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PREFACE

Foundations of mathematics is the study of the most basic concepts and log-
ical structure of mathematics, with an eye to the unity of human knowledge.
Among the most basic mathematical concepts are: number, shape, set,
function, algorithm, mathematical axiom, mathematical definition, mathe-
matical proof. Typical questions in foundations of mathematics are: What
is a number? What is a shape? What is a set? What is a function? What
is an algorithm? What is a mathematical axiom? What is a mathemati-
cal definition? What is a mathematical proof? What are the most basic
concepts of mathematics? What is the logical structure of mathematics?
What are the appropriate axioms for numbers? What are the appropriate
axioms for shapes? What are the appropriate axioms for sets? What are
the appropriate axioms for functions? Etc., etc.

Obviously foundations of mathematics is a subject which is of the greatest
mathematical and philosophical importance. Beyond this, foundations of
mathematics is a rich subject with a long history, going back to Aristotle
and Euclid and continuing in the hands of outstanding modern figures
such as Descartes, Cauchy, Weierstraß, Dedekind, Peano, Frege, Russell,
Cantor, Hilbert, Brouwer, Weyl, von Neumann, Skolem, Tarski, Heyting,
and Gödel. An excellent reference for the modern era in foundations of
mathematics is van Heijenoort [272].

In the late 19th and early 20th centuries, virtually all leading math-
ematicians were intensely interested in foundations of mathematics and
spoke and wrote extensively on this subject. Today that is no longer the
case. Regrettably, foundations of mathematics is now out of fashion. To-
day, most of the leading mathematicians are ignorant of foundations and
focus mostly on structural questions. Today, foundations of mathematics
is out of favor even among mathematical logicians, the majority of whom
prefer to concentrate on methodological or other non-foundational issues.

This book is a contribution to foundations of mathematics. Almost all
of the problems studied in this book are motivated by an overriding foun-
dational question: What are the appropriate axioms for mathematics? We
undertake a series of case studies to discover which are the appropriate
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axioms for proving particular theorems in core mathematical areas such as
algebra, analysis, and topology. We focus on the language of second order
arithmetic, because that language is the weakest one that is rich enough
to express and develop the bulk of core mathematics. It turns out that, in
many particular cases, if a mathematical theorem is proved from appropri-
ately weak set existence axioms, then the axioms will be logically equivalent
to the theorem. Furthermore, only a few specific set existence axioms arise
repeatedly in this context: recursive comprehension, weak König’s lemma,
arithmetical comprehension, arithmetical transfinite recursion, Π1

1 compre-
hension; corresponding to the formal systems RCA0, WKL0, ACA0, ATR0,
Π1

1-CA0; which in turn correspond to classical foundational programs: con-
structivism, finitistic reductionism, predicativism, and predicative reduc-
tionism. This is the theme of Reverse Mathematics, which dominates part
A of this book. Part B focuses on models of these and other subsystems of
second order arithmetic. Additional results are presented in an appendix.

The formalization of mathematics within second order arithmetic goes
back to Dedekind and was developed by Hilbert and Bernays in [115,
supplement IV]. The present book may be viewed as a continuation of
Hilbert/Bernays [115]. I hope that the present book will help to revive the
study of foundations of mathematics and thereby earn for itself a perma-
nent place in the history of the subject.

The first edition of this book [249] was published in January 1999. The
second edition differs from the first only in that I have corrected some
typographical errors and updated some bibliographical entries. Recent ad-
vances are in research papers by numerous authors, published in Reverse
Mathematics 2001 [228] and in scholarly journals. The web page for this
book is

http://www.math.psu.edu/simpson/sosoa/.

I would like to develop this web page into a forum for research and scholar-
ship, not only in subsystems of second order arithmetic, but in foundations
of mathematics generally.

July 2005 Stephen G. Simpson
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Dana Scott, Naoki Shioji, Wilfried Sieg, Jack Silver, Ksenija Simic, Saharon
Shelah, John Shepherdson, Joseph Shoenfield, Richard Shore, Theodore
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Chapter I

INTRODUCTION

I.1. The Main Question

The purpose of this book is to use the tools of mathematical logic to
study certain problems in foundations of mathematics. We are especially
interested in the question of which set existence axioms are needed to prove
the known theorems of mathematics.

The scope of this initial question is very broad, but we can narrow it
down somewhat by dividing mathematics into two parts. On the one hand
there is set-theoretic mathematics, and on the other hand there is what
we call “non-set-theoretic” or “ordinary” mathematics. By set-theoretic
mathematics we mean those branches of mathematics that were created by
the set-theoretic revolution which took place approximately a century ago.
We have in mind such branches as general topology, abstract functional
analysis, the study of uncountable discrete algebraic structures, and of
course abstract set theory itself.

We identify as ordinary or non-set-theoretic that body of mathematics
which is prior to or independent of the introduction of abstract set-theoretic
concepts. We have in mind such branches as geometry, number theory, cal-
culus, differential equations, real and complex analysis, countable algebra,
the topology of complete separable metric spaces, mathematical logic, and
computability theory.

The distinction between set-theoretic and ordinary mathematics corre-
sponds roughly to the distinction between “uncountable mathematics” and
“countable mathematics”. This formulation is valid if we stipulate that
“countable mathematics” includes the study of possibly uncountable com-
plete separable metric spaces. (A metric space is said to be separable if
it has a countable dense subset.) Thus for instance the study of continu-
ous functions of a real variable is certainly part of ordinary mathematics,
even though it involves an uncountable algebraic structure, namely the
real number system. The point is that in ordinary mathematics, the real
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2 I. Introduction

line partakes of countability since it is always viewed as a separable metric
space, never as being endowed with the discrete topology.

In this book we want to restrict our attention to ordinary, non-set-
theoretic mathematics. The reason for this restriction is that the set exis-
tence axioms which are needed for set-theoretic mathematics are likely to
be much stronger than those which are needed for ordinary mathematics.
Thus our broad set existence question really consists of two subquestions
which have little to do with each other. Furthermore, while nobody doubts
the importance of strong set existence axioms in set theory itself and in
set-theoretic mathematics generally, the role of set existence axioms in or-
dinary mathematics is much more problematical and interesting.

We therefore formulate our Main Question as follows: Which set exis-
tence axioms are needed to prove the theorems of ordinary, non-set-theoretic
mathematics?

In any investigation of the Main Question, there arises the problem of
choosing an appropriate language and appropriate set existence axioms.
Since in ordinary mathematics the objects studied are almost always count-
able or separable, it would seem appropriate to consider a language in which
countable objects occupy center stage. For this reason, we study the Main
Question in the context of the language of second order arithmetic. This
language is denoted L2 and will be described in the next section. All of
the set existence axioms which we consider in this book will be expressed
as formulas of the language L2.

I.2. Subsystems of Z2

In this section we define Z2, the formal system of second order arithmetic.
We also introduce the concept of a subsystem of Z2.

The language of second order arithmetic is a two-sorted language. This
means that there are two distinct sorts of variables which are intended to
range over two different kinds of object. Variables of the first sort are known
as number variables, are denoted by i, j, k,m, n, . . . , and are intended to
range over the set ω = {0, 1, 2, . . .} of all natural numbers. Variables of the
second sort are known as set variables, are denoted by X,Y, Z, . . . , and are
intended to range over all subsets of ω.

The terms and formulas of the language of second order arithmetic are
as follows. Numerical terms are number variables, the constant symbols
0 and 1, and t1 + t2 and t1 · t2 whenever t1 and t2 are numerical terms.
Here + and · are binary operation symbols intended to denote addition
and multiplication of natural numbers. (Numerical terms are intended
to denote natural numbers.) Atomic formulas are t1 = t2, t1 < t2, and
t1 ∈ X where t1 and t2 are numerical terms and X is any set variable.



I.2. Subsystems of Z2 3

(The intended meanings of these respective atomic formulas are that t1
equals t2, t1 is less than t2, and t1 is an element of X .) Formulas are built
up from atomic formulas by means of propositional connectives ∧, ∨, ¬,
→, ↔ (and, or, not, implies, if and only if), number quantifiers ∀n, ∃n (for
all n, there exists n), and set quantifiers ∀X , ∃X (for all X , there exists
X). A sentence is a formula with no free variables.

Definition I.2.1 (language of second order arithmetic). L2 is defined to
be the language of second order arithmetic as described above.

In writing terms and formulas of L2, we shall use parentheses and brack-
ets to indicate grouping, as is customary in mathematical logic textbooks.
We shall also use some obvious abbreviations. For instance, 2 + 2 = 4
stands for (1 + 1) + (1 + 1) = ((1 + 1) + 1) + 1, (m + n)2 /∈ X stands for
¬ ((m + n) · (m + n) ∈ X), s ≤ t stands for s < t ∨ s = t, and ϕ ∧ ψ ∧ θ
stands for (ϕ ∧ ψ) ∧ θ.

The semantics of the language L2 are given by the following definition.

Definition I.2.2 (L2-structures). A model for L2, also called a structure
for L2 or an L2-structure, is an ordered 7-tuple

M = (|M |,SM ,+M , ·M , 0M , 1M , <M ) ,

where |M | is a set which serves as the range of the number variables, SM
is a set of subsets of |M | serving as the range of the set variables, +M and
·M are binary operations on |M |, 0M and 1M are distinguished elements of
|M |, and <M is a binary relation on |M |. We always assume that the sets
|M | and SM are disjoint and nonempty. Formulas of L2 are interpreted in
M in the obvious way.

In discussing a particular model M as above, it is useful to consider
formulas with parameters from |M | ∪ SM . We make the following slightly
more general definition.

Definition I.2.3 (parameters). Let B be any subset of |M | ∪ SM . By
a formula with parameters from B we mean a formula of the extended
language L2(B). Here L2(B) consists of L2 augmented by new constant
symbols corresponding to the elements of B. By a sentence with parameters
from B we mean a sentence of L2(B), i.e., a formula of L2(B) which has no
free variables.

In the language L2(|M | ∪ SM ), constant symbols corresponding to ele-
ments of SM (respectively |M |) are treated syntactically as unquantified
set variables (respectively unquantified number variables). Sentences and
formulas with parameters from |M | ∪SM are interpreted in M in the obvi-
ous way. A set A ⊆ |M | is said to be definable over M allowing parameters
from B if there exists a formula ϕ(n) with parameters from B and no free
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variables other than n such that

A = {a ∈ |M | : M |= ϕ(a)} .

Here M |= ϕ(a) means that M satisfies ϕ(a), i.e., ϕ(a) is true in M .

We now discuss some specific L2-structures. The intended model for L2

is of course the model

(ω, P (ω),+, ·, 0, 1, <)

where ω is the set of natural numbers, P (ω) is the set of all subsets of ω,
and +, ·, 0, 1, < are as usual. By an ω-model we mean an L2-structure of
the form

(ω,S,+, ·, 0, 1, <)

where ∅ 6= S ⊆ P (ω). Thus an ω-model differs from the intended model
only by having a possibly smaller collection S of sets to serve as the range
of the set variables. We sometimes speak of the ω-model S when we really
mean the ω-model (ω,S,+, ·, 0, 1, <). In some parts of this book we shall
be concerned with a special class of ω-models known as β-models. This
class will be defined in §I.5.

We now present the formal system of second order arithmetic.

