of rational numbers $\left\langle q_{m n}: m, n \in \mathbb{N}\right\rangle$ such that for each $m,\left\langle q_{m n}: n \in \mathbb{N}\right\rangle$ is a real number. Such a sequence of real numbers is denoted $\left\langle x_{m}: m \in \mathbb{N}\right\rangle$, where $x_{m}=\left\langle q_{m n}: n \in \mathbb{N}\right\rangle$. Within ACA_{0} we can prove that every bounded sequence of real numbers has a least upper bound. This is a very useful completeness property of the real number system. For instance, it implies that an infinite series of positive terms is convergent if and only if the finite partial sums are bounded. (Stronger completeness properties for the most part cannot be proved in ACA_{0}.)

We now turn to abstract algebra within ACA_{0}. Because of the restriction to the language of second order arithmetic, we cannot expect to obtain a good general theory of arbitrary (countable and uncountable) algebraic structures. However, we can develop countable algebra, i.e., the theory of countable algebraic structures, within ACA_{0}.

For instance, a countable commutative ring is defined within $A C A_{0}$ to be a structure $R,+_{R},-_{R},{ }_{R}, 0_{R}, 1_{R}$, where $R \subseteq \mathbb{N},+_{R}: R \times R \rightarrow R$, etc., and the usual commutative ring axioms are assumed. (We include $0 \neq 1$ among those axioms.) The subscript R is usually omitted. (An example is the ring of integers, $\mathbb{Z},+_{\mathbb{Z}},-_{\mathbb{Z}},{ }_{\mathbb{Z}}, 0_{\mathbb{Z}}, 1_{\mathbb{Z}}$, which was introduced above.) An ideal in R is a set $I \subseteq R$ such that $a \in I$ and $b \in I$ imply $a+b \in I, a \in I$ and $r \in R$ imply $a \cdot r \in I$, and $0 \in I$ and $1 \notin I$. We define an equivalence relation $={ }_{I}$ on R by $r={ }_{I} s$ if and only if $r-s \in I$. We let R / I be the set of $r \in R$ such that r is the $<_{\mathbb{N}}$-minimum element of its equivalence class under $={ }_{I}$. Thus R / I consists of one element of each $={ }_{I}$-equivalence class of elements of R. With the appropriate operations, R / I becomes a countable commutative ring, the quotient ring of R by I. The ideal I is said to be prime if R / I is an integral domain, and maximal if R / I is a field. With these definitions, the countable case of many basic results of commutative algebra can be proved in ACA $_{0}$. See $\S \S$ III. 5 and IV. 6.

Other countable algebraic structures, e.g., countable groups, can be defined and discussed in a similar manner, within ACA_{0}. Countable fields
are discussed in $\S \S I I .9$, IV. 4 and IV. 5 , and countable vector spaces are discussed in \S III.4. It turns out that part of the theory of countable Abelian groups can be developed in ACA_{0}, but other parts of the theory require stronger systems. See $\S \S I I I .6$, V. 7 and VI.4.

Next we indicate how some basic concepts and results of analysis and topology can be developed within ACA_{0}.

Definition I. 4.5 (complete separable metric spaces). Within ACA $_{0}$, a (code for a) complete separable metric space is a nonempty set $A \subseteq \mathbb{N}$ together with a function $d: A \times A \rightarrow \mathbb{R}$ satisfying $d(a, a)=0, d(a, b)=d(b, a) \geq 0$, and $d(a, c) \leq d(a, b)+d(b, c)$ for all $a, b, c \in A$. (Formally, d is a sequence of real numbers, indexed by $A \times A$.) We define a point of the complete separable metric space \widehat{A} to be a sequence $x=\left\langle a_{n}: n \in \mathbb{N}\right\rangle, a_{n} \in A$, satisfying

$$
\forall \epsilon\left(\epsilon>0 \rightarrow \exists m \forall n\left(m<n \rightarrow d\left(a_{m}, a_{n}\right)<\epsilon\right)\right)
$$

The pseudometric d is extended from A to \widehat{A} by

$$
d(x, y)=\lim _{n} d\left(a_{n}, b_{n}\right)
$$

where $x=\left\langle a_{n}: n \in \mathbb{N}\right\rangle$ and $y=\left\langle b_{n}: n \in \mathbb{N}\right\rangle$. We write $x=y$ if and only if $d(x, y)=0$.

For example, $\mathbb{R}=\widehat{\mathbb{Q}}$ under the metric $d\left(q, q^{\prime}\right)=\left|q-q^{\prime}\right|$.
The idea of the above definition is that a complete separable metric space \widehat{A} is presented by specifying a countable dense set A together with the restriction of the metric to A. Then \widehat{A} is defined as the completion of A under the restricted metric. Just as in the case of the real number system, several difficulties arise from the circumstance that $A C A_{0}$ is formalized in the language of second order arithmetic. First, there is no variable or term that can denote the set of all points in \widehat{A} (although we can use notations such as $x \in \widehat{A}$, meaning that x is a point of $\widehat{A})$. Second, equality for points of \widehat{A} is an equivalence relation other than the identity relation. These difficulties are minor and do not seriously affect the content of the mathematical development concerning complete separable metric spaces within ACA_{0}. They only affect the outward form of that development. A more important limitation is that, in the language of second order arithmetic, we cannot speak at all about nonseparable metric spaces. This remark is related to our remarks in §I. 1 about set-theoretic versus "ordinary" or non-set-theoretic mathematics.

Definition I. 4.6 (continuous functions). Within ACA_{0}, if \widehat{A} and \widehat{B} are complete separable metric spaces, a (code for a) continuous function ϕ : $\widehat{A} \rightarrow \widehat{B}$ is a set $\Phi \subseteq A \times \mathbb{Q}^{+} \times B \times \mathbb{Q}^{+}$satisfying the following coherence conditions:

1. $(a, r, b, s) \in \Phi$ and $\left(a, r, b^{\prime}, s^{\prime}\right) \in \Phi$ imply $d\left(b, b^{\prime}\right)<s+s^{\prime}$;
2. $(a, r, b, s) \in \Phi$ and $d\left(b, b^{\prime}\right)+s<s^{\prime}$ imply $\left(a, r, b^{\prime}, s^{\prime}\right) \in \Phi$;
3. $(a, r, b, s) \in \Phi$ and $d\left(a, a^{\prime}\right)+r^{\prime}<r$ imply $\left(a^{\prime}, r^{\prime}, b, s\right) \in \Phi$.

Here a^{\prime} ranges over A, b^{\prime} ranges over B, and r^{\prime} and s^{\prime} range over

$$
\mathbb{Q}^{+}=\{q \in \mathbb{Q}: q>0\}
$$

the positive rational numbers. In addition we require: for all $x \in \widehat{A}$ and $\epsilon>0$ there exists $(a, r, b, s) \in \Phi$ such that $d(a, x)<r$ and $s<\epsilon$.

We can prove in ACA_{0} that for all $x \in \widehat{A}$ there exists $y \in \widehat{B}$ such that $d(b, y) \leq s$ for all $(a, r, b, s) \in \Phi$ such that $d(a, x)<r$. This y is unique up to equality of points in \widehat{B}, and we define $\phi(x)=y$. It can be shown that $x=x^{\prime}$ implies $\phi(x)=\phi\left(x^{\prime}\right)$.

The idea of the above definition is that $(a, r, b, s) \in \Phi$ is a neighborhood condition giving us a piece of information about the continuous function $\phi: \widehat{A} \rightarrow \widehat{B}$. Namely, $(a, r, b, s) \in \Phi$ tells us that for all $x \in \widehat{A}, d(x, a)<r$ implies $d(\phi(x), b) \leq s$. The code Φ consists of sufficiently many neighborhood conditions so as to determine $\phi(x) \in \widehat{B}$ for all $x \in \widehat{A}$.

Taking $\widehat{A}=\mathbb{R}^{n}$ and $\widehat{B}=\mathbb{R}$ in the above definition, we obtain a concept of continuous real-valued function of n real variables. Using this, the theory of differential and integral equations, calculus of variations, etc., can be developed as usual, within ACA_{0}. For instance, the Ascoli lemma can be proved in ACA_{0} and then used to obtain the Peano existence theorem for solutions of ordinary differential equations (see $\S \S$ III. 2 and IV.8).

Definition I.4.7 (open sets). Within ACA_{0}, let \widehat{A} be a complete separable metric space. A (code for an) open set in \widehat{A} is any set $U \subseteq A \times \mathbb{Q}^{+}$. For $x \in \widehat{A}$ we write $x \in U$ if and only if $d(x, a)<r$ for some $(a, r) \in U$.

The idea of definition I.4.7 is that $(a, r) \in A \times \mathbb{Q}^{+}$is a code for a neighborhood or basic open set $\mathrm{B}(a, r)$ in \widehat{A}. Here $x \in \mathrm{~B}(a, r)$ if and only if $d(a, x)<r$. An open set U is then defined as a union of basic open sets.

With definitions I.4.6 and I.4.7, the usual proofs of fundamental topological results can be carried out within ACA_{0}, for the case of complete separable metric spaces. For instance, the Baire category theorem and the Tietze extension theorem go through in this setting (see §§II.5, II.6, and II.7).

A separable Banach space is defined within ACA_{0} to be a complete separable metric space \widehat{A} arising from a countable pseudonormed vector space A over the rational field \mathbb{Q}. For example, let $A=\mathbb{Q}[x]$ be the ring of polynomials in one variable x over \mathbb{Q}. With the metric

$$
d(f, g)=\left[\int_{0}^{1}|f(x)-g(x)|^{p} d x\right]^{1 / p}
$$

$1 \leq p<\infty$, we have $\widehat{A}=\mathrm{L}_{p}[0,1]$. Similarly, with the metric

$$
d(f, g)=\sup _{0 \leq x \leq 1}|f(x)-g(x)|
$$

we have $\widehat{A}=\mathrm{C}[0,1]$. As suggested by these examples, the basic theory of separable Banach and Frechet spaces can be developed formally within ACA_{0}. In particular, the Hahn/Banach theorem, the open mapping theorem, and the Banach/Steinhaus uniform boundedness principle can be proved in this setting (see $\S \S$ II.10, IV.9, X.2).

Remark I.4.8. As in remark I.4.4, the above definitions of complete separable metric space, continuous function, open set, and separable Banach space are not the ones which we shall actually use in our detailed development in chapters II, III, and IV. However, the two sets of definitions are equivalent in ACA_{0}.

Notes for §I.4. The observation that a great deal of ordinary mathematics can be developed formally within a system something like ACA $_{0}$ goes back to Weyl [274]; see also definition X.3.2. See also Takeuti [260] and Zahn [281].

I.5. $\Pi_{1}^{1}-C A_{0}$ and Stronger Systems

In this section we introduce $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and some other subsystems of Z_{2}. These systems are much stronger than $A C A_{0}$.

Definition I.5.1 (Π_{1}^{1} formulas). A formula φ is said to be Π_{1}^{1} if it is of the form $\forall X \theta$, where X is a set variable and θ is an arithmetical formula. A formula φ is said to be Σ_{1}^{1} if it is of the form $\exists X \theta$, where X is a set variable and θ is an arithmetical formula.

More generally, for $0 \leq k \in \omega$, a formula φ is said to be Π_{k}^{1} if it is of the form

$$
\forall X_{1} \exists X_{2} \forall X_{3} \cdots X_{k} \theta
$$

where X_{1}, \ldots, X_{k} are set variables and θ is an arithmetical formula. A formula φ is said to be Σ_{k}^{1} if it is of the form

$$
\exists X_{1} \forall X_{2} \exists X_{3} \cdots X_{k} \theta
$$

where X_{1}, \ldots, X_{k} are set variables and θ is an arithmetical formula. In both cases, φ consists of k alternating set quantifiers followed by a formula with no set quantifiers. In the Π_{k}^{1} case, the first set quantifier is universal, while in the Σ_{k}^{1} case it is existential (assuming $k \geq 1$). Thus for instance a Π_{2}^{1} formula is of the form $\forall X \exists Y \theta$, and a Σ_{2}^{1} formula is of the form
$\exists X \forall Y \theta$, where θ is arithmetical. A Π_{0}^{1} or Σ_{0}^{1} formula is the same thing as an arithmetical formula.

The equivalences $\neg \forall X \varphi \equiv \exists X \neg \varphi, \neg \exists X \varphi \equiv \forall X \neg \varphi$, and $\neg \neg \varphi \equiv \varphi$ imply that any Π_{k}^{1} formula is logically equivalent to the negation of a Σ_{k}^{1} formula, and vice versa. Moreover, using Π_{k}^{1} (respectively Σ_{k}^{1}) to denote the class of formulas logically equivalent to a Π_{k}^{1} formula (respectively a Σ_{k}^{1} formula), we have

$$
\Pi_{k}^{1} \cup \Sigma_{k}^{1} \subseteq \Pi_{k+1}^{1} \cap \Sigma_{k+1}^{1}
$$

for all $k \in \omega$. (This is proved by introducing dummy quantifiers.)
The hierarchy of L_{2}-formulas $\Pi_{k}^{1}, k \in \omega$, is closely related to the projective hierarchy in descriptive set theory.

Definition I.5.2 (Π_{1}^{1} and Π_{k}^{1} comprehension). Π_{1}^{1}-CA A_{0} is the subsystem of Z_{2} whose axioms are the basic axioms I.2.4(i), the induction axiom I.2.4(ii), and the comprehension scheme I.2.4(iii) restricted to L_{2}-formulas $\varphi(n)$ which are Π_{1}^{1}. Thus we have the universal closure of

$$
\exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

for all Π_{1}^{1} formulas $\varphi(n)$ in which X does not occur freely.
The systems $\Pi_{k}^{1}-\mathrm{CA}_{0}, k \in \omega$, are defined similarly, with Π_{k}^{1} replacing Π_{1}^{1}. In particular $\Pi_{0}^{1}-\mathrm{CA}_{0}$ is just ACA_{0}, and for all $k \in \omega$ we have

$$
\Pi_{k}^{1}-\mathrm{CA}_{0} \subseteq \Pi_{k+1}^{1}-\mathrm{CA}_{0}
$$

It is also clear that

$$
\mathrm{Z}_{2}=\bigcup_{k \in \omega} \Pi_{k}^{1}-\mathrm{CA}_{0}
$$

For this reason, Z_{2} is sometimes denoted $\Pi_{\infty}^{1}-C A_{0}$.
It would be possible to introduce systems $\Sigma_{k}^{1}-\mathrm{CA}_{0}, k \in \omega$, but they would be superfluous, because a simple argument shows that $\Sigma_{k}^{1}-\mathrm{CA}_{0}$ and $\Pi_{k}^{1}-\mathrm{CA}$ are equivalent, i.e., they have the same theorems.
[Namely, given a Σ_{k}^{1} formula $\varphi(n)$, there is a logically equivalent formula $\neg \psi(n)$ where $\psi(n)$ is Π_{k}^{1}. Reasoning within Π_{k}^{1} - CA_{0} and applying Π_{k}^{1} comprehension, we see that there exists a set Y such that

$$
\forall n(n \in Y \leftrightarrow \psi(n)) .
$$

Applying arithmetical comprehension with Y as a parameter, there exists a set X such that

$$
\forall n(n \in X \leftrightarrow n \notin Y) .
$$

Then clearly

$$
\forall n(n \in X \leftrightarrow \varphi(n))
$$

This shows that all the axioms of $\Sigma_{k}^{1}-\mathrm{CA}_{0}$ are theorems of $\Pi_{k}^{1}-\mathrm{CA}_{0}$. The converse is proved similarly.]

We now discuss models of $\Pi_{k}^{1}-\mathrm{CA}_{0}, 1 \leq k \leq \infty$.
As explained in \S I. 3 above, ACA $_{0}$ has a minimum ω-model, and this model is very natural from both the recursion-theoretic and the modeltheoretic points of view. It is therefore reasonable to ask about minimum ω-models of $\Pi_{k}^{1}-\mathrm{CA}_{0}$. It turns out that, for $1 \leq k \leq \infty$, there is no minimum (or even minimal) ω-model of $\Pi_{k}^{1}-\mathrm{CA}_{0}$. These negative results will be proved in §VIII.6. However, we can obtain a positive result by considering β models instead of ω-models. The relevant definition is as follows.

Definition I.5.3 (β-models). A β-model is an ω-model $\mathcal{S} \subseteq P(\omega)$ with the following property. If σ is any Π_{1}^{1} or Σ_{1}^{1} sentence with parameters from \mathcal{S}, then $(\omega, \mathcal{S},+, \cdot, 0,1,<)$ satisfies σ if and only if the intended model

$$
(\omega, P(\omega),+, \cdot, 0,1,<)
$$

satisfies σ.
If T is any subsystem of \mathbf{Z}_{2}, a β-model of T is any β-model satisfying the axioms of T. Chapter VII is a thorough study of β-models of subsystems of Z_{2}.

REmARK I.5.4 (β-models of $\Pi_{1}^{1}-\mathrm{CA}_{0}$). For readers who are familiar with some basic concepts of hyperarithmetical theory, the β-models of $\Pi_{1}^{1}-\mathrm{CA}_{0}$ can be characterized as follows. $\mathcal{S} \subseteq P(\omega)$ is a β-model of $\Pi_{1}^{1}-\mathrm{CA}_{0}$ if and only if
(i) $\mathcal{S} \neq \emptyset$;
(ii) $A \in \mathcal{S}$ and $B \in \mathcal{S}$ imply $A \oplus B \in \mathcal{S}$;
(iii) $A \in \mathcal{S}$ and $B \leq_{\mathrm{H}} A$ imply $B \in \mathcal{S}$;
(iv) $A \in \mathcal{S}$ implies $\operatorname{HJ}(A) \in \mathcal{S}$.

Here $B \leq_{\mathrm{H}} A$ means that B is hyperarithmetical in A, and $\operatorname{HJ}(A)$ denotes the hyperjump of A. In particular, there is a minimum (i.e., unique smallest) β-model of $\Pi_{1}^{1}-\mathrm{CA}_{0}$, namely

$$
\left\{A \in P(\omega): \exists n \in \omega A \leq_{\mathrm{H}} \operatorname{HJ}(n, \emptyset)\right\}
$$

where $\operatorname{HJ}(0, X)=X, \operatorname{HJ}(n+1, X)=\operatorname{HJ}(\operatorname{HJ}(n, X))$. These results will be proved in §VII.1.

REmark I.5.5 (minimum β-models of $\Pi_{k}^{1}-\mathrm{CA}_{0}$). More generally, for each k in the range $1 \leq k \leq \infty$, it can be shown that there exists a minimum β-model of $\Pi_{k}^{1}-\mathrm{CA}_{0}$. These models can be described in terms of Gödel's theory of constructible sets. For any ordinal number α, let L_{α} be the α th level of the constructible hierarchy. Then the minimum β-model of $\Pi_{k}^{1}-\mathrm{CA} A_{0}$ is of the form $\mathrm{L}_{\alpha} \cap P(\omega)$, where $\alpha=\alpha_{k}$ is a countable ordinal number depending on k. Moreover, $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{\infty}$, and the β-models $\mathrm{L}_{\alpha_{k}} \cap P(\omega)$,
$1 \leq k \leq \infty$, are all distinct. (These results are proved in $\S \S$ VII. 5 and VII.7.) It follows that, for each $k, \Pi_{k+1}^{1}-\mathrm{CA}_{0}$ is properly stronger than $\Pi_{k}^{1}-\mathrm{CA}_{0}$.
The development of ordinary mathematics within $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and stronger systems is discussed in $\S \mathrm{I} .6$ and in chapters V and VI. Models of $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and some stronger systems, including but not limited to $\Pi_{k}^{1}-\mathrm{CA}_{0}$ for $k \geq 2$, are discussed in $\S \S$ VII.1, VII.5, VII.6, VII.7, VIII.6, and IX.4. Our treatment of constructible sets is in §VII.4. Our treatment of hyperarithmetical theory is in §VIII.3.
Notes for $\S \mathbf{I} .5$. For an exposition of Gödel's theory of constructible sets, see any good textbook of axiomatic set theory, e.g. Jech [130].

I.6. Mathematics Within $\Pi_{1}^{1}-C A_{0}$

The system $\Pi_{1}^{1}-\mathrm{CA}_{0}$ was introduced in the previous section. We now discuss the development of ordinary mathematics within $\Pi_{1}^{1}-C A_{0}$. The material presented here will be restated and greatly refined and expanded in chapters V and VI.

We have seen in $\S \mathrm{I} .4$ that a large part of ordinary mathematics can already be developed in $A C A_{0}$, a subsystem of Z_{2} which is much weaker than $\Pi_{1}^{1}-C A_{0}$. However, there are certain exceptional theorems of ordinary mathematics which can be proved in $\Pi_{1}^{1}-C A_{0}$ but cannot be proved in $A C A_{0}$. The exceptional theorems come from several branches of mathematics including countable algebra, the topology of the real line, countable combinatorics, and classical descriptive set theory.

What many of these exceptional theorems have in common is that they directly or indirectly involve countable ordinal numbers. The relevant definition is as follows.

Definition I.6.1 (countable ordinal numbers). Within ACA $_{0}$ we define a countable linear ordering to be a structure $A,<_{A}$, where $A \subseteq \mathbb{N}$ and $<_{A} \subseteq A \times A$ is an irreflexive linear ordering of A, i.e., $<_{A}$ is transitive and, for all $a, b \in A$, exactly one of $a=b$ or $a<_{A} b$ or $b<_{A} a$ holds. The countable linear ordering $A,<_{A}$ is called a countable well ordering if there is no sequence $\left\langle a_{n}: n \in \mathbb{N}\right\rangle$ of elements of A such that $a_{n+1}<_{A} a_{n}$ for all $n \in \mathbb{N}$. We view a countable well ordering $A,<_{A}$ as a code for a countable ordinal number, α, which is intuitively just the order type of $A,<_{A}$. Two countable well orderings $A,<_{A}$ and $B,<_{B}$ are said to encode the same countable ordinal number if and only if they are isomorphic. Two countable well orderings $A,<_{A}$ and $B,<_{B}$ are said to be comparable if they are isomorphic or if one of them is isomorphic to a proper initial segment of the other. (Letting α and β be the corresponding countable ordinal numbers, this means that either $\alpha=\beta$ or $\alpha<\beta$ or $\beta<\alpha$.)

Remark I.6.2. The fact that any two countable well orderings are comparable turns out to be provable in $\Pi_{1}^{1}-\mathrm{CA}_{0}$ but not in ACA_{0} (see theorem I.11.5.1 and $\S \mathrm{V} .6)$. Thus $\Pi_{1}^{1}-\mathrm{CA}_{0}$, but not ACA_{0}, is strong enough to develop a good theory of countable ordinal numbers. Because of this, $\Pi_{1}^{1}-C A_{0}$ is strong enough to prove several important theorems of ordinary mathematics which are not provable in ACA_{0}. We now present several examples of this phenomenon.

Example I.6.3 (Ulm's theorem). Consider the well known structure theory for countable Abelian groups. Let $G,+_{G},{ }_{G}, 0_{G}$ be a countable Abelian group. We say that G is divisible if for all $a \in G$ and $n>0$ there exists $b \in G$ such that $n b=a$. We say that G is reduced if G has no nontrivial divisible subgroup. Within $\Pi_{1}^{1}-\mathrm{CA}_{0}$, but not within ACA_{0}, one can prove that every countable Abelian group is the direct sum of a divisible group and a reduced group. Now assume that G is a countable Abelian p-group. (This means that for every $a \in G$ there exists $n \in \mathbb{N}$ such that $p^{n} a=0$. Here p is a fixed prime number.) One defines a transfinite sequence of subgroups $G_{0}=G, G_{\alpha+1}=p G_{\alpha}$, and for limit ordinals $\delta, G_{\delta}=\bigcap_{\alpha<\delta} G_{\alpha}$. Thus G is reduced if and only if $G_{\infty}=0$. The Ulm invariants of G are the numbers $\operatorname{dim}\left(P_{\alpha} / P_{\alpha+1}\right)$, where $P_{\alpha}=\left\{a \in G_{\alpha}: p a=0\right\}$ and the dimension is taken over the integers modulo p. Each Ulm invariant is either a natural number or ∞. Ulm's theorem states that two countable reduced Abelian p-groups are isomorphic if and only if their Ulm invariants are the same. Using the theory of countable ordinal numbers which is available in $\Pi_{1}^{1}-\mathrm{CA}_{0}$, one can carry out the construction of the Ulm invariants and the usual proof of Ulm's theorem within $\Pi_{1}^{1}-C A_{0}$. Thus Ulm's theorem is a result of classical algebra which can be proved in $\Pi_{1}^{1}-C A_{0}$ but not in ACA_{0}. More on this topic is in $\S \S \mathrm{V} .7$ and VI. 4.

Example I.6.4 (the Cantor/Bendixson theorem). Next we consider a theorem concerning closed sets in n-dimensional Euclidean space. A closed set in \mathbb{R}^{n} is defined to be the complement of an open set. (Open sets were discussed in definition I.4.7.)

If C is a closed set in \mathbb{R}^{n}, an isolated point of C is a point $x \in C$ such that $\{x\}=C \cap U$ for some open set U. Clearly C has at most countably many isolated points. We say that C is perfect if C has no isolated points. For any closed set C, the derived set of C is a closed set C^{\prime} consisting of all points of C which are not isolated. Thus $C \backslash C^{\prime}$ is countable, and $C^{\prime}=C$ if and only if C is perfect. Given a closed set C, the derived sequence of C is a transfinite sequence of closed subsets of C, defined by $C_{0}=C, C_{\alpha+1}=$ the derived set of C_{α}, and for limit ordinals $\delta, C_{\delta}=\bigcap_{\alpha<\delta} C_{\alpha}$. Within $\Pi_{1}^{1}-\mathrm{CA}_{0}$ we can prove that for all countable ordinal numbers α, the closed set C_{α} exists. Furthermore $C_{\beta+1}=C_{\beta}$ for some countable ordinal number β. In this case we clearly have $C_{\beta}=C_{\alpha}$ for all $\alpha>\beta$, so we write $C_{\beta}=C_{\infty}$.

Clearly C_{∞} is a perfect closed set. In fact, C_{∞} can be characterized as the largest perfect closed subset of C, and C_{∞} is therefore known as the perfect kernel of C.

In summary, for any closed set C we have $C=K \cup S$ where K is a perfect closed set (namely $K=C_{\infty}$) and S is a countable set (namely $S=$ the union of the sets $C_{\alpha} \backslash C_{\alpha+1}$ for all countable ordinal numbers α). If K happens to be the empty set, then C is itself countable.

The fact that every closed set in \mathbb{R}^{n} is the union of a perfect closed set and a countable set is known as the Cantor/Bendixson theorem. It can be shown that the Cantor/Bendixson theorem is provable in $\Pi_{1}^{1}-\mathrm{CA}_{0}$ but not in weaker systems such as A_{0}. This example is particularly striking because, although the proof of the Cantor/Bendixson theorem uses countable ordinal numbers, the statement of the theorem does not mention them. For details see $\S \S$ VI. 1 and V. 4 .

The Cantor/Bendixson theorem also applies more generally, to complete separable metric spaces other than \mathbb{R}^{n}. An important special case is the Baire space $\mathbb{N}^{\mathbb{N}}$. Note that points of $\mathbb{N}^{\mathbb{N}}$ may be identified with functions $f: \mathbb{N} \rightarrow \mathbb{N}$. The Cantor/Bendixson theorem for $\mathbb{N}^{\mathbb{N}}$ is closely related to the analysis of trees:

Definition I. 6.5 (trees). Within ACA $_{0}$ we let

$$
\text { Seq }=\mathbb{N}^{<\mathbb{N}}=\bigcup_{k \in \mathbb{N}} \mathbb{N}^{k}
$$

denote the set of (codes for) finite sequences of natural numbers. For $\sigma, \tau \in \mathbb{N}<\mathbb{N}$ there is $\sigma^{\sim} \tau \in \mathbb{N}<\mathbb{N}$ which is the concatenation, σ followed by τ. A tree is a set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ such that any initial segment of a sequence in T belongs to T. A path or infinite path through T is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N}$, the initial sequence

$$
f[k]=\langle f(0), f(1), \ldots, f(k-1)\rangle
$$

belongs to T. The set of paths through T is denoted $[T]$. Thus T may be viewed as a code for the closed set $[T] \subseteq \mathbb{N}^{\mathbb{N}}$. If T has no infinite path, we say that T is well founded. An end node of T is a sequence $\tau \in T$ which has no proper extension in T.