Definition I.2.4 (second order arithmetic). The axioms of second or-
der arithmetic consist of the universal closures of the following L2-formulas:

(i) basic axioms:

n+ 1 6= 0
m+ 1 = n+ 1 → m = n
m+ 0 = m
m+ (n+ 1) = (m+ n) + 1
m · 0 = 0
m · (n+ 1) = (m · n) +m
¬m < 0
m < n+ 1 ↔ (m < n ∨m = n)

(ii) induction axiom:

(0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X)) → ∀n (n ∈ X)

(iii) comprehension scheme:

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is any formula of L2 in which X does not occur freely.

Intuitively, the given instance of the comprehension scheme says that
there exists a set X = {n : ϕ(n)} = the set of all n such that ϕ(n) holds.
This set is said to be defined by the given formula ϕ(n). For example, if ϕ(n)
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is the formula ∃m (m + m = n), then this instance of the comprehension
scheme asserts the existence of the set of even numbers.

In the comprehension scheme, ϕ(n) may contain free variables in addi-
tion to n. These free variables may be referred to as parameters of this
instance of the comprehension scheme. Such terminology is in harmony
with definition I.2.3 and the discussion following it. For example, taking
ϕ(n) to be the formula n /∈ Y , we have an instance of comprehension,

∀Y ∃X ∀n (n ∈ X ↔ n /∈ Y ) ,

asserting that for any given set Y there exists a set X = the complement
of Y . Here the variable Y plays the role of a parameter.

Note that an L2-structureM satisfies I.2.4(iii), the comprehension scheme,
if and only if SM contains all subsets of |M | which are definable over M al-
lowing parameters from |M |∪SM . In particular, the comprehension scheme
is valid in the intended model. Note also that the basic axioms I.2.4(i) and
the induction axiom I.2.4(ii) are valid in any ω-model. In fact, any ω-model
satisfies the full second order induction scheme, i.e., the universal closure
of

(ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n) ,

where ϕ(n) is any formula of L2. In addition, the second order induction
scheme is valid in any model of I.2.4(ii) plus I.2.4(iii).

By second order arithmetic we mean the formal system in the language
L2 consisting of the axioms of second order arithmetic, together with all
formulas of L2 which are deducible from those axioms by means of the
usual logical axioms and rules of inference. The formal system of second
order arithmetic is also known as Z2, for obvious reasons, or Π1

∞-CA0, for
reasons which will become clear in §I.5.

In general, a formal system is defined by specifying a language and some
axioms. Any formula of the given language which is logically deducible from
the given axioms is said to be a theorem of the given formal system. At
all times we assume the usual logical rules and axioms, including equality
axioms and the law of the excluded middle.

This book will be largely concerned with certain specific subsystems of
second order arithmetic and the formalization of ordinary mathematics
within those systems. By a subsystem of Z2 we mean of course a formal
system in the language L2 each of whose axioms is a theorem of Z2. When
introducing a new subsystem of Z2, we shall specify the axioms of the
system by writing down some formulas of L2. The axioms are then taken
to be the universal closures of those formulas.

If T is any subsystem of Z2, a model of T is any L2-structure satisfying
the axioms of T . By Gödel’s completeness theorem applied to the two-
sorted language L2, we have the following important principle: A given
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L2-sentence σ is a theorem of T if and only if all models of T satisfy σ.
An ω-model of T is of course any ω-model which satisfies the axioms of
T , and similarly a β-model of T is any β-model satisfying the axioms of
T . Chapters VII, VIII, and IX of this book constitute a thorough study
of models of subsystems of Z2. Chapter VII is concerned with β-models,
chapter VIII is concerned with ω-models other than β-models, and chapter
IX is concerned with models other than ω-models.

All of the subsystems of Z2 which we shall consider consist of the basic
axioms I.2.4(i), the induction axiom I.2.4(ii), and some set existence ax-
ioms. The various subsystems will differ from each other only with respect
to their set existence axioms. Recall from §I.1 that our Main Question
concerns the role of set existence axioms in ordinary mathematics. Thus, a
principal theme of this book will be the formal development of specific por-
tions of ordinary mathematics within specific subsystems of Z2. We shall
see that subsystems of Z2 provide a setting in which the Main Question
can be investigated in a precise and fruitful way. Although Z2 has infinitely
many subsystems, it will turn out that only a handful of them are useful
in our study of the Main Question.

Notes for §I.2. The formal system Z2 of second order arithmetic was in-
troduced in Hilbert/Bernays [115] (in an equivalent form, using a somewhat
different language and axioms). The development of a portion of ordinary
mathematics within Z2 is outlined in Supplement IV of Hilbert/Bernays
[115]. The present book may be regarded as a continuation of the research
begun by Hilbert and Bernays.

I.3. The System ACA0

The previous section contained generalities about subsystems of Z2. The
purpose of this section is to introduce a particular subsystem of Z2 which
is of central importance, namely ACA0.

In our designation ACA0, the acronym ACA stands for arithmetical com-
prehension axiom. This is because ACA0 contains axioms asserting the exis-
tence of any set which is arithmetically definable from given sets (in a sense
to be made precise below). The subscript 0 denotes restricted induction.
This means that ACA0 does not include the full second order induction
scheme (as defined in §I.2). We assume only the induction axiom I.2.4(ii).

We now proceed to the definition of ACA0.

Definition I.3.1 (arithmetical formulas). A formula of L2, or more gen-
erally a formula of L2(|M | ∪ SM ) where M is any L2-structure, is said to
be arithmetical if it contains no set quantifiers, i.e., all of the quantifiers
appearing in the formula are number quantifiers.
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Note that arithmetical formulas of L2 may contain free set variables, as
well as free and bound number variables and number quantifiers. Arith-
metical formulas of L2(|M | ∪ SM ) may additionally contain set parameters
and number parameters, i.e., constant symbols denoting fixed elements of
SM and |M | respectively.

Examples of arithmetical formulas of L2 are

∀n (n ∈ X → ∃m (m+m = n)) ,

asserting that all elements of the set X are even, and

∀m ∀k (n = m · k → (m = 1 ∨ k = 1)) ∧ n > 1 ∧ n ∈ X ,

asserting that n is a prime number and is an element of X . An example of
a non-arithmetical formula is

∃Y ∀n (n ∈ X ↔ ∃i ∃j (i ∈ Y ∧ j ∈ Y ∧ i+ n = j))

asserting that X is the set of differences of elements of some set Y .

Definition I.3.2 (arithmetical comprehension). The arithmetical com-
prehension scheme is the restriction of the comprehension scheme I.2.4(iii)
to arithmetical formulas ϕ(n). Thus we have the universal closure of

∃X ∀n (n ∈ X ↔ ϕ(n))

whenever ϕ(n) is a formula of L2 which is arithmetical and in which X
does not occur freely. ACA0 is the subsystem of Z2 whose axioms are the
arithmetical comprehension scheme, the induction axiom I.2.4(ii), and the
basic axioms I.2.4(i).

Note that an L2-structure

M = (|M |,SM ,+M , ·M , 0M , 1M , <M )

satisfies the arithmetical comprehension scheme if and only if SM contains
all subsets of |M | which are definable overM by arithmetical formulas with
parameters from |M |∪SM . Thus, a model of ACA0 is any such L2-structure
which in addition satisfies the induction axiom and the basic axioms.

An easy consequence of the arithmetical comprehension scheme and the
induction axiom is the arithmetical induction scheme:

(ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n)

for all L2-formulas ϕ(n) which are arithmetical. Thus any model of ACA0

is also a model of the arithmetical induction scheme. (Note however that
ACA0 does not include the second order induction scheme, as defined in
§I.2.)
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Remark I.3.3 (first order arithmetic). We wish to remark that there is
a close relationship between ACA0 and first order arithmetic. Let L1 be the
language of first order arithmetic, i.e., L1 is just L2 with the set variables
omitted. First order arithmetic is the formal system Z1 whose language
is L1 and whose axioms are the basic axioms I.2.4(i) plus the first order
induction scheme:

(ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n)

for all L1-formulas ϕ(n). In the literature of mathematical logic, first order
arithmetic is sometimes known as Peano arithmetic, PA. By the previous
paragraph, every theorem of Z1 is a theorem of ACA0. In model-theoretic
terms, this means that for any model (|M |,SM ,+M , ·M , 0M , 1M , <M ) of
ACA0, its first order part (|M |,+M , ·M , 0M , 1M , <M ) is a model of Z1. In
§IX.1 we shall prove a converse to this result: Given a model

(|M |,+M , ·M , 0M , 1M , <M )(1)

of first order arithmetic, we can find SM ⊆ P (|M |) such that

(|M |,SM ,+M , ·M , 0M , 1M , <M )

is a model of ACA0. (Namely, we can take SM = Def(M) = the set of all
A ⊆ |M | such that A is definable over (1) allowing parameters from |M |.)
It follows that, for any L1-sentence σ, σ is a theorem of ACA0 if and only
if σ is a theorem of Z1. In other words, ACA0 is a conservative extension
of first order arithmetic. This may also be expressed by saying that Z1, or
equivalently PA, is the first order part of ACA0. For details, see §IX.1.

Remark I.3.4 (ω-models of ACA0). Assuming familiarity with some ba-
sic concepts of recursive function theory, we can characterize the ω-models
of ACA0 as follows. S ⊆ P (ω) is an ω-model of ACA0 if and only if

(i) S 6= ∅;
(ii) A ∈ S and B ∈ S imply A⊕B ∈ S;
(iii) A ∈ S and B ≤T A imply B ∈ S;
(iv) A ∈ S implies TJ(A) ∈ S.

(This result is proved in §VIII.1.)

Here A⊕B is the recursive join of A and B, defined by

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B} .

B ≤T A means that B is Turing reducible to A, i.e., B is recursive in A,
i.e., the characteristic function of B is computable assuming an oracle for
the characteristic function of A. TJ(A) denotes the Turing jump of A, i.e.,
the complete recursively enumerable set relative to A.
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In particular, ACA0 has a minimum (i.e., unique smallest) ω-model,
namely

ARITH = {A ∈ P (ω) : ∃n ∈ ω (A ≤T TJ(n, ∅))} ,

where TJ(n,X) is defined inductively by TJ(0, X) = X , TJ(n + 1, X) =
TJ(TJ(n,X)). More generally, given a set B ∈ P (ω), there is a unique
smallest ω-model of ACA0 containing B, consisting of all sets which are
arithmetical in B. (For A,B ∈ P (ω), we say that A is arithmetical in B
if A ≤T TJ(n,B) for some n ∈ ω. This is equivalent to saying that A is
definable in some or any ω-model (ω,S,+, ·, 0, 1, <), B ∈ S ⊆ P (ω), by an
arithmetical formula with B as a parameter.)

Models of ACA0 are discussed further in §§VIII.1, IX.1, and IX.4. The
development of ordinary mathematics within ACA0 is discussed in §I.4 and
in chapters II, III, and IV.

Notes for §I.3. By remark I.3.3, the system ACA0 is closely related to
first order arithmetic. First order arithmetic is one of the best known and
most studied formal systems in the literature of mathematical logic. See for
instance Hilbert/Bernays [115], Mendelson [185, chapter 3], Takeuti [261,
chapter 2], Shoenfield [222, chapter 8], Hájek/Pudlák [100], and Kaye [137].
By remark I.3.4, ω-models of ACA0 are closely related to basic concepts of
recursion theory such as relative recursiveness, the Turing jump operator,
and the arithmetical hierarchy. For an introduction to these concepts,
see for instance Rogers [208, chapters 13–15], Shoenfield [222, chapter 7],
Cutland [43], or Lerman [161, chapters I–III].

I.4. Mathematics Within ACA0

The formal system ACA0 was introduced in the previous section. We now
outline the development of certain portions of ordinary mathematics within
ACA0. The material presented in this section will be restated and greatly
refined and extended in chapters II, III, and IV. The present discussion is
intended as a partial preview of those chapters.

If X and Y are set variables, we use X = Y and X ⊆ Y as abbrevi-
ations for the formulas ∀n (n ∈ X ↔ n ∈ Y ) and ∀n (n ∈ X → n ∈ Y )
respectively.

Within ACA0, we define N to be the unique set X such that ∀n (n ∈ X).
(The existence of this set follows from arithmetical comprehension applied
to the formula ϕ(n) ≡ n = n.) Thus, in any model

M = (|M |,SM ,+M , ·M , 0M , 1M , <M )

of ACA0, N denotes |M |, the set of natural numbers in the sense of M , and
we have |M | ∈ SM . We shall distinguish between N and ω, reserving ω to
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denote the set of natural numbers in the sense of “the real world,” i.e., the
metatheory in which we are working, whatever that metatheory might be.

Within ACA0, we define a numerical pairing function by

(m,n) = (m+ n)2 +m .

Within ACA0 we can prove that, for all m,n, i, j ∈ N, (m,n) = (i, j) if and
only if m = i and n = j. Moreover, using arithmetical comprehension,
we can prove that for all sets X,Y ⊆ N, there exists a set X × Y ⊆ N
consisting of all (m,n) such that m ∈ X and n ∈ Y . In particular we have
N × N ⊆ N.

For X,Y ⊆ N, a function f : X → Y is defined to be a set f ⊆ X × Y
such that for all m ∈ X there is exactly one n ∈ Y such that (m,n) ∈ f .
For m ∈ X , f(m) is defined to be the unique n such that (m,n) ∈ f . The
usual properties of such functions can be proved in ACA0. In particular,
we have primitive recursion. This means that, given f : X → Y and g :
N×X×Y → Y , there is a unique h : N×X → Y defined by h(0,m) = f(m),
h(n + 1,m) = g(n,m, h(n,m)) for all n ∈ N and m ∈ X . The existence
of h is proved by arithmetical comprehension, and the uniqueness of h is
proved by arithmetical induction. (For details, see §II.3.) In particular,
we have the exponential function exp(m,n) = mn, defined by m0 = 1,
mn+1 = mn ·m for all m,n ∈ N. The usual properties of the exponential
function can be proved in ACA0.

In developing ordinary mathematics within ACA0, our first major task is
to set up the number systems, i.e., the natural numbers, the integers, the
rational number system, and the real number system.

The natural number system is essentially already given to us by the
language and axioms of ACA0. Thus, within ACA0, a natural number is
defined to be an element of N, and the natural number system is defined
to be the structure N,+N, ·N, 0N, 1N, <N,=N, where +N : N × N → N is
defined by m+N n = m+n, etc. (Thus for instance +N is the set of triples
((m,n), k) ∈ (N × N) × N such that m + n = k. The existence of this set
follows from arithmetical comprehension.) This means that, when we are
working within any particular model M = (|M |,SM ,+M , ·M , 0M , 1M , <M )
of ACA0, a natural number is any element of |M |, and the role of the natural
number system is played by |M |,+M , ·M , 0M , 1M , <M ,=M . (Here =M is
the identity relation on |M |.)

Basic properties of the natural number system, such as uniqueness of
prime power decomposition, can be proved in ACA0 using arithmetical in-
duction. (Here one can follow the usual development within first order
arithmetic, as presented in textbooks of mathematical logic. Alternatively,
see chapter II.)
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In order to define the set Z of integers within (any model of) ACA0, we
first use arithmetical comprehension to prove the existence of an equiv-
alence relation ≡Z ⊆ (N × N) × (N × N) defined by (m,n) ≡Z (i, j) if
and only if m + j = n + i. We then use arithmetical comprehension
again, this time with ≡Z as a parameter, to prove the existence of the
set Z consisting of all (m,n) ∈ N × N such that that (m,n) is the min-
imum element of its equivalence class with respect to ≡Z. (Here mini-
mality is taken with respect to <N, using the fact that N × N is a subset
of N. Thus Z consists of one element of each ≡Z-equivalence class.) De-
fine +Z : Z × Z → Z by letting (m,n) +Z (i, j) be the unique element
of Z such that (m,n) +Z (i, j) ≡Z (m + i, n + j). Here again arithmeti-
cal comprehension is used to prove the existence of +Z. Similarly, define
−Z : Z → Z by −Z(m,n) ≡Z (n,m), and define ·Z : Z × Z → Z by
(m,n) ·Z (i, j) ≡Z (mi + nj,mj + ni). Let 0Z = (0, 0) and 1Z = (1, 0).
Define a relation <Z ⊆ Z × Z by letting (m,n) <Z (i, j) if and only if
m+ j < n+ i. Finally, let =Z be the identity relation on Z. This completes
our definition of the system of integers within ACA0. We can prove within
ACA0 that the system Z,+Z,−Z, ·Z, 0Z, 1Z, <Z,=Z has the usual properties
of an ordered integral domain, the Euclidean property, etc.

In a similar manner, we can define within ACA0 the set of rational num-
bers, Q. Let Z+ = {a ∈ Z : 0 <Z a} be the set of positive integers, and let
≡Q be the equivalence relation on Z×Z+ defined by (a, b) ≡Q (c, d) if and
only if a·Zd = b·Zc. Then Q is defined to be the set of all (a, b) ∈ Z×Z+ such
that (a, b) is the <N-minimum element of its ≡Q-equivalence class. Opera-
tions +Q,−Q, ·Q on Q are defined by (a, b)+Q (c, d) ≡Q (a ·Zd+Z b ·Zc, b ·Zd),
−Q(a, b) ≡Q (−Za, b), and (a, b) ·Q (c, d) ≡Q (a ·Z c, b ·Z d). We let 0Q ≡Q

(0Z, 1Z) and 1Q ≡Q (1Z, 1Z), and we define a binary relation <Q on Q by
letting (a, b) <Q (c, d) if and only if a ·Z d <Z b ·Z c. Finally =Q is the
identity relation on Q. We can then prove within ACA0 that the rational
number system Q, +Q, −Q, ·Q, 0Q, 1Q, <Q, =Q has the usual properties of
an ordered field, etc.

We make the usual identifications whereby N is regarded as a subset
of Z and Z is regarded as a subset of Q. (Namely m ∈ N is identified
with (m, 0) ∈ Z, and a ∈ Z is identified with (a, 1Z) ∈ Q.) We use +
ambiguously to denote +N, +Z, or +Q and similarly for −, ·, 0, 1, <. For
q, r ∈ Q we write q − r = q + (−r), and if r 6= 0, q/r = the unique q′ ∈ Q
such that q = q′ · r. The function exp(q, a) = qa for q ∈ Q \ {0} and a ∈ Z
is obtained by primitive recursion in the obvious way. The absolute value
function || : Q → Q is defined by |q| = q if q ≥ 0, −q otherwise.

Remark I.4.1. The idea behind our definitions of Z and Q within ACA0

is that (m,n) ∈ N×N corresponds to the integerm−n, while (a, b) ∈ Z×Z+

corresponds to the rational number a/b. Our treatment of Z and Q is
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similar to the classical Dedekind construction. The major difference is that
we define Z and Q to be sets of representatives of the equivalence classes
of ≡Z and ≡Q respectively, while Dedekind uses the equivalence classes
themselves. Our reason for using representatives is that we are limited to
the language of second order arithmetic, while Dedekind was working in a
richer set-theoretic context.

A sequence of rational numbers is defined to be a function f : N → Q. We
denote such a sequence as 〈qn : n ∈ N〉, or simply 〈qn〉, where qn = f(n).
Similarly, a double sequence of rational numbers is a function f : N×N → Q,
denoted 〈qmn : m,n ∈ N〉 or simply 〈qmn〉, where qmn = f(m,n).

Definition I.4.2 (real numbers). Within ACA0, a real number is de-
fined to be a Cauchy sequence of rational numbers, i.e., a sequence of
rational numbers x = 〈qn : n ∈ N〉 such that

∀ǫ (ǫ > 0 → ∃m ∀n (m < n→ |qm − qn| < ǫ)) .

(But see remark I.4.4 below.) Here ǫ ranges over Q. If x = 〈qn〉 and y = 〈q′n〉
are real numbers, we write x =R y to mean that limn |qn − q′n| = 0, i.e.,

∀ǫ (ǫ > 0 → ∃m ∀n (m < n→ |qn − q′n| < ǫ)) ,

and we write x <R y to mean that

∃ǫ (ǫ > 0 ∧ ∃m ∀n (m < n→ qn + ǫ < q′n)) .

Also x+R y = 〈qn+q′n〉, x ·R y = 〈qn ·q′n〉, −Rx = 〈−qn〉, 0R = 〈0〉, 1R = 〈1〉.

Informally, we use R to denote the set of all real numbers. Thus x ∈ R
means that x is a real number. (Formally, we cannot speak of the set R
within the language of second order arithmetic, since it is a set of sets.)
We shall usually omit the subscript R in +R,−R, ·R, 0R, 1R, <R,=R. Thus
the real number system consists of R,+,−, ·, 0, 1, <,=. We shall sometimes
identify a rational number q ∈ Q with the corresponding real number xq =
〈q〉.

Remark I.4.3. Note that we have not attempted to select elements of
the =R-equivalence classes. The reason is that there is no convenient way
to do so in ACA0. Instead, we must accustom ourselves to the fact that =
on R (i.e., =R) is an equivalence relation other than the identity relation.
This will not cause any serious difficulties.

Remark I.4.4. The above definition of the real number system is similar
but not identical to the one which we shall actually use in our detailed
discussion of ordinary mathematics within ACA0, chapters II through IV.
The reason for the discrepancy is that the above definition, while suitable
for use in ACA0 and intuitively appealing, is not suitable for use in weaker
systems such as RCA0. (RCA0 will be introduced in §§I.7 and I.8 below.)
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The definition used for the detailed development is slightly less natural,
but it has the advantage of working smoothly in weaker systems. In any
case, the two definitions are equivalent over ACA0, equivalent in the sense
that the two versions of the real number system which they define can be
proved in ACA0 to be isomorphic.

Within ACA0 one can prove that the real number system has the usual
properties of an Archimedean ordered field, etc. The complex numbers
can be introduced as usual as pairs of real numbers. Within ACA0, it
is straightforward to carry out the proofs of all the basic results in real
and complex linear and polynomial algebra. For example, the fundamental
theorem of algebra can be proved in ACA0.

A sequence of real numbers is defined to be a double sequence of rational
numbers 〈qmn : m,n ∈ N〉 such that for each m, 〈qmn : n ∈ N〉 is a real
number. Such a sequence of real numbers is denoted 〈xm : m ∈ N〉, where
xm = 〈qmn : n ∈ N〉. Within ACA0 we can prove that every bounded
sequence of real numbers has a least upper bound. This is a very useful
completeness property of the real number system. For instance, it implies
that an infinite series of positive terms is convergent if and only if the finite
partial sums are bounded. (Stronger completeness properties for the most
part cannot be proved in ACA0.)

We now turn to abstract algebra within ACA0. Because of the restriction
to the language of second order arithmetic, we cannot expect to obtain a
good general theory of arbitrary (countable and uncountable) algebraic
structures. However, we can develop countable algebra, i.e., the theory of
countable algebraic structures, within ACA0.