Definition I. 6.6 (perfect trees). Two sequences in $\mathbb{N}^{<\mathbb{N}}$ are said to be compatible if they are equal or one is an initial segment of the other. Given a tree $T \subseteq \mathbb{N}<\mathbb{N}$ and a sequence $\sigma \in T$, we denote by T_{σ} the set of $\tau \in T$ such that σ is compatible with τ. Given a tree T, there is a derived tree $T^{\prime} \subseteq T$ consisting of all $\sigma \in T$ such that T_{σ} contains a pair of incompatible sequences. We say that T is perfect if $T^{\prime}=T$, i.e., every $\sigma \in T$ has a pair of incompatible extensions $\tau_{1}, \tau_{2} \in T$.

Given a tree T, we may consider a transfinite sequence of trees defined by $T_{0}=T, T_{\alpha+1}=$ the derived tree of T_{α}, and for limit ordinals $\delta, T_{\delta}=$ $\bigcap_{\alpha<\delta} T_{\alpha}$. We write $T_{\infty}=T_{\beta}$ where β is an ordinal such that $T_{\beta}=T_{\beta+1}$. Thus T_{∞} is the largest perfect subtree of T. These notions concerning trees are analogous to example I.6.4 concerning closed sets. Indeed, the closed set $\left[T_{\infty}\right]$ is the perfect kernel of the closed set $[T]$ in the Baire space $\mathbb{N}^{\mathbb{N}}$. As in example I.6.4, it turns out that the existence of T_{∞} is provable in $\Pi_{1}^{1}-C A_{0}$ but not in weaker systems such as $A C A_{0}$. This result will be proved in §VI.1.

Turning to another topic in mathematics, we point out that $\Pi_{1}^{1}-C A_{0}$ is strong enough to prove many of the basic results of classical descriptive set theory. By classical descriptive set theory we mean the study of Borel and analytic sets in complete separable metric spaces. The relevant definitions within ACA_{0} are as follows.

Definition I.6.7 (Borel sets). Let \widehat{A} be a complete separable metric space. A (code for a) Borel set B in \widehat{A} is defined to be a set $B \subseteq \mathbb{N}<\mathbb{N}$ such that
(i) B is a well founded tree;
(ii) for any end node $\left\langle m_{0}, m_{1}, \ldots, m_{k}\right\rangle$ of B, we have $m_{k}=(a, r)$ for some $(a, r) \in A \times \mathbb{Q}^{+}$;
(iii) B contains exactly one sequence $\left\langle m_{0}\right\rangle$ of length 1 .

In particular, for each $a \in A$ and $r \in \mathbb{Q}^{+}$there is a Borel code $\langle(a, r)\rangle$. We take $\langle(a, r)\rangle$ to be a code for the basic open neighborhood $\mathrm{B}(a, r)$ as in definition I.4.7. Thus for all points $x \in \widehat{A}$ we have, by definition, $x \in \mathrm{~B}(a, r)$ if and only if $d(a, x)<r$. If B is a Borel code which is not of the form $\langle(a, r)\rangle$, then for each $\left\langle m_{0}, n\right\rangle \in B$ we have another Borel code

$$
B_{n}=\{\langle \rangle\} \cup\left\{\langle n\rangle^{\wedge} \tau:\left\langle m_{0}, n\right\rangle^{\wedge} \tau \in B\right\} .
$$

We use transfinite recursion to define the notion of a point $x \in \widehat{A}$ belonging to (the Borel set coded by) B, in such a way that $x \in B$ if and only if either m_{0} is odd and $x \in B_{n}$ for some n, or m_{0} is even and $x \notin B_{n}$ for some n. This recursion can be carried out in $\Pi_{1}^{1}-\mathrm{CA}_{0}$; see $\S \mathrm{V} .3$.

Thus the Borel sets form a σ-algebra containing the basic open sets and closed under countable union, countable intersection, and complementation.

Definition I.6.8 (analytic sets). Let \widehat{A} be a complete separable metric space. A (code for an) analytic set $S \subseteq \widehat{A}$ is defined to be a (code for a) continuous function $\phi: \mathbb{N}^{\mathbb{N}} \rightarrow \widehat{A}$. We put $x \in S$ if and only if

$$
\exists f\left(f \in \mathbb{N}^{\mathbb{N}} \wedge \phi(f)=x\right) .
$$

It can be proved in ACA_{0} that a set is analytic if and only if it is defined by a Σ_{1}^{1} formula with parameters.

Example I.6.9 (classical descriptive set theory). Within Π_{1}^{1}-CA we can emulate the standard proofs of some well known classical results on Borel and analytic sets. This is possible because $\Pi_{1}^{1}-\mathrm{CA}_{0}$ includes a good theory of countable well orderings and countable well founded trees. In particular Souslin's theorem ("a set S is Borel if and only if S and its complement are analytic"), Lusin's theorem ("any two disjoint analytic sets can be separated by a Borel set"), and Kondo's theorem (coanalytic uniformization) are provable in $\Pi_{1}^{1}-\mathrm{CA}_{0}$ but not in ACA_{0}. For details, see $\S \S \mathrm{V} .3$ and VI.2.

With the above examples, $\Pi_{1}^{1}-\mathrm{CA}_{0}$ emerges as being of considerable interest with respect to the development of ordinary mathematics. Other examples of ordinary mathematical theorems which are provable in $\Pi_{1}^{1}-C A_{0}$ are: determinacy of open sets in $\mathbb{N}^{\mathbb{N}}$ (see $\S \mathrm{V} .8$), and the Ramsey property for open sets in $[\mathbb{N}]^{\mathbb{N}}$ (see $\S V .9$). These theorems, like Ulm's theorem and the Cantor/Bendixson theorem, are exceptional in that they are not provable in ACA_{0}.

Remark I.6.10 (Friedman-style independence results). There are a small number of even more exceptional theorems which, for instance, are provable in ZFC (i.e., Zermelo/Fraenkel set theory with the axiom of choice) but not in full Z_{2}. As an example, consider the following corollary, due to Friedman [71], of a theorem of Martin [177, 178]: Given a symmetric Borel set $B \subseteq I \times I, I=[0,1]$, there exists a Borel function $\phi: I \rightarrow I$ such that the graph of ϕ is either included in or disjoint from B. Friedman [71] has shown that this result is not provable in Z_{2} or even in simple type theory. This is related to Friedman's earlier result $[66,71]$ that Borel determinacy is not provable in simple type theory. More results of this kind are in [72] and in the Friedman volume [102].

Notes for §I.6. Chapters V and VI of this book deal with the development of mathematics in $\Pi_{1}^{1}-C A_{0}$. The crucial role of comparablility of countable well orderings (remark I.6.2) was pointed out by Friedman [62, chapter II] and Steel [256, chapter I]; recent refinements are due to Friedman/Hirst [74] and Shore [223]. The impredicative nature of the Cantor/Bendixson theorem and Ulm's theorem was noted by Kreisel [149] and Feferman [58], respectively. An up-to-date textbook of classical descriptive set theory is Kechris [138]. Friedman has discovered a number of mathematically natural statements whose proofs require strong set existence axioms; see the Friedman volume [102] and recent papers such as [73].

I.7. The System RCA A_{0}

In this section we introduce RCA_{0}, an important subsystem of Z_{2} which is much weaker than ACA_{0}.

The acronym RCA stands for recursive comprehension axiom. This is because RCA_{0} contains axioms asserting the existence of any set A which is recursive in given sets B_{1}, \ldots, B_{k} (i.e., such that the characteristic function of A is computable assuming oracles for the characteristic functions of $\left.B_{1}, \ldots, B_{k}\right)$. As in ACA_{0} and $\Pi_{1}^{1}-\mathrm{CA}_{0}$, the subscript 0 in RCA_{0} denotes restricted induction. The axioms of $R C A_{0}$ include Σ_{1}^{0} induction, a form of induction which is weaker than arithmetical induction (as defined in §I.3) but stronger than the induction axiom I.2.4(ii).

We now proceed to the definition of RCA_{0}.
Let n be a number variable, let t be a numerical term not containing n, and let φ be a formula of L_{2}. We use the following abbreviations:

$$
\begin{aligned}
\forall n<t \varphi & \equiv \forall n(n<t \rightarrow \varphi) \\
\exists n<t \varphi & \equiv \exists n(n<t \wedge \varphi)
\end{aligned}
$$

Thus $\forall n<t$ means "for all n less than t ", and $\exists n<t$ means "there exists n less than t such that". We may also write $\forall n \leq t$ instead of $\forall n<t+1$, and $\exists n \leq t$ instead of $\exists n<t+1$.

The expressions $\forall n<t, \forall n \leq t, \exists n<t, \exists n \leq t$ are called bounded number quantifiers, or simply bounded quantifiers. A bounded quantifier formula is a formula φ such that all of the quantifiers occurring in φ are bounded number quantifiers. Thus the bounded quantifier formulas are a subclass of the arithmetical formulas. Examples of bounded quantifier formulas are

$$
\exists m \leq n(n=m+m)
$$

asserting that n is even, and

$$
\forall m<2 n(m \in X \leftrightarrow \exists k<m(m=2 k+1)),
$$

asserting that the first n elements of X are $1,3,5, \ldots, 2 n-1$.
Definition I.7.1 (Σ_{1}^{0} and Π_{1}^{0} formulas). An L_{2}-formula φ is said to be Σ_{1}^{0} if it is of the form $\exists m \theta$, where m is a number variable and θ is a bounded quantifier formula. An L_{2}-formula φ is said to be Π_{1}^{0} if it is of the form $\forall m \theta$, where m is a number variable and θ is a bounded quantifier formula.

It can be shown that Σ_{1}^{0} formulas are closely related to the notion of relative recursive enumerability in recursion theory. Namely, for $A, B \in$ $P(\omega), A$ is recursively enumerable in B if and only if A is definable over some or any ω-model $(\omega, \mathcal{S},+, \cdot, 0,1,<), B \in \mathcal{S} \subseteq P(\omega)$, by a Σ_{1}^{0} formula with B as a parameter. (See also remarks I.3.4 and I.7.5.)

Definition I.7.2 (Σ_{1}^{0} induction). The Σ_{1}^{0} induction scheme, Σ_{1}^{0}-IND, is the restriction of the second order induction scheme (as defined in §I.2) to L_{2}-formulas $\varphi(n)$ which are Σ_{1}^{0}. Thus we have the universal closure of

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \varphi(n)
$$

where $\varphi(n)$ is any Σ_{1}^{0} formula of L_{2}.
The Π_{1}^{0} induction scheme, Π_{1}^{0}-IND, is defined similarly. It can be shown that Σ_{1}^{0}-IND and Π_{1}^{0}-IND are equivalent (in the presence of the basic axioms I.2.4(i)). This easy but useful result is proved in §II.3.

Definition I. 7.3 (Δ_{1}^{0} comprehension). The Δ_{1}^{0} comprehension scheme consists of (the universal closures of) all formulas of the form

$$
\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

where $\varphi(n)$ is any Σ_{1}^{0} formula, $\psi(n)$ is any Π_{1}^{0} formula, n is any number variable, and X is a set variable which does not occur freely in $\varphi(n)$.
In the Δ_{1}^{0} comprehension scheme, note that $\varphi(n)$ and $\psi(n)$ may contain parameters, i.e., free set variables and free number variables in addition to n. Thus an L_{2}-structure M satisfies Δ_{1}^{0} comprehension if and only if \mathcal{S}_{M} contains all subsets of $|M|$ which are both Σ_{1}^{0} and Π_{1}^{0} definable over M allowing parameters from $|M| \cup \mathcal{S}_{M}$.

Definition I. 7.4 (definition of RCA $_{0}$). RCA A_{0} is the subsystem of Z_{2} consisting of the basic axioms I.2.4(i), the Σ_{1}^{0} induction scheme I.7.2, and the Δ_{1}^{0} comprehension scheme I.7.3.

REMARK I.7.5 (ω-models of RCA ${ }_{0}$). In remark I.3.4, we characterized the ω-models of ACA_{0} in terms of recursion theory. We can characterize the ω-models of RCA_{0} in similar terms, as follows. $\mathcal{S} \subseteq P(\omega)$ is an ω-model of RCA_{0} if and only if
(i) $\mathcal{S} \neq \emptyset$;
(ii) $A \in \mathcal{S}$ and $B \in \mathcal{S}$ imply $A \oplus B \in \mathcal{S}$;
(iii) $A \in \mathcal{S}$ and $B \leq_{\mathrm{T}} A$ imply $B \in \mathcal{S}$.
(This result is proved in §VIII.1.) In particular, RCA_{0} has a minimum (i.e., unique smallest) ω-model, namely

$$
\mathrm{REC}=\{A \in P(\omega): A \text { is recursive }\}
$$

More generally, given a set $B \in P(\omega)$, there is a unique smallest ω-model of RCA_{0} containing B, consisting of all sets $A \in P(\omega)$ which are recursive in B.

The system RCA_{0} plays two key roles in this book and in foundational studies generally. First, as we shall see in chapter II, the development of ordinary mathematics within RCA_{0} corresponds roughly to the positive
content of what is known as "computable mathematics" or "recursive analysis". Thus RCA A_{0} is a kind of formalized recursive mathematics. Second, RCA_{0} frequently plays the role of a weak base theory in Reverse Mathematics. Most of the results of Reverse Mathematics in chapters III, IV, V, and VI will be stated formally as theorems of RCA_{0}.

Remark I. 7.6 (first order part of RCA_{0}). By remark I.3.3, the first order part of $A C A_{0}$ is first order arithmetic, PA. In a similar vein, we can characterize the first order part of RCA_{0}. Namely, let Σ_{1}^{0}-PA be PA with induction restricted to Σ_{1}^{0} formulas. (Thus Σ_{1}^{0}-PA is a formal system whose language is L_{1} and whose axioms are the basic axioms I.2.4(i) plus the universal closure of

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \varphi(n)
$$

for any formula $\varphi(n)$ of L_{1} which is Σ_{1}^{0}.) Clearly the axioms of Σ_{1}^{0} - PA are included in those of RCA_{0}. Conversely, given any model

$$
\begin{equation*}
\left(|M|,+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right) \tag{2}
\end{equation*}
$$

of Σ_{1}^{0}-PA, it can be shown that there exists $\mathcal{S}_{M} \subseteq P(|M|)$ such that

$$
\left(|M|, \mathcal{S}_{M},+_{M}, \cdot_{M}, 0_{M}, 1_{M},<_{M}\right)
$$

is a model of RCA_{0}. (Namely, we can take $\mathcal{S}_{M}=\Delta_{1}^{0}-\operatorname{Def}(M)=$ the set of all $A \subseteq|M|$ such that A is both Σ_{1}^{0} and Π_{1}^{0} definable over (2) allowing parameters from $|M|$.) It follows that, for any sentence σ in the language of first order arithmetic, σ is a theorem of RCA_{0} if and only if σ is a theorem of Σ_{1}^{0}-PA. In other words, Σ_{1}^{0}-PA is the first order part of RCA . (These results are proved in §IX.1.)

Models of RCA_{0} are discussed further in $\S \S$ VIII.1, IX.1, IX.2, and IX.3. The development of ordinary mathematics within RCA_{0} is outlined in §I. 8 and is discussed thoroughly in chapter II.

REMARK I. 7.7 (Σ_{1}^{0} comprehension). It would be possible to define a system $\Sigma_{1}^{0}-\mathrm{CA}_{0}$ consisting of the basic axioms I.2.4(i), the induction axiom I.2.4(ii), and the Σ_{1}^{0} comprehension scheme, i.e., the universal closure of

$$
\exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

for all Σ_{1}^{0} formulas $\varphi(n)$ of L_{2} in which X does not occur freely. However, the introduction of $\Sigma_{1}^{0}-C A_{0}$ as a distinct subsystem of Z_{2} is unnecessary, because it turns out that $\Sigma_{1}^{0}-C A_{0}$ is equivalent to $A C A_{0}$. This easy but important result will be proved in §III.1.

Generalizing the notion of Σ_{1}^{0} and Π_{1}^{0} formulas, we have:

Definition I.7.8 (Σ_{k}^{0} and Π_{k}^{0} formulas). For $0 \leq k \in \omega$, an L_{2}-formula φ is said to be Σ_{k}^{0} (respectively Π_{k}^{0}) if it is of the form

$$
\exists n_{1} \forall n_{2} \exists n_{3} \cdots n_{k} \theta
$$

(respectively $\forall n_{1} \exists n_{2} \forall n_{3} \cdots n_{k} \theta$), where n_{1}, \ldots, n_{k} are number variables and θ is a bounded quantifier formula. In both cases, φ consists of k alternating unbounded number quantifiers followed by a formula containing only bounded number quantifiers. In the Σ_{k}^{0} case, the first unbounded number quantifier is existential, while in the Π_{k}^{0} case it is universal (assuming $k \geq 1$). Thus for instance a Π_{2}^{0} formula is of the form $\forall m \exists n \theta$, where θ is a bounded quantifier formula. A Σ_{0}^{0} or Π_{0}^{0} formula is the same thing as a bounded quantifier formula.

Clearly any Σ_{k}^{0} formula is logically equivalent to the negation of a Π_{k}^{0} formula, and vice versa. Moreover, up to logical equivalence of formulas, we have $\Sigma_{k}^{0} \cup \Pi_{k}^{0} \subseteq \Sigma_{k+1}^{0} \cap \Pi_{k+1}^{0}$, for all $k \in \omega$.

REmARK I.7.9 (induction and comprehension schemes). Generalizing definition I.7.2, we can introduce induction schemes Σ_{k}^{i}-INDand Π_{k}^{i}-IND, for all $k \in \omega$ and $i \in\{0,1\}$. Clearly Σ_{∞}^{0}-IND $=\bigcup_{k \in \omega} \Sigma_{k}^{0}$-IND is equivalent to arithmetical induction, and $\Sigma_{\infty}^{1}-\mathrm{IND}=\bigcup_{k \in \omega} \Sigma_{k}^{1}$-IND is equivalent to the full second order induction scheme. It can be shown that, for all $k \in \omega$ and $i \in\{0,1\}, \Sigma_{k}^{i}$-IND is equivalent to Π_{k}^{i}-IND and is properly weaker than Σ_{k+1}^{i}-IND. As for comprehension schemes, it follows from remark I.7.7 that the systems $\Sigma_{k}^{0}-\mathrm{CA}_{0}$ and $\Pi_{k}^{0}-\mathrm{CA}_{0}, 1 \leq k \in \omega$, are all equivalent to each other and to $A C A_{0}$, i.e., $\Pi_{0}^{1}-C A_{0}$. On the other hand, we have remarked in $\oint I .5$ that, for each $k \in \omega, \Pi_{k}^{1}-\mathrm{CA}_{0}$ is equivalent to $\Sigma_{k}^{1}-\mathrm{CA}_{0}$ and is properly weaker than $\Pi_{k+1}^{1}-C A_{0}$. In chapter VII we shall introduce the systems Δ_{k}^{1} $\mathrm{CA}_{0}, 1 \leq k \in \omega$, and we shall show that $\Delta_{k}^{1}-\mathrm{CA}_{0}$ is properly stronger than $\Pi_{k-1}^{1}-\mathrm{CA}_{0}$ and properly weaker than $\Pi_{k}^{1}-\mathrm{CA}_{0}$.

Notes for $\S \mathbf{I} .7$. In connection with remark I.7.5, note that the literature of recursion theory sometimes uses the term Turing ideals referring to what we call ω-models of RCA_{0}. See for instance Lerman [161, page 29]. The system RCA_{0} was first introduced by Friedman [69] (in an equivalent form, using a somewhat different language and axioms). The system Σ_{1}^{0}-PA was first studied by Parsons [201]. For a thorough discussion of Σ_{1}^{0}-PA and other subsystems of first order arithmetic, see Hájek/Pudlák [100] and Kaye [137].

I.8. Mathematics Within $R C A_{0}$

In this section we sketch how some concepts and results of ordinary mathematics can be developed in RCA_{0}. This portion of ordinary mathematics
is roughly parallel to the positive content of recursive analysis and recursive algebra. We shall also give some recursive counterexamples showing that certain other theorems of ordinary mathematics are recursively false and hence, although provable in ACA_{0}, cannot be proved in RCA_{0}.

As already remarked in I.4.4 and I.4.8, the strictures of RCA A_{0} require us to modify our definitions of "real number" and "point of a complete separable metric space". The needed modifications are as follows:

Definition I.8.1 (partially replacing I.4.2). Within RCA $_{0}$, a (code for a) real number $x \in \mathbb{R}$ is defined to be a sequence of rational numbers $x=\left\langle q_{n}: n \in \mathbb{N}\right\rangle, q_{n} \in \mathbb{Q}$, such that

$$
\forall m \forall n\left(m<n \rightarrow\left|q_{m}-q_{n}\right|<1 / 2^{m}\right)
$$

For real numbers x and y we have $x=_{\mathbb{R}} y$ if and only if

$$
\forall m\left(\left|q_{m}-q_{m}^{\prime}\right| \leq 1 / 2^{m-1}\right)
$$

and $x<_{\mathbb{R}} y$ if and only if

$$
\exists m\left(q_{m}+1 / 2^{m}<q_{m}^{\prime}\right)
$$

Note that with definition I.8.1 we now have that the predicate $x<y$ is Σ_{1}^{0}, and the predicates $x \leq y$ and $x=y$ are Π_{1}^{0}, for $x, y \in \mathbb{R}$. Thus real number comparisons have become easier, and therein lies the superiority of I.8.1 over I. 4.2 within RCA .

Definition I.8.2 (partially replacing I.4.5). Within RCA A_{0}, a (code for a) complete separable metric space is defined as in I.4.5. However, a (code for a) point of the complete separable metric space \widehat{A} is now defined in RCA ${ }_{0}$ to be a sequence $x=\left\langle a_{n}: n \in \mathbb{N}\right\rangle, a_{n} \in A$, satisfying $\forall m \forall n(m<n \rightarrow$ $\left.d\left(a_{m}, a_{n}\right)<1 / 2^{m}\right)$. The extension of d to \widehat{A} is as in I.4.5.
Under definition I.8.2, the predicate $d(x, y)<r$ for $x, y \in \widehat{A}$ and $r \in \mathbb{R}$ becomes Σ_{1}^{0}. This makes I.8.2 far more appropriate than I.4.5 for use in RCA_{0}. We shall also need to modify slightly our earlier definitions of "continuous function" in I.4.6 and "open set" in I.4.7; the modified definitions will be presented in II.6.1 and II.5.6.

With these new definitions, the development of mathematics within RCA_{0} is broadly similar to the development within ACA_{0} as already outlined in $\S I .4$ above. For the most part, Δ_{1}^{0} comprehension is an adequate substitute for arithmetical comprehension. Thus RCA_{0} is strong enough to prove basic results of real and complex linear and polynomial algebra, up to and including the fundamental theorem of algebra, and basic properties of countable algebraic structures and of continuous functions on complete separable metric spaces. Also within RCA_{0} we can introduce sequences of real numbers, sequences of continuous functions, and separable Banach spaces including examples such as $\mathrm{C}[0,1]$ and $\mathrm{L}_{p}[0,1], 1 \leq p<\infty$, just as
in ACA_{0} (§I.4). This detailed development within RCA_{0} will be presented in chapter II.

In addition to basic results (e.g., the fact that the composition of two continuous functions is continuous), a number of nontrivial theorems are also provable in RCA_{0}. We have:

ThEOREM I.8.3 (mathematics in RCA_{0}). The following ordinary mathematical theorems are provable in RCA_{0} :

1. the Baire category theorem (§§II.4, II.5);
2. the intermediate value theorem (§II.6);
3. Urysohn's lemma and the Tietze extension theorem for complete separable metric spaces (§II.7);
4. the soundness theorem and a version of Gödel's completeness theorem in mathematical logic (§II.8);
5. existence of an algebraic closure of a countable field (§II.9);
6. existence of a unique real closure of a countable ordered field (§II.9);
7. the Banach/Steinhaus uniform boundedness principle (§II.10).

On the other hand, a phenomenon of great interest for us is that many well known and important mathematical theorems which are routinely provable in $A C A_{0}$ turn out not to be provable at all in $R C A_{0}$. We now present an example of this phenomenon.

Example I.8.4 (the Bolzano/Weierstraß theorem). Let us denote by BW the statement of the Bolzano/Weierstraß theorem: "Every bounded sequence of real numbers contains a convergent subsequence." It is straightforward to show that $B W$ is provable in $A C A_{0}$.

We claim that BW is not provable in RCA_{0}.
To see this, consider the ω-model REC consisting of all recursive subsets of ω. We have seen in I. 7.5 that REC is a model of RCA_{0}. We shall now show that BW is false in REC.

We use some basic results of recursive function theory. Let A be a recursively enumerable subset of ω which is not recursive. For instance, we may take $A=K=\{n:\{n\}(n)$ is defined $\}$. Let $f: \omega \rightarrow \omega$ be a one-to-one recursive function such that $A=$ the range of f. Define a bounded increasing sequence of rational numbers $a_{k}, k \in \omega$, by putting

$$
a_{k}=\sum_{m=0}^{k} \frac{1}{2^{f(m)}}
$$

Clearly the sequence $\left\langle a_{k}\right\rangle_{k \in \omega}$, or more precisely its code, is recursive and hence is an element of REC. On the other hand, it can be shown that the
real number

$$
r=\sup _{k \in \omega} a_{k}=\sum_{m=0}^{\infty} \frac{1}{2^{f(m)}}=\sum_{n \in A} \frac{1}{2^{n}}
$$

is not recursive, i.e. (any code of) r is not an element of REC. One way to see this would be to note that the characteristic function of the nonrecursive set A would be computable if we allowed (any code of) r as a Turing oracle.

Thus the ω-model REC satisfies " $\left\langle a_{k}\right\rangle_{k \in \mathbb{N}}$ is a bounded increasing sequence of rational numbers, and $\left\langle a_{k}\right\rangle_{k \in \mathbb{N}}$ has no least upper bound". In particular, REC satisfies " $\left\langle a_{k}\right\rangle_{k \in \mathbb{N}}$ is a bounded sequence of real numbers which has no convergent subsequence". Hence BW is false in the ω-model REC. Hence BW is not provable in RCA_{0}.

Remark I.8.5 (recursive counterexamples). There is an extensive literature of what is known as "recursive analysis" or "computable mathematics", i.e., the systematic development of portions of ordinary mathematics within the particular ω-model REC. (See the notes at the end of this section.) This literature contains many so-called "recursive counterexamples", where methods of recursive function theory are used to show that particular mathematical theorems are false in REC. Such results are of great interest with respect to our Main Question, §I.1, because they imply that the set existence axioms of RCA_{0} are not strong enough to prove the mathematical theorems under consideration. We have already presented one such recursive counterexample, showing that the Bolzano/Weierstraß theorem is false in REC, hence not provable in RCA_{0}. Other recursive counterexamples will be presented below.

Example I.8.6 (the Heine/Borel covering lemma). Let us denote by HB the statement of the Heine/Borel covering lemma: Every covering of the closed interval $[0,1]$ by a sequence of open intervals has a finite subcovering. Again HB is provable in ACA_{0}. We shall exhibit a recursive counterexample showing that HB is false in REC, hence not provable in RCA_{0}.

Consider the well known Cantor middle third set $C \subseteq[0,1]$ defined by

$$
C=[0,1] \backslash((1 / 3,2 / 3) \cup(1 / 9,2 / 9) \cup(7 / 9,8 / 9) \cup \ldots)
$$

There is a well known and obvious recursive homeomorphism $H: C \cong$ $\{0,1\}^{\omega}$, where $\{0,1\}^{\omega}$ is the product of ω copies of the two-point discrete space $\{0,1\}$. Points $h \in\{0,1\}^{\omega}$ may be identified with functions $h: \omega \rightarrow$ $\{0,1\}$. For each $\varepsilon \in\{0,1\}$ and $n \in \omega$, let U_{n}^{ε} be the union of 2^{n} effectively chosen rational open intervals such that

$$
H\left(U_{n}^{\varepsilon} \cap C\right)=\left\{h \in\{0,1\}^{\omega}: h(n)=\varepsilon\right\} .
$$

For instance, corresponding to $\varepsilon=0$ and $n=2$ we could choose $U_{2}^{0}=$ $(-1,1 / 18) \cup(1 / 6,5 / 18) \cup(1 / 2,13 / 18) \cup(5 / 6,17 / 18)$.