For instance, a countable commutative ring is defined within ACA0 to be
a structure R,+R,−R, ·R, 0R, 1R, where R ⊆ N, +R : R × R → R, etc.,
and the usual commutative ring axioms are assumed. (We include 0 6= 1
among those axioms.) The subscript R is usually omitted. (An example is
the ring of integers, Z,+Z,−Z, ·Z, 0Z, 1Z, which was introduced above.) An
ideal in R is a set I ⊆ R such that a ∈ I and b ∈ I imply a+ b ∈ I, a ∈ I
and r ∈ R imply a · r ∈ I, and 0 ∈ I and 1 /∈ I. We define an equivalence
relation =I on R by r =I s if and only if r − s ∈ I. We let R/I be the set
of r ∈ R such that r is the <N-minimum element of its equivalence class
under =I . Thus R/I consists of one element of each =I -equivalence class of
elements of R. With the appropriate operations, R/I becomes a countable
commutative ring, the quotient ring of R by I. The ideal I is said to be
prime if R/I is an integral domain, and maximal if R/I is a field. With
these definitions, the countable case of many basic results of commutative
algebra can be proved in ACA0. See §§III.5 and IV.6.

Other countable algebraic structures, e.g., countable groups, can be de-
fined and discussed in a similar manner, within ACA0. Countable fields
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are discussed in §§II.9, IV.4 and IV.5, and countable vector spaces are dis-
cussed in §III.4. It turns out that part of the theory of countable Abelian
groups can be developed in ACA0, but other parts of the theory require
stronger systems. See §§III.6, V.7 and VI.4.

Next we indicate how some basic concepts and results of analysis and
topology can be developed within ACA0.

Definition I.4.5 (complete separable metric spaces). Within ACA0, a (code
for a) complete separable metric space is a nonempty set A ⊆ N together
with a function d : A× A→ R satisfying d(a, a) = 0, d(a, b) = d(b, a) ≥ 0,
and d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈ A. (Formally, d is a sequence
of real numbers, indexed by A × A.) We define a point of the complete

separable metric space Â to be a sequence x = 〈an : n ∈ N〉, an ∈ A,
satisfying

∀ǫ (ǫ > 0 → ∃m ∀n (m < n→ d(am, an) < ǫ)) .

The pseudometric d is extended from A to Â by

d(x, y) = lim
n
d(an, bn)

where x = 〈an : n ∈ N〉 and y = 〈bn : n ∈ N〉. We write x = y if and only
if d(x, y) = 0.

For example, R = Q̂ under the metric d(q, q′) = |q − q′|.

The idea of the above definition is that a complete separable metric space

Â is presented by specifying a countable dense set A together with the re-

striction of the metric to A. Then Â is defined as the completion of A
under the restricted metric. Just as in the case of the real number system,
several difficulties arise from the circumstance that ACA0 is formalized in
the language of second order arithmetic. First, there is no variable or term

that can denote the set of all points in Â (although we can use notations

such as x ∈ Â, meaning that x is a point of Â). Second, equality for points

of Â is an equivalence relation other than the identity relation. These
difficulties are minor and do not seriously affect the content of the math-
ematical development concerning complete separable metric spaces within
ACA0. They only affect the outward form of that development. A more
important limitation is that, in the language of second order arithmetic,
we cannot speak at all about nonseparable metric spaces. This remark
is related to our remarks in §I.1 about set-theoretic versus “ordinary” or
non-set-theoretic mathematics.

Definition I.4.6 (continuous functions). Within ACA0, if Â and B̂ are
complete separable metric spaces, a (code for a) continuous function φ :

Â → B̂ is a set Φ ⊆ A × Q+ × B × Q+ satisfying the following coherence
conditions:
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1. (a, r, b, s) ∈ Φ and (a, r, b′, s′) ∈ Φ imply d(b, b′) < s+ s′;
2. (a, r, b, s) ∈ Φ and d(b, b′) + s < s′ imply (a, r, b′, s′) ∈ Φ;
3. (a, r, b, s) ∈ Φ and d(a, a′) + r′ < r imply (a′, r′, b, s) ∈ Φ.

Here a′ ranges over A, b′ ranges over B, and r′ and s′ range over

Q+ = {q ∈ Q : q > 0} ,

the positive rational numbers. In addition we require: for all x ∈ Â and
ǫ > 0 there exists (a, r, b, s) ∈ Φ such that d(a, x) < r and s < ǫ.

We can prove in ACA0 that for all x ∈ Â there exists y ∈ B̂ such that
d(b, y) ≤ s for all (a, r, b, s) ∈ Φ such that d(a, x) < r. This y is unique up

to equality of points in B̂, and we define φ(x) = y. It can be shown that
x = x′ implies φ(x) = φ(x′).

The idea of the above definition is that (a, r, b, s) ∈ Φ is a neighborhood
condition giving us a piece of information about the continuous function

φ : Â → B̂. Namely, (a, r, b, s) ∈ Φ tells us that for all x ∈ Â, d(x, a) < r
implies d(φ(x), b) ≤ s. The code Φ consists of sufficiently many neighbor-

hood conditions so as to determine φ(x) ∈ B̂ for all x ∈ Â.

Taking Â = Rn and B̂ = R in the above definition, we obtain a concept of
continuous real-valued function of n real variables. Using this, the theory
of differential and integral equations, calculus of variations, etc., can be
developed as usual, within ACA0. For instance, the Ascoli lemma can be
proved in ACA0 and then used to obtain the Peano existence theorem for
solutions of ordinary differential equations (see §§III.2 and IV.8).

Definition I.4.7 (open sets). Within ACA0, let Â be a complete sepa-

rable metric space. A (code for an) open set in Â is any set U ⊆ A× Q+.

For x ∈ Â we write x ∈ U if and only if d(x, a) < r for some (a, r) ∈ U .

The idea of definition I.4.7 is that (a, r) ∈ A× Q+ is a code for a neigh-

borhood or basic open set B(a, r) in Â. Here x ∈ B(a, r) if and only if
d(a, x) < r. An open set U is then defined as a union of basic open sets.

With definitions I.4.6 and I.4.7, the usual proofs of fundamental topo-
logical results can be carried out within ACA0, for the case of complete
separable metric spaces. For instance, the Baire category theorem and the
Tietze extension theorem go through in this setting (see §§II.5, II.6, and
II.7).

A separable Banach space is defined within ACA0 to be a complete sepa-

rable metric space Â arising from a countable pseudonormed vector space
A over the rational field Q. For example, let A = Q[x] be the ring of
polynomials in one variable x over Q. With the metric

d(f, g) =

[∫ 1

0

|f(x) − g(x)|p dx

]1/p

,
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1 ≤ p <∞, we have Â = Lp[0, 1]. Similarly, with the metric

d(f, g) = sup
0≤x≤1

|f(x) − g(x)| ,

we have Â = C[0, 1]. As suggested by these examples, the basic theory
of separable Banach and Frechet spaces can be developed formally within
ACA0. In particular, the Hahn/Banach theorem, the open mapping the-
orem, and the Banach/Steinhaus uniform boundedness principle can be
proved in this setting (see §§II.10, IV.9, X.2).

Remark I.4.8. As in remark I.4.4, the above definitions of complete sep-
arable metric space, continuous function, open set, and separable Banach
space are not the ones which we shall actually use in our detailed develop-
ment in chapters II, III, and IV. However, the two sets of definitions are
equivalent in ACA0.

Notes for §I.4. The observation that a great deal of ordinary mathematics
can be developed formally within a system something like ACA0 goes back
to Weyl [274]; see also definition X.3.2. See also Takeuti [260] and Zahn
[281].

I.5. Π1
1-CA0 and Stronger Systems

In this section we introduce Π1
1-CA0 and some other subsystems of Z2.

These systems are much stronger than ACA0.

Definition I.5.1 (Π1
1 formulas). A formula ϕ is said to be Π1

1 if it is of
the form ∀X θ, where X is a set variable and θ is an arithmetical formula.
A formula ϕ is said to be Σ1

1 if it is of the form ∃X θ, where X is a set
variable and θ is an arithmetical formula.

More generally, for 0 ≤ k ∈ ω, a formula ϕ is said to be Π1
k if it is of the

form

∀X1 ∃X2 ∀X3 · · · Xk θ ,

where X1, . . . , Xk are set variables and θ is an arithmetical formula. A
formula ϕ is said to be Σ1

k if it is of the form

∃X1 ∀X2 ∃X3 · · · Xk θ ,

where X1, . . . , Xk are set variables and θ is an arithmetical formula. In
both cases, ϕ consists of k alternating set quantifiers followed by a formula
with no set quantifiers. In the Π1

k case, the first set quantifier is universal,
while in the Σ1

k case it is existential (assuming k ≥ 1). Thus for instance
a Π1

2 formula is of the form ∀X ∃Y θ, and a Σ1
2 formula is of the form
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∃X ∀Y θ, where θ is arithmetical. A Π1
0 or Σ1

0 formula is the same thing as
an arithmetical formula.

The equivalences ¬∀X ϕ ≡ ∃X ¬ϕ, ¬∃X ϕ ≡ ∀X ¬ϕ, and ¬¬ϕ ≡ ϕ
imply that any Π1

k formula is logically equivalent to the negation of a Σ1
k

formula, and vice versa. Moreover, using Π1
k (respectively Σ1

k) to denote
the class of formulas logically equivalent to a Π1

k formula (respectively a
Σ1
k formula), we have

Π1
k ∪ Σ1

k ⊆ Π1
k+1 ∩ Σ1

k+1

for all k ∈ ω. (This is proved by introducing dummy quantifiers.)
The hierarchy of L2-formulas Π1

k, k ∈ ω, is closely related to the projec-
tive hierarchy in descriptive set theory.

Definition I.5.2 (Π1
1 and Π1

k comprehension). Π1
1-CA0 is the subsystem

of Z2 whose axioms are the basic axioms I.2.4(i), the induction axiom
I.2.4(ii), and the comprehension scheme I.2.4(iii) restricted to L2-formulas
ϕ(n) which are Π1

1. Thus we have the universal closure of

∃X ∀n (n ∈ X ↔ ϕ(n))

for all Π1
1 formulas ϕ(n) in which X does not occur freely.

The systems Π1
k-CA0, k ∈ ω, are defined similarly, with Π1

k replacing Π1
1.

In particular Π1
0-CA0 is just ACA0, and for all k ∈ ω we have

Π1
k-CA0 ⊆ Π1

k+1-CA0 .

It is also clear that

Z2 =
⋃

k∈ω

Π1
k-CA0 .

For this reason, Z2 is sometimes denoted Π1
∞-CA0.

It would be possible to introduce systems Σ1
k-CA0, k ∈ ω, but they would

be superfluous, because a simple argument shows that Σ1
k-CA0 and Π1

k-CA0

are equivalent, i.e., they have the same theorems.
[ Namely, given a Σ1

k formula ϕ(n), there is a logically equivalent for-
mula ¬ψ(n) where ψ(n) is Π1

k. Reasoning within Π1
k-CA0 and applying Π1

k

comprehension, we see that there exists a set Y such that

∀n (n ∈ Y ↔ ψ(n)) .

Applying arithmetical comprehension with Y as a parameter, there exists
a set X such that

∀n (n ∈ X ↔ n /∈ Y ) .

Then clearly

∀n (n ∈ X ↔ ϕ(n)) .
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This shows that all the axioms of Σ1
k-CA0 are theorems of Π1

k-CA0. The
converse is proved similarly. ]

We now discuss models of Π1
k-CA0, 1 ≤ k ≤ ∞.

As explained in §I.3 above, ACA0 has a minimum ω-model, and this
model is very natural from both the recursion-theoretic and the model-
theoretic points of view. It is therefore reasonable to ask about minimum
ω-models of Π1

k-CA0. It turns out that, for 1 ≤ k ≤ ∞, there is no minimum
(or even minimal) ω-model of Π1

k-CA0. These negative results will be proved
in §VIII.6. However, we can obtain a positive result by considering β-
models instead of ω-models. The relevant definition is as follows.

Definition I.5.3 (β-models). A β-model is an ω-model S ⊆ P (ω) with
the following property. If σ is any Π1

1 or Σ1
1 sentence with parameters from

S, then (ω,S,+, ·, 0, 1, <) satisfies σ if and only if the intended model

(ω, P (ω),+, ·, 0, 1, <)

satisfies σ.

If T is any subsystem of Z2, a β-model of T is any β-model satisfying the
axioms of T . Chapter VII is a thorough study of β-models of subsystems
of Z2.

Remark I.5.4 (β-models of Π1
1-CA0). For readers who are familiar with

some basic concepts of hyperarithmetical theory, the β-models of Π1
1-CA0

can be characterized as follows. S ⊆ P (ω) is a β-model of Π1
1-CA0 if and

only if

(i) S 6= ∅;
(ii) A ∈ S and B ∈ S imply A⊕B ∈ S;
(iii) A ∈ S and B ≤H A imply B ∈ S;
(iv) A ∈ S implies HJ(A) ∈ S.

Here B ≤H A means that B is hyperarithmetical in A, and HJ(A) de-
notes the hyperjump of A. In particular, there is a minimum (i.e., unique
smallest) β-model of Π1

1-CA0, namely

{A ∈ P (ω) : ∃n ∈ ωA ≤H HJ(n, ∅)}

where HJ(0, X) = X , HJ(n+ 1, X) = HJ(HJ(n,X)). These results will be
proved in §VII.1.

Remark I.5.5 (minimum β-models of Π1
k-CA0). More generally, for each

k in the range 1 ≤ k ≤ ∞, it can be shown that there exists a minimum
β-model of Π1

k-CA0. These models can be described in terms of Gödel’s the-
ory of constructible sets. For any ordinal number α, let Lα be the αth level
of the constructible hierarchy. Then the minimum β-model of Π1

k-CA0 is of
the form Lα ∩ P (ω), where α = αk is a countable ordinal number depend-
ing on k. Moreover, α1 < α2 < · · · < α∞, and the β-models Lαk

∩ P (ω),
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1 ≤ k ≤ ∞, are all distinct. (These results are proved in §§VII.5 and VII.7.)
It follows that, for each k, Π1

k+1-CA0 is properly stronger than Π1
k-CA0.

The development of ordinary mathematics within Π1
1-CA0 and stronger

systems is discussed in §I.6 and in chapters V and VI. Models of Π1
1-CA0

and some stronger systems, including but not limited to Π1
k-CA0 for k ≥ 2,

are discussed in §§VII.1, VII.5, VII.6, VII.7, VIII.6, and IX.4. Our treat-
ment of constructible sets is in §VII.4. Our treatment of hyperarithmetical
theory is in §VIII.3.

Notes for §I.5. For an exposition of Gödel’s theory of constructible sets,
see any good textbook of axiomatic set theory, e.g. Jech [130].

I.6. Mathematics Within Π1
1-CA0

The system Π1
1-CA0 was introduced in the previous section. We now

discuss the development of ordinary mathematics within Π1
1-CA0. The

material presented here will be restated and greatly refined and expanded
in chapters V and VI.

We have seen in §I.4 that a large part of ordinary mathematics can al-
ready be developed in ACA0, a subsystem of Z2 which is much weaker than
Π1

1-CA0. However, there are certain exceptional theorems of ordinary math-
ematics which can be proved in Π1

1-CA0 but cannot be proved in ACA0. The
exceptional theorems come from several branches of mathematics including
countable algebra, the topology of the real line, countable combinatorics,
and classical descriptive set theory.

What many of these exceptional theorems have in common is that they
directly or indirectly involve countable ordinal numbers. The relevant def-
inition is as follows.

Definition I.6.1 (countable ordinal numbers). Within ACA0 we define
a countable linear ordering to be a structure A,<A, where A ⊆ N and
<A⊆ A × A is an irreflexive linear ordering of A, i.e., <A is transitive
and, for all a, b ∈ A, exactly one of a = b or a <A b or b <A a holds.
The countable linear ordering A,<A is called a countable well ordering if
there is no sequence 〈an : n ∈ N〉 of elements of A such that an+1 <A an
for all n ∈ N. We view a countable well ordering A,<A as a code for a
countable ordinal number, α, which is intuitively just the order type of
A,<A. Two countable well orderings A,<A and B,<B are said to encode
the same countable ordinal number if and only if they are isomorphic. Two
countable well orderings A,<A and B,<B are said to be comparable if they
are isomorphic or if one of them is isomorphic to a proper initial segment
of the other. (Letting α and β be the corresponding countable ordinal
numbers, this means that either α = β or α < β or β < α.)
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Remark I.6.2. The fact that any two countable well orderings are com-
parable turns out to be provable in Π1

1-CA0 but not in ACA0 (see theorem
I.11.5.1 and §V.6). Thus Π1

1-CA0, but not ACA0, is strong enough to de-
velop a good theory of countable ordinal numbers. Because of this, Π1

1-CA0

is strong enough to prove several important theorems of ordinary mathe-
matics which are not provable in ACA0. We now present several examples
of this phenomenon.

Example I.6.3 (Ulm’s theorem). Consider the well known structure the-
ory for countable Abelian groups. LetG,+G,−G, 0G be a countable Abelian
group. We say that G is divisible if for all a ∈ G and n > 0 there exists
b ∈ G such that nb = a. We say that G is reduced if G has no nontrivial di-
visible subgroup. Within Π1

1-CA0, but not within ACA0, one can prove that
every countable Abelian group is the direct sum of a divisible group and a
reduced group. Now assume that G is a countable Abelian p-group. (This
means that for every a ∈ G there exists n ∈ N such that pna = 0. Here p
is a fixed prime number.) One defines a transfinite sequence of subgroups
G0 = G, Gα+1 = pGα, and for limit ordinals δ, Gδ =

⋂
α<δ Gα. Thus G is

reduced if and only if G∞ = 0. The Ulm invariants of G are the numbers
dim(Pα/Pα+1), where Pα = {a ∈ Gα : pa = 0} and the dimension is taken
over the integers modulo p. Each Ulm invariant is either a natural number
or ∞. Ulm’s theorem states that two countable reduced Abelian p-groups
are isomorphic if and only if their Ulm invariants are the same. Using the
theory of countable ordinal numbers which is available in Π1

1-CA0, one can
carry out the construction of the Ulm invariants and the usual proof of
Ulm’s theorem within Π1

1-CA0. Thus Ulm’s theorem is a result of classical
algebra which can be proved in Π1

1-CA0 but not in ACA0. More on this
topic is in §§V.7 and VI.4.

Example I.6.4 (the Cantor/Bendixson theorem). Next we consider a the-
orem concerning closed sets in n-dimensional Euclidean space. A closed set
in Rn is defined to be the complement of an open set. (Open sets were
discussed in definition I.4.7.)

If C is a closed set in Rn, an isolated point of C is a point x ∈ C such
that {x} = C ∩ U for some open set U . Clearly C has at most countably
many isolated points. We say that C is perfect if C has no isolated points.
For any closed set C, the derived set of C is a closed set C′ consisting of all
points of C which are not isolated. Thus C \C′ is countable, and C′ = C if
and only if C is perfect. Given a closed set C, the derived sequence of C is a
transfinite sequence of closed subsets of C, defined by C0 = C, Cα+1 = the
derived set of Cα, and for limit ordinals δ, Cδ =

⋂
α<δ Cα. Within Π1

1-CA0

we can prove that for all countable ordinal numbers α, the closed set Cα
exists. Furthermore Cβ+1 = Cβ for some countable ordinal number β. In
this case we clearly have Cβ = Cα for all α > β, so we write Cβ = C∞.
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Clearly C∞ is a perfect closed set. In fact, C∞ can be characterized as the
largest perfect closed subset of C, and C∞ is therefore known as the perfect
kernel of C.

In summary, for any closed set C we have C = K ∪ S where K is a
perfect closed set (namely K = C∞) and S is a countable set (namely S =
the union of the sets Cα \Cα+1 for all countable ordinal numbers α). If K
happens to be the empty set, then C is itself countable.

The fact that every closed set in Rn is the union of a perfect closed
set and a countable set is known as the Cantor/Bendixson theorem. It
can be shown that the Cantor/Bendixson theorem is provable in Π1

1-CA0

but not in weaker systems such as ACA0. This example is particularly
striking because, although the proof of the Cantor/Bendixson theorem uses
countable ordinal numbers, the statement of the theorem does not mention
them. For details see §§VI.1 and V.4.

The Cantor/Bendixson theorem also applies more generally, to complete
separable metric spaces other than Rn. An important special case is the
Baire space NN. Note that points of NN may be identified with functions
f : N → N. The Cantor/Bendixson theorem for NN is closely related to the
analysis of trees:

Definition I.6.5 (trees). Within ACA0 we let

Seq = N<N =
⋃

k∈N

Nk

denote the set of (codes for) finite sequences of natural numbers. For
σ, τ ∈ N<N there is σaτ ∈ N<N which is the concatenation, σ followed by
τ . A tree is a set T ⊆ N<N such that any initial segment of a sequence in
T belongs to T . A path or infinite path through T is a function f : N → N
such that for all k ∈ N, the initial sequence

f [k] = 〈f(0), f(1), . . . , f(k − 1)〉

belongs to T . The set of paths through T is denoted [T ]. Thus T may be
viewed as a code for the closed set [T ] ⊆ NN. If T has no infinite path, we
say that T is well founded. An end node of T is a sequence τ ∈ T which
has no proper extension in T .

Definition I.6.6 (perfect trees). Two sequences in N<N are said to be
compatible if they are equal or one is an initial segment of the other. Given
a tree T ⊆ N<N and a sequence σ ∈ T , we denote by Tσ the set of τ ∈ T
such that σ is compatible with τ . Given a tree T , there is a derived tree
T ′ ⊆ T consisting of all σ ∈ T such that Tσ contains a pair of incompatible
sequences. We say that T is perfect if T ′ = T , i.e., every σ ∈ T has a pair
of incompatible extensions τ1, τ2 ∈ T .
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Given a tree T , we may consider a transfinite sequence of trees defined
by T0 = T , Tα+1 = the derived tree of Tα, and for limit ordinals δ, Tδ =⋂
α<δ Tα. We write T∞ = Tβ where β is an ordinal such that Tβ = Tβ+1.

Thus T∞ is the largest perfect subtree of T . These notions concerning trees
are analogous to example I.6.4 concerning closed sets. Indeed, the closed
set [T∞] is the perfect kernel of the closed set [T ] in the Baire space NN.
As in example I.6.4, it turns out that the existence of T∞ is provable in
Π1

1-CA0 but not in weaker systems such as ACA0. This result will be proved
in §VI.1.