Now let A, B be a disjoint pair of recursively inseparable, recursively enumerable subsets of ω. For instance, we could take $A=\{n:\{n\}(n) \simeq 0\}$ and $B=\{n:\{n\}(n) \simeq 1\}$. Since A and B are recursively inseparable, it follows that for any recursive point $h \in\{0,1\}^{\omega}$ we have either $h(n)=0$ for some $n \in A$, or $h(n)=1$ for some $n \in B$. Let $f, g: \omega \rightarrow \omega$ be recursive functions such that $A=\operatorname{rng}(f)$ and $B=\operatorname{rng}(g)$. Then $U_{f(m)}^{0}$, $U_{g(m)}^{1}, m \in \omega$, give a recursive sequence of rational open intervals which cover the recursive reals in C but not all of C. Combining this with the middle third intervals $(1 / 3,2 / 3),(1 / 9,2 / 9),(7 / 9,8 / 9), \ldots$, we obtain a recursive sequence of rational open intervals which cover the recursive reals in $[0,1]$ but not all of $[0,1]$. Thus the ω-model REC satisfies "there exists a sequence of rational open intervals which is a covering of $[0,1]$ but has no finite subcovering". Hence HB is false in REC. Hence HB is not provable in RCA_{0}.

Example I. 8.7 (the maximum principle). Another ordinary mathematical theorem not provable in RCA_{0} is the maximum principle: Every continuous real-valued function on $[0,1]$ attains a supremum. To see this, let $C, f, g, U_{n}^{\varepsilon}, \varepsilon \in\{0,1\}, n \in \omega$ be as in I.8.6, and let $r, a_{k}, k \in \omega$ be as in I.8.4. It is straightforward to construct a recursive code Φ for a function ϕ such that REC satisfies " $\phi: C \rightarrow \mathbb{R}$ is continuous and, for all $x \in C$, $\phi(x)=a_{k}$ where $k=$ the least m such that $x \in U_{f(m)}^{0} \cup U_{g(m)}^{1}$ ". Thus $\sup \{\phi(x): x \in C \cap \mathrm{REC}\}=\sup _{k \in \omega} a_{k}=r$ is a nonrecursive real number, so REC satisfies "sup $x_{x \in C} \phi(x)$ does not exist". Since $0<a_{k}<2$ for all k, we actually have $\phi: C \rightarrow[0,2]$ in REC. Also, we can extend ϕ uniquely to a continuous function $\psi:[0,1] \rightarrow[0,2]$ which is linear on intervals disjoint from C. Thus REC satisfies " $\psi:[0,1] \rightarrow[0,2]$ is continuous and $\sup _{x \in C} \psi(x)$ does not exist". Hence the maximum principle is false in REC and therefore not provable in RCA_{0}.

Example I. 8.8 (König's lemma). Recall our notion of tree as defined in I.6.5. A tree T is said to be finitely branching if for each $\sigma \in T$ there are only finitely many n such that $\sigma^{\wedge}\langle n\rangle \in T$. König's lemma is the following statement: every infinite, finitely branching tree has an infinite path.

We claim that König's lemma is provable in ACA_{0}. An outline of the argument within ACA_{0} is as follows. Let $T \subseteq \mathbb{N}<\mathbb{N}$ be an infinite, finitely branching tree. By arithmetical comprehension, there is a subtree $T^{*} \subseteq T$ consisting of all $\sigma \in T$ such that T_{σ} (see definition I.6.6) is infinite. Since T is infinite, the empty sequence $\left\rangle\right.$ belongs to T^{*}. Moreover, by the pigeonhole principle, T^{*} has no end nodes. Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by primitive recursion by putting $f(m)=$ the least n such that $f[m]^{\wedge}\langle n\rangle \in T^{*}$, for all $m \in \mathbb{N}$. Then f is a path through T^{*}, hence through T, Q.E.D.

We claim that König's lemma is not provable in RCA_{0}. To see this, let A, B, f, g be as in I.8.6. Let $\{0,1\}^{<\omega}$ be the full binary tree, i.e., the tree of finite sequences of 0 's and 1's. Let T be the set of all $\tau \in\{0,1\}<\omega$ such that, if $k=$ the length of τ, then for all $m, n<k, f(m)=n$ implies $\tau(n)=1$, and $g(m)=n$ implies $\tau(n)=0$. Note that T is recursive. Moreover, $h \in\{0,1\}^{\omega}$ is a path through T if and only if h separates A and B, i.e., $h(n)=1$ for all $n \in A$ and $h(n)=0$ for all $n \in B$. Thus T is an infinite, recursive, finitely branching tree with no recursive path. Hence we have a recursive counterexample to König's lemma, showing that König's lemma is false in REC, hence not provable in RCA_{0}.

The recursive counterexamples presented above show that, although RCA_{0} is able to accommodate a large and significant portion of ordinary mathematical practice, it is also subject to some severe limitations. We shall eventually see that, in order to prove ordinary mathematical theorems such as the Bolzano/Weierstraß theorem, the Heine/Borel covering lemma, the maximum principle, and König's lemma, it is necessary to pass to subsystems of Z_{2} that are considerably stronger than $R C A_{0}$. This investigation will lead us to another important theme: Reverse Mathematics ($\S \S I .9$, I.10, I.11, I.12).

REMARK I.8.9 (constructive mathematics). In some respects, our formal development of ordinary mathematics within RCA_{0} resembles the practice of Bishop-style constructivism [20]. However, there are some substantial differences (see also the notes below):

1. The constructivists believe that mathematical objects are purely mental constructions, while we make no such assumption.
2. The meaning which the constructivists assign to the propositional connectives and quantifiers is incompatible with our classical interpretation.
3. The constructivists assume unrestricted induction on the natural numbers, while in RCA_{0} we assume only Σ_{1}^{0} induction.
4. We always assume the law of the excluded middle, while the constructivists deny it.
5. The typical constructivist response to a nonconstructive mathematical theorem is to modify the theorem by adding hypotheses or "extra data". In contrast, our approach in this book is to analyze the provability of mathematical theorems as they stand, passing to stronger subsystems of Z_{2} if necessary. See also our discussion of Reverse Mathematics in §I.9.

Notes for $\S \mathbf{I}$.8. Some references on recursive and constructive mathematics are Aberth [2], Beeson [17], Bishop/Bridges [20], Demuth/Kučera
[46], Mines/Richman/Ruitenburg [189], Pour-El/Richards [203], and Troelstra/van Dalen [268]. The relationship between Bishop-style constructivism and RCA_{0} is discussed in $[78, \S 0]$. Chapter II of this book is devoted to the development of mathematics within RCA_{0}. Some earlier literature presenting some of this development in a less systematic manner is Simpson [236], Friedman/Simpson/Smith [78], Brown/Simpson [27].

I.9. Reverse Mathematics

We begin this section with a quote from Aristotle.
Reciprocation of premisses and conclusion is more frequent in mathematics, because mathematics takes definitions, but never an accident, for its premisses-a second characteristic distinguishing mathematical reasoning from dialectical disputations.
Aristotle, Posterior Analytics [184, 78a10].
The purpose of this section is to introduce one of the major themes of this book: Reverse Mathematics.

In order to motivate Reverse Mathematics from a foundational standpoint, consider the Main Question as defined in §I.1, concerning the role of set existence axioms. In $\S \S$ I. 4 and I. 6 , we have sketched an approximate answer to the Main Question. Namely, we have suggested that most theorems of ordinary mathematics can be proved in ACA_{0}, and that of the exceptions, most can be proved in $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

Consider now the following sharpened form of the Main Question: Given a theorem τ of ordinary mathematics, what is the weakest natural subsystem $S(\tau)$ of Z_{2} in which τ is provable?

Surprisingly, it turns out that for many specific theorems τ this question has a precise and definitive answer. Furthermore, $S(\tau)$ often turns out to be one of five specific subsystems of Z_{2}. For convenience we shall now list these systems as $S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5} in order of increasing ability to accommodate ordinary mathematical practice. The odd numbered systems S_{1}, S_{3} and S_{5} have already been introduced as $\mathrm{RCA}_{0}, \mathrm{ACA}_{0}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ respectively. The even numbered systems S_{2} and S_{4} are intermediate systems which will be introduced in $\S \S I .10$ and I. 11 below.

Our method for establishing results of the form $S(\tau)=S_{j}, 2 \leq j \leq 5$ is based on the following empirical phenomenon: "When the theorem is proved from the right axioms, the axioms can be proved from the theorem." (Friedman [68].) Specifically, let τ be an ordinary mathematical theorem which is not provable in the weak base theory $S_{1}=\mathrm{RCA}_{0}$. Then very often, τ turns out to be equivalent to S_{j} for some $j=2,3,4$ or 5 . The equivalence is provable in S_{i} for some $i<j$, usually $i=1$.

For example, let $\tau=\mathrm{BW}=$ the Bolzano/Weierstraß theorem: every bounded sequence of real numbers has a convergent subsequence. We have seen in I.8.4 that BW is false in the ω-model REC. An adaptation of that argument gives the following result:

Theorem I.9.1. BW is equivalent to ACA_{0}, the equivalence being provable in RCA_{0}.

Proof. Note first that $A C A_{0}=R C A_{0}$ plus arithmetical comprehension. Thus the forward direction of our theorem is obtained by observing that the usual proof of BW goes through in ACA_{0}, as already remarked in §I.4.

For the reverse direction (i.e., the converse), we reason within RCA_{0} and assume BW. We are trying to prove arithmetical comprehension. Recall that, by relativization, arithmetical comprehension is equivalent to Σ_{1}^{0} comprehension (see remark I.7.7). So let $\varphi(n)$ be a Σ_{1}^{0} formula, say $\varphi(n) \equiv \exists m \theta(m, n)$ where θ is a bounded quantifier formula. For each $k \in \mathbb{N}$ define

$$
c_{k}=\sum\left\{2^{-n}: n<k \wedge(\exists m<k) \theta(m, n)\right\}
$$

Then $\left\langle c_{k}: k \in \mathbb{N}\right\rangle$ is a bounded increasing sequence of rational numbers. This sequence exists by Δ_{1}^{0} comprehension, which is available to us since we are working in RCA_{0}. Now by BW the limit $c=\lim _{k} c_{k}$ exists. Then we have

$$
\forall n\left(\varphi(n) \leftrightarrow \forall k\left(\left|c-c_{k}\right|<2^{-n} \rightarrow(\exists m<k) \theta(m, n)\right)\right) .
$$

This gives the equivalence of a Σ_{1}^{0} formula with a Π_{1}^{0} formula. Hence by Δ_{1}^{0} comprehension we conclude $\exists X \forall n(n \in X \leftrightarrow \varphi(n))$. This proves Σ_{1}^{0} comprehension and hence arithmetical comprehension, Q.E.D.

Remark I.9.2 (on Reverse Mathematics). Theorem I.9.1 implies that $S_{3}=$ ACA_{0} is the weakest natural subsystem of Z_{2} in which $\tau=\mathrm{BW}$ is provable. Thus, for this particular case involving the Bolzano/Weierstraß theorem, I.9.1 provides a definitive answer to our sharpened form of the Main Question.

Note that the proof of theorem I.9.1 involved the deduction of a set existence axiom (namely arithmetical comprehension) from an ordinary mathematical theorem (namely BW). This is the opposite of the usual pattern of ordinary mathematical practice, in which theorems are deduced from axioms. The deduction of axioms from theorems is known as Reverse Mathematics. Theorem I.9.1 illustrates how Reverse Mathematics is the key to obtaining precise answers for instances of the Main Question. This point will be discussed more fully in §I.12.

We shall now state a number of results, similar to I.9.1, showing that particular ordinary mathematical theorems are equivalent to the axioms
needed to prove them. These Reverse Mathematics results with respect to ACA_{0} and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ will be summarized in theorems I.9.3 and I.9.4 and proved in chapters III and VI, respectively.

Theorem I. 9.3 (Reverse Mathematics for ACA_{0}). Within RCA_{0} one can prove that ACA_{0} is equivalent to each of the following ordinary mathematical theorems:

1. Every bounded, or bounded increasing, sequence of real numbers has a least upper bound (§III.2).
2. The Bolzano/Weierstraß theorem: Every bounded sequence of real numbers, or of points in \mathbb{R}^{n}, has a convergent subsequence (§III.2).
3. Every sequence of points in a compact metric space has a convergent subsequence (§III.2).
4. The Ascoli lemma: Every bounded equicontinuous sequence of realvalued continuous functions on a bounded interval has a uniformly convergent subsequence (§III.2).
5. Every countable commutative ring has a maximal ideal (§III.5).
6. Every countable vector space over \mathbb{Q}, or over any countable field, has a basis (§III.4).
7. Every countable field (of characteristic 0) has a transcendence basis (§III.4).
8. Every countable Abelian group has a unique divisible closure (§III.6).
9. König's lemma: Every infinite, finitely branching tree has an infinite path (§III.7).
10. Ramsey's theorem for colorings of $[\mathbb{N}]^{3}$, or of $[\mathbb{N}]^{4},[\mathbb{N}]^{5}, \ldots$ (§III.7).

Theorem I. 9.4 (Reverse Mathematics for $\Pi_{1}^{1}-\mathrm{CA}_{0}$). Within RCA_{0} one can prove that $\Pi_{1}^{1}-\mathrm{CA}_{0}$ is equivalent to each of the following ordinary mathematical statements:

1. Every tree has a largest perfect subtree (§VI.1).
2. The Cantor/Bendixson theorem: Every closed subset of \mathbb{R}, or of any complete separable metric space, is the union of a countable set and a perfect set (§VI.1).
3. Every countable Abelian group is the direct sum of a divisible group and a reduced group (§VI.4).
4. Every difference of two open sets in the Baire space $\mathbb{N}^{\mathbb{N}}$ is determined (§VI.5).
5. Every G_{δ} set in $[\mathbb{N}]^{\mathbb{N}}$ has the Ramsey property (§VI.6).
6. Silver's theorem: For every Borel (or coanalytic, or F_{σ}) equivalence relation with uncountably many equivalence classes, there exists a nonempty perfect set of inequivalent elements (§VI.3).

More Reverse Mathematics results will be stated in $\S \S I .10$ and I. 11 and proved in chapters IV and V, respectively. The significance of Reverse Mathematics for our Main Question will be discussed in §I.12.

Notes for §I.9. Historically, Reverse Mathematics may be viewed as a spin-off of Friedman's work [65, 66, 71, 72, 73] attempting to demonstrate the necessary use of higher set theory in mathematical practice. The theme of Reverse Mathematics in the context of subsystems of Z_{2} first appeared in Steel's thesis [256, chapter I] (an outcome of Steel's reading of Friedman's thesis [62, chapter II] under Simpson's supervision [230]) and in Friedman [68, 69]; see also Simpson [238]. This theme was taken up by Simpson and his collaborators in numerous studies $[236,241,76,235,234,78,79,250$, $243,246,245,21,27,28,280,80,113,112,247,127,128,26,93,248]$ which established it as a subject. The slogan "Reverse Mathematics" was coined by Friedman during a special session of the American Mathematical Society organized by Simpson.

I.10. The System $W_{K} L_{0}$

In this section we introduce WKL_{0}, a subsystem of Z_{2} consisting of RCA_{0} plus a set existence axiom known as weak König's lemma. We shall see that, in the notation of $\S \mathrm{I} .9, \mathrm{WKL}_{0}=S_{2}$ is intermediate between $\mathrm{RCA}_{0}=S_{1}$ and $\mathrm{ACA}_{0}=S_{3}$. We shall also state several results of Reverse Mathematics with respect to WKL_{0} (theorem I.10.3 below).

In order to motivate WKL_{0} in terms of foundations of mathematics, consider our Main Question (§I.1) as it applies to three specific theorems of ordinary mathematics: the Bolzano/Weierstraß theorem, the Heine/Borel covering lemma, the maximum principle. We have seen in I.8.4, I.8.6, I.8.7 that these three theorems are not provable in RCA_{0}. However, we have definitively answered the Main Question only for the Bolzano/Weierstraß theorem, not for the other two. We have seen in I.9.1 that Bolzano/Weierstraß is equivalent to $A C A_{0}$ over $R C A_{0}$.

It will turn out (theorem I.10.3) that the Heine/Borel covering lemma, the maximum principle, and many other ordinary mathematical theorems are equivalent to each other and to weak König's lemma, over RCA A_{0}. Thus $W K L_{0}$ is the weakest natural subsystem of Z_{2} in which these ordinary mathematical theorems are provable. Thus $W_{K L} 0$ provides the answer to these instances of the Main Question.

It will also turn out that WKL_{0} is sufficiently strong to accommodate a large portion of mathematical practice, far beyond what is available in RCA_{0}, including many of the best-known non-constructive theorems. This will become clear in chapter IV.

We now present the definition of WKL_{0}.
Definition I.10.1 (weak König's lemma). The following definitions are made within RCA_{0}. We use $\{0,1\}^{<\mathbb{N}}$ or $2^{<\mathbb{N}}$ to denote the full binary tree, i.e., the set of (codes for) finite sequences of 0's and 1's. Weak König's lemma is the following statement: Every infinite subtree of $2^{<\mathbb{N}}$ has an infinite path. (Compare definition I.6.5 and example I.8.8.)
$W K L_{0}$ is defined to be the subsystem of Z_{2} consisting of $R C A_{0}$ plus weak König's lemma.

Remark I.10.2 (ω-models of WKL_{0}). By example I.8.8, the ω-model REC consisting of all recursive subsets of ω does not satisfy weak König's lemma. Hence REC is not a model of WKL_{0}. Since REC is the minimum ω-model of $R C A_{0}$ (remark I.7.5), it follows that RCA_{0} is a proper subsystem of WKL_{0}. In addition, I.8.8 implies that WKL_{0} is a subsystem of ACA_{0}. That it is a proper subsystem is not so obvious, but we shall see this in §VIII.2, where it is shown for instance that REC is the intersection of all ω-models of WKL_{0}. Thus we have

$$
\mathrm{RCA}_{0} \quad \varsubsetneqq \mathrm{WKL}_{0} \quad \varsubsetneqq \quad \mathrm{ACA}_{0}
$$

and there are ω-models for the independence.
We now list several results of Reverse Mathematics with respect to WKL_{0}. These results will be proved in chapter IV.

Theorem I.10.3 (Reverse Mathematics for WKL_{0}). Within RCA_{0} one can prove that WKL_{0} is equivalent to each of the following ordinary mathematical statements:

1. The Heine/Borel covering lemma: Every covering of the closed interval $[0,1]$ by a sequence of open intervals has a finite subcovering (§IV.1).
2. Every covering of a compact metric space by a sequence of open sets has a finite subcovering (§IV.1).
3. Every continuous real-valued function on $[0,1]$, or on any compact metric space, is bounded (§IV.2).
4. Every continuous real-valued function on $[0,1]$, or on any compact metric space, is uniformly continuous (§IV.2).
5. Every continuous real-valued function on $[0,1]$ is Riemann integrable (§IV.2).
6. The maximum principle: Every continuous real-valued function on $[0,1]$, or on any compact metric space, has, or attains, a supremum (§IV.2).
7. The local existence theorem for solutions of (finite systems of) ordinary differential equations (§IV.8).
8. Gödel's completeness theorem: every finite, or countable, consistent set of sentences in the predicate calculus has a countable model (§IV.3).
9. Every countable commutative ring has a prime ideal (§IV.6).
10. Every countable field (of characteristic 0) has a unique algebraic closure (§IV.5).
11. Every countable formally real field is orderable (§IV.4).
12. Every countable formally real field has a (unique) real closure (§IV.4).
13. Brouwer's fixed point theorem: Every uniformly continuous function $\phi:[0,1]^{n} \rightarrow[0,1]^{n}$ has a fixed point (§IV.7).
14. The separable Hahn/Banach theorem: If f is a bounded linear functional on a subspace of a separable Banach space, and if $\|f\| \leq 1$, then f has an extension \tilde{f} to the whole space such that $\|\tilde{f}\| \leq 1$ (§IV.9).

Remark I.10.4 (mathematics within WKL_{0}). Theorem I.10.3 illustrates how WKL_{0} is much stronger than RCA_{0} from the viewpoint of mathematical practice. In fact, WKL_{0} is strong enough to prove many well known nonconstructive theorems that are extremely important for mathematical practice but not true in the ω-model REC, hence not provable in $R C A_{0}$ (see §I.8).

Remark I.10.5 (first order part of $W K L_{0}$). We have seen that $W_{K} L_{0}$ is much stronger than RCA_{0} with respect to both ω-models (remark I.10.2) and mathematical practice (theorem I.10.3, remark I.10.4). Nevertheless, it can be shown that $W K L_{0}$ is of the same strength as $R C A_{0}$ in a prooftheoretic sense. Namely, the first order part of $W_{K L}$ is the same as that of RCA_{0}, viz. $\Sigma_{1}^{0}-\mathrm{PA}$. (See also remark I.7.6.) In fact, given any model M of RCA_{0}, there exists a model $M^{\prime} \supseteq M$ of WKL_{0} having the same first order part as M. This model-theoretic conservation result will be proved in §IX.2.

Another key conservation result is that WKL_{0} is conservative over the formal system known as PRA or primitive recursive arithmetic, with respect to Π_{2}^{0} sentences. In particular, given a Σ_{1}^{0} formula $\varphi(m, n)$ and a proof of $\forall m \exists n \varphi(m, n)$ in WKL_{0}, we can find a primitive recursive function $f: \omega \rightarrow$ ω such that $\varphi(m, f(m))$ holds for all $m \in \omega$. This interesting and important result will be proved in §IX.3.

Remark I.10.6 (Hilbert's program). The results of chapters IV and IX are of great importance with respect to the foundations of mathematics, specifically Hilbert's program. Hilbert's intention [114] was to justify all of mathematics (including infinitistic, set-theoretic mathematics) by reducing it to a restricted form of reasoning known as finitism. Gödel's [94, 115, 55,222] limitative results show that there is no hope of realizing Hilbert's program completely. However, results along the lines of theorem I.10.3 and remark I.10.5 show that a large portion of infinitistic mathematical
practice is in fact finitistically reducible, because it can be carried out in $W_{K L}{ }_{0}$. Thus we have a significant partial realization of Hilbert's program of finitistic reductionism. See also remark IX.3.18.

Notes for $\S \mathbf{I}$.10. The formal system WKL_{0} was first introduced by Friedman [69]. In the model-theoretic literature, ω-models of WKL_{0} are sometimes known as Scott systems, referring to Scott [217]. Chapter IV of this book is devoted to the development of mathematics within WKL_{0} and Reverse Mathematics for WKL_{0}. Models of WKL_{0} are discussed in $\S \S \mathrm{VIII} .2$, IX.2, and IX. 3 of this book. The original paper on Hilbert's program is Hilbert [114]. The significance of WKL_{0} and Reverse Mathematics for partial realizations of Hilbert's program is expounded in Simpson [246].

I.11. The System ATR $_{0}$

In this section we introduce and discuss ATR $_{0}$, a subsystem of Z_{2} consisting of ACA_{0} plus a set existence axiom known as arithmetical transfinite recursion. Informally, arithmetical transfinite recursion can be described as the assertion that the Turing jump operator can be iterated along any countable well ordering starting at any set. The precise statement is given in definition I.11.1 below.

From the standpoint of foundations of mathematics, the motivation for ATR ${ }_{0}$ is similar to the motivation for WKL_{0}, as explained in §I.10. (See also the analogy in I.11.7 below.) Using the notation of \S I. 9, ATR $_{0}=S_{4}$ is intermediate between $\mathrm{ACA}_{0}=S_{3}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}=S_{5}$. It turns out that ATR $_{0}$ is equivalent to several theorems of ordinary mathematics which are provable in $\Pi_{1}^{1}-C A_{0}$ but not in ACA_{0}.

As an example, consider the perfect set theorem: Every uncountable closed set (or analytic set) has a perfect subset. We shall see that ATR ${ }_{0}$ is equivalent over RCA_{0} to (either form of) the perfect set theorem. Thus ATR ${ }_{0}$ is the weakest natural subsystem of Z_{2} in which the perfect set theorem is provable. Actually, ATR $_{0}$ provides the answer not only to this instance of the Main Question (§I.9) but also to many other instances of it; see theorem I.11.5 below. Moreover, ATR $_{0}$ is sufficiently strong to accommodate a large portion of mathematical practice beyond ACA_{0}, including many basic theorems of infinitary combinatorics and classical descriptive set theory.

We now proceed to the definition of ATR_{0}.
Definition I.11.1 (arithmetical transfinite recursion). Consider an arithmetical formula $\theta(n, X)$ with a free number variable n and a free set variable X. Note that $\theta(n, X)$ may also contain parameters, i.e., additional
free number and set variables. Fixing these parameters, we may view θ as an "arithmetical operator" $\Theta: P(\mathbb{N}) \rightarrow P(\mathbb{N})$, defined by

$$
\Theta(X)=\{n \in \mathbb{N}: \theta(n, X)\}
$$

Now let $A,<_{A}$ be any countable well ordering (definition I.6.1), and consider the set $Y \subseteq \mathbb{N}$ obtained by transfinitely iterating the operator Θ along $A,<_{A}$. This set Y is defined by the following conditions: $Y \subseteq \mathbb{N} \times A$ and, for each $a \in A, Y_{a}=\Theta\left(Y^{a}\right)$, where $Y_{a}=\{m:(m, a) \in Y\}$ and $Y^{a}=\left\{(n, b): n \in Y_{b} \wedge b<_{A} a\right\}$. Thus, for each $a \in A, Y^{a}$ is the result of iterating Θ along the initial segment of $A,<_{A}$ up to but not including a, and Y_{a} is the result of applying Θ one more time.

Finally, arithmetical transfinite recursion is the axiom scheme asserting that such a set Y exists, for every arithmetical operator Θ and every countable well ordering $A,<_{A}$. We define ATR $_{0}$ to consist of ACA $_{0}$ plus the scheme of arithmetical transfinite recursion. It is easy to see that $A T R_{0}$ is a subsystem of $\Pi_{1}^{1}-\mathrm{CA}_{0}$, and we shall see below that it is a proper subsystem.

Example I. 11.2 (the ω-model ARITH). Recall the ω-model

$$
\begin{aligned}
\text { ARITH } & =\operatorname{Def}((\omega,+, \cdot, 0,1,<)) \\
& =\left\{X \subseteq \omega: \exists n \in \omega X \leq_{\mathrm{T}} \operatorname{TJ}(n, \emptyset)\right\}
\end{aligned}
$$

consisting of all arithmetically definable subsets of ω (remarks I.3.3 and I.3.4). We have seen that ARITH is the minimum ω-model of ACA $_{0}$. Trivially for each $n \in \omega$ we have $\mathrm{TJ}(n, \emptyset) \in \operatorname{ARITH}$; here $\mathrm{TJ}(n, \emptyset)$ is the result of iterating the Turing jump operator n times, i.e., along a finite well ordering of order type n. On the other hand, ARITH does not contain TJ (ω, \emptyset), the result of iterating the Turing jump operator ω times, i.e., along the well ordering $(\omega,<)$. Thus ARITH fails to satisfy this instance of arithmetical transfinite recursion. Hence ARITH is not an ω-model of ATR ${ }_{0}$.

Example I. 11.3 (the ω-model HYP). Another important ω-model is

$$
\begin{aligned}
\mathrm{HYP} & =\left\{X \subseteq \omega: X \leq_{\mathrm{H}} \emptyset\right\} \\
& =\{X \subseteq \omega: X \text { is hyperarithmetical }\} \\
& =\left\{X \subseteq \omega: \exists \alpha<\omega_{1}^{\mathrm{CK}} X \leq_{\mathrm{T}} \mathrm{TJ}(\alpha, \emptyset)\right\}
\end{aligned}
$$

Here α ranges over the recursive ordinals, i.e., the countable ordinals which are order types of recursive well orderings of ω. We use $\omega_{1}^{\text {CK }}$ to denote Church/Kleene ω_{1}, i.e., the least nonrecursive ordinal. Clearly HYP is much larger than ARITH, and HYP contains many sets which are defined by arithmetical transfinite recursion. However, as we shall see in §VIII.3, HYP does not contain enough sets to be an ω-model of $A T R_{0}$.

Remark I.11.4 (ω-models of ATR ${ }_{0}$). In $\S \S V I I .2$ and VIII. 6 we shall prove two facts: (1) every β-model is an ω-model of ATR ${ }_{0}$; (2) the intersection of all β-models is HYP, the ω-model consisting of the hyperarithmetical sets. From this it follows that HYP, although not itself an ω-model of ATR $_{0}$, is the intersection of all such ω-models. Hence ATR $_{0}$ does not have a minimum ω-model or a minimum β-model. Combining these observations with what we already know about ω-models of ACA_{0} and $\Pi_{1}^{1}-\mathrm{CA} \mathrm{A}_{0}$ (remarks I.3.4 and I.5.4), we see that

$$
\mathrm{ACA}_{0} \varsubsetneqq \mathrm{ATR}_{0} \quad \varsubsetneqq \quad \Pi_{1}^{1}-\mathrm{CA}_{0}
$$

and there are ω-models for the independence.
We now list several results of Reverse Mathematics with respect to ATR ${ }_{0}$. These results will be proved in chapter V .

Theorem I.11.5 (Reverse Mathematics for ATR ${ }_{0}$). Within RCA $_{0}$ one can prove that ATR_{0} is equivalent to each of the following ordinary mathematical statements:

1. Any two countable well orderings are comparable ($\S \mathrm{V} .6$).
2. Ulm's theorem: Any two countable reduced Abelian p-groups which have the same Ulm invariants are isomorphic (§V.7).
3. The perfect set theorem: Every uncountable closed, or analytic, set has a perfect subset (§V.4, V.5).
4. Lusin's separation theorem: Any two disjoint analytic sets can be separated by a Borel set (§§V.3, V.5).
5. The domain of any single-valued Borel set in the plane is a Borel set (§V.3, V.5).
6. Every open, or clopen, subset of $\mathbb{N}^{\mathbb{N}}$ is determined ($(\mathrm{V} .8)$.
7. Every open, or clopen, subset of $[\mathbb{N}]^{\mathbb{N}}$ has the Ramsey property ($(\mathrm{V} .9)$.

Remark I.11.6 (mathematics within ATR $_{0}$). Theorem I.11.5 illustrates how $A T R_{0}$ is much stronger than $A C A_{0}$ from the viewpoint of mathematical practice. Namely, ATR $_{0}$ proves many well known ordinary mathematical theorems which fail in the ω-models ARITH and HYP and hence are not provable in ACA_{0} (see \S I.4) or even in somewhat stronger systems such as $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (§VIII.4). A common feature of such theorems is that they require, implicitly or explicitly, a good theory of countable ordinal numbers.

Remark I.11.7 (Σ_{1}^{0} and Σ_{1}^{1} separation). From the viewpoint of mathematical practice, we have already noted an interesting analogy between WKL_{0} and ATR_{0}, suggested by the following equation:

$$
\frac{\mathrm{WKL}_{0}}{\mathrm{ACA}_{0}} \approx \frac{\mathrm{ATR}_{0}}{\Pi_{1}^{1}-\mathrm{CA}_{0}}
$$

We shall now extend this analogy by reformulating WKL_{0} and ATR_{0} in terms of separation principles.

I. Introduction

Define Σ_{1}^{0} separation to be the axiom scheme consisting of (the universal closures of) all formulas of the form

$$
\begin{aligned}
& \left(\forall n \neg\left(\varphi_{1}(n) \wedge \varphi_{2}(n)\right)\right) \rightarrow \\
& \quad \exists X\left(\forall n\left(\varphi_{1}(n) \rightarrow n \in X\right) \wedge \forall n\left(\varphi_{2}(n) \rightarrow n \notin X\right)\right)
\end{aligned}
$$

where $\varphi_{1}(n)$ and $\varphi_{2}(n)$ are any Σ_{1}^{0} formulas, n is any number variable, and X is a set variable which does not occur freely in $\varphi_{1}(n) \wedge \varphi_{2}(n)$. Define Σ_{1}^{1} separation similarly, with Σ_{1}^{1} formulas instead of Σ_{1}^{0} formulas. It turns out that

$$
\text { WKL }_{0} \equiv \Sigma_{1}^{0} \text { separation }
$$

and

$$
\mathrm{ATR}_{0} \equiv \Sigma_{1}^{1} \text { separation }
$$

over RCA_{0}. These equivalences, which will be proved in $\S \S I V .4$ and V. 5 respectively, serve to strengthen the above-mentioned analogy between WKL_{0} and $A^{\prime} R_{0}$. They will also be used as technical tools for proving several of the reversals given by theorems I.10.3 and I.11.5.

Remark I.11.8. Another analogy in the same vein as that of I.11.7 is

$$
\frac{\mathrm{WKL}_{0}}{\mathrm{RCA}_{0}} \approx \frac{\mathrm{ATR}_{0}}{\Delta_{1}^{1}-\mathrm{CA}_{0}}
$$

The system $\Delta_{1}^{1}-\mathrm{CA}_{0}$ will be studied in $\S \S$ VIII. 3 and VIII.4, where we shall see that HYP is its minimum ω-model. Recall also (remark I.7.5) that REC is the minimum ω-model of

$$
\mathrm{RCA}_{0} \equiv \Delta_{1}^{0}-\mathrm{CA}_{0}
$$

REmark I.11.9 (first order part of $A_{0} R_{0}$). It is known that the first order part of $A T R_{0}$ is the same as that of Feferman's system IR of predicative analysis; indeed, these two systems prove the same Π_{1}^{1} sentences. Thus our development of mathematics within ATR $_{0}$ (theorem I.11.5, remark I.11.6, chapter V) may be viewed as contributions to a program of "predicative reductionism," analogous to Hilbert's program of finitistic reductionism (remark I.10.6, section IX.3). See also the proof of theorem IX.5.7 below.

Notes for $\S \mathbf{I} .11$. The formal system ATR $_{0}$ was first investigated by Friedman $[68,69]$ (see also Friedman [62, chapter II]) and Steel [256, chapter I]. A key reference for ATR $_{0}$ is Friedman/McAloon/Simpson [76]. Chapter V of this book is devoted to the development of mathematics within ATR $_{0}$ and Reverse Mathematics for ATR $_{0}$. Models of ATR $_{0}$ are discussed in $\S \S V I I .2$, VII. 3 and VIII.6. The basic reference for formal systems of predicative analysis is Feferman [56, 57]. The significance of ATR $_{0}$ for predicative reductionism has been discussed by Simpson [238, 246].

I.12. The Main Question, Revisited

The Main Question was introduced in §I.1. We now reexamine it in light of the results outlined in $\S \S \mathrm{I} .2$ through I. 11 .

The Main Question asks which set existence axioms are needed to support ordinary mathematical reasoning. We take "needed" to mean that the set existence axioms are to be as weak as possible. When developing precise formal versions of the Main Question, it is natural also to consider formal languages which are as weak as possible. The language L_{2} comes to mind because it is just adequate to define the majority of ordinary mathematical concepts and to express the bulk of ordinary mathematical reasoning. This leads in $\S I .2$ to the consideration of subsystems of Z_{2}.

Two of the most obvious subsystems of Z_{2} are $A C A_{0}$ and $\Pi_{1}^{1}-C A_{0}$, and in $\S \S$ I. $3-$ I. 6 we outline the development of ordinary mathematics in these systems. The upshot of this is that a great many ordinary mathematical theorems are provable in ACA_{0}, and that of the exceptions, most are provable in $\Pi_{1}^{1}-C A_{0}$. The exceptions tend to involve countable ordinal numbers, either explicitly or implicitly. Another important subsystem of Z_{2} is RCA_{0}, which is seen in $\S \S \mathrm{I} .7$ and I. 8 to embody a kind of formalized computable or constructive mathematics. Thus we have an approximate answer to the Main Question.

We then turn to a sharpened form of the Main Question, where we insist that the ordinary mathematical theorems should be logically equivalent to the set existence axioms needed to prove them. Surprisingly, this demand can be met in some cases; several ordinary mathematical theorems turn out to be equivalent over $R C A_{0}$ to either $A C A_{0}$ or $\Pi_{1}^{1}-C A_{0}$. This is our theme of Reverse Mathematics in §I.9. But the situation is not entirely satisfactory, because many ordinary mathematical theorems seem to fall into the gaps.

In order to improve the situation, we introduce two additional systems: $W_{K L}$ lying strictly between RCA_{0} and ACA_{0}, and analogously ATR_{0} lying strictly between ACA_{0} and $\Pi_{1}^{1}-\mathrm{CA}_{0}$. These systems are introduced in $\S \S \mathrm{I} .10$ and I. 11 respectively. With this expanded complement of subsystems of Z_{2}, a certain stability is achieved; it now seems possible to "calibrate" a great many ordinary mathematical theorems, by showing that they are either provable in $R C A_{0}$ or equivalent over $R C A_{0}$ to $W K L_{0}, A C A_{0}$, $A T R_{0}$, or $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

Historically, the intermediate systems WKL_{0} and ATR_{0} were discovered in exactly in this way, as a response to the needs of Reverse Mathematics. See for example the discussion in Simpson [246, $\S \S 4,5]$.

From the above it is clear that the five basic systems $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}$, $A T R_{0}, \Pi_{1}^{1}-C A_{0}$ arise naturally from investigations of the Main Question.

The proof that these systems are mathematically natural is provided by Reverse Mathematics.

As a perhaps not unexpected byproduct, we note that these same five systems turn out to correspond to various well known, philosophically motivated programs in foundations of mathematics, as indicated in table 1. The foundational programs that we have in mind are: Bishop's program of constructivism [20] (see however remarks I.8.9 and IV.2.8); Hilbert's program of finitistic reductionism [114, 246] (see remarks I.10.6 and IX.3.18); Weyl's program of predicativity [274] as developed by Feferman [56, 57, 59]; predicative reductionism as developed by Friedman and Simpson $[69,76,238,247]$; impredicativity as developed in Buchholz/Feferman/Pohlers/Sieg [29]. Thus, by studying the formalization of mathematics and Reverse Mathematics for the five basic systems, we can develop insight into the mathematical consequences of these philosophical proposals. Thus we can expect this book and other Reverse Mathematics studies to have a substantial impact on the philosophy of mathematics.

Table 1. Foundational programs and the five basic systems.

RCA_{0}	constructivism	Bishop
WKL_{0}	finitistic reductionism	Hilbert
ACA_{0}	predicativism	Weyl, Feferman
ATR_{0}	predicative reductionism	Friedman, Simpson
$\Pi_{1}^{1}-\mathrm{CA}_{0}$	impredicativity	Feferman et al.

I.13. Outline of Chapters II Through X

This section of our introductory chapter I consists of an outline of the remaining chapters.

The bulk of the material is organized in two parts. Part A consists of chapters II through VI and focuses on the development of mathematics within the five basic systems: $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}, \Pi_{1}^{1}-\mathrm{CA}_{0} . \mathrm{A}$ principal theme of Part A is Reverse Mathematics (see also §I.9). Part B, consisting of chapters VII through IX, is concerned with metamathematical properties of various subsystems of Z_{2}, including but not limited to the five basic systems. Chapters VII, VIII, and IX deal with β-models, ω models, and non- ω-models, respectively. At the end of the book there is an appendix, chapter X, in which additional results are presented without proof but with references to the published literature. See also table 2.

TABLE 2. An overview of the entire book.

Introduction	Chapter I	introductory survey
	Chapter II	RCA_{0}
Part A	Chapter III	ACA_{0}
(mathematics within	Chapter IV	WKL_{0}
the 5 basic systems)	Chapter V	ATR_{0}
	Chapter VI	$\Pi_{1}^{1}-\mathrm{CA}_{0}$
Part B	Chapter VII	β-models
(models of	Chapter VIII	ω-models
various systems)	Chapter IX	non- ω-models
Appendix	Chapter X	additional results

Part A: Mathematics Within Subsystems of Z_{2}. Part A consists of a key chapter II on the development of ordinary mathematics within RCA $_{0}$, followed by chapters III, IV, V, and VI on ordinary mathematics within the other four basic systems: $A C A_{0}, W_{K}, A T R_{0}$, and $\Pi_{1}^{1}-C A_{0}$, respectively. These chapters present many results of Reverse Mathematics showing that particular set existence axioms are necessary and sufficient to prove particular ordinary mathematical theorems. Table 3 indicates in more detail exactly where some of these results may be found. Table 3 may serve as a guide or road map concerning the role of set existence axioms in ordinary mathematical reasoning.

Chapter II: RCA $_{0}$. In \S II. 1 we define the formal system RCA_{0} consisting of Δ_{1}^{0} comprehension and Σ_{1}^{0} induction. After that, the rest of chapter II is concerned with the development of ordinary mathematics within RCA_{0}. Although chapter II does not itself contain any Reverse Mathematics, it is necessarily a prerequisite for all of the Reverse Mathematics results to be presented in later chapters. This is because $R C A_{0}$ serves as our weak base theory (see \S I. 9 above).

In §II. 2 we employ a device reminiscent of Gödel's beta function to prove within RCA_{0} that finite sequences of natural numbers can be encoded as single numbers. This encoding is essential for \S II. 3 , where we prove within RCA_{0} that the class of functions from $f: \mathbb{N}^{k} \rightarrow \mathbb{N}, k \in \mathbb{N}$, is closed under primitive recursion. Another key technical result of $\S I I .3$ is that RCA A_{0} proves bounded Σ_{1}^{0} comprehension, i.e., the existence of bounded subsets of \mathbb{N} defined by Σ_{1}^{0} formulas.

Armed with these preliminary results from $\S \S I I .2$ and II.3, we begin the development of mathematics proper in \S II. 4 by discussing the number

Table 3. Ordinary mathematics within the five basic systems.

	RCA ${ }_{0}$	WKL ${ }_{0}$	ACA_{0}	ATR ${ }_{0}$	$\Pi_{1}^{1}-\mathrm{CA}_{0}$
analysis (separable): differential equations continuous functions completeness, etc. Banach spaces open and closed sets Borel and analytic sets	$\begin{aligned} & \text { IV. } 8 \\ & \text { II. } 6, \text { II. } 7 \\ & \text { II. } 4 \\ & \text { II. } 10 \\ & \text { II. } 5 \\ & \text { V. } 1 \end{aligned}$	IV. 8 IV.2, IV. 7 IV. 1 IV.9, X. 2 IV. 1	$\begin{aligned} & \text { III. } 2 \\ & \text { III. } 2 \end{aligned}$	$\begin{aligned} & \text { V.4, V. } 5 \\ & \text { V.1, V. } 3 \end{aligned}$	X. 2 VI. 1 VI.2, VI. 3
algebra (countable): countable fields commutative rings vector spaces Abelian groups	$\begin{aligned} & \text { II. } 9 \\ & \text { III. } 5 \\ & \text { III. } 4 \\ & \text { III. } 6 \end{aligned}$	IV.4, IV. 5 IV. 6	$\begin{gathered} \text { III. } 3 \\ \text { III. } 5 \\ \text { III. } 4 \\ \text { III. } 6 \end{gathered}$	V. 7	VI. 4
miscellaneous: mathematical logic countable ordinals infinite matchings the Ramsey property infinite games	$\begin{aligned} & \text { II. } 8 \\ & \text { V. } 1 \end{aligned}$	IV. 3 $\text { X. } 3$	$\begin{aligned} & \text { V. } 6.10 \\ & \text { X. } 3 \\ & \text { III. } 7 \\ & \text { V. } 8 \end{aligned}$	$\begin{aligned} & \text { V.1, V. } 6 \\ & \text { X. } 3 \\ & \text { V. } 9 \\ & \text { V. } 8 \end{aligned}$	$\begin{aligned} & \text { VI. } 6 \\ & \text { VI. } 5 \end{aligned}$

systems $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and \mathbb{R}. Also in \S II. 4 we present an important completeness property of the real number system, known as nested interval completeness. An RCA_{0} version of the Baire category theorem for k-dimensional Euclidean spaces $\mathbb{R}^{k}, k \in \mathbb{N}$, is stated; the proof is postponed to \S II. 5 .

Sections II.5, II.6, and II. 7 discuss complete separable metric spaces in RCA_{0}. Among the notions introduced (in a form appropriate for RCA_{0}) are open sets, closed sets, and continuous functions. We prove the following important technical result: An open set in a complete separable metric space \widehat{A} is the same thing as a set in \widehat{A} defined by a Σ_{1}^{0} formula with an extensionality property (II.5.7). Nested interval completeness is used to prove the intermediate value property for continuous functions $\phi: \mathbb{R} \rightarrow$ \mathbb{R} in RCA_{0} (II.6.6). A number of basic topological results for complete separable metric spaces are shown to be provable in RCA_{0}. Among these are Urysohn's lemma (II.7.3), the Tietze extension theorem (II.7.5), the Baire category theorem (II.5.8), and paracompactness (II.7.2).

Sections II. 8 and II. 9 deal with mathematical logic and countable alge$b r a$, respectively. We show in §II. 8 that some surprisingly strong versions of basic results of mathematical logic can be proved in RCA_{0}. Among these are Lindenbaum's lemma, the Gödel completeness theorem, and the strong soundness theorem, via cut elimination. To illustrate the power of these results, we show that RCA_{0} proves the consistency of elementary function arithmetic, EFA. In \S II. 9 we apply the results of $\S \S I I .3$ and II. 8 in a discussion of countable algebraically closed and real closed fields in RCA_{0}. We use quantifier elimination to prove within RCA_{0} that every countable field has an algebraic closure, and that every countable ordered field has a unique real closure. (Uniqueness of algebraic closure is discussed later, in §IV.5.)

Section II. 10 presents some basic concepts and results of the theory of separable Banach spaces and bounded linear operators, within RCA_{0}. It is shown that the standard proof of the Banach/Steinhaus uniform boundedness principle, via the Baire category theorem, goes through in this setting.

Chapter III: ACA $_{0}$. Chapter III is concerned with ACA $_{0}$, the formal system consisting of RCA_{0} plus arithmetical comprehension. The focus of chapter III is Reverse Mathematics with respect to ACA_{0}. (See also $\S \S I .4$, I.3, and I.9.)

In \S III. 1 we define ACA_{0} and show that it is equivalent over RCA_{0} to Σ_{1}^{0} comprehension and to the principle that for any function $f: \mathbb{N} \rightarrow \mathbb{N}$, the range of f exists. This equivalence is used to establish all of the Reverse Mathematics results which occupy the rest of the chapter. For example, it is shown in \S III. 2 that ACA_{0} is equivalent to the Bolzano/Weierstraß theorem, i.e., sequential compactness of the closed unit interval. Also in §III. 2 we introduce the notion of compact metric space, and we show that $A C A_{0}$ is equivalent to the principle that any sequence of points in a compact metric space has a convergent subsequence. We end §III. 2 by showing that ACA_{0} is equivalent to the Ascoli lemma concerning bounded equicontinuous families of continuous functions.

Sections III.3, III.4, III. 5 and III. 6 are concerned with countable algebra in ACA_{0}. It is perhaps interesting to note that chapter III has much more to say about algebra than about analysis.

We begin in §III. 3 by reexamining the notion of an algebraic closure $h: K \rightarrow \widetilde{K}$ of a countable field K. We define a notion of strong algebraic closure, i.e., an algebraic closure with the additional property that the range of the embedding h exists as a set. Although the existence of algebraic closures is provable in RCA_{0}, we show in \S III. 3 that the existence of strong algebraic closures is equivalent to ACA_{0}. Similarly, although it is provable in $R C A_{0}$ that any countable ordered field has a real closure, we show in \S III. 3 that ACA_{0} is required to prove the existence of a strong real closure.

In \S III. 4 we show that ACA $_{0}$ is equivalent to the theorem that every countable vector space over a countable field (or over the rational field $\mathbb{Q})$ has a basis. We then refine this result (following Metakides/Nerode [187]) by showing that ACA_{0} is also equivalent to the assertion that every countable, infinite dimensional vector space over \mathbb{Q} has an infinite linearly independent set. We also obtain similar results for transcendence bases of countable fields.

In \S III. 5 we turn to countable commutative rings. We use localization to show that $A C A_{0}$ is equivalent to the assertion that every countable commutative ring has a maximal ideal. In §III. 6 we discuss countable Abelian groups. We show that ACA_{0} is equivalent to the assertion that, for every countable Abelian group G, the torsion subgroup of G exists. We also show that, although the existence of divisible closures is provable in RCA_{0}, the uniqueness requires ACA_{0}

In §III. 7 we consider Ramsey's theorem. We define RT(k) to be Ramsey's theorem for exponent k, i.e., the assertion that for every coloring of the k-element subsets of \mathbb{N} with finitely many colors, there exists an infinite subset of \mathbb{N} all of whose k-element subsets have the same color. We show that ACA_{0} is equivalent to $\mathrm{RT}(k)$ for each "standard integer" $k \in \omega, k \geq 3$. From the viewpoint of Reverse Mathematics, the case $k=2$ turns out to be anomalous: $R T(2)$ is provable in ACA_{0} but neither equivalent to ACA_{0} nor provable in WKL_{0}. See also the notes at the end of §III.7. Another somewhat annoying anomaly is that the general assertion of Ramsey's theorem, $\forall k \operatorname{RT}(k)$, is slightly stronger than ACA_{0}, due to the fact that ACA_{0} lacks full induction.

An interesting technical result of \S III. 7 is that ACA $_{0}$ is equivalent to König's lemma: every infinite, finitely branching tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ has an infinite path. It turns out that ACA_{0} is also equivalent to a much weaker sounding statement, namely König's lemma restricted to binary trees. (A tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is defined to be binary if each node of T has at most two immediate successors.) The binary tree version of König's lemma is to be contrasted with its special case, weak König's lemma: every infinite tree $T \subseteq 2^{<\mathbb{N}}$ has an infinite path. It is important to understand that, in terms of set existence axioms and Reverse Mathematics, weak König's lemma is much weaker than König's lemma for binary trees. These observations provide a transition to the next chapter, which is concerned only with weak König's lemma and not at all with König's lemma for binary trees.

Chapter IV: WKL_{0}. Chapter IV focuses on Reverse Mathematics with respect to the formal system $W_{K L}$ consisting of RCA_{0} plus weak König's lemma. (See also the previous paragraph and §I.10.)

We begin in §IV. 1 by showing that weak König's lemma is equivalent over RCA_{0} to the Heine/Borel covering lemma: every covering of the closed unit
interval $[0,1]$ by a sequence of open intervals has a finite subcovering. We then generalize this result by showing that WKL_{0} proves a Heine/Borel covering property for arbitrary compact metric spaces. In order to obtain this generalization, we first prove a technical result: WKL_{0} proves bounded König's lemma, i.e., König's lemma for subtrees of $\mathbb{N}<\mathbb{N}$ which are bounded. (A tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is said to be bounded if there exists a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $\tau(m)<g(m)$ for all $\tau \in T, m<\operatorname{lh}(\tau)$.) We also develop some additional technical results which are needed in later sections.

Section IV. 2 shows that various properties of continuous functions on compact metric spaces are provable in WKL_{0} and in fact equivalent to weak König's lemma over RCA $_{0}$. Among the properties considered are uniform continuity, Riemann integrability, the Weierstraß polynomial approximation theorem, and the maximum principle. A key technical notion here is that of modulus of uniform continuity (definition IV.2.1).

In §IV. 3 we return to mathematical logic. We show that several well known theorems of mathematical logic, such as the completeness theorem and the compactness theorem for both propositional logic and predicate calculus, are each equivalent to weak König's lemma over RCA A_{0}. Our results here in \S IV. 3 are to be contrasted with those of $\S I I .8$.

Sections IV.4, IV. 5 and IV. 6 deal with countable algebra in $W_{K} L_{0}$. We show in §IV. 5 that weak König's lemma is equivalent to the assertion that every countable field has a unique algebraic closure. (We have already seen in $\S I I .9$ that the existence of algebraic closures is provable in RCA_{0}. .) In \S IV. 4 we discuss formally real fields, i.e., fields in which -1 cannot be written as a sum of squares. We show that weak König's lemma is equivalent over RCA_{0} to the assertion that every countable formally real field is orderable, and to the assertion that every countable formally real field has a real closure. In order to prove these results of Reverse Mathematics, we first prove a technical result characterizing WKL_{0} in terms of Σ_{1}^{0} separation; see also §I.11.

In \S IV. 6 we show that WKL_{0} proves the existence of prime ideals in countable commutative rings. The argument for this result is somewhat interesting in that it involves not only two applications of weak König's lemma but also bounded Σ_{1}^{0} comprehension. In addition, we obtain reversals showing that weak König's lemma is equivalent over RCA_{0} to the existence of prime ideals, or even of radical ideals, in countable commutative rings. These results stand in contrast to $\S I I I .5$, where we saw that $A C A_{0}$ is needed to prove the existence of maximal ideals in countable commutative rings. Thus it emerges that the usual textbook proof of the existence of prime ideals, via maximal ideals, is far from optimal with respect to its use of set existence axioms.

Sections IV.7, IV. 8 and IV. 9 are concerned with certain advanced topics in analysis. We begin in \S IV. 7 by showing that the well known fixed point theorems of Brouwer and Schauder are provable in WKL_{0}. In \S IV. 8 we use a fixed point technique to prove Peano's existence theorem for solutions of ordinary differential equations, in WKL_{0}. We also obtain reversals showing weak König's lemma is needed to prove the Brouwer and Schauder fixed point theorems and Peano's existence theorem. On the other hand, we note that the more familiar Picard existence and uniqueness theorem, assuming a Lipschitz condition, is already provable in RCA_{0} alone.

Section IV. 9 is concerned with Banach space theory in WKL_{0}. We build on the concepts and results of $\S \S I I .10$ and IV.7. We begin by showing that yet another fixed point theorem, the Markov/Kakutani theorem for commutative families of affine maps, is provable in WKL_{0}. We then use this result to show that WKL_{0} proves a version of the Hahn/Banach extension theorem for bounded linear functionals on separable Banach spaces. A reversal is also obtained.

Chapter V: ATR ${ }_{0}$. Chapter V deals with mathematics in ATR $_{0}$, the formal system consisting of ACA_{0} plus arithmetical transfinite recursion. (See also §I.11.) Many of the ordinary mathematical theorems considered in chapters V and VI are in the areas of countable combinatorics and classical descriptive set theory. The first few sections of chapter V focus on proving ordinary mathematical theorems in ATR $_{0}$. Reverse Mathematics with respect to ATR_{0} is postponed to $\S \mathrm{V} .5$.

Chapter V begins with a preliminary $\S \mathrm{V} .1$ whose purpose is to elucidate the relationships among Σ_{1}^{1} formulas, analytic sets, countable well orderings, and trees. An important tool is the Kleene/Brouwer ordering $\mathrm{KB}(T)$ of an arbitrary tree $T \subseteq \mathbb{N}<\mathbb{N}$. Key properties of the Kleene/Brouwer construction are: (1) $\mathrm{KB}(T)$ is always a linear ordering; (2) $\mathrm{KB}(T)$ is a well ordering if and only if T is well founded. The Kleene normal form theorem is proved in ACA_{0} and is then used to show that any Π_{1}^{1} assertion ψ can be expressed in ACA_{0} by saying that an appropriately chosen tree T_{ψ} is well founded, or equivalently, $\operatorname{KB}\left(T_{\psi}\right)$ is a well ordering.

In \S V. 2 we define the formal system ATR $_{0}$ and observe that it is strong enough to accommodate a good theory of countable ordinal numbers, encoded by countable well orderings. In \S V. 3 we show that ATR $_{0}$ is also strong enough to accommodate a good theory of Borel and analytic sets in the Cantor space $2^{\mathbb{N}}$. In this setting, the well known theorems of Souslin (" B is Borel if and only if B and its complement are analytic") and Lusin ("any two disjoint analytic sets can be separated by a Borel set") are proved, along with a lesser known closure property of Borel sets ("the domain of a single-valued Borel relation is Borel"). In $\S V .4$ we advance our examination of classical descriptive set theory by showing that the perfect set
theorem ("every uncountable analytic set has a nonempty perfect subset") is provable in ATR_{0}. This last result uses an interesting technique known as the method of pseudohierarchies, or "nonstandard H-sets", i.e., arithmetical transfinite recursion along countable linear orderings which are not well orderings.

In \S V. 5 , most of the descriptive set-theoretic theorems mentioned in $\S \S \mathrm{V} .3$ and V. 4 are reversed, i.e., shown to be equivalent over RCA_{0} to $A T R_{0}$. The reversals are based on our characterization of $A T R_{0}$ in terms of Σ_{1}^{1} separation. See also \S I.11. We also present the following alternative characterization: ATR_{0} is equivalent to the assertion that, for any sequence of trees $\left\langle T_{i}: i \in \mathbb{N}\right\rangle$, if each T_{i} has at most one path, then the set $\left\{i: T_{i}\right.$ has a path\} exists. This equivalence is based on a sharpening of the Kleene normal form theorem.