Turning to another topic in mathematics, we point out that Π1
1-CA0 is

strong enough to prove many of the basic results of classical descriptive set
theory. By classical descriptive set theory we mean the study of Borel and
analytic sets in complete separable metric spaces. The relevant definitions
within ACA0 are as follows.

Definition I.6.7 (Borel sets). Let Â be a complete separable metric

space. A (code for a) Borel set B in Â is defined to be a set B ⊆ N<N such
that

(i) B is a well founded tree;
(ii) for any end node 〈m0,m1, . . . ,mk〉 of B, we have mk = (a, r) for some

(a, r) ∈ A× Q+;
(iii) B contains exactly one sequence 〈m0〉 of length 1.

In particular, for each a ∈ A and r ∈ Q+ there is a Borel code 〈(a, r)〉.
We take 〈(a, r)〉 to be a code for the basic open neighborhood B(a, r) as in

definition I.4.7. Thus for all points x ∈ Â we have, by definition, x ∈ B(a, r)
if and only if d(a, x) < r. If B is a Borel code which is not of the form
〈(a, r)〉, then for each 〈m0, n〉 ∈ B we have another Borel code

Bn = {〈〉} ∪ {〈n〉aτ : 〈m0, n〉
aτ ∈ B} .

We use transfinite recursion to define the notion of a point x ∈ Â belonging
to (the Borel set coded by) B, in such a way that x ∈ B if and only if either
m0 is odd and x ∈ Bn for some n, or m0 is even and x /∈ Bn for some n.
This recursion can be carried out in Π1

1-CA0; see §V.3.
Thus the Borel sets form a σ-algebra containing the basic open sets and

closed under countable union, countable intersection, and complementa-
tion.

Definition I.6.8 (analytic sets). Let Â be a complete separable metric

space. A (code for an) analytic set S ⊆ Â is defined to be a (code for a)

continuous function φ : NN → Â. We put x ∈ S if and only if

∃f (f ∈ NN ∧ φ(f) = x) .



I.6. Mathematics Within Π1
1-CA0 23

It can be proved in ACA0 that a set is analytic if and only if it is defined
by a Σ1

1 formula with parameters.

Example I.6.9 (classical descriptive set theory). Within Π1
1-CA0 we can

emulate the standard proofs of some well known classical results on Borel
and analytic sets. This is possible because Π1

1-CA0 includes a good theory
of countable well orderings and countable well founded trees. In particular
Souslin’s theorem (“a set S is Borel if and only if S and its complement
are analytic”), Lusin’s theorem (“any two disjoint analytic sets can be sep-
arated by a Borel set”), and Kondo’s theorem (coanalytic uniformization)
are provable in Π1

1-CA0 but not in ACA0. For details, see §§V.3 and VI.2.

With the above examples, Π1
1-CA0 emerges as being of considerable inter-

est with respect to the development of ordinary mathematics. Other exam-
ples of ordinary mathematical theorems which are provable in Π1

1-CA0 are:
determinacy of open sets in NN (see §V.8), and the Ramsey property for
open sets in [N]N (see §V.9). These theorems, like Ulm’s theorem and the
Cantor/Bendixson theorem, are exceptional in that they are not provable
in ACA0.

Remark I.6.10 (Friedman-style independence results). There are a small
number of even more exceptional theorems which, for instance, are prov-
able in ZFC (i.e., Zermelo/Fraenkel set theory with the axiom of choice)
but not in full Z2. As an example, consider the following corollary, due to
Friedman [71], of a theorem of Martin [177, 178]: Given a symmetric Borel
set B ⊆ I × I, I = [0, 1], there exists a Borel function φ : I → I such that
the graph of φ is either included in or disjoint from B. Friedman [71] has
shown that this result is not provable in Z2 or even in simple type theory.
This is related to Friedman’s earlier result [66, 71] that Borel determinacy
is not provable in simple type theory. More results of this kind are in [72]
and in the Friedman volume [102].

Notes for §I.6. Chapters V and VI of this book deal with the development
of mathematics in Π1

1-CA0. The crucial role of comparablility of countable
well orderings (remark I.6.2) was pointed out by Friedman [62, chapter II]
and Steel [256, chapter I]; recent refinements are due to Friedman/Hirst
[74] and Shore [223]. The impredicative nature of the Cantor/Bendixson
theorem and Ulm’s theorem was noted by Kreisel [149] and Feferman [58],
respectively. An up-to-date textbook of classical descriptive set theory
is Kechris [138]. Friedman has discovered a number of mathematically
natural statements whose proofs require strong set existence axioms; see
the Friedman volume [102] and recent papers such as [73].
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I.7. The System RCA0

In this section we introduce RCA0, an important subsystem of Z2 which
is much weaker than ACA0.

The acronym RCA stands for recursive comprehension axiom. This is
because RCA0 contains axioms asserting the existence of any set A which is
recursive in given sets B1, . . . , Bk (i.e., such that the characteristic function
of A is computable assuming oracles for the characteristic functions of
B1, . . . , Bk). As in ACA0 and Π1

1-CA0, the subscript 0 in RCA0 denotes
restricted induction. The axioms of RCA0 include Σ0

1 induction, a form of
induction which is weaker than arithmetical induction (as defined in §I.3)
but stronger than the induction axiom I.2.4(ii).

We now proceed to the definition of RCA0.
Let n be a number variable, let t be a numerical term not containing n,

and let ϕ be a formula of L2. We use the following abbreviations:

∀n < t ϕ ≡ ∀n (n < t→ ϕ) ,

∃n < t ϕ ≡ ∃n (n < t ∧ ϕ) .

Thus ∀n < t means “for all n less than t”, and ∃n < t means “there exists
n less than t such that”. We may also write ∀n ≤ t instead of ∀n < t+ 1,
and ∃n ≤ t instead of ∃n < t+ 1.

The expressions ∀n < t, ∀n ≤ t, ∃n < t, ∃n ≤ t are called bounded
number quantifiers, or simply bounded quantifiers. A bounded quantifier
formula is a formula ϕ such that all of the quantifiers occurring in ϕ are
bounded number quantifiers. Thus the bounded quantifier formulas are
a subclass of the arithmetical formulas. Examples of bounded quantifier
formulas are

∃m ≤ n (n = m+m) ,

asserting that n is even, and

∀m < 2n (m ∈ X ↔ ∃k < m (m = 2k + 1)) ,

asserting that the first n elements of X are 1, 3, 5, . . . , 2n− 1.

Definition I.7.1 (Σ0
1 and Π0

1 formulas). An L2-formula ϕ is said to be
Σ0

1 if it is of the form ∃mθ, wherem is a number variable and θ is a bounded
quantifier formula. An L2-formula ϕ is said to be Π0

1 if it is of the form
∀mθ, where m is a number variable and θ is a bounded quantifier formula.

It can be shown that Σ0
1 formulas are closely related to the notion of

relative recursive enumerability in recursion theory. Namely, for A,B ∈
P (ω), A is recursively enumerable in B if and only if A is definable over
some or any ω-model (ω,S,+, ·, 0, 1, <), B ∈ S ⊆ P (ω), by a Σ0

1 formula
with B as a parameter. (See also remarks I.3.4 and I.7.5.)
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Definition I.7.2 (Σ0
1 induction). The Σ0

1 induction scheme, Σ0
1-IND, is

the restriction of the second order induction scheme (as defined in §I.2) to
L2-formulas ϕ(n) which are Σ0

1. Thus we have the universal closure of

(ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n)

where ϕ(n) is any Σ0
1 formula of L2.

The Π0
1 induction scheme, Π0

1-IND, is defined similarly. It can be shown
that Σ0

1-IND and Π0
1-IND are equivalent (in the presence of the basic axioms

I.2.4(i)). This easy but useful result is proved in §II.3.

Definition I.7.3 (∆0
1 comprehension). The ∆0

1 comprehension scheme
consists of (the universal closures of) all formulas of the form

∀n (ϕ(n) ↔ ψ(n)) → ∃X ∀n (n ∈ X ↔ ϕ(n)) ,

where ϕ(n) is any Σ0
1 formula, ψ(n) is any Π0

1 formula, n is any number
variable, and X is a set variable which does not occur freely in ϕ(n).

In the ∆0
1 comprehension scheme, note that ϕ(n) and ψ(n) may contain

parameters, i.e., free set variables and free number variables in addition to
n. Thus an L2-structure M satisfies ∆0

1 comprehension if and only if SM
contains all subsets of |M | which are both Σ0

1 and Π0
1 definable over M

allowing parameters from |M | ∪ SM .

Definition I.7.4 (definition of RCA0). RCA0 is the subsystem of Z2 con-
sisting of the basic axioms I.2.4(i), the Σ0

1 induction scheme I.7.2, and the
∆0

1 comprehension scheme I.7.3.

Remark I.7.5 (ω-models of RCA0). In remark I.3.4, we characterized
the ω-models of ACA0 in terms of recursion theory. We can character-
ize the ω-models of RCA0 in similar terms, as follows. S ⊆ P (ω) is an
ω-model of RCA0 if and only if

(i) S 6= ∅ ;
(ii) A ∈ S and B ∈ S imply A⊕B ∈ S ;
(iii) A ∈ S and B ≤T A imply B ∈ S .

(This result is proved in §VIII.1.) In particular, RCA0 has a minimum (i.e.,
unique smallest) ω-model, namely

REC = {A ∈ P (ω) : A is recursive} .

More generally, given a set B ∈ P (ω), there is a unique smallest ω-model
of RCA0 containing B, consisting of all sets A ∈ P (ω) which are recursive
in B.

The system RCA0 plays two key roles in this book and in foundational
studies generally. First, as we shall see in chapter II, the development
of ordinary mathematics within RCA0 corresponds roughly to the positive
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content of what is known as “computable mathematics” or “recursive anal-
ysis”. Thus RCA0 is a kind of formalized recursive mathematics. Second,
RCA0 frequently plays the role of a weak base theory in Reverse Mathe-
matics. Most of the results of Reverse Mathematics in chapters III, IV, V,
and VI will be stated formally as theorems of RCA0.

Remark I.7.6 (first order part of RCA0). By remark I.3.3, the first or-
der part of ACA0 is first order arithmetic, PA. In a similar vein, we can
characterize the first order part of RCA0. Namely, let Σ0

1-PA be PA with
induction restricted to Σ0

1 formulas. (Thus Σ0
1-PA is a formal system whose

language is L1 and whose axioms are the basic axioms I.2.4(i) plus the
universal closure of

(ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n)

for any formula ϕ(n) of L1 which is Σ0
1.) Clearly the axioms of Σ0

1-PA are
included in those of RCA0. Conversely, given any model

(|M |,+M , ·M , 0M , 1M , <M )(2)

of Σ0
1-PA, it can be shown that there exists SM ⊆ P (|M |) such that

(|M |,SM ,+M , ·M , 0M , 1M , <M )

is a model of RCA0. (Namely, we can take SM = ∆0
1-Def(M) = the set

of all A ⊆ |M | such that A is both Σ0
1 and Π0

1 definable over (2) allowing
parameters from |M |.) It follows that, for any sentence σ in the language of
first order arithmetic, σ is a theorem of RCA0 if and only if σ is a theorem
of Σ0

1-PA. In other words, Σ0
1-PA is the first order part of RCA0. (These

results are proved in §IX.1.)

Models of RCA0 are discussed further in §§VIII.1, IX.1, IX.2, and IX.3.
The development of ordinary mathematics within RCA0 is outlined in §I.8
and is discussed thoroughly in chapter II.

Remark I.7.7 (Σ0
1 comprehension). It would be possible to define a sys-

tem Σ0
1-CA0 consisting of the basic axioms I.2.4(i), the induction axiom

I.2.4(ii), and the Σ0
1 comprehension scheme, i.e., the universal closure of

∃X ∀n (n ∈ X ↔ ϕ(n))

for all Σ0
1 formulas ϕ(n) of L2 in which X does not occur freely. However,

the introduction of Σ0
1-CA0 as a distinct subsystem of Z2 is unnecessary,

because it turns out that Σ0
1-CA0 is equivalent to ACA0. This easy but

important result will be proved in §III.1.

Generalizing the notion of Σ0
1 and Π0

1 formulas, we have:
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Definition I.7.8 (Σ0
k and Π0

k formulas). For 0 ≤ k ∈ ω, an L2-formula
ϕ is said to be Σ0

k (respectively Π0
k) if it is of the form

∃n1 ∀n2 ∃n3 · · · nk θ

(respectively ∀n1∃n2∀n3 · · ·nk θ), where n1, . . . , nk are number variables
and θ is a bounded quantifier formula. In both cases, ϕ consists of k al-
ternating unbounded number quantifiers followed by a formula containing
only bounded number quantifiers. In the Σ0

k case, the first unbounded num-
ber quantifier is existential, while in the Π0

k case it is universal (assuming
k ≥ 1). Thus for instance a Π0

2 formula is of the form ∀m ∃n θ, where θ is
a bounded quantifier formula. A Σ0

0 or Π0
0 formula is the same thing as a

bounded quantifier formula.
Clearly any Σ0

k formula is logically equivalent to the negation of a Π0
k

formula, and vice versa. Moreover, up to logical equivalence of formulas,
we have Σ0

k ∪ Π0
k ⊆ Σ0

k+1 ∩ Π0
k+1, for all k ∈ ω.

Remark I.7.9 (induction and comprehension schemes). Generalizing def-
inition I.7.2, we can introduce induction schemes Σik-INDand Πi

k-IND, for
all k ∈ ω and i ∈ {0, 1}. Clearly Σ0

∞-IND=
⋃
k∈ω Σ0

k-IND is equivalent to

arithmetical induction, and Σ1
∞-IND=

⋃
k∈ω Σ1

k-IND is equivalent to the
full second order induction scheme. It can be shown that, for all k ∈ ω
and i ∈ {0, 1}, Σik-IND is equivalent to Πi

k-IND and is properly weaker than
Σik+1-IND. As for comprehension schemes, it follows from remark I.7.7

that the systems Σ0
k-CA0 and Π0

k-CA0, 1 ≤ k ∈ ω, are all equivalent to each
other and to ACA0, i.e., Π1

0-CA0. On the other hand, we have remarked in
§I.5 that, for each k ∈ ω, Π1

k-CA0 is equivalent to Σ1
k-CA0 and is properly

weaker than Π1
k+1-CA0. In chapter VII we shall introduce the systems ∆1

k-

CA0, 1 ≤ k ∈ ω, and we shall show that ∆1
k-CA0 is properly stronger than

Π1
k−1-CA0 and properly weaker than Π1

k-CA0.

Notes for §I.7. In connection with remark I.7.5, note that the literature
of recursion theory sometimes uses the term Turing ideals referring to what
we call ω-models of RCA0. See for instance Lerman [161, page 29]. The
system RCA0 was first introduced by Friedman [69] (in an equivalent form,
using a somewhat different language and axioms). The system Σ0

1-PA was
first studied by Parsons [201]. For a thorough discussion of Σ0

1-PA and
other subsystems of first order arithmetic, see Hájek/Pudlák [100] and Kaye
[137].

I.8. Mathematics Within RCA0

In this section we sketch how some concepts and results of ordinary math-
ematics can be developed in RCA0. This portion of ordinary mathematics
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is roughly parallel to the positive content of recursive analysis and recursive
algebra. We shall also give some recursive counterexamples showing that
certain other theorems of ordinary mathematics are recursively false and
hence, although provable in ACA0, cannot be proved in RCA0.

As already remarked in I.4.4 and I.4.8, the strictures of RCA0 require
us to modify our definitions of “real number” and “point of a complete
separable metric space”. The needed modifications are as follows:

Definition I.8.1 (partially replacing I.4.2). Within RCA0, a (code for
a) real number x ∈ R is defined to be a sequence of rational numbers
x = 〈qn : n ∈ N〉, qn ∈ Q, such that

∀m ∀n (m < n→ |qm − qn| < 1/2m) .

For real numbers x and y we have x =R y if and only if

∀m (|qm − q′m| ≤ 1/2m−1) ,

and x <R y if and only if

∃m (qm + 1/2m < q′m) .

Note that with definition I.8.1 we now have that the predicate x < y is Σ0
1,

and the predicates x ≤ y and x = y are Π0
1, for x, y ∈ R. Thus real number

comparisons have become easier, and therein lies the superiority of I.8.1
over I.4.2 within RCA0.

Definition I.8.2 (partially replacing I.4.5). Within RCA0, a (code for
a) complete separable metric space is defined as in I.4.5. However, a (code

for a) point of the complete separable metric space Â is now defined in RCA0

to be a sequence x = 〈an : n ∈ N〉, an ∈ A, satisfying ∀m ∀n (m < n →

d(am, an) < 1/2m). The extension of d to Â is as in I.4.5.

Under definition I.8.2, the predicate d(x, y) < r for x, y ∈ Â and r ∈ R
becomes Σ0

1. This makes I.8.2 far more appropriate than I.4.5 for use in
RCA0. We shall also need to modify slightly our earlier definitions of “con-
tinuous function” in I.4.6 and “open set” in I.4.7; the modified definitions
will be presented in II.6.1 and II.5.6.

With these new definitions, the development of mathematics within RCA0

is broadly similar to the development within ACA0 as already outlined in
§I.4 above. For the most part, ∆0

1 comprehension is an adequate substitute
for arithmetical comprehension. Thus RCA0 is strong enough to prove
basic results of real and complex linear and polynomial algebra, up to
and including the fundamental theorem of algebra, and basic properties
of countable algebraic structures and of continuous functions on complete
separable metric spaces. Also within RCA0 we can introduce sequences
of real numbers, sequences of continuous functions, and separable Banach
spaces including examples such as C[0, 1] and Lp[0, 1], 1 ≤ p < ∞, just as
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in ACA0 (§I.4). This detailed development within RCA0 will be presented
in chapter II.

In addition to basic results (e.g., the fact that the composition of two
continuous functions is continuous), a number of nontrivial theorems are
also provable in RCA0. We have:

Theorem I.8.3 (mathematics in RCA0). The following ordinary mathe-
matical theorems are provable in RCA0:

1. the Baire category theorem (§§II.4, II.5);
2. the intermediate value theorem (§II.6);
3. Urysohn’s lemma and the Tietze extension theorem for complete sep-

arable metric spaces (§II.7);
4. the soundness theorem and a version of Gödel’s completeness theorem

in mathematical logic (§II.8);
5. existence of an algebraic closure of a countable field (§II.9);
6. existence of a unique real closure of a countable ordered field (§II.9);
7. the Banach/Steinhaus uniform boundedness principle (§II.10).

On the other hand, a phenomenon of great interest for us is that many
well known and important mathematical theorems which are routinely
provable in ACA0 turn out not to be provable at all in RCA0. We now
present an example of this phenomenon.

Example I.8.4 (the Bolzano/Weierstraß theorem). Let us denote by BW
the statement of the Bolzano/Weierstraß theorem: “Every bounded se-
quence of real numbers contains a convergent subsequence.” It is straight-
forward to show that BW is provable in ACA0.

We claim that BW is not provable in RCA0.
To see this, consider the ω-model REC consisting of all recursive subsets

of ω. We have seen in I.7.5 that REC is a model of RCA0. We shall now
show that BW is false in REC.

We use some basic results of recursive function theory. Let A be a recur-
sively enumerable subset of ω which is not recursive. For instance, we may
take A = K = {n : {n}(n) is defined}. Let f : ω → ω be a one-to-one re-
cursive function such that A = the range of f . Define a bounded increasing
sequence of rational numbers ak, k ∈ ω, by putting

ak =

k∑

m=0

1

2f(m)
.

Clearly the sequence 〈ak〉k∈ω, or more precisely its code, is recursive and
hence is an element of REC. On the other hand, it can be shown that the
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real number

r = sup
k∈ω

ak =

∞∑

m=0

1

2f(m)
=

∑

n∈A

1

2n

is not recursive, i.e. (any code of) r is not an element of REC. One way to
see this would be to note that the characteristic function of the nonrecursive
set A would be computable if we allowed (any code of) r as a Turing oracle.

Thus the ω-model REC satisfies “〈ak〉k∈N is a bounded increasing se-
quence of rational numbers, and 〈ak〉k∈N has no least upper bound”. In
particular, REC satisfies “〈ak〉k∈N is a bounded sequence of real numbers
which has no convergent subsequence”. Hence BW is false in the ω-model
REC. Hence BW is not provable in RCA0.

Remark I.8.5 (recursive counterexamples). There is an extensive liter-
ature of what is known as “recursive analysis” or “computable mathemat-
ics”, i.e., the systematic development of portions of ordinary mathematics
within the particular ω-model REC. (See the notes at the end of this sec-
tion.) This literature contains many so-called “recursive counterexamples”,
where methods of recursive function theory are used to show that particular
mathematical theorems are false in REC. Such results are of great interest
with respect to our Main Question, §I.1, because they imply that the set
existence axioms of RCA0 are not strong enough to prove the mathematical
theorems under consideration. We have already presented one such recur-
sive counterexample, showing that the Bolzano/Weierstraß theorem is false
in REC, hence not provable in RCA0. Other recursive counterexamples will
be presented below.

Example I.8.6 (the Heine/Borel covering lemma). Let us denote by HB
the statement of the Heine/Borel covering lemma: Every covering of the
closed interval [0, 1] by a sequence of open intervals has a finite subcovering.
Again HB is provable in ACA0. We shall exhibit a recursive counterexample
showing that HB is false in REC, hence not provable in RCA0.

Consider the well known Cantor middle third set C ⊆ [0, 1] defined by

C = [0, 1] \ ((1/3, 2/3) ∪ (1/9, 2/9)∪ (7/9, 8/9)∪ . . . ) .

There is a well known and obvious recursive homeomorphism H : C ∼=
{0, 1}ω, where {0, 1}ω is the product of ω copies of the two-point discrete
space {0, 1}. Points h ∈ {0, 1}ω may be identified with functions h : ω →
{0, 1}. For each ε ∈ {0, 1} and n ∈ ω, let Uεn be the union of 2n effectively
chosen rational open intervals such that

H(Uεn ∩C) = {h ∈ {0, 1}ω : h(n) = ε} .