We have already observed that the development of mathematics within ATR ${ }_{0}$ seems to go hand in hand with a good theory of countable ordinal numbers. In $\S V .6$ we sharpen this observation by showing that $A T R_{0}$ is actually equivalent over $R C A_{0}$ to a certain statement which is obviously indispensable for any such theory. The statement in question is, "any two countable well orderings are comparable", abbreviated CWO. The proof that CWO implies ATR $_{0}$ is rather technical and uses what are called double descent trees.

In $\oint \mathrm{V} .7$ we return to the study of countable Abelian groups (see also $\S \S I I I .6$ and VI.4). We show that ATR ${ }_{0}$ is needed to prove Ulm's theorem for reduced Abelian p-groups, as well as some consequences of Ulm's theorem. The reversals use the fact that ATR $_{0}$ is equivalent to CWO. Ulm's theorem is of interest with respect to our Main Question, because it seems to be one of the few places in analysis or algebra where transfinite recursion plays an apparently indispensable role.

In $\S \S \mathrm{V} .8$ and V. 9 we consider two other topics in ordinary mathematics where strong set existence axioms arise naturally. These are (1) infinite game theory, and (2) the Ramsey property.

The games considered in $\S \mathrm{V} .8$ are Gale/Stewart games, i.e., infinite games with perfect information. A payoff set $S \subseteq \mathbb{N}^{\mathbb{N}}$ is specified. Two players take turns choosing nonnegative integers $m_{1}, n_{1}, m_{2}, n_{2}, \ldots$, with full disclosure. The first player is declared the winner if the infinite sequence $\left\langle m_{1}, n_{1}, m_{2}, n_{2}, \ldots\right\rangle$ belongs to S. Otherwise the second player is declared the winner. Such a game is said to be determined if one player or the other has a winning strategy. Letting \mathcal{S} be any class of payoff sets, \mathcal{S}-determinacy is the assertion that all games of this class are determined. It is well known that strong set existence axioms are correlated to determinacy for large classes of games. A striking result of this kind is due to Friedman [66, 71],
who showed that Borel determinacy requires \aleph_{1} applications of the power set axiom.

We show in $\S \mathrm{V} .8$ that ATR_{0} proves open determinacy, i.e., determinacy for all games in which the payoff set $S \subseteq \mathbb{N}^{\mathbb{N}}$ is open. This result uses pseudohierarchies, just as for the perfect set theorem. We also obtain a reversal, showing that open determinacy or even clopen determinacy is equivalent to ATR ${ }_{0}$ over RCA_{0}. Our argument for the reversal proceeds via CWO. Along the way we obtain the following preliminary result: determinacy for games of length 3 is equivalent to ACA_{0} over RCA_{0}.

As a consequence of open determinacy in ATR_{0}, we obtain the following interesting theorem: ATR ${ }_{0}$ proves the Σ_{1}^{1} axiom of choice. (More information on Σ_{1}^{1} choice is in §VIII.4.)

In $\S \mathrm{V} .9$ we deal with a well known topological generalization of Ramsey's theorem. Let $[\mathbb{N}]^{\mathbb{N}}$ be the Ramsey space, i.e., the space of all infinite subsets of \mathbb{N}. Note that $[\mathbb{N}]^{\mathbb{N}}$ is canonically homeomorphic to the Baire space $\mathbb{N}^{\mathbb{N}}$ via $\Phi:[\mathbb{N}]^{\mathbb{N}} \cong \mathbb{N}^{\mathbb{N}}$ defined by

$$
\Phi^{-1}(f)=\{f(0)+1+\cdots+1+f(n): n \in \mathbb{N}\}
$$

A set $S \subseteq[\mathbb{N}]^{\mathbb{N}}$ is said to have the Ramsey property if there exists $X \in[\mathbb{N}]^{\mathbb{N}}$ such that either $[X]^{\mathbb{N}} \subseteq S$ or $[X]^{\mathbb{N}} \cap S=\emptyset$. (Here $[X]^{\mathbb{N}}$ denotes the set of infinite subsets of X.) The main result of $\S \mathrm{V} .9$ is that ATR_{0} is equivalent over RCA_{0} to the open Ramsey theorem, i.e., the assertion that every open subset of $[\mathbb{N}]^{\mathbb{N}}$ has the Ramsey property. The clopen Ramsey theorem is also seen to be equivalent over RCA_{0} to ATR_{0}.

Chapter VI: $\Pi_{1}^{1}-C A_{0}$. Chapter VI is concerned with mathematics and Reverse Mathematics with respect to the formal system $\Pi_{1}^{1}-C A_{0}$, consisting of $A C A_{0}$ plus Π_{1}^{1} comprehension. We show that $\Pi_{1}^{1}-C A_{0}$ is just strong enough to prove several theorems of ordinary mathematics. It is interesting to note that several of these ordinary mathematical theorems, which are equivalent to Π_{1}^{1} comprehension, have "ATR ${ }_{0}$ counterparts" which are equivalent to arithmetical transfinite recursion. Thus chapter VI on $\Pi_{1}^{1}-\mathrm{CA}_{0}$ goes hand in hand with chapter V on ATR_{0}.

In $\S \S V I .1$ through VI. 3 we consider several well known theorems of classical descriptive set theory in $\Pi_{1}^{1}-\mathrm{CA}_{0}$. We begin in $\S \mathrm{VI} .1$ by showing that the Cantor/Bendixson theorem ("every closed set consists of a perfect set plus a countable set") is equivalent to Π_{1}^{1} comprehension. This result for the Baire space $\mathbb{N}^{\mathbb{N}}$ and the Cantor space $2^{\mathbb{N}}$ is closely related to an analysis of trees in $\mathbb{N}<\mathbb{N}$ and $2^{<\mathbb{N}}$, respectively. The $A T R_{0}$ counterpart of the Cantor/Bendixson theorem is, of course, the perfect set theorem (§V.4).

In \S VI. 2 we show that Kondo's theorem (coanalytic uniformization) is provable in $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and in fact equivalent to Π_{1}^{1} comprehension over ATR_{0}.

The reversal uses an ATR ${ }_{0}$ formalization of Suzuki's theorem on Π_{1}^{1} singletons.

In \S VI. 3 we consider Silver's theorem: For any coanalytic equivalence relation with uncountably many equivalence classes, there exists a nonempty perfect set of inequivalent elements. We show that a certain carefully stated reformulation of Silver's theorem is provable in ATR ${ }_{0}$. (See lemma VI.3.1. The proof of this lemma is somewhat technical and uses formalized hyperarithmetical theory (§VIII.3) as well as Gandy forcing over countable coded ω-models.) We then use this ATR ${ }_{0}$ result to show that Silver's theorem itself is provable in $\Pi_{1}^{1}-C A_{0}$. We also present a reversal showing that Silver's theorem specialized to Δ_{2}^{0} equivalence relations is equivalent to Π_{1}^{1} comprehension over RCA RA_{0} (theorem VI.3.6).

In \S VI. 4 we resume our study of countable algebra. We show that Π_{1}^{1} comprehension is equivalent over RCA_{0} to the assertion that every countable Abelian group can be written as the direct sum of a divisible group and a reduced group. The ATR ${ }_{0}$ counterpart of this assertion is Ulm's theorem (§V.7). Combining these results, we see that $\Pi_{1}^{1}-\mathrm{CA}_{0}$ is just strong enough to develop the classical structure theory of countable Abelian groups as presented in, for instance, Kaplansky [136].

In $\S \S$ VI. 5 and VI. 6 we resume our study of determinacy and the Ramsey property. We show that Π_{1}^{1} comprehension is just strong enough to prove $\Sigma_{1}^{0} \wedge \Pi_{1}^{0}$ determinacy and the Δ_{2}^{0} Ramsey theorem. The ATR ${ }_{0}$ counterparts of these results are, of course, Σ_{1}^{0} determinacy (i.e., open determinacy) and the Σ_{1}^{0} Ramsey theorem (i.e., the open Ramsey theorem). Our proof technique in \S VI. 6 uses countable coded β-models (§VII.2).

Section VI. 7 serves as an appendix to $\S \S V I .5$ and VI.6. In it we remark that stronger forms of Ramsey's theorem and determinacy require stronger set existence axioms. For instance, the Δ_{1}^{1} Ramsey theorem (i.e., the Galvin/Prikry theorem) and Δ_{2}^{0} determinacy each require Π_{1}^{1} transfinite recursion (theorem VI.7.3). Moreover, there are yet stronger forms of Ramsey's theorem and determinacy which go beyond Z_{2} (remarks VI.7.6 and VI.7.7).

Note: The results in §VI. 7 are stated without proof but with appropriate references to the published literature.

This completes our summary of part A.
Part B: Models of Subsystems of Z_{2}. Part B is a fairly thorough study of metamathematical properties of subsystems of Z_{2}. We consider not only the five basic systems $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}$, and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ but also many other systems, including $\Delta_{k}^{1}-\mathrm{CA}_{0}\left(\Delta_{k}^{1}\right.$ comprehension), $\Pi_{k}^{1}-\mathrm{CA}_{0}$ (Π_{k}^{1} comprehension), $\Sigma_{k}^{1}-\mathrm{AC}_{0}$ (Σ_{k}^{1} choice), $\Sigma_{k}^{1}-\mathrm{DC}_{0}$ (Σ_{k}^{1} dependent choice), $\Pi_{k}^{1}-\mathrm{TR}_{0}\left(\Pi_{k}^{1}\right.$ transfinite recursion), and $\Pi_{k}^{1}-\mathrm{TI}_{0}$ (Π_{k}^{1} transfinite induction),
for arbitrary k in the range $1 \leq k \leq \infty$. Table 4 lists these systems in order of increasing logical strength, also known as consistency strength.

We have found it convenient to divide the metamathematical material of part B into three chapters dealing with β-models, ω-models, and non-ω-models respectively. This threefold partition is perhaps somewhat misleading, and there are many cross-connections among the three chapters. This is mostly because the chapters which are ostensibly about β - and ω models actually present their results in greater generality, so as to apply also to β - and ω-submodels of a given model, which need not itself be a β - or ω-model. Table 4 indicates where the main results concerning β-, ω and non- ω-models of the various systems may be found.

Chapter VII: β-models. Recall from definition I.5.3 that a β-model is an ω-model M such that for any arithmetical formula $\theta(X)$ with parameters from M, if $\exists X \theta(X)$ then $(\exists X \in M) \theta(X)$. Such models are of importance because the concept of well ordering is absolute to them.

Throughout chapter VII, we find it convenient to consider a more general notion: M is a β-submodel of M^{\prime} if M is a submodel of M^{\prime} and, for all arithmetical formulas $\theta(X)$ with parameters from $M, M \models \exists X \theta(X)$ if and only if $M^{\prime} \models \exists X \theta(X)$. Thus a β-model is the same thing as a β-submodel of the intended model $P(\omega)$.

Section VII. 1 is introductory in nature. In it we characterize β-models of $\Pi_{1}^{1}-\mathrm{CA}_{0}$ in terms of familiar recursion-theoretic notions. Namely, M is a β model of $\Pi_{1}^{1}-\mathrm{CA}_{0}$ if and only if M is closed under relative recursiveness and the hyperjump. We also obtain the obvious generalization to β-submodels. This is based on a formalized ACA_{0} version of the Kleene basis theorem, according to which the sets recursive in $\operatorname{HJ}(X)$ form a basis for predicates which are arithmetical in X, provided $\operatorname{HJ}(X)$ exists.

In \S VII .2 we consider countable coded β-models, i.e., β-models of the form $M=\left\{(W)_{n}: n \in \mathbb{N}\right\}$ where $W \subseteq \mathbb{N}$ and $(W)_{n}=\{m:(m, n) \in W\}$. Within ACA_{0} we define the notion of satisfaction for such models, and we prove within $A C A_{0}$ that every such model satisfies $A T R_{0}$ and all instances of the transfinite induction scheme, $\Pi_{\infty}^{1}-\mathrm{TI}_{0}$, given by

$$
\forall X(\mathrm{WO}(X) \rightarrow \mathrm{TI}(X, \varphi))
$$

where φ is an arbitrary L_{2}-formula. Here $\mathrm{WO}(X)$ says that X is a countable well ordering, and $\mathrm{TI}(X, \varphi)$ expresses transfinite induction along X with respect to φ. We also prove within ACA_{0} that if $\operatorname{HJ}(X)$ exists then there is a countable coded β-model $M \leq_{\mathrm{T}} \mathrm{HJ}(X)$ such that $X \in M$. These considerations have a number of interesting consequences: (1) $\Pi_{\infty}^{1}-\mathrm{Tl}_{0}$ includes $\mathrm{ATR}_{0} ;(2) \Pi_{\infty}^{1}-\mathrm{Tl}_{0}$ is not finitely axiomatizable; (3) there exists a β-model of $\Pi_{\infty}^{1}-\mathrm{TI}_{0}$ which is not a model of $\Pi_{1}^{1}-\mathrm{CA}_{0} ;(4) \Pi_{1}^{1}-\mathrm{CA} \mathrm{A}_{0}$ proves the

Table 4. Models of subsystems of Z_{2}.

	β-models	ω-models	non- ω-models
RCA_{0}		VIII. 1	IX. 1
WKL ${ }_{0}$		VIII.2; see note 1	IX.2-IX. 3
$\Pi_{1}^{0}-\mathrm{AC}_{0}$		"	"
$\Pi_{1}^{0}-\mathrm{DC}_{0}$		"	"
strong $\Pi_{1}^{0}-\mathrm{DC}_{0}$		"	"
ACA_{0}		VIII.1; see note 2	IX.1, IX.4.3-IX.4.6
$\Delta_{1}^{1}-\mathrm{CA}_{0}$		VIII.4; see note 2	IX.4.3-IX.4.6
$\Sigma_{1}^{1}-\mathrm{AC}_{0}$		"	"
$\Sigma_{1}^{1}-\mathrm{DC}_{0}$		VIII.4-VIII.5; notes 2, 3	
$\Pi_{1}^{1}-\mathrm{Tl}_{0}$			
ATR ${ }_{0}$	VII.2-VII.3, VIII. 6	VIII.5-VIII.6; note 2	IX.4.7
$\Pi_{2}^{1} \mathrm{Tl}_{0}$	VII.2.26-VII.2.32	see note 2	
$\Pi_{\infty}^{1}-\mathrm{Tl}_{0}$	VII.2.14-VII.2.25	VIII.5.1-VIII.5.10; note 2	
strong $\Sigma_{1}^{1}-\mathrm{DC}_{0}$	VII.6-VII. 7	see notes 2 and 4	IX.4.8-IX.4.10
$\Pi_{1}^{1}-\mathrm{CA}_{0}$	VII.1-VII.5, VII. 7	"	"
$\Delta_{2}^{1}-\mathrm{CA}_{0}$	VII.5-VII. 7	"	"
$\Sigma_{2}^{1}-\mathrm{AC}_{0}$	VII. 6	"	"
$\Sigma_{2}^{1}-\mathrm{DC}_{0}$	"	"	
$\Pi_{1}^{1}-\mathrm{TR}_{0}$	VII.1.18, VII.5.20, VII.7.12	VIII.4.24; see note 2	
strong $\Sigma_{2}^{1}-\mathrm{DC}_{0}$	VII.6-VII. 7	see notes 2 and 4	IX.4.8-IX.4.14
$\Pi_{k+2}^{1}-\mathrm{CA}_{0}$	VII.5-VII. 7	see note 2	
$\Delta_{k+3}^{1}-\mathrm{CA}_{0}$	"	"	"
$\Sigma_{k+3}^{1}-\mathrm{AC}_{0}$	VII. 6	"	"
$\Sigma_{k+3}^{1}-\mathrm{DC}_{0}$	"	"	
Π_{k+2}^{1} - TR_{0}	VII.5.20, VII.7.12	VIII.4.24; see note 2	
strong $\Sigma_{k+3}^{1}-\mathrm{DC}_{0}$	VII.6-VII. 7	see note 2	IX.4.8-IX.4.14
Π_{∞}^{1} - CA_{0}	VII.5-VII. 7	"	
$\Sigma_{\infty}^{1}-\mathrm{AC}_{0}$	VII.6-VII. 7	"	
Σ_{∞}^{1} - ${ }^{\text {DC }}$	"	"	

Notes:

1. Each of $\Pi_{1}^{0}-A C_{0}$ and $\Pi_{1}^{0}-D C_{0}$ and strong $\Pi_{1}^{0}-D C_{0}$ is equivalent to $W K L_{0}$. See lemma VIII.2.5.
2. The ω-model incompleteness theorem VIII. 5.6 applies to any system $S \supseteq$ ACA $_{0}$. The ω-model hard core theorem VIII. 6.6 applies to any system $S \supseteq$ weak $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. Quinsey's theorem VIII.6.12 applies to any system $S \supseteq$ ATR ${ }_{0}$.
3. $\Pi_{1}^{1}-\mathrm{TI}_{0}$ is equivalent to $\Sigma_{1}^{1}-\mathrm{DC}_{0}$. See theorem VIII.5.12.
4. $\Sigma_{2}^{1}-\mathrm{AC}_{0}$ is equivalent to $\Delta_{2}^{1}-\mathrm{CA}_{0} . \Sigma_{2}^{1}-\mathrm{DC}_{0}$ is equivalent to $\Delta_{2}^{1}-\mathrm{CA}_{0}$ plus Σ_{2}^{1} induction. Strong $\Sigma_{1}^{1}-\mathrm{DC}_{0}$ and strong $\Sigma_{2}^{1}-\mathrm{DC}_{0}$ are equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and $\Pi_{2}^{1}-\mathrm{CA}_{0}$, respectively. See remarks VII.6.3-VII.6.5 and theorem VII.6.9.
consistency of $\Pi_{\infty}^{1}-\mathrm{T} l_{0}$. We also obtain some technical results characterizing Π_{2}^{1} sentences that are provable in $\Pi_{\infty}^{1}-\mathrm{TI}_{0}$ and in $\Pi_{2}^{1}-\mathrm{T} \mathrm{I}_{0}$.

In \S VII. 3 we introduce set-theoretic methods. We employ the language $\mathrm{L}_{\text {set }}=\{\in,=\}$ of Zermelo/Fraenkel set theory. Of key importance is an $\mathrm{L}_{\text {set }}$-theory $\mathrm{ATR}_{0}^{\text {set }}$, among whose axioms are the Axiom of Countability, asserting that all sets are hereditarily countable, and Axiom Beta, asserting that for any regular (i.e., well founded) binary relation r there exists a collapsing function, i.e., a function f such that $f(u)=\{f(v):\langle v, u\rangle \in r\}$ for all $u \in$ field (r). By using well founded trees to encode hereditarily countable sets, we define a close relationship of mutual interpretability between ATR_{0} and $\mathrm{ATR}_{0}^{\text {set }}$. Under this interpretation, Σ_{k+1}^{1} formulas of L_{2} correspond to $\Sigma_{k}^{\text {set }}$ formulas of $\mathrm{L}_{\text {set }}$ (theorem VII.3.24). Thus any formal system $T_{0} \supseteq \mathrm{ATR}_{0}$ in L_{2} is seen to have a set-theoretic counterpart $T_{0}^{\text {set }}$ in $\mathrm{L}_{\text {set }}$ (definition VII.3.33). We point out that several familiar subsystems of Z_{2} have elegant characterizations in terms of their set-theoretic counterparts. For instance, the principal axiom of $\Pi_{\infty}^{0}-\mathrm{T}_{0}^{\text {set }}$ is the \in-induction scheme, and the principal axiom of $\Sigma_{2}^{1}-\mathrm{AC}_{0}^{\text {set }}$ is $\Sigma_{1}^{\text {set }}$ collection.

In §VII. 4 we explore Gödel's theory of constructible sets in a form appropriate for the study of subsystems of Z_{2}. We begin by defining within $\mathrm{ATR}_{0}^{\text {set }}$ the inner model L^{u} of sets constructible from u, where u is any given nonempty transitive set. After that, we turn to absoluteness results. We prove within $\Pi_{1}^{1}-\mathrm{CA}_{0}^{\text {set }}$ that the formula " r is a regular relation" is absolute to L^{u}. This fact is used to prove $\Pi_{1}^{1}-\mathrm{CA}_{0}^{\text {set }}$ versions of the well known absoluteness theorems of Shoenfield and Lévy. We consider the inner models $\mathrm{L}(X)$ and $\mathrm{HCL}(X)$ of sets that are constructible from X and hereditarily constructibly countable from X, respectively, where $X \subseteq \omega$. We prove within $\Pi_{1}^{1}-\mathrm{CA}_{0}^{\text {set }}$ that $\mathrm{HCL}(X)$ satisfies $\Pi_{1}^{1}-\mathrm{CA}_{0}^{\text {set }}$ plus $\mathrm{V}=\mathrm{HCL}(X)$, and that Σ_{2}^{1} and $\Sigma_{1}^{\text {set }}$ formulas are absolute to $\operatorname{HCL}(X)$. We prove within $\operatorname{ATR}_{0}^{\text {set }}$ that if $\operatorname{HCL}(X) \neq \mathrm{L}(X)$ then $\operatorname{HCL}(X)$ satisfies $\Pi_{\infty}^{1}-\mathrm{CA}_{0}^{\text {set }}$.

In $\S \S$ VII. 5, VII. 6 and VII. 7 we apply our results on constructible sets to the study of β-models of subsystems of second order arithmetic which are stronger than $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

Section VII. 5 is concerned with strong comprehension schemes. The main result is that if T_{0} is any one of the systems $\Pi_{1}^{1}-\mathrm{CA}_{0}, \Delta_{2}^{1}-\mathrm{CA}_{0}, \Pi_{2}^{1}-\mathrm{CA}_{0}$, $\Delta_{3}^{1}-\mathrm{CA}_{0}, \ldots$, then T_{0} implies its own relativization to the inner models $\mathrm{L}(X) \cap P(\mathbb{N}), X \subseteq \mathbb{N}$. This has several interesting consequences: (1) $T_{0}+\exists X \forall Y(Y \in \mathrm{~L}(X))$ is conservative over T_{0} for Π_{4}^{1} sentences; (2) T_{0} has a minimum β-model, and this minimum β-model is of the form $\mathrm{L}_{\alpha} \cap P(\omega)$ where α is an appropriately chosen countable ordinal. (These minimum β-models and their corresponding ordinals turn out to be distinct from one another; see §VII.7.) We also present generalizations involving minimum β-submodels of a given model.

Section VII. 6 is concerned with several strong choice schemes, i.e., instances of the axiom of choice expressible in the language of second order arithmetic. Among the schemes considered are Σ_{k}^{1} choice

$$
\forall n \exists Y \eta(n, Y) \rightarrow \exists Z \forall n \eta\left(n,(Z)_{n}\right),
$$

Σ_{k}^{1} dependent choice

$$
\forall n \forall X \exists Y \eta(n, Y) \rightarrow \exists Z \forall n \eta\left(n,(Z)^{n},(Z)_{n}\right),
$$

and strong Σ_{k}^{1} dependent choice

$$
\exists Z \forall n \forall Y\left(\eta\left(n,(Z)^{n}, Y\right) \rightarrow \eta\left(n,(Z)^{n},(Z)_{n}\right)\right)
$$

The corresponding formal systems are known as $\Sigma_{k}^{1}-\mathrm{AC}_{0}, \Sigma_{k}^{1}$ - DC_{0}, and strong $\Sigma_{k}^{1}-\mathrm{DC}_{0}$, respectively. The case $k=2$ is somewhat special. We show that Δ_{2}^{1} comprehension implies Σ_{2}^{1} choice, and even Σ_{2}^{1} dependent choice provided Σ_{2}^{1} induction is assumed. We also show that strong Σ_{2}^{1} dependent choice is equivalent to Π_{2}^{1} comprehension. These equivalences for $k=2$ are based on the fact that Σ_{2}^{1} uniformization is provable in $\Pi_{1}^{1}-C A_{0}$. Two proofs of this fact are given, one via Kondo's theorem and the other via Shoenfield absoluteness.

For $k \geq 3$ we obtain similar equivalences under the additional assumption $\exists X \forall Y(Y \in \mathrm{~L}(X))$, via Σ_{k}^{1} uniformization. We then apply our conservation theorems of the previous section to see that, for each $k \geq 3, \Sigma_{k}^{1}$ choice and strong Σ_{k}^{1} dependent choice are conservative for Π_{4}^{1} sentences over Δ_{k}^{1} comprehension and Π_{k}^{1} comprehension, respectively. Other results of a similar character are obtained. The case $k=1$ is of a completely different character, and its treatment is postponed to §VIII.4.

Section VII. 7 begins by generalizing the concept of β-model to β_{k}-model, i.e., an ω-model M such that all Σ_{k}^{1} formulas with parameters from M are absolute to M. (Thus a β_{1}-model is the same thing as a β-model.) It is shown that, for each $k \geq 1$,

$$
\forall X \exists M\left(X \in M \wedge M \text { is a countable coded } \beta_{k} \text {-model }\right)
$$

is equivalent to strong Σ_{k}^{1} dependent choice. This implies a kind of β_{k}-model reflection principle (theorem VII.7.6). Combining this with the results of $\S \S V I I .5$ and VII.6, we obtain several noteworthy corollaries, e.g., the fact that $\Delta_{k+1}^{1}-\mathrm{CA}_{0}$ proves the existence of a countable coded β-model of $\Pi_{k}^{1}-$ CA_{0} which in turn proves the existence of a countable coded β-model of $\Delta_{k}^{1}-\mathrm{CA}_{0}$. From this it follows that the minimum β-models of $\Pi_{1}^{1}-\mathrm{CA}_{0}, \Delta_{2}^{1-}$ $\mathrm{CA}_{0}, \Pi_{2}^{1}-\mathrm{CA}_{0}, \Delta_{3}^{1}-\mathrm{CA}_{0}, \ldots$ are all distinct.

Chapter VIII: ω-models. The purpose of chapter VIII is to study ω-models of various subsystems of Z_{2}. We focus primarily on the five basic systems: $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}, \Pi_{1}^{1}-\mathrm{CA}_{0}$. We note that each of these systems is finitely axiomatizable. We also obtain some general
results about fairly arbitrarily L_{2}-theories, which may be stronger than $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and need not be finitely axiomatizable. Many of our results on ω models are formulated more generally, so as to apply also to ω-submodels of a given non- ω-model.

Section VIII. 1 is introductory in nature. We characterize models of RCA_{0} and $A C A_{0}$ in terms of Turing reducibility and the Turing jump operator. We show that the minimum ω-models of RCA_{0} and ACA_{0} are $\mathrm{REC}=\{X: X$ is recursive $\}$ and ARITH $=\{X: X$ is arithmetical $\}$ respectively. We apply the strong soundness theorem and countable coded ω-models to show that ATR ${ }_{0}$ proves the consistency of ACA_{0}, which in turn proves the consistency of RCA_{0}.

In \S VIII. 2 we consider models of WKL_{0}. We begin by showing that WKL_{0} proves strong Π_{1}^{0} dependent choice, which in turn implies the existence of a countable coded strict β-model. Such a model necessarily satisfies WKL_{0}, so we are surprisingly close to asserting that WKL_{0} proves its own consistency (see however remark VIII.2.14). In particular, ACA $_{0}$ actually does prove the consistency of WKL_{0}, via countable coded ω-models (corollary VIII.2.12). Moreover, WKL_{0} has no minimal ω-model (corollary VIII.2.8).

The rest of \S VIII. 2 is concerned with the basis problem: Given an infinite recursive tree $T \subseteq 2^{<\omega}$, to find a path through T which is in some sense "close to being recursive." We obtain three results, the low basis theorem, the almost recursive basis theorem, and the GKT basis theorem, which provide various solutions of the basis problem. They also imply the existence of countable ω-models of WKL_{0} with various properties (theorems VIII.2.17, VIII.2.21, VIII.2.24). In particular, REC is the intersection of all ω-models of WKL_{0} (corollary VIII.2.27).

In §VIII. 3 we develop the technical machinery of formalized hyperarithmetical theory. We define the H -sets H_{a}^{X} for $X \subseteq \mathbb{N}$ and $a \in \mathcal{O}^{X}$. We note that ATR_{0} is equivalent to $\forall X \forall a\left(\mathcal{O}(a, X) \rightarrow \mathrm{H}_{a}^{X}\right.$ exists). We prove ATR $_{0}$ versions of the major classical results: invariance of Turing degree (VIII.3.13); $\Delta_{1}^{1}=$ HYP (VIII.3.19); the theorem on hyperarithmetical quantifiers (VIII.3.20, VIII.3.27). The latter result involves pseudohierarchies. An unorthodox feature of our exposition is that we do not use the recursion theorem.

In \S VIII. 4 we use the machinery of \S VIII. 3 to study ω-models of the systems $\Delta_{1}^{1}-\mathrm{CA}_{0}, \Sigma_{1}^{1}-\mathrm{AC}_{0}$, and $\Sigma_{1}^{1}-\mathrm{DC}_{0}$. We also consider a closely related system known as weak $\Sigma_{1}^{1}-\mathrm{AC}_{0}$. We show that HYP $=\{X: X$ is hyperarithmetical $\}$ is the minimum ω-model of each of these four systems. The proof of this result uses Π_{1}^{1} uniformization. Although the main results of classical hyperarithmetical theory are provable in ATR ${ }_{0}$ (§VIII.3), the existence of the ω-model HYP is not (remark VIII.4.4). Nevertheless, we show that ATR_{0} proves the existence of countable coded ω-models of
$\Sigma_{1}^{1}-\mathrm{AC}_{0}$ etc. (theorem VIII.4.20). Indeed, ATR ${ }_{0}$ proves that HYP is the intersection of all such ω-models (theorem VIII.4.23). In particular, ATR ${ }_{0}$ proves the consistency of $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ etc.

In §VIII. 5 we present two surprising theorems of Friedman which apply to fairly arbitrary L_{2}-theories $S \supseteq \mathrm{ACA}_{0}$. They are: (1) If S is recursively axiomatizable and has an ω-model, then so does $S \wedge \neg \exists$ countable coded ω-model of S. (2) If S is finitely axiomatizable, then $\Pi_{\infty}^{1}-\mathrm{Tl}_{0}$ proves $S \rightarrow \exists$ countable coded ω-model of S. Note that (1) is an ω-model incompleteness theorem, while (2) is an ω-model reflection principle. Combining (1) and (2), we see that if S is finitely axiomatizable and has an ω-model, then there exists an ω-model of S which is does not satisfy $\Pi_{\infty}^{1}-\mathrm{Tl}_{0}$ (corollary VIII.5.8).

At the end of \S VIII. 5 we prove that Π_{1}^{1} transfinite induction is equivalent to ω-model reflection for Σ_{3}^{1} formulas, which is equivalent to Σ_{1}^{1} dependent choice (theorem VIII.5.12). From this it follows that there exists an ω-model of ATR ${ }_{0}$ in which $\Sigma_{1}^{1}-$ DC $_{0}$ fails (theorem VIII.5.13). This is in contrast to the fact that ATR ${ }_{0}$ implies $\Sigma_{1}^{1}-\mathrm{AC}_{0}$ (theorem V.8.3).

Section VIII. 6 presents several hard core theorems. We show that any model M of ATR $_{0}$ has a proper β-submodel; indeed, by corollary VIII.6.10, HYP^{M} is the intersection of all such submodels. We also prove the following theorem of Quinsey: if M is any ω-model of a recursively axiomatizable L_{2}-theory $S \supseteq \mathrm{ATR}_{0}$, then M has a proper submodel which is again a model of S (theorem VIII.6.12). Indeed, HYP^{M} is the intersection of all such submodels (exercise VIII.6.23). In particular, no such S has a minimal ω-model.

Chapter IX: non- ω-models. In chapter IX we study non- ω-models of various subsystems of Z_{2}. Section IX. 1 deals with $R C A_{0}$ and $A C A_{0}$. Sections IX. 2 and IX. 3 are concerned with WKL_{0}. Section IX. 4 is concerned with various systems including $\Pi_{k}^{1}-\mathrm{CA}_{0}$ and $\Sigma_{k}^{1}-\mathrm{AC}_{0}, k \geq 0$. For most of the results of chapter IX, it is essential that our systems contain only restricted induction and not full induction. Many of the results can be phrased as conservation theorems. The methods of $\S \S$ IX. 3 and IX. 4 depend crucially on the existence of nonstandard integers.

We begin in \S IX. 1 by showing that every model M of PA can be expanded to a model of ACA_{0}. The expansion is accomplished by letting $\mathcal{S}_{M}=\operatorname{Def}(M)=\{X \subseteq|M|: X$ is first order definable over M allowing parameters from $M\}$. From this it follows that PA is the first order part of ACA_{0}, and that ACA_{0} has the same consistency strength as PA. We then prove analogous results for RCA_{0}. Namely, every model M of Σ_{1}^{0}-PA can be expanded to a model of RCA_{0}; the expansion is accomplished by letting $\mathcal{S}_{M}=\Delta_{1}^{0}-\operatorname{Def}(M)=\left\{X \subseteq|M|: X\right.$ is Δ_{1}^{0} definable over M allowing parameters from $M\}$. The delicate point of this argument is to show that the
expansion preserves Σ_{1}^{0} induction. It follows that Σ_{1}^{0}-PA is the first order part of $R C A_{0}$, and that $R C A_{0}$ has the same consistency strength as $\Sigma_{1}^{0}-\mathrm{PA}$.

In §IX. 2 we show that WKL_{0} has the same first order part and consistency strength as RCA_{0}. This is based on the following model-theoretic result due to Harrington: Given a countable model M of RCA_{0}, we can construct a countable model M^{\prime} of WKL_{0} such that M is an ω-submodel of M^{\prime}. The model M^{\prime} is obtained from M by iterated forcing, where at each stage we force with trees to add a generic path through a tree. Again, the delicate point is to verify that Σ_{1}^{0} induction is preserved. This model-theoretic result implies that WKL_{0} is conservative over $\mathrm{RCA} A_{0}$ for Π_{1}^{1} sentences.

In §IX. 3 we introduce the well known formal system PRA of primitive recursive arithmetic. This theory of primitive recursive functions contains a function symbol and defining axioms for each such function. We prove the following result of Friedman: WKL_{0} has the same consistency strength as PRA and is conservative over PRA for Π_{2}^{0} sentences. Our proof uses a model-theoretic method due to Kirby and Paris, involving semiregular cuts. The foundational significance of PRA is that it embodies Hilbert's concept of finitism. Therefore, Friedman's theorem combined with the mathematical work of chapters II and IV shows that a significant portion of mathematical practice is finitistically reducible. Thus we have a partial realization of Hilbert's program; see also remark IX.3.18.

In §IX. 4 we use recursively saturated models to prove some surprising conservation theorems for various subsystems of Z_{2}. The main results may be summarized as follows: For each $k \geq 0, \Sigma_{k+1}^{1}-\mathrm{AC}_{0}$ has the same consistency strength as $\Pi_{k}^{1}-C A_{0}$ and is conservative over $\Pi_{k}^{1}-\mathrm{CA}_{0}$ for Π_{l}^{1} sentences, $l=\min (k+2,4)$. These results are due to Barwise/Schlipf, Feferman, Friedman, and Sieg. We also obtain a number of related results.

Section IX. 5 is a very brief discussion of Gentzen-style proof theory, with emphasis on provable ordinals of subsystems of Z_{2}.

This completes our summary of part B.
Appendix: Chapter X: Additional Results. Chapter X is an appendix in which some additional Reverse Mathematics results and problems are presented without proof but with references to the published literature.

In \S X. 1 we consider measure theory in subsystems of Z_{2}. We introduce the formal system WWKL_{0} consisting of RCA_{0} plus weak weak König's lemma and show that it is just strong enough to prove several measure theoretic results, e.g., the Vitali covering theorem. We also consider measure theory in stronger systems such as ACA_{0}.

In \S X. 2 we mention some additional results on separable Banach spaces in subsystems of Z_{2}. We note that $W_{K L}$ is just strong enough to prove Banach separation. We develop various notions related to the weak-* topology on X^{*}, the dual of a separable Banach space. We show that $\Pi_{1}^{1}-\mathrm{CA}_{0}$ is
just strong enough to prove the existence of the weak-*-closed linear span of a countable set Y in X^{*}.

In \S X. 3 we consider countable combinatorics in subsystems of Z_{2}. We note that Hindman's theorem lies between ACA_{0} and a slightly stronger system, ACA_{0}^{+}. We mention a similar result for the closely related Auslander/Ellis theorem of topological dynamics. In the area of matching theory, we show that the Podewski/Steffens theorem ("every countable bipartite graph has a König covering") is equivalent to ATR_{0}. At the end of the section we consider well quasiordering theory, noting for instance that the Nash-Williams transfinite sequence theorem lies between ATR_{0} and $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

In §X. 4 we initiate a project of weakening the base theory for Reverse Mathematics. We introduce a system $R C A_{0}^{*}$ which is essentially $R C A_{0}$ with Σ_{1}^{0} induction weakened to Σ_{0}^{0} induction. We also introduce a system WKL_{0}^{*} consisting of RCA ${ }_{0}^{*}$ plus weak König's lemma. We present some conservation results showing in particular that RCA_{0}^{*} and $W K L_{0}^{*}$ have the same consistency strength as EFA, elementary function arithmetic. We note that several theorems of countable algebra are equivalent over $R C A_{0}^{*}$ to Σ_{1}^{0} induction. Among these are: (1) every polynomial over a countable field has an irreducible factor; (2) every finitely generated vector space over \mathbb{Q} has a basis.

I.14. Conclusions

In this chapter we have presented and motivated the main themes of the book, including the Main Question (§§I.1, I.12) and Reverse Mathematics (§I.9). A detailed outline of the book is in section I.13. The five most important subsystems of second order arithmetic are $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}$, $A T R_{0}, \Pi_{1}^{1}-C A_{0}$. Part A of the book consists of chapters II through VI and focuses on the development of mathematics in these five systems. Part B consists of chapters VII through IX and focuses on models of these and other subsystems of \mathbf{Z}_{2}. Additional results are presented in an appendix, chapter X.

INDEX

$\{0,1\}^{<\mathbb{N}}$ (full binary tree), 37
[0,1$]$ (closed unit interval), 82
$[0,1]^{\mathbb{N}}$ (Hilbert cube), 84, 112, 157
$2^{<\mathbb{N}}$ (full binary tree), 37
$2^{\mathbb{N}}$ (Cantor space), 84, 112, 176, 201-202, 406-408, 410
$|a|^{X}, 335,340$
$\leq_{\mathcal{O}}^{X}, 335$
\leq_{H} (hyperarithmetical in), 18, 231, 341342
\leq_{T} (Turing reducible), $8,110,255,323$
$={ }_{\mathrm{T}}$ (Turing equivalent), 255
\oplus (recursive join), 8
\in-induction, 283
ϵ^{*} (\in for suitable trees), 274
$=^{*}$ ($=$ for suitable trees), 274
$\vDash($ satisfaction $), 4,280$
Aanderaa, 249
Abelian group, 20, 35, 41, 48, 53, 122
divisible, 123-125, 239-241
finitely generated, 421
injective, 124-125, 239
orderable, 148
reduced, 206-210, 239-241
torsion-free, 148, 421
Aberth, 32, 81, 91, 165
Abramson, 283
absoluteness, 56, 283-298
definition of, 288, 294
absoluteness theorem, 56, 253, 283, 284, 288-296, 298, 308
absolute value, 77
$\mathrm{ACA}_{0}, 6-9,109-130,410$
and existence of ranges, 109
and PA, 374
and Σ_{1}^{0} comprehension, 109
and $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 393-396$
consistency strength of, 58, 59, 325
definition of, 109
finite axiomatizability of, 323
first order part of, 59, 374
mathematics within, $9-16,41,47-48,61$, 109-130, 410, 413-416, 418-420
table, 46
models of, 322-326
non- ω-models of, 372-375
ω-models of, $8,9,58,322-326$
minimum, 110, 325
ordinal of, 400
reverse mathematics for, $35,47-48,61$, 109-130, 410, 413-416, 418-420
$\mathrm{ACA}_{0}^{+}, 61,413-415$
ACF, 100
Ackermann function, 391, 400
acknowledgments, IX-X
Aczel, IX, 249
Addison, 283
additional results, 405-421
additivity, 406-408
countable, 406-407
finite, 406, 408
admissible ordinal, 305
AF, 100
affine, 50, 165
Aharoni, 415, 416
Alaoglu ball, 411
Alfred P. Sloan Foundation, X
algebra, $1,13,19,28,47,49,99-102,115-$ 126, 145-153, 206-210, 239-241, 421
fundamental theorem of, 13,28 recursive, 28,102
algebraically closed field, 100
algebraic closure, 29, 38, 47, 100-101, 391
existence of, 100-101
recursive, 102
strong, 47, 115-116
uniqueness of, 49, 149-150
algebraic independence, 119
almost all, 408
almost recursive basis theorem, 331-334
$\alpha_{k}^{\Delta}(X), 304-305,318-319$
$\alpha_{k}^{\Pi}(X), 304-305,318-319$
American Mathematical Society, X, 36
analogy, 39, 41, 42, 322
analysis, $1,14,47,50$
constructive, 32
functional, 1, 16
predicative, 42, 229, 400
recursive, 26, 28, 32
analytic code, 229
analytic separation, 188-190, 196-197
analytic set, $22,41,50,173-179,410$
and $\Sigma_{1}^{1}, 177$
countable, 192
antichain, 417
$А \Pi_{1}^{1}, 260$
Aristotle, VII, 33
ARITH, 9, 40, 110
minimum ω-model of ACA $_{0}, 325$
arithmetic
elementary function, see EFA
first order, 8,374 , see \mathbf{Z}_{1}
ordinal, 399
Peano, see PA
primitive recursive, see PRA
second order, 2 , see Z_{2}
arithmetical-in- $\Pi_{1}^{1}, 260$
arithmetical-in-restricted- $\Pi_{1}^{1}, 268$
arithmetical comprehension, $7,34,109$, see also ACA_{0}
arithmetical definability, 6-9, 40, 373
arithmetical formula, 6, 109
arithmetical hierarchy, 9,27
arithmetical in, 9
arithmetical induction, 7, 373
arithmetical operator, 40
arithmetical Ramsey theorem, 245-247
arithmetical set, 325
arithmetical transfinite induction, 179
arithmetical transfinite recursion, 39, 40,
179-184, see also ATR0
$A R \Pi_{1}^{1}, 268$
Artin, 102, 145
Artin/Schreier theorem, 102
Ascoli lemma, 15, 35, 47, 113-114
Association for Symbolic Logic, X
atomic formula, 2
ATR ${ }_{0}, 39-42,173-223,346,410$
and H-sets, 58, 334-346
and Σ_{1}^{1}-IND, 396
and Σ_{1}^{1} separation, 41, 196-197
β-models of, 41, 261-263, 364-365
choice schemes in, 58, 59, 212-213, 361
counterpart, 52
history of, 346
mathematics within, 41, 50-52, 61, 173223, 234, 410, 415-416, 418-419 table, 46
non- ω-models of, 396
ω-models of, 41, 361
ordinal of, 400
reverse mathematics for, $50-52,61,173-$ $223,410,415-416,418-419$
Silver's theorem within, 234
ATR ${ }_{0}^{\text {set }}, 56,269-283$
definition of, 272
Auslander/Ellis theorem, 61, 414-415
Avigad, IX, 222
$|a|^{X}, 335,340$
axiomatic set theory, 19, 298
axioms, 5,6
logical, 5
of set existence, 1, 2, 248
of $Z_{2}, 4$
Axiom Beta, 56, 272, 283
axiom of choice, $57,253,283,293,305-315$
axiom of determinacy, 210, 217
$\mathrm{B}(a, r), 15,84,406$
$\mathrm{B}_{r}\left(X^{*}\right), 411$
Baire category theorem, $15,29,46,47,85$, 87, 105
Baire space, 21, 84, 91, 201, 210
Banach/Alaoglu theorem, 411
Banach/Steinhaus theorem, 16, 29, 47, 105-106
Banach separation, 60, 411
Banach space, $15,16,38,47,50,60,102-$ $106,142-143,411-413$
finite dimensional, 411
Barwise, IX, 60, 283, 298, 305, 398
base theory, 26, 33, 45, 61, 65, 195, 420421
basic axioms, 4,6
basic open set, $15,22,80$
basis (of a vector space), $35,48,116$
basis problem, 58, 330-334
basis theorem, 58
almost recursive, 331-333
GKT, 333-334, 362-365
Hilbert, 417
Kleene, 54, 254, 255, 258
low, 330-331
Beeson, IX, 32
Berkeley, IX, X
Bernays, VIII, 6, 9
β-models, 18, 41, 54-57, 253-320
and $\Pi_{1}^{1}-\mathrm{CA}_{0}, 262-264$
coded, 54, 242, 246, 249, 258-268
definition of, 254
hard core of, 365
intersection of, 365
minimum, 41, 56, 57
ordinal of, 319
of $\mathrm{ATR}_{0}, 41,242,246,258,261-263$, 364-365
of $\Delta_{k}^{1}-\mathrm{CA}_{0}, 318$
minimum, 304-305, 313
of $\Pi_{1}^{1}-\mathrm{CA}_{0}, 18,254-258$ minimum, 18, 254-258
of $\Pi_{k}^{1}-\mathrm{CA}_{0}, 318$
minimum, 18, 304-305, 313
of $\Pi_{k}^{1}-\mathrm{TR}_{0}, 319$ minimum, 305, 319
reflection, 57, 315-319
strict, 58, 327-330
table, 55
β-submodels, 54, 257, 364-365
hard core of, 365
intersection of, 365
restricted-, 268
strict, 326
β_{k}-models, 57, 315-319
coded, 315, 396
beta function, 45
better quasiordering, 418-419
bibliography, 423-441
binary expansion, 277, 386
binary tree, 48
full, 32, 37
Binns, IX
bipartite graph, 415
Birkhoff, 165
Bishop, IX, 32, 33, 44, 81, 91, 141, 143, 170, 405
Blass, IX, 137, 268, 414, 415
Blum, IX

Bolzano/Weierstraß theorem, 29, 32, 34-$36,47,110-114$
Borel determinacy, 52, 249
Borel domain theorem, 190-192, 197-200
Borel equivalence relation, 35
Borel mapping, 418
Borel measure, 142, 405-410
Borel Ramsey theorem, 248
Borel set, 22, 23, 41, 50, 184-192, 218
countable, 194
regularity of, 410
Borel uniformization, 191-192
bounded-weak-* topology, 412
bounded Σ_{1}^{0} comprehension, 73
bounded Σ_{k}^{0} comprehension, 73
bounded function, 37
bounded König's lemma, 49, 134-137, 149, 228
bounded linear functional, 166-170, 411413
bounded linear operator, 47, 104-106
bounded quantifier, 24,65
bounded quantifier formula, 24,27
bounded set, 386
bounded set-theoretic quantifier, 270
bounded Σ_{1}^{0} comprehension, 45, 49, 420, 421
bounded tree, 49, 134
bounding
$\Sigma_{1}^{0}, 375,420$
$\Sigma_{1}^{1}, 178,203,206$
strong $\Sigma_{k}^{0}, 75$
BQO theory, 418-419
Brackin, IX
Bridges, IX, 32, 81, 91, 141, 143
Brouwer, VII
Brouwer fixed point theorem, 38, 50, 153158
Brown, IX, 33, 81, 87, 91, 95, 106, 114, $137,143,170,407,409-411,413$
$\mathrm{B}_{0}^{\text {set }}, 270-273,280,281$
Buchholz, IX, 44, 401
Burgess, IX
Buss, IX, X
BW, 29, 34
$\mathrm{C}[0,1], 103-104,142,406$
$\mathrm{C}(X), 142-143$
calculus, 1
calibration, 43
canonical well ordering, 249, 293

Cantor, VII
Cantor/Bendixson theorem, 20, 21, 23, 35, 52, 202, 225-229
Cantor set, 30, 133
Cantor space, 84, 112, 176, 201-202, 406408, 410
Carlson, 218, 248, 415
Carlson/Simpson theorem, 414
carrier, 154
Cauchy, VII, 75
Cauchy sequence, 111, 113
Centre National de Recherche Scientifique, X

Cenzer, IX
Chang, 370, 391, 398
choice
dependent, see dependent choice
schemes, 57, 305
$\Sigma_{1}^{1}, 52,235,279$, see $\Sigma_{1}^{1}-\mathrm{AC}_{0}$
in ATR $_{0}, 212-213,217,343$
Σ_{2}^{1}, see $\Sigma_{2}^{1}-\mathrm{AC}_{0}$
$\Sigma_{k}^{1}, 57$, see $\Sigma_{k}^{1}-\mathrm{AC}_{0}$
$\Sigma_{k}^{\text {set }}, 299$
Cholak, IX, 130
Chong, IX
Chuaqui, IX
Church/Kleene $\omega_{1}, 40$
Clemens, IX
clopen determinacy, 41, 52, 210-217
clopen Ramsey theorem, 52, 217-222
closed graph theorem, 413
closed set, 20, 46, 86, 87, 225, 227
located, 143
closed unit interval, 82
closure
algebraic, 29, 38, 100-101
existence of, 100-101
recursive, 102
strong, 115-116
uniqueness of, 149-150
divisible, 35, 48, 123-125
strong, 125
real, 49, 391
of formally real field, 147-148
of ordered field, 101-102
strong, 115-116
Clote, IX, 222, 419
CNRS, X
coanalytic code, 232
coanalytic equivalence relation, 234-239
coanalytic separation, 191
coanalytic set, 232
and $\Pi_{1}^{1}, 233$
coanalytic uniformization, $23,52,229-234$
code, 70
Coded, 386
coded β-models, 54, 242, 246, 249, 258-268
strict, 327-330
coded β_{k}-models, 315
coded ω-models, 259, 322, 352-355
Cohen, 307
collapsing function, 272
collapsing lemma, 283
collection
$\Sigma_{1}^{\text {set }}, 283$
$\Sigma_{\infty}^{\text {set }}, 283$
coloring, 48
combinatorics, 19, 39, 50, 61, 126-130, 372, 401, 413-420
commutative family of maps, 50,165
commutative ring, $13,38,48,120-122,391$
compactness, 411
for predicate calculus, 49, 144-145
for propositional logic, 144-145
Heine/Borel, 131-135, 411
in $\mathrm{WKL}_{0}, 171,327$
sequential, 47, 110-114
compact metric space, $35,37,47,49,112-$ 113, 137-143
comparable, 19, 20, 23, 41, 183, 210, 273
CWO, 51, 202-206
comparison map, 183
compatible, 21
complete
set of sentences, 95, 144
completeness
for predicate calculus, $29,38,47,49,96$ 97, 144-145
nested interval, 79
of $\mathbb{R}, 13,110$
of separable metric space, 82
complex number, 13
comprehension, 4, 27, 56, 296
arithmetical, 7, 34, 109, see also ACA_{0}
bounded $\Sigma_{1}^{0}, 45,49,73,420,421$
bounded $\Sigma_{k}^{0}, 73$
$\Delta_{1}^{0}, 25,66$
Δ_{k}^{1}, see $\Delta_{k}^{1}-\mathrm{CA}_{0}$
$\Delta_{0}^{\text {set }}, 270$
$\Delta_{k}^{\text {set }}, 299$
$\Pi_{1}^{1}, 17,225$, see $\Pi_{1}^{1}-\mathrm{CA}_{0}$
Π_{k}^{1}, see $\Pi_{k}^{1}-\mathrm{CA}_{0}$
$\Pi_{k}^{\text {set }}, 299$
recursive, 24, 65, see also RCA_{0}
scheme, 4, 298
$\Sigma_{1}^{0}, 26,34,109$
Σ_{k}^{1}, see $\Sigma_{k}^{1}-\mathrm{CA}_{0}$
computability theory, 1
computable mathematics, 26, 30
concatenation, 21, 70, 242
connected, 406
connectives
propositional, 3, 32
conservation theorems, $38,56,57,59-60$, $278,301-305,313-315,371,375,380-$ 399, 401-402, 420
conservative, $8,253,278,303$
consistency strength, 54, 399
of $\mathrm{ACA}_{0}, 58,59,325$
of EFA, 47, 420
of PRA, 390
of $\mathrm{RCA}_{0}, 58,60,324$
of RCA *, 420
of $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 59,353,396$
of $\Sigma_{2}^{1}-\mathrm{AC}_{0}, 397$
of $\Sigma_{k}^{1}-\mathrm{AC}_{0}, 60,398$
of $\mathrm{WKL}_{0}, 58,60,330,390$
of $\mathrm{WKL}_{0}^{*}, 420$
consistent, 95
constructible set, $18,19,56,253,283-298$
definition of, 287
constructing function, 288
constructive mathematics, VIII, 32, 33, 44, 81, 91, 141, 143, 405
contents, XI-XIV
continuous function, $1,14,16,37,46,49$,
87-91, 137-143, 391
on the ordinals, 400
uniformly, see uniform continuity
continuous linear operator, 105
continuum hypothesis, 192, 234, 294
convergent, 82
uniformly, 35, 113
convex set, 411-413
core, hard, see hard core
core mathematics, VIII
correctness, 394, 397, 398
countability
axiom of, 272, 292
countable additivity, 406-407
countable algebra, 13, see algebra
countable mathematics, 1 , see mathematics, countable
countable set, 271
analytic, 192
Borel, 194
counterpart
ATR $_{0}, 52$
set-theoretic, 56, 299
covering
König, 415
open, $30,37,48,92,131-135$
singular, 156
vertex, 415
Vitali, 409
Ctbl, 271
cut, 386
semiregular, 386-389
Cutland, 9, 66
cut elimination, 47, 98, 99, 399
CWO, 51, 52, 202-206, 209, 210, 273
Davis, 66, 67, 345
Dedekind, VII, VIII, 12, 75
def, 284
Def, 8, 26, 59
definability, 3, 5, 7, 378
arithmetical, 6-9, 40, 325, 373
$\Delta_{1}^{0}, 25,26,375$
$\Delta_{1}^{1}, 341$
Σ^{0}
$\Sigma_{1}^{0}, 24$
defined, 4, 88
Dekker, 119
Δ_{1}^{0}-Def, 26, 375
Δ_{1}^{0}-RT, 217-222
Δ_{1}^{0} comprehension, 25, 66
Δ_{1}^{0} definability, 26, 375
Δ_{1}^{0} determinacy, 210-217
Δ_{1}^{0} Ramsey theorem, 217-222
Δ_{2}^{0} determinacy, 248-249
Δ_{2}^{0} equivalence relation, 238
Δ_{2}^{0} Ramsey theorem, 245-247
Δ_{k}^{0}-RT, 218
Δ_{k}^{0} Ramsey theorem, 218
$\Delta_{1}^{1}-\mathrm{CA}_{0}$
non- ω-models of, 393-396
ω-models of, 58, 346-355
coded, 352-354
minimum, 352
Δ_{1}^{1} definability, 341
Δ_{1}^{1} in, 341
Δ_{1}^{1} Ramsey theorem, 248-249
Δ_{2}^{1} Ramsey theorem, 249
$\Delta_{k}^{1}-\mathrm{CA}_{0}, 27,298-305$
β-models of, 318
minimum, 304-305, 313
non- ω-models of, 396-398
ω-models of
coded, 354
Δ_{k}^{1}-RT, 218
Δ_{k}^{1} comprehension, see $\Delta_{k}^{1}-\mathrm{CA}_{0}$
Δ_{k}^{1} Ramsey theorem, 218
$\Delta_{0}^{\text {set }}$ comprehension, 270
$\Delta_{0}^{\text {set }}$ formula, 270
$\Delta_{k}^{\text {set }}$ comprehension, 299
Demuth, 32
dense, 378
dense open set, 80
dependent choice
$\Pi_{1}^{0}, 58,327,334$
$\Sigma_{1}^{1}, 59,359-361$, see $\Sigma_{1}^{1}-\mathrm{DC}_{0}$ ω-models of, 346-355
Σ_{2}^{1}, see $\Sigma_{2}^{1}-\mathrm{DC}_{0}$
$\Sigma_{k}^{1}, 57,305-319$, see Σ_{k}^{1} - DC_{0}
strong, 57, 58, 305-319, 327
derivative, 91, 140, 159
derived set, 20
derived tree, 21
Descartes, VII
descent tree, 204
descriptive set theory, 17, 19, 22, 23, 39, $50,52,173,176,201-202,234$
modern, 211, 217
determinacy, 35, 51, 210, 217
Borel, 23, 52, 249
clopen, 52, 210-217
$\Delta_{1}^{0}, 210-217$
$\Delta_{2}^{0}, 248-249$
open, $23,41,52,53,210-217$
$\Sigma_{1}^{0}, 210-217$
$\Sigma_{1}^{0} \wedge \Pi_{1}^{0}, 53,241-244$
$\Sigma_{2}^{0}, 248$
$\Sigma_{1}^{1}, 249$
strong forms of, 53, 248-249
Deutsche Forschungsgemeinschaft, X
diagonalization, 178, 336
diagram, 100
Dickson's lemma, 417
differential equations, $1,15,37,50,159-$ 165, 391
direct summand, 207, 210
discrete topology, 1, 2
divisible Abelian group, 20, 35, 123-125, 239-241
divisible closure, 35, 48, 123-125
strong, 125
Di Prisco, IX
Dobrinen, IX
dominated convergence theorem, 409
double descent tree, 203
Downey, IX, 148, 420
dual space, 60, 411-413
Dunford, 106
Dushnik/Miller theorem, 420
dynamical systems, 413-415
EFA (elementary function arithmetic), 61, 75, 98
consistency strength of, 47, 98-99, 420
elementary function arithmetic, see EFA
elimination of quantifiers, see quantifier elimination
Enayat, IX
Enderton, IX, 99
end node, 21, 184
Engelking, 95
enumeration theorem, 254
$\varepsilon_{0}, 400$
equality, $9,12,14,270$
of real numbers, 77
equicontinuous, $35,47,113$
equinumerous, 271
equivalence relation, 11-14
Borel, 35
coanalytic, 234-239
$\Delta_{2}^{0}, 238$
Erdős/Radó tree, 128
Ershov, 149
essentially Σ_{1}^{1}, 361
Euclid, VII
evaluation map, 184
excluded middle, 5
exist properly, 269
exponentiation, 10, 98, 420
exponent (in Ramsey's theorem), 127 infinite, 217
extension, 192
extensionality, 270
extension of valuations, 148
extra data, 32
face, 154
fair coin measure, 192, 406, 408
Fcn, 271

Feferman, X, 23, 42, 44, 60, 241, 292, 306, 355, 391, 398, 400, 401
Feng, IX, 130
Ferreira, IX
field, 29, 38, 47, 99-102, 115-116, 391, 417, 421
algebraically closed, 100
formally real, $38,49,102,116,145-149$, 391
orderable, 38, 49, 102, 145-149
ordered, 29, 101-102, 115
real closed, 101-102
Fin, 271
fine structure of L, 305
finite-dimensional Banach space, 411
finitely axiomatizable, 57, 59, 267, 323, 329, 359
finitely branching, 31, 48, 126-127
finite additivity, 406, 408
finite ordinal, 271
finite set, 69,271
finitism, 60
finitistic reductionism, VIII, 39, 42, 44, 372, 390-391
FinOrd, 271
first edition, VIII, X
first order arithmetic, 8,9 , see \mathbf{Z}_{1}
language of, see L_{1}
subsystems of, 27
first order logic, 95, 144-145
first order part, $8,26,38,42,372-381$
of $\mathrm{ACA}_{0}, 59,374$
of $\mathrm{RCA}_{0}, 60,377$
of $\mathrm{WKL}_{0}, 60,381$
Fisher, 283, 298
fixed point ordinal, 400
fixed point theorem, 38, 50, 153-158 Brouwer, 153-158
Markov/Kakutani, 165-166
Schauder, 157-159, 165
forcing, 249, 306, 377
Gandy, 53, 235
tagged tree, 355
formally real field, $38,49,102,116,145-$ 149
formal system, 5
formula, 3
arithmetical, 6, 109
atomic, 2
bounded quantifier, 24, 27
generalized $\Sigma_{0}^{0}, 384$
$\Pi_{1}^{0}, 24$
$\Pi_{k}^{0}, 27$
$\Pi_{1}^{1}, 16$
and coanalytic sets, 233
$\Pi_{k}^{1}, 16$
$\Pi_{k}^{\text {set }}, \Sigma_{k}^{\text {set }}, 270$
prenex, 367
$\Sigma_{1}^{0}, 24$
$\Sigma_{1}^{0} \wedge \Pi_{1}^{0}, 241$
$\Sigma_{k}^{0}, 27$
$\Sigma_{1}^{1}, 16$
and analytic sets, 177
$\Sigma_{k}^{1}, 16$
with parameters, 3
foundations of mathematics, VII-VIII, 1, $25,33,36,39,43-44$
table, 44
Fraïssé's conjecture, 419
Frege, VII
Friedman, IX, 23, 27, 33, 36, 39, 42, 51, 59, $60,75,102,114,116,119,120,122$, $126,130,137,149,150,153,184,196$, 202, 206, 210, 217, 222, 228, 234, 241, 249, 268, 315, 346, 355, 357, 360, 361, 370, 377, 398, 400, 401, 415, 418, 419
unpublished, $75,210,391,418,421$
Friedman, Sy, 361
Friedman volume, 23
Fröhlich, 116, 120
Fuchs, 126
fulfillment, 367-370
strong, 368
fulfillment tree, 368
full binary tree, 32,37
full induction, $325,353,374$
function, 10, 271
continuous, $1,14,16,46,49,87-91,137-$ 143
measurable, 408
primitive recursive, $38,382-383$
functional
bounded linear, 166-170, 411-413
functional analysis, $1,16,142-143$
fundamental theorem of algebra, 13, 28
Furstenberg, 414
Gale/Stewart game, 51
Galvin/Prikry theorem, 53, 218, 248
game, 51, 210
$\Gamma_{0}, 400$

Gandy, IX, 196, 334, 345, 370
Gandy forcing, 53, 235
gap embedding, 418
Gasarch, IX
Gaussian elimination, 80
generalized Σ_{0}^{0} formula, 384
general topology, 1
genericity, 237-238, 377-380
Gentzen-style proof theory, 372, 391, 399-

401

geometry, 1
Girard, 206, 418
Giusto, IX, 87, 95, 143, 407, 409, 410
GKT basis theorem, 333-334, 362-365
Gödel, VII, 18, 19, 56, 283, 293, 294, 298
Gödel's beta function, 45
Gödel's compactness theorem, 49, 144-145
Gödel's completeness theorem, 29, 38, 47, 49, 96-97, 144-145
Gödel's incompleteness theorem, 38, 261,
267, 324, 330, 353, 358, 361, 390, 396
for ω-models, 357-359
Gödel number, 284
Graham, 130, 414
graph
bipartite, 415
graph minor theorem, 401, 418
Greenberg, IX
group
Abelian, see Abelian group
orderable, 148
H-set, 58, 336-341
nonstandard, 51
$\mathrm{H}(a, X, Y), 337$
$\mathrm{H}_{a}^{X}, 336,337,340$
$\mathrm{H}_{\theta}(X, Y), 180,248$
Haar measure, 410
Hahn/Banach theorem, 16, 38, 50, 165170, 391
geometrical form, 411
Hájek, IX, 9, 27, 75, 377
Hall's theorem, 416
Hall condition, 416
Hardin, 410
hard core, 59, 361-370
Kreisel, 370
of β-models HYP, 365
of β-submodels, 365
of ω-models

HYP, 364
REC, 334
of ω-submodels, 370
Harizanov, IX
Harnik, IX
Harrington, IX, 60, 239, 249
unpublished, 235, 238, 377, 381, 391
Harrison, 182, 196, 345, 355
Hatzikiriakou, IX, 122, 148, 411, 418, 421
Hausdorff metric, 143
HB, 30
HCL(X), 292-297, 299-304
HCtbl, 271
height, 228
Heinatsch, IX
Heine/Borel covering lemma, 30, 32, 36, 37, 48, 131-135, 391, 411
Henkin construction, 96, 145, 356, 392
Henson, IX, X
hereditarily constructibly countable, 294
hereditarily countable, 271
hereditarily finite, 271, 277
Heyting, VII
HF, 271, 277
HFin, 271
hierarchy, 195
Higman's theorem, 417, 418
Hilbert, VII, VIII, 6, 9, 145, 391
Hilbert's program, 38, 39, 42, 44, 60, 372, 390-391
Hilbert basis theorem, 401, 417-418
Hilbert cube, 84, 112, 157
Hindman, 415
Hindman's theorem, 61, 413-415
Hinman, IX
Hirschfeldt, IX
Hirst, IX, 23, 130, 137, 179, 206, 268, 414416, 419
HJ (hyperjump), 18, 231, 255
Holz, 415
homeomorphic, 87
Howard, IX
Huff, X
Hummel, 130
Humphreys, IX, 170, 229, 411-413
Hyland, IX
HYP, 40, 41, 181, 213
hard core of β-models, 365
hard core of ω-models, 363
minimum ω-model, 352
$\operatorname{HYP}(X), 346-352$
hyperarithmetical in, 18, 341-342
hyperarithmetical quantifier, $58,335,342-$ 346
hyperarithmetical set, 40, 41, 341, 346-352 hyperarithmetical theory, 19, 53, 58, 196, 228, 231, 254, 334-346
formalized, 222, 235
hyperarithmeticity
relative, see hyperarithmetical in
hyperjump, 18, 54, 231, 255
ideal, 13
finitely generated, 417
maximal, 35, 48, 49, 120-122
prime, $38,49,120,150-153,391$ minimal, 122
radical, 49, 152-153
impredicative mathematics, 23, 44
incompatible, 21, 192
strongly, 193
incompleteness theorem, 38, 261, 267, 324, 330, 353, 358, 361, 390, 396
for ω-models, 59, 357-359
IND, 25, 27, 306
independence
algebraic, 119
linear, 48, 117
index, 255, 441-461
induction, 27
arithmetical, 7, 373
axiom, 4, 6, 7, 373
first order, 8
$\Pi_{1}^{0}, 25$
$\Pi_{k}^{0}, 66$
restricted, 371
scheme, 5, 7
second order, 5
$\Sigma_{1}^{0}, 25,375,378$
$\Sigma_{k}^{0}, 66$
$\Sigma_{k}^{1}, 306$
transfinite, see transfinite induction arithmetical, 179
infinite exponent, 217
infinity
problem of, 390
initial section, 183
initial segment, 71,126
initial sequence, 21, 71, 126
Inj, 271
injection, 271
injective Abelian group, 124-125, 239
inner model, 56, 222, 242, 246, 249, 287, 294, 416
integer, 11, 76
integral
Lebesgue, 408
Riemann, 37, 140-141, 143
with respect to a Borel measure, 408
integral domain, 120
intended model, 2, 98, 420
for $\mathrm{L}_{1}, 371$
for $\mathrm{L}_{2}, 2-5$
for $\mathrm{L}_{\text {set }}, 269,284,285$
for PRA, 381
interior node, 184
interleaved tree, 136
intermediate systems $\left(\mathrm{WKL}_{0}\right.$ and $\left.\mathrm{ATR}_{0}\right)$, 33, 36, 39, 43
intermediate value theorem, $29,46,90$, 141-142
intersection
of β-models, 365
of β-submodels, 365
of ω-models, $58,59,334,364$
of ω-submodels, 370
IR, 42, 400
irreducible polynomial, 421
Iso, 274
isolated point, 20
Jäger, IX, 361
Jamieson, IX
Jech, 19, 298, 307
Jensen, 298, 305
Jockusch, X, 130, 145, 334, 381
unpublished, 222
Judah, IX
jump operator, see Turing jump
Jungnickel, 415
$\mathrm{K}(X), 143$
Kahle, X
Kakutani, 165, 170
Kaplansky, IX, 53, 126, 206, 210, 241
Karp, 298
Katznelson, 414
Kaye, 9, 27, 377
$\mathrm{KB}, 174$
Kechris, IX, 23, 176, 179
Keisler, IX, 370, 391, 398
kernel, see perfect kernel
Ketland, IX

Kirby, 60, 75, 386, 391
Kjos-Hanssen, IX
Kleene, IX, 71, 99, 254, 258, 334, 345, 355, 391
Kleene/Brouwer ordering, 50, 174, 179, 219, 229, 336, 359
Kleene/Souslin theorem, 232, 235, 342, 345
Kleene basis theorem, 54, 254, 255, 258
Kleene normal form theorem, see normal form theorem
Knight, IX
Kohlenbach, IX
Kondo's theorem, 23, 52, 229-234, 298, 308
Kondo/Addison theorem, 234
König, 130, 415
König's lemma, 31, 35, 48, 126-128, 130
bounded, 134-137, see bounded König's lemma
weak, see weak König's lemma
weak weak, see weak weak König's lemma
König covering, 415
König duality, 222, 415, 416
Kossak, IX
Krein/Šmulian theorem, 412
Kreisel, IX, 23, 102, 228, 314, 334, 355, 370
basis, 334
hard core, 370
Krivine, 102
Kriz, 418
Kruskal's theorem, 401, 417, 418
Kučera, IX, 32, 407
Kumabe, IX
Kurtz, 148
L_{1} (language of \mathbf{Z}_{1}), 8, 98
intended model, 371
$\mathrm{L}_{1}(\underline{A}), 393$
L_{1} (exp), 98, 420
L_{2} (language of \mathbf{Z}_{2}), 2, 3
intended model, 4, 5
models for, 3-4
$\mathrm{L}_{2}(\mathcal{B}), 3$
$\mathrm{L}_{2}(\exp), 420$
$\mathrm{L}_{\text {set }}$ (set-theoretic language), 269
intended model, 269, 284, 285
model for, 280
ℓ_{p} spaces, 103, 412
L_{p} spaces, 104, 142, 408
L^{u} (constructible from u), 56, 285-292
$\mathrm{L}(X)$ (constructible from X), 293
language
of first order arithmetic, 8 , see L_{1}
of predicate calculus, 95
of second order arithmetic, 3 , 12 , see L_{2}
ramified, 285
set-theoretic, 269
LaTeX, X
Laver, IX, 419
Laver's theorem, 419
least number operator, 72
least upper bound, 13, 30, 35
Lebesgue convergence theorems, 409-410
Lebesgue measure, 406
Lempp, IX, X, 420
length, 70
Lerman, IX, X, 9, 27
LeThi, X
Lévy, IX, 56, 292, 298, 306
Lévy absoluteness theorem, 298
lh, 70
lightface, 235
Lim, 271
limit ordinal, 271
Lindenbaum's lemma, 47, 96, 393
linear algebra, 80, 155
linear functional bounded, 166-170, 411-413
linear independence, 48, 117
linear operator bounded, 47, 104-106
continuous, 105
linear ordering, $19,50,174,292,419,420$ recursive, 335
Lipschitz condition, 50, 163
LO (linear ordering), 174
localization, 48, 121-122
locally compact, 91
locally finite, 92,416
local ring, 121-122
located closed set, 143
logic, 5
mathematical, 1, 47
logical consequence
closed under, 95
Louveau, IX, 238, 239
low basis theorem, 330-331, 334
Lusin, 178
Lusin's theorem, 23, 41, 50, 188-192, 196197
$M_{2}, 393$

M-cardinality, 385
M-coded set, 386-387
M-finite set, 385-386
Macintyre, IX
Magidor, 416
main question, $1-2,34,36,43-44,51$
majorize, 221, 228, 331, 381
Makkai, IX
Manaster, 416
Mansfield, IX, 179, 222
unpublished, 234, 315
Marcone, IX, 222, 229, 238, 410, 418, 419
Marker, IX, 239
Markov/Kakutani fixed point theorem, 50, 165-166
marriage theorem, 416
Martin, IX, 249
Martin-Löf, 407
matching, 415-416
perfect, 416
mathematical logic, 1, 47
mathematics
computable, 26
constructive, VIII, 32, 33, 81, 91, 141, 143, 405
constructivism, 44
core, VIII
countable, 1
impredicative, 23,44
non-set-theoretic, 1
nonconstructive, 38
ordinary, $1,9,14,34$ table, 46
predicative, 42, 44, 229, 400, 414
recursive, 26,32
reverse, 26, 32-36, 45
set-theoretic, 1, 2, 14
uncountable, 1
within $\mathrm{ACA}_{0}, 9-16,41,47-48,61,109-$ $130,410,413-416,418-420$ table, 46
within ATR $_{0}, 41,50-52,61,173-223$, 410, 415-416, 418-419
table, 46
within $\Pi_{1}^{1}-\mathrm{CA}_{0}, 19-23,52-53,60,225-$ 249, 412-413, 418-419 table, 46
within $\mathrm{RCA}_{0}, 27-33,38,45-47,61,65-$ 107, 420-421 table, 46
within $\mathrm{WKL}_{0}, 38,48-50,60,131-171$, 410, 416
table, 46
Mathias, IX, 218, 248
MathText, X
maximal ideal, $13,35,48,49,120-122$
maximum principle, $31,32,36,37,49,91$, 137-139
McAllister, IX
McAloon, IX, 42, 184, 196, 222, 283, 346, 400, 416
McNicholl, IX
measurable function, 408
measurable set, 408-409
regularity of, 410
measure
Borel, 142, 405-410
fair coin, 192, 406, 408
Haar, 410
Lebesgue, 406
measure theory, 60, 142-143, 405-410
Mendelson, 9
Metakides, IX, 48, 119, 149, 170
metric space
compact, $35,37,47,49,112-113,137-$ 143
complete separable, $1,14,16,28,46,81-$ 95, 228
locally compact, 91
Mileti, IX
Miller, IX, 419
Mines, 33
minimal bad sequence lemma, 418
minimal prime ideal, 122
minimization, 72
minimum β-model, 41, 56, 57
nonexistence of, 364-365
of $\Delta_{k}^{1}-\mathrm{CA}_{0}, 304-305,313$
of $\Pi_{1}^{1}-\mathrm{CA}_{0}, 18,254-258$
of $\Pi_{k}^{1}-\mathrm{CA}_{0}, 18,304-305,313$
of $\Pi_{k}^{1}-\mathrm{TR}_{0}, 305,319$
ordinal of, 319
minimum ω-model, $9,18,25,41$
nonexistence of, 365-370
of $\mathrm{ACA}_{0}, 110,325$
of $\Delta_{1}^{1}-\mathrm{CA}_{0}, 352$
of RCA $\mathrm{R}_{0}, 323$
of $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 58,352$
of $\Sigma_{1}^{1}-\mathrm{DC}_{0}, 352$
Mints, IX
Mirsky, 130, 415

models, see also β-models, ω-models, non-ω-models	Murawski, IX Mycielski, IX
for L_{1} intended, 371	Mytilinaios, IX, 87
for $L_{2}, 3-4$	\mathbb{N} (the natural numbers), 9-11
intended, 4, 5	$\mathbb{N}^{<\mathbb{N}}$ (= Seq), 21, 70
for $L_{\text {set }}, 280$	$\mathbb{N}^{\mathbb{N}}$ (Baire space), 21, 84, 201
intended, 269, 284, 285	$[\mathbb{N}]^{\mathbb{N}}$ (Ramsey space), 52
for predicate calculus, 95	Nash-Williams, 61, 418-419
for propositional logic, 145	National Science Foundation, X
$\begin{aligned} & \text { of } \mathrm{ACA}_{0}, 110,322-326,372-375,393- \\ & 396 \end{aligned}$	natural number, 9, 10 neighborhood, 15, 22, 412
of $\mathrm{ATR}_{0}, 258,261-262,269-282,396$	neighborhood condition, 15
of ATR $_{0}^{\text {set }}$, 269-282	Nerode, IX, 48, 119, 149, 170
of Δ_{1}^{1} - CA $_{0}, 346-355,393-396$	nested interval completeness, 46, 79
of $\Delta_{k}^{1}-\mathrm{CA}_{0}, 298-305,318-319,396-398$	Nies, IX
of $\Pi_{1}^{1}-\mathrm{CA}_{0}, 254-258,397$	node
of $\Pi_{k}^{1}-\mathrm{CA}_{0}, 298-305,318-319,398$	end, 21, 184
of $\Pi_{\infty}^{1}-\mathrm{TI}_{0}, 264-267$	interior, 184
of PRA, 383, 385-390	non- ω-models, 59-60, 371-402
of $\mathrm{RCA}_{0}, 322-326,375-377,386-390$	of $\mathrm{ACA}_{0}, 372-375$ of ATR 0,396
of $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 346-355,393-396$	of $\mathrm{ATR}_{0}, 396$ of Δ^{1}-CA $A_{0}, 398$
of Σ_{1}^{1} - $\mathrm{DC}_{0}, 346-355$	
of $\Sigma_{2}^{1}-\mathrm{CA}_{0}, 397$	
of $\Sigma_{k}^{1}-\mathrm{AC}_{0}, 305-315,396-398$	$\text { of } \mathrm{RCA}_{0}, 375-377$
of Σ_{k}^{1} - $\mathrm{DC}_{0}, 305-319$	of $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 393-396$
of strong $\Sigma_{k}^{1}-\mathrm{DC}_{0}, 315-319$	of $\Sigma_{2}^{1}-\mathrm{CA}_{0}, 397$
of subsystems of $\mathrm{Z}_{2}, 5,53-60$	of $\Sigma_{k}^{1}-\mathrm{AC}_{0}, 396-398$
of $T_{0}, 282-283$	of $\mathrm{WK}^{\text {k }}$,, $377-381$
of $T_{0}^{\text {set }}, 282-283$	table, 55
of weak $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 350-355$	nonconstructive mathematics, 38
of $\mathrm{WKL}_{0}, 326-334,377-381,386-390$	nonstandard, 51, 59
table, 55 transitive, 269, 272, 280	normal form (algebraic), 208, 209, 239, 240 normal form theorem, 50,51, 71, 175-177,
model theory recursive, 99	$\begin{aligned} & 198-199,219,226,238,241,249,255, \\ & 279,336,341,359,363,366,378 \end{aligned}$
modulus of uniform continuity, 49, 137138, 141-143	NSF, X number quantifier, $3,6,7$
Möllerfeld, IX	number systems, 10-13, 45, 75-81
monotone convergence theorem, 111, 409	number theory, 1
monotone function, 142	number variable, $2,7,8,24$
on the ordinals, 400	numerical term, 2, 24, 420
Montalban, IX	
Morley, 99	$\mathcal{O}(a, X), 335$
Moschovakis, IX, 179, 217, 234, 249	$\mathcal{O}_{+}(a, X), 335$
Mostowski, 99, 283, 345	$\mathcal{O}^{X}, 335$
Mostowski collapsing lemma, 283	$\mathcal{O}_{+}^{X}, 335$
Müller, IX	OF, 101
Mummert, IX	$\omega, 2,9,271,414$
Munich, X	$\omega^{\omega}, 399-400,417-418$

```
\(\omega\)-models, 4, 6, 57-59, 321-370
    coded, 259, 322
    definition of, 254
    finite, 367
    hard core of, 334, 364
    incompleteness, 59, 357-359
    intersection of, 58, 59, 334, 364
    minimum, \(9,18,25,41\)
    of \(\mathrm{ACA}_{0}, 8,9,58,322-326\)
        minimum, 110,325
    of ATR \(_{0}, 41,361\)
    of \(\Delta_{1}^{1}-\mathrm{CA}_{0}, 346-355\)
        minimum, 352
    of \(\Pi_{k}^{1}-\mathrm{CA}_{0}, 359,365,366\)
    of \(\mathrm{RCA}_{0}, 25,27,58,322-326\)
        minimum, 323
    of \(\Sigma_{1}^{1}-\mathrm{AC}_{0}, 346-355,416\)
        minimum, 58, 352
    of \(\Sigma_{1}^{1}-\mathrm{DC}_{0}, 346-355\)
        minimum, 352
    of strong systems, 361-370
    of weak \(\Sigma_{1}^{1}-\mathrm{AC}_{0}, 350-355\)
    of \(\mathrm{WKL}_{0}, 37,326-334\)
    reflection, 59, 355-362
        \(\Sigma_{3}^{1}, 360\)
    table, 55
\(\omega\)-submodels, 257, 365-370
    hard core of, 370
    intersection of, 370
\(\omega^{\omega}, 399-400,417-418\)
\(\omega_{1}^{\mathrm{CK}}, 40,305,335\)
\(\omega_{1}^{X}, 335\)
Omega Group, X
omitting types theorem, 370
open covering, \(30,37,48,92,131-135\)
open determinacy, 41, 52, 53, 210-217
open mapping theorem, 16, 413
open Ramsey theorem, 52, 53, 217-222
open set, \(15,16,46,80,84\)
operator
    arithmetical, 40
    bounded linear, 47, 104-106
    continuous linear, 105
    hyperjump, see hyperjump
    jump, see Turing jump
orderable Abelian group, 148
orderable field, 38,49 , 102, 145-149
ordered field, 29, 101-102, 115
ordinal diagram, 401
ordinal height, 228
ordinal notation, 335
```

ω-models, 4, 6, 57-59, 321-370
oded, 259, 322
finite, 367
hard core of, 334, 364
incompleteness, 59, 357-359
minimum, $9,18,25,41$
of $\mathrm{ACA}_{0}, 8,9,58,322-326$
minimum, 110, 325
of ATR $_{0}, 41,361$
of $\Delta_{1}^{1}-\mathrm{CA}_{0}, 346-355$
minimum, 352
of $\mathrm{H}_{k}-\mathrm{CA}_{0}, 359,365,366$
minimum, 323
of $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 346-355,416$
minimum, 58, 352
of Σ_{1}^{1}-DC $C_{0}, 346-355$
of strong systems, 361-370
of weak $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 350-355$
of $\mathrm{WKL}_{0}, 37,326-334$
lection, 59, 355-362
$\Sigma_{3}^{1}, 360$
table, 55
ω-submodels, 257, 365-370
hard core of, 370
rsection of, 370
$\omega_{1}^{\mathrm{CK}}, 40,305,335$
$\omega_{1}, 335$
Omega Group, X
omitting types theorem, 370
open covering, $30,37,48,92,131-135$
open determinacy, 41, 52, 53, 210-217
open Ramsey theorem, 52, 53, 217-222
open set, $15,16,46,80,84$
operator
arithmetical, 40

continuous linear, 105
hyperjump, see hyperjump
jump, see Turing jump
orderable Abelian group, 148
rable field, 38, 49, 102, 145-149
ordinal diagram, 401
ordinal height, 228
ordinal notation, 335
ordinal number, 19, 41, 50, 184, 271
arithmetic, 399
continuous function of, 400-401
provable, 372, 399-401
recursive, 40, 335, 399
ordinary mathematics, $1,9,14,34$
table, 46
$\operatorname{ord}\left(T_{0}\right), 399$
o(T), 228
outline of this book, 44-61
overview of this book, VII-VIII, 44
table, 45
Oxford University, X
p-group
Abelian, 20, 41, 206
PA (Peano arithmetic), 8, 26, 59, 374, 400, see also Z_{1}
and $\mathrm{ACA}_{0}, 374$
Padma, X
pairing function, 10, 68
paracompact, 46, 92, 95
parameter, 3, 5, 7, 25, 39
Paris, X, 60, 75, 130, 386, 391
Parsons, IX, 27, 391
partition of unity, 93
path, 21, 126, 378
Peano, VII
Peano arithmetic, see PA
Peano existence theorem, 15, 50, 159-165
Pennsylvania State University, IX, X
perfect kernel, 21, 22, 226-228
perfect matching, 416
perfect set, 20, 35, 192-195, 227-228, 234238
perfect set theorem, 39, 41, 50, 52, 192195, 200-202, 234
perfect tree, 21, 35, 192, 226
$\varphi_{\alpha}(\beta), 400$
$\Pi_{1}^{0}, 24$
universal, 254, 323, 325, 327-331, 336, 338, 341, 360, 395
Π_{1}^{0}-IND, 25
Π_{1}^{0} dependent choice, $58,327,334$
Π_{1}^{0} induction, 25
Π_{1}^{0} separation, 148-149
$\Pi_{k}^{0}, 27$
Π_{k}^{0}-IND, 27
Π_{k}^{0} induction, 66
$\Pi_{1}^{1}, 16$
and coanalytic sets, 233
universal, 178
Π_{1}^{1} - $\mathrm{CA}_{0}, 16-19,225-249$
and coded β-models, 262-264
and $\Sigma_{2}^{1}-\mathrm{AC}_{0}, 397$
β-models of, 18
minimum, 18, 254-258
mathematics within, 19-23, 52-53, 60, 225-249, 412-413, 418-419 table, 46
non- ω-models of, 397
ordinal of, 401
reverse mathematics for, $35,52-53,60$, 225-249, 412-413, 418-419
$\Pi_{1}^{1}-\mathrm{CA}_{0}^{\text {set }}, 282,289-292,295,301,302$
Π_{1}^{1} - $\mathrm{TI}_{0}, 359-360$
$\Pi_{1}^{1}-\mathrm{TR}_{0}, 248-249,258,292,354$
$\Pi_{1}^{1}-\mathrm{TR}_{0}^{\text {set }}, 283,292$
Π_{1}^{1} comprehension, 225, see $\Pi_{1}^{1}-\mathrm{CA}_{0}$
Π_{1}^{1} separation, 201
Π_{1}^{1} transfinite induction, 59, 359-360, see $\Pi_{1}^{1}-\mathrm{Tl}_{0}$
Π_{1}^{1} transfinite recursion, 248, see $\Pi_{1}^{1}-\mathrm{TR}_{0}$
Π_{1}^{1} uniformization, 58, 229-234, 308, 347
$\Pi_{2}^{1}-\mathrm{TI}_{0}, 56,268$
Π_{2}^{1} separation, 312
$\Pi_{k}^{1}, 16$
universal, 394
$\Pi_{k}^{1}-\mathrm{CA}_{0}, 17,27,298-305$
and $\Sigma_{k+1}^{1}-\mathrm{AC}_{0}, 397-398$
β-models of, 318
minimum, 18, 304-305, 313
non- ω-models of, 398
ω-models of, 359
Π_{k}^{1}-IND, 27
$\Pi_{k}^{1}-\mathrm{TI}_{0}, 264,361$
$\Pi_{k}^{1}-\mathrm{TR}_{0}, 248,283,354$
β-models of, 319 minimum, 305, 319
Π_{k}^{1} comprehension, see Π_{k}^{1}-CA
Π_{k}^{1} correctness, 394, 397, 398
Π_{k}^{1} transfinite induction, 264, 361, see $\Pi_{k}^{1}-$ Tl_{0}
Π_{k}^{1} transfinite recursion, 248, 305, 319, see Π_{k}^{1} - TR_{0}
Π_{∞}^{1}-CA $A_{0}, 17$
Π_{∞}^{1}-CA ${ }_{0}^{\text {set }}, 296$
$\Pi_{\infty}^{1}-\mathrm{TI}_{0}, 54,59,264-267,355-361$
not finitely axiomatizable, 267
$\Pi_{\infty}^{1}-\mathrm{T}_{0}^{\text {set }}, 283$
Π_{∞}^{1} transfinite induction, see $\Pi_{\infty}^{1}-\mathrm{TI}_{0}$

Picard's theorem, 50, 163-165
pigeonhole principle, 31
$\Pi_{k}^{\text {set }}$ comprehension, 299
$\Pi_{k}^{\text {set }}$ formula, 270
Podewski, 415
Podewski/Steffens theorem, 61, 415
Pohlers, X, 44, 401
point, 14, 28, 81
isolated, 20
polar, 412
polynomial, 13, 15, 89
irreducible factors of, 421
roots of, 421
polynomial ring, 99, 418
$P(\omega), 4$
positive cone, 146
Pour-El, IX, 33, 165
power series, 89
power series ring, 418
power set axiom, 52, 238, 249
PRA (primitive recursive arithmetic), 38, 381-391
and $\mathrm{WKL}_{0}, 389$
consistency strength of, 390
definition of, 382
intended model of, 381
predicate calculus, 95, 144-145
predicative mathematics, VIII, 42, 44, 228, 400, 414
predicative reductionism, VIII, 42, 44
preface, VII-VIII
prenex formula, 367
prime ideal, 13, 38, 49, 120, 150-153, 391 minimal, 122
primitive recursion, $10,11,31,45,72,75$
primitive recursive arithmetic, see PRA
primitive recursive function, 38, 382-383
product set, 10, 71
product space, $82-84$
compact, 112-113
projective hierarchy, 17, 211, 278, 283
proof, 95
proof theory, 38, 372, 391, 399-401
proper existence, 269
propositional connectives, 3, 32
propositional logic, 144-145
provability predicate, 95
provable ordinals, 372, 399-401
proximal, 414
pseudohierarchy, 51, 52, 58, 193-196, 212, 222, 335, 344
pseudometric, 14
$\Psi_{0}\left(\Omega_{\omega}\right), 401$
$\Psi_{i}(\alpha), 400-401$
Pudlák, 9, 27, 75, 377
\mathbb{Q} (the rational numbers), $11,12,77$
Q (Robinson's system), 97, 99
quantifier, 32
bounded, 24, 65
hyperarithmetical, 58, 335, 342-346
number, $3,6,7$
set, 3,6
set-theoretic, 269
quantifier elimination, 47, 102
quasiordering, 417
Quinsey, 59, 370
Quinsey's theorem, 365-370
quotient ring, 120
\mathbb{R} (the real numbers), $12,13,77-81$
Rabin, 102
radical ideal, 49, 152-153
Radó selection lemma, 129-130
Radon/Nikodym theorem, 410
Raghavan, X
ramified language, 285
Ramsey's theorem, 35, 48, 52, 127-130, 220, 413, 417
arithmetical, 245-247
Borel, 248
clopen, 217-222
$\Delta_{1}^{0}, 217-222$
$\Delta_{2}^{0}, 53,245-247$
$\Delta_{k}^{0}, 218$
$\Delta_{1}^{1}, 248-249$
$\Delta_{2}^{1}, 249$
$\Delta_{k}^{1}, 218$
open, 53, 217-222
$\Sigma_{1}^{0}, 217-222$
$\Sigma_{k}^{0}, 218$
$\Sigma_{\infty}^{0}, 245-247$
$\Sigma_{1}^{1}, 248$
$\Sigma_{k}^{1}, 218$
strong forms of, 53, 218, 248-249
Ramsey property, 23, 35, 41, 52, 218, 245249
Ramsey scheme, 218
Ramsey space, 52, 217
random real, 407
rank, 285
Rao, IX

Rathjen, IX
rational number, 11, 12, 76
Raymond N. Shibley Foundation, X
RCA $0,24-27,65-107$
and Σ_{1}^{0}-PA, 377
consistency strength of, 58, 60, 324
finite axiomatizability of, 323
first order part of, 60, 377
mathematics within, 27-33, 38, 45-47, 65-107
table, 46
models of, 322-326
non- ω-models of, 375-377, 386-390
ω-models of, 25, 27, 58, 322-326
minimum, 323
ordinal of, 399
reverse mathematics for, 61, 420-421
$\mathrm{RCA}_{0}^{*}, 61,420-421$
RCOF, 101
realized, 392
real closed field, 101-102
$\mathbb{R}, 90$
real closure, 29, 47, 49, 391
of formally real field, 147-148
of ordered field, 101-102
strong, 47, 115-116
real number, $12,13,28,77$
sequence of, 79
real world, 10
REC, 25, 29, 30, 37
hard core of ω-models, 334
minimum ω-model, 323
recurrent, 414
recursion
primitive, 10, 11, 31, 45
transfinite, 20, 22, 51
arithmetical, 39, 40, 179-184
recursion theorem, 58, 345
recursion theory, $8,9,24,25,27,254$
recursively enumerable set, 73
recursively saturated model, 60, 392
recursiveness
relative, see recursive in
recursive algebra, 28, 102
recursive analysis, 26, 28, 30
recursive comprehension, 24,65 , see also RCA_{0}
recursive counterexample, $28,30,32,165$, 170
recursive enumerability, 8,24
recursive in, 8, 255, 323
recursive join, 8
recursive linear ordering, 335
recursive mathematics, 26,32
recursive model theory, 99
recursive ordinal, $40,335,399$
recursive set, 323
reduced Abelian group, 20, 35, 41, 206-
210, 239-241
reductionism
finitistic, VIII, 39, 42, 44, 372
predicative, VIII, 42, 44
reflection, 253
β-model, 57, 315-319
ω-model, 59, 355-362
$\Sigma_{3}^{1}, 360$
regularity, 272
axiom of, 272, 283
of bipartite graphs, 416
of measurable sets, 410
Rel, 271
relation, 271
relative hyperarithmeticity, 334-346, see hyperarithmetical in
relative recursiveness, 255 , see recursive in
relativization, 287, 294, 346
Remmel, IX
Ressayre, IX, 283
restricted- β-submodel, 268
restricted- $\Sigma_{1}^{1}, 268$
restricted induction, 371
retract, 155
reverse mathematics, VIII, 26, 32-36, 39, 45
for $\mathrm{ACA}_{0}, 35,47-48,61,109-130,410$, 413-416, 418-420
for ATR $_{0}, 50-52,61,173-223,410,415-$ 416, 418-419
for $\Pi_{1}^{1}-\mathrm{CA}_{0}, 35,52-53,60,225-249,412-$ 413, 418-419
for $\mathrm{RCA}_{0}, 61,420-421$
for stronger systems, 248-249
for $\mathrm{WKL}_{0}, 48-50,60,131-171,410,416$
Reverse Mathematics 2001, VIII
Richards, IX, 33, 165
Richman, 33, 207
Richter, 249
Riemann integral, 37, 49, 140-141, 143
Riesz representation theorem, 406, 410
Robertson, 401, 418
Robinson, 99, 391
Robinson's system Q, 97, 99

Rogers, IX, 9, 66, 67, 71, 119, 179, 254
Rosenstein, 416
Rota, 165
Rothschild, 130, 414
$R \Sigma_{1}^{1}, 268$
RT (Ramsey's theorem), 218
rudimentary closure, 270
Ruitenburg, 33
rules
logical, 5
Russell, VII
Sacks, IX, 254, 283, 305, 345, 370, 391, 398
Saint-Raymond, 239
Sami, IX
unpublished, 238
Samuel, 122
satisfaction, 4, 54, 259, 280, 287, 294, 346, 358
for propositional logic, 145
saturated model, 60, 392
Scedrov, IX
Schauder fixed point theorem, 50, 157-159, 165
Schlipf, 60, 398
Schmerl, IX, 399
Schreier, 102, 145
Schütte, IX, 400, 401, 418
Schwartz, 106
Schwichtenberg, IX
Science Research Council, X
Scott, IX, 39, 334
Scott system, 39, 334
second order arithmetic, 6 , see Z_{2}
axioms of, 4
language of, 3, see L_{2}
Seetapun, 130
semantics, 3
semiregular cut, 60, 386-389
sentence, 3
with parameters, 3
separable, $1,14,15,28$
separation, 23, 41, 50
analytic, 188-190, 196-197
Banach, 411
coanalytic, 191
of convex sets, 411
Π_{1}^{0}, 148-149
$\Pi_{1}^{1}, 201$
$\Pi_{2}^{1}, 312$
$\Sigma_{1}^{0}, 42,49,146-148,171$

$\begin{aligned} & \Sigma_{1}^{1}, 42,51,196-197 \\ & \Sigma_{2}^{1}, 312 \end{aligned}$	table, 45 set quantifier, 3,6
$\operatorname{Seq}(=\mathbb{N}<\mathbb{N}), 21,70,174$	set theory, 1
$\mathrm{Seq}_{0}, 210$	axiomatic, 19, 298
$\mathrm{Seq}_{1}, 210$	descriptive, 19, 22, 23, 50, 52, 173, 176
sequence of rational numbers, 12	Zermelo/Fraenkel, 23, 269, 283
sequence of real numbers, 13	set variable, 2, 4, 7, 8
sequential compactness, 47, 110-114	Seymour, 401, 418
set	Shelah, IX, 239
analytic, $22,41,50,173-179,410$	Shepherdson, IX, 116, 120
and $\Sigma_{1}^{1}, 177$	Shibley, X
countable, 192	Shioji, IX, 158, 165, 170
arithmetical, 325	Shoenfield, IX, 9, 56, 71, 254, 298, 334
basic open, 15, 22, 80	Shoenfield absoluteness theorem, 253, 283,
Borel, 22, 23, 41, 50, 184-192, 218 countable, 194	$284,288-296,298,308$
	Shore, IX, 23, 170, 206, 416, 419
regularity of, 410	Sieg, IX, 44, 60, 391, 398, 399, 401
bounded-weak-* closed, 412	Sierpinski, 178
bounded-weak-* open, 412	$\Sigma_{1}^{0}, 24$
closed, 20, 46, 86, 87, 225, 227	$\Sigma_{1}^{0}-\mathrm{CA}_{0}, 26$
located, 143	Σ_{1}^{0}-IND, 25
coanalytic, 232	Σ_{1}^{0}-PA, 26, 27, 38, 60
and $\Pi_{1}^{1}, 233$	first order part of $\mathrm{RCA}_{0}, 377$
compact, 112-113, 137-143	first order part of $\mathrm{WKL}_{0}, 381$
constructible, 18, 19, 56, 253, 283-298	Σ_{1}^{0}-RT, 217-222
convex, 411-413	$\Sigma_{1}^{0} \wedge \Pi_{1}^{0}, 241$
dense open, 80	Σ_{1}^{0} bounding, 375, 420
derived, 20	Σ_{1}^{0} comprehension, 26, 34, 109
finite, 69	bounded, 45, 49, 73, 420, 421
hyperarithmetical, 40, 41, 341, 346-352	Σ_{1}^{0} definability, 24
M-coded, 386-387	Σ_{1}^{0} determinacy, 210-217
M-finite, 385-386	Σ_{1}^{0} induction, 25, 375, 378
measurable, 408-409	Σ_{1}^{0} Ramsey theorem, 217-222
open, $15,16,46,80,84$	Σ_{1}^{0} separation, 42, 49, 146-148, 171
perfect, 20, 35, 39, 41, 51, 52, 192-195, $227-228,234-238$	Σ_{2}^{0} determinacy, 248
recursive, 323	$\Sigma_{k}^{0}, 27$
recursively enumerable, 73	Σ_{k}^{0}-IND, 27
weak-* closed, 412	Σ_{k}^{0}-RT, 218
weak-* open, 412	Σ_{k}^{0} bounding
Zermelo/Fraenkel, 269	strong, 75
set-theoretic counterpart, 56, 299	Σ_{k}^{0} comprehension
set-theoretic language, 269	bounded, 73
set-theoretic mathematics, 1, 2	Σ_{k}^{0} induction, 66
set-theoretic methods, 253	Σ_{k}^{0} Ramsey theorem, 218
set-theoretic quantifier, 269	Σ_{∞}^{0}-RT, 218
bounded, 270	Σ_{∞}^{0} Ramsey theorem, 245-247
set-theoretic variable, 269	$\Sigma_{1}^{1}, 16$
set existence axioms, VIII, 2, 6, 23, 34, 248 and determinacy, 51	and analytic sets, 177 universal, 341, 364
in ordinary mathematics, 1	$\Sigma_{1}^{1}-\mathrm{AC}_{0}, 41,59,343,361,368$

and ACA $_{0}$, 393-396
consistency strength of, 59, 353, 396
non- ω-models of, 393-396
ω-models of, 58, 346-355 coded, 352-354, 416 minimum, 58, 352
$\Sigma_{1}^{1}-\mathrm{DC}_{0}, 59,359-361$
consistency strength of, 353
ω-models of, 58, 346-355 coded, 352-354
minimum, 352
Σ_{1}^{1}-IND, 349-350, 355, 370, 394-396
$\Sigma_{1}^{1}-\mathrm{Ml}_{0}, 248$
$\Sigma_{1}^{1}-\mathrm{Tl}_{0}, 366,370$
Σ_{1}^{1} bounding, 178, 203, 206
Σ_{1}^{1} choice, $52,235,279,368$, see $\Sigma_{1}^{1}-\mathrm{AC}_{0}$
in ATR $_{0}, 212-213,217,343$
Σ_{1}^{1} dependent choice, 59, 359-361, see Σ_{1}^{1-} DC 0
Σ_{1}^{1} determinacy, 249
Σ_{1}^{1} monotonic recursion, 248, 249
Σ_{1}^{1} Ramsey theorem, 248
Σ_{1}^{1} reflecting ordinals, 248, 249
Σ_{1}^{1} separation, 42, 51, 196-197
Σ_{1}^{1} transfinite induction, 366, see $\Sigma_{1}^{1}-\mathrm{Tl}_{0}$
$\Sigma_{2}^{1}-\mathrm{AC}_{0}$
and $\Pi_{1}^{1}-\mathrm{CA}_{0}, 397$
consistency strength of, 397
$\Sigma_{2}^{1}-\mathrm{CA}_{0}$
non- ω-models of, 397
Σ_{2}^{1}-IND, 397
Σ_{2}^{1} absoluteness, 291, 295
Σ_{2}^{1} choice, see $\Sigma_{2}^{1}-\mathrm{AC}_{0}$
Σ_{2}^{1} dependent choice, see $\Sigma_{2}^{1}-\mathrm{DC}_{0}$
Σ_{2}^{1} separation, 312
Σ_{2}^{1} uniformization, 57, 308-309
$\Sigma_{3}^{1}-\mathrm{RFN}_{0}, 360$
Σ_{3}^{1} reflection, 360
$\Sigma_{k}^{1}, 16$
universal, 315
$\Sigma_{k}^{1}-\mathrm{AC}_{0}, 57,305-315$
and $\Pi_{k-1}^{1}-$ CA $_{0}, 397-398$
consistency strength of, 60, 398
non- ω-models of, 396-398
ω-models of
coded, 354
Σ_{k}^{1}-CA $, 17,27$
$\Sigma_{k}^{1}-\mathrm{DC}_{0}, 57,305-319$
ω-models of
coded, 354
Σ_{k}^{1}-IND, 27, 306, 318-319, 398
$\Sigma_{k}^{1}-$ RFN $_{0}, 355,361$
Σ_{k}^{1}-RT, 218
Σ_{k}^{1} - $\mathrm{Tl}_{0}, 264,319$
Σ_{k}^{1} choice, 57 , see $\Sigma_{k}^{1}-\mathrm{AC}_{0}$
Σ_{k}^{1} comprehension, see $\Sigma_{k}^{1}-\mathrm{CA}_{0}$
Σ_{k}^{1} dependent choice, 57, 305-319, see $\Sigma_{k}^{1}-$ DC 0
Σ_{k}^{1} induction, 306
Σ_{k}^{1} Ramsey theorem, 218
Σ_{k}^{1} reflection, 361
Σ_{k}^{1} transfinite induction, 264, see Σ_{k}^{1} - TI_{0}
Σ_{k}^{1} uniformization, 57, 312
$\Sigma_{\infty}^{1}-\mathrm{AC}_{0}, 307$
Σ_{∞}^{1}-IND, 325, 353
Σ_{∞}^{1}-RFN ${ }_{0}, 355-361$
Σ_{∞}^{1} reflection, 355-361
$\Sigma_{1}^{\text {set }}$ absoluteness, 295, 298
$\Sigma_{1}^{\text {set }}$ collection, 283
$\Sigma_{\infty}^{\text {set }}$ collection, 283
$\sum_{k}^{\text {set }}$ choice, 299
$\Sigma_{k}^{\text {set }}$ formula, 270, 278
Silver, IX, 234, 238
Silver's theorem, 35, 53, 192, 234-239
Simic, IX
Simpson, 33, 36, 39, 42, 43, 67, 74, 81, 87, 91, 95, 102, 106, 114, 116, 119, 120, $122,126,130,137,143,148-150,153$, 165, 170, 184, 196, 210, 218, 222, 229, 241, 248, 249, 267, 268, 283, 305, 346, 355, 361, 370, 391, 398, 400, 401, 407421
unpublished, 87, 91, 95, 99, 114, 130, 137, 143, 145, 192, 202, 234, 238, 247, 268, 381
single-valued, 50, 190, 191
singular covering, 156
singular points, 410
Skolem, VII
Skolem function, 175, 367
minimal, 199
Slaman, IX, 87, 130
Sloan, X
Smith, IX, 33, 74, 102, 116, 119, 120, 122, 126, 149, 150, 153, 210, 241, 420, 421
smooth tree, 228, 413
Smoryński, IX
Soare, IX, 145, 334, 381
Solomon, IX, 125, 148
Solovay, IX, 222, 247, 249

Sommer, X
Sorbi, X
soundness theorem, 29, 97-99, 267, 358
strong, 47, 324
Souslin's theorem, 23, 50, 188-191
Spector, 196, 345
Spencer, 130, 414
Springer-Verlag, X
SRC, X
$S \Sigma_{1}^{1}, 326$
Stanford, X
Steel, IX, 23, 36, 42, 184, 196, 206, 217, $244,249,345,346,355,361,370,419$
Steffens, 415
Stone/Weierstraß theorem, 143
Strahm, 361
strategy, 210
Strauss, 415
strictly monotone, 400
strict β-models, 58
coded, 327-330
strict β-submodel, 326
strict $\Sigma_{1}^{1}, 326,327$
strong Σ_{k}^{0} bounding, 75
strong algebraic closure, 47, 115-116
strong dependent choice, 57, 58, 305-319, 327, 334
strong divisible closure, 125
strong real closure, 47, 115-116
strong $\Sigma_{k}^{1}-\mathrm{DC}_{0}, 57,305-319$
strong soundness theorem, 47, 97-99, 324
submodel, see β-submodel, ω-submodel
transitive, 281
subset, 271
subspace, 166
subsystems of $Z_{1}, 27$
subsystems of $\mathbf{Z}_{2}, 2-6,32$
models of, 53-60, see also models
table, 44-46, 55
Succ, 271
successor ordinal, 271
suitable tree, 273-282
Suzuki's theorem, 53, 231, 234
Szemerédi's theorem, 414
$T^{+}, 228$
$T^{\sigma}, 274$
$T_{\sigma}, 21,226$
tables, 44-46, 54, 55, 463
tagged tree forcing, 355
Tait, 334, 370, 391

Takeuti, X, 9, 16, 400, 401
Tanaka, IX, 158, 165, 170, 217, 244, 247249, 410
Tarski, VII, 99, 102, 391
Tarski's theorem, 181
Tarski clauses, 96, 98, 99
TC (transitive closure), 278
Tennenbaum, 334
Tennessee, X
term
numerical, 2, 24, 420
set-theoretic, 269
theorem, 5, 34
TI, 264, see transfinite induction
Tietze extension theorem, 15, 29, 46, 93-95
TJ (Turing jump), 8, 325
$\mathrm{TJ}(\alpha, X), 9,40,325,340,414$
Tompkins, 158
topological dynamics, 414
topology, 1, 14, 19, see also metric space
bounded-weak-*, 412
complete separable metric spaces, 84
discrete, 2
weak-*, 60, 412-413
torsion, 48, 122-123, 148, 421
Trans, 271
transcendence basis, 48
transfinite induction, 54, 264-267, 355-361
arithmetical, 179
$\Pi_{1}^{1}, 59,359-360$, see $\Pi_{1}^{1}-\mathrm{TI}_{0}$
Π_{∞}^{1}, see $\Pi_{\infty}^{1}-\mathrm{TI}_{0}$
$\Pi_{k}^{1}, 264$, see $\Pi_{k}^{1}-\mathrm{Tl}_{0}$
$\Sigma_{1}^{1}, 366$, see $\Sigma_{1}^{1}-\mathrm{Tl}_{0}$
$\Sigma_{k}^{1}, 264$, see $\Sigma_{k}^{1}-\mathrm{Tl}_{0}$
transfinite recursion, 20, 22, 51
arithmetical, 39, 40, 179-184, see ATR 0
$\Pi_{1}^{1}, 53,248-249$, see $\Pi_{1}^{1}-\mathrm{TR}_{0}$
$\Pi_{k}^{1}, 248,305,319$, see $\Pi_{k}^{1}-\mathrm{TR}_{0}$
transfinite sequence theorem, 61, 418-419
transitive, 271
transitive closure, 278, 289
transitive model, 269, 272, 280
transitive submodel, 281
transversal, 415
transversal theory, 130
tree, 21, 31, 50, 174, 225, 227
binary, 48
bounded, 49, 134
Cantor/Bendixson theorem for, 226
derived, 21
descent, 204
double descent, 203
finitely branching, 31, 48, 126-127
full binary, 32,37
interleaved, 136
Kruskal, 417
perfect, 21, 35, 52, 192, 226
smooth, 228, 413
suitable, 273-282
well founded, 50
Troelstra, 33
truth valuation, $96,98,259,284,286,358$
$T^{\sigma}, 274$
$T_{\sigma}, 21,226$
Turing degree, 255
of $H_{a}^{X}, 58,340$
Turing equivalent, 255
Turing ideal, 25, 27, 67, 321
Turing jump, 8, 9, 39, 40, 58, 110, 321, 325
Turing reducible, 8, 58, 110, 255, 323
two-sorted language, 2
Tychonoff product, 112-113
type theory, 23
UCB, X
UIUC, X
Ulm's theorem, 20, 23, 41, 51, 53, 206-210
Ulm resolution, 206
uncountability of $\mathbb{R}, 79$
uncountable mathematics, 1
uniformization
Borel, 191-192
coanalytic, 23, 52, 229-234
$\Pi_{1}^{1}, 58,229-234,308,347$
$\Sigma_{2}^{1}, 57,308-309$
$\Sigma_{k}^{1}, 57,312$
uniformly convergent, 35, 113
uniformly recurrent, 414
uniform boundedness principle, 16, 29, 47, 105-106
uniform continuity, 37, 49, 138-139
modulus of, 137-138, 141-143
uniqueness
of algebraic closure, 38, 47, 49, 149-150
of divisible closure, 35,48
of real closure, 29, 38, 47
unit interval
closed, 82
universal closure, 97
universal Π_{1}^{0}, 254, 323, 325, 327-331, 336,
338, 341, 360
universal $\Pi_{1}^{1}, 178$
universal $\Pi_{k}^{1}, 394,395$
universal Σ_{1}^{1}, 260, 341, 364
universal $\Sigma_{k}^{1}, 315$
universe, 95
University of California, IX, X
University of Illinois, X
University of Munich, X
University of Paris, X
University of Tennessee, X
unpublished
Friedman, 75, 210, 391, 418, 421
Harrington, 235, 238, 377, 381, 391
Jockusch, 222
Mansfield, 234, 315
Sami, 238
Simpson, 87, 91, 95, 99, 114, 130, 137, $143,145,192,202,234,238,247,268$, 381
Urysohn's lemma, 29, 46, 93
V (set-theoretic universe), 288, 294
valuation
truth, $96,98,259,284,286,358$
valuation ring, 148
van Dalen, X, 33
van den Dries, X
van der Waerden, 145
van Engelen, 419
van Heijenoort, VII
Van Wesep, IX, 355
variable, $2,3,7,8$
number, 24
set, 4
set-theoretic, 269
vector space, $15,35,48,102,116-120,411$
finitely generated, 421
Velleman, X, 410
vertex covering, 415
Vitali covering theorem, 409
Volkswagen, X
von Neumann, VII
Wainer, X
weak-* topology, 60, 412-413
weak König's lemma, 36, 37, 48, 126, see also WKL_{0}
weak model, $98,259,324$
weak $\Sigma_{1}^{1}-\mathrm{AC}_{0}, 350-355$
weak weak König's lemma, 60, 407-410
web page, VIII
Weierstraß, VII

Weierstraß approximation theorem, 49, 139-140, 143	ordinal of, 399 reverse mathematics for, 48-50, 60, 131-
Weitkamp, IX, 179, 234	171, 410, 416
well founded, 21, 50, 174, 280	WKL ${ }_{0}^{*}, 61,420-421$
well ordering, 19, 23, 39, 41, 50, 173-178,	WO (well ordering), 174
293	WQO theory, 61, 417-419
canonical, 249, 293	$\mathrm{WWKL}_{0}, 60,407-410$
comparability of, 202-206	
of $\omega^{\omega}, 417-418$	$\times($ product $), 10,71,82$
recursive, 40	X^{*} (dual space), 411
well quasiordering, 61, 417-419	Yamazaki, IX, 410
Weyl, VII, 16, 44, 414	Yang, X
WF (well founded), 174	Yu, IX, 143, 406-410, 415
$\mathrm{WKL}_{0}, 36-39,131-171,410$	
and PRA, 389	\mathbb{Z} (the integers), 11, 76
and $\mathrm{RCA}_{0}, 380$	Z_{1} (first order arithmetic), 8, 374, 400, see
and Σ_{1}^{0}-PA, 381	lso PA
and Σ_{1}^{0} separation, 41	subsystems of, 27
consistency strength of, 58, 60, 330, 390 finite axiomatizability of, 329	```Z}\mp@subsup{Z}{2}{}\mathrm{ (second order arithmetic), 2, 5, 6,17 subsystems of, 5, 32```
first order part of, 60, 381	Zahn, 16
mathematics within, 38, 48-50, 60, 131-	Zariski, 122
$\begin{aligned} & 171,410,416 \\ & \text { table, } 46 \end{aligned}$	Zermelo/Fraenkel set theory, 23, 269, 283, see ZF and ZFC
non- ω-models of, 377-381, 386-390	ZF, 283, 307
ω-models of, 37, 58, 326-334	ZFC, 23, 249

LIST OF TABLES

1 Foundational programs and the five basic systems. 44
2 An overview of the entire book. 45
3 Ordinary mathematics within the five basic systems 46
4 Models of subsystems of Z_{2}. 55