For instance, corresponding to ε = 0 and n = 2 we could choose U0
2 =

(−1, 1/18)∪ (1/6, 5/18)∪ (1/2, 13/18)∪ (5/6, 17/18).
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Now let A, B be a disjoint pair of recursively inseparable, recursively
enumerable subsets of ω. For instance, we could take A = {n : {n}(n) ≃ 0}
and B = {n : {n}(n) ≃ 1}. Since A and B are recursively inseparable, it
follows that for any recursive point h ∈ {0, 1}ω we have either h(n) = 0
for some n ∈ A, or h(n) = 1 for some n ∈ B. Let f, g : ω → ω be
recursive functions such that A = rng(f) and B = rng(g). Then U0

f(m),

U1
g(m), m ∈ ω, give a recursive sequence of rational open intervals which

cover the recursive reals in C but not all of C. Combining this with the
middle third intervals (1/3, 2/3), (1/9, 2/9), (7/9, 8/9), . . . , we obtain a
recursive sequence of rational open intervals which cover the recursive reals
in [0, 1] but not all of [0, 1]. Thus the ω-model REC satisfies “there exists
a sequence of rational open intervals which is a covering of [0, 1] but has no
finite subcovering”. Hence HB is false in REC. Hence HB is not provable
in RCA0.

Example I.8.7 (the maximum principle). Another ordinary mathemat-
ical theorem not provable in RCA0 is the maximum principle: Every con-
tinuous real-valued function on [0, 1] attains a supremum. To see this, let
C, f , g, Uεn, ε ∈ {0, 1}, n ∈ ω be as in I.8.6, and let r, ak, k ∈ ω be as in
I.8.4. It is straightforward to construct a recursive code Φ for a function
φ such that REC satisfies “φ : C → R is continuous and, for all x ∈ C,
φ(x) = ak where k = the least m such that x ∈ U0

f(m) ∪ U1
g(m)”. Thus

sup{φ(x) : x ∈ C ∩ REC} = supk∈ω ak = r is a nonrecursive real number,
so REC satisfies “supx∈C φ(x) does not exist”. Since 0 < ak < 2 for all k,
we actually have φ : C → [0, 2] in REC. Also, we can extend φ uniquely
to a continuous function ψ : [0, 1] → [0, 2] which is linear on intervals
disjoint from C. Thus REC satisfies “ψ : [0, 1] → [0, 2] is continuous and
supx∈C ψ(x) does not exist”. Hence the maximum principle is false in REC
and therefore not provable in RCA0.

Example I.8.8 (König’s lemma). Recall our notion of tree as defined in
I.6.5. A tree T is said to be finitely branching if for each σ ∈ T there are
only finitely many n such that σa〈n〉 ∈ T . König’s lemma is the following
statement: every infinite, finitely branching tree has an infinite path.

We claim that König’s lemma is provable in ACA0. An outline of the
argument within ACA0 is as follows. Let T ⊆ N<N be an infinite, finitely
branching tree. By arithmetical comprehension, there is a subtree T ∗ ⊆ T
consisting of all σ ∈ T such that Tσ (see definition I.6.6) is infinite. Since
T is infinite, the empty sequence 〈〉 belongs to T ∗. Moreover, by the
pigeonhole principle, T ∗ has no end nodes. Define f : N → N by primitive
recursion by putting f(m) = the least n such that f [m]a〈n〉 ∈ T ∗, for all
m ∈ N. Then f is a path through T ∗, hence through T , Q.E.D.
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We claim that König’s lemma is not provable in RCA0. To see this, let
A, B, f , g be as in I.8.6. Let {0, 1}<ω be the full binary tree, i.e., the
tree of finite sequences of 0’s and 1’s. Let T be the set of all τ ∈ {0, 1}<ω

such that, if k = the length of τ , then for all m,n < k, f(m) = n implies
τ(n) = 1, and g(m) = n implies τ(n) = 0. Note that T is recursive.
Moreover, h ∈ {0, 1}ω is a path through T if and only if h separates A and
B, i.e., h(n) = 1 for all n ∈ A and h(n) = 0 for all n ∈ B. Thus T is an
infinite, recursive, finitely branching tree with no recursive path. Hence we
have a recursive counterexample to König’s lemma, showing that König’s
lemma is false in REC, hence not provable in RCA0.

The recursive counterexamples presented above show that, although RCA0

is able to accommodate a large and significant portion of ordinary math-
ematical practice, it is also subject to some severe limitations. We shall
eventually see that, in order to prove ordinary mathematical theorems such
as the Bolzano/Weierstraß theorem, the Heine/Borel covering lemma, the
maximum principle, and König’s lemma, it is necessary to pass to subsys-
tems of Z2 that are considerably stronger than RCA0. This investigation
will lead us to another important theme: Reverse Mathematics (§§I.9, I.10,
I.11, I.12).

Remark I.8.9 (constructive mathematics). In some respects, our formal
development of ordinary mathematics within RCA0 resembles the practice
of Bishop-style constructivism [20]. However, there are some substantial
differences (see also the notes below):

1. The constructivists believe that mathematical objects are purely men-
tal constructions, while we make no such assumption.

2. The meaning which the constructivists assign to the propositional
connectives and quantifiers is incompatible with our classical inter-
pretation.

3. The constructivists assume unrestricted induction on the natural num-
bers, while in RCA0 we assume only Σ0

1 induction.
4. We always assume the law of the excluded middle, while the construc-

tivists deny it.
5. The typical constructivist response to a nonconstructive mathemati-

cal theorem is to modify the theorem by adding hypotheses or “extra
data”. In contrast, our approach in this book is to analyze the prov-
ability of mathematical theorems as they stand, passing to stronger
subsystems of Z2 if necessary. See also our discussion of Reverse Math-
ematics in §I.9.

Notes for §I.8. Some references on recursive and constructive mathe-
matics are Aberth [2], Beeson [17], Bishop/Bridges [20], Demuth/Kučera
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[46], Mines/Richman/Ruitenburg [189], Pour-El/Richards [203], and Troel-
stra/van Dalen [268]. The relationship between Bishop-style constructivism
and RCA0 is discussed in [78, §0]. Chapter II of this book is devoted to the
development of mathematics within RCA0. Some earlier literature present-
ing some of this development in a less systematic manner is Simpson [236],
Friedman/Simpson/Smith [78], Brown/Simpson [27].

I.9. Reverse Mathematics

We begin this section with a quote from Aristotle.

Reciprocation of premisses and conclusion is more frequent in
mathematics, because mathematics takes definitions, but never
an accident, for its premisses—a second characteristic distin-
guishing mathematical reasoning from dialectical disputations.

Aristotle, Posterior Analytics [184, 78a10].

The purpose of this section is to introduce one of the major themes of
this book: Reverse Mathematics.

In order to motivate Reverse Mathematics from a foundational stand-
point, consider the Main Question as defined in §I.1, concerning the role
of set existence axioms. In §§I.4 and I.6, we have sketched an approximate
answer to the Main Question. Namely, we have suggested that most the-
orems of ordinary mathematics can be proved in ACA0, and that of the
exceptions, most can be proved in Π1

1-CA0.
Consider now the following sharpened form of the Main Question: Given

a theorem τ of ordinary mathematics, what is the weakest natural subsystem
S(τ) of Z2 in which τ is provable?

Surprisingly, it turns out that for many specific theorems τ this question
has a precise and definitive answer. Furthermore, S(τ) often turns out to
be one of five specific subsystems of Z2. For convenience we shall now list
these systems as S1, S2, S3, S4 and S5 in order of increasing ability to ac-
commodate ordinary mathematical practice. The odd numbered systems
S1, S3 and S5 have already been introduced as RCA0, ACA0 and Π1

1-CA0 re-
spectively. The even numbered systems S2 and S4 are intermediate systems
which will be introduced in §§I.10 and I.11 below.

Our method for establishing results of the form S(τ) = Sj , 2 ≤ j ≤ 5
is based on the following empirical phenomenon: “When the theorem is
proved from the right axioms, the axioms can be proved from the theorem.”
(Friedman [68].) Specifically, let τ be an ordinary mathematical theorem
which is not provable in the weak base theory S1 = RCA0. Then very often,
τ turns out to be equivalent to Sj for some j = 2, 3, 4 or 5. The equivalence
is provable in Si for some i < j, usually i = 1.
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For example, let τ = BW = the Bolzano/Weierstraß theorem: every
bounded sequence of real numbers has a convergent subsequence. We have
seen in I.8.4 that BW is false in the ω-model REC. An adaptation of that
argument gives the following result:

Theorem I.9.1. BW is equivalent to ACA0, the equivalence being prov-
able in RCA0.

Proof. Note first that ACA0 = RCA0 plus arithmetical comprehension.
Thus the forward direction of our theorem is obtained by observing that
the usual proof of BW goes through in ACA0, as already remarked in §I.4.

For the reverse direction (i.e., the converse), we reason within RCA0

and assume BW. We are trying to prove arithmetical comprehension. Re-
call that, by relativization, arithmetical comprehension is equivalent to
Σ0

1 comprehension (see remark I.7.7). So let ϕ(n) be a Σ0
1 formula, say

ϕ(n) ≡ ∃mθ(m,n) where θ is a bounded quantifier formula. For each
k ∈ N define

ck =
∑

{2−n : n < k ∧ (∃m < k) θ(m,n)} .

Then 〈ck : k ∈ N〉 is a bounded increasing sequence of rational numbers.
This sequence exists by ∆0

1 comprehension, which is available to us since
we are working in RCA0. Now by BW the limit c = limk ck exists. Then
we have

∀n (ϕ(n) ↔ ∀k (|c− ck| < 2−n → (∃m < k) θ(m,n))) .

This gives the equivalence of a Σ0
1 formula with a Π0

1 formula. Hence by
∆0

1 comprehension we conclude ∃X ∀n (n ∈ X ↔ ϕ(n)). This proves Σ0
1

comprehension and hence arithmetical comprehension, Q.E.D. 2

Remark I.9.2 (on Reverse Mathematics). Theorem I.9.1 implies that S3 =
ACA0 is the weakest natural subsystem of Z2 in which τ = BW is provable.
Thus, for this particular case involving the Bolzano/Weierstraß theorem,
I.9.1 provides a definitive answer to our sharpened form of the Main Ques-
tion.

Note that the proof of theorem I.9.1 involved the deduction of a set
existence axiom (namely arithmetical comprehension) from an ordinary
mathematical theorem (namely BW). This is the opposite of the usual
pattern of ordinary mathematical practice, in which theorems are deduced
from axioms. The deduction of axioms from theorems is known as Reverse
Mathematics. Theorem I.9.1 illustrates how Reverse Mathematics is the
key to obtaining precise answers for instances of the Main Question. This
point will be discussed more fully in §I.12.

We shall now state a number of results, similar to I.9.1, showing that
particular ordinary mathematical theorems are equivalent to the axioms
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needed to prove them. These Reverse Mathematics results with respect
to ACA0 and Π1

1-CA0 will be summarized in theorems I.9.3 and I.9.4 and
proved in chapters III and VI, respectively.

Theorem I.9.3 (Reverse Mathematics for ACA0). Within RCA0 one can
prove that ACA0 is equivalent to each of the following ordinary mathemat-
ical theorems:

1. Every bounded, or bounded increasing, sequence of real numbers has
a least upper bound (§III.2).

2. The Bolzano/Weierstraß theorem: Every bounded sequence of real
numbers, or of points in Rn, has a convergent subsequence (§III.2).

3. Every sequence of points in a compact metric space has a convergent
subsequence (§III.2).

4. The Ascoli lemma: Every bounded equicontinuous sequence of real-
valued continuous functions on a bounded interval has a uniformly
convergent subsequence (§III.2).

5. Every countable commutative ring has a maximal ideal (§III.5).
6. Every countable vector space over Q, or over any countable field, has

a basis (§III.4).
7. Every countable field (of characteristic 0) has a transcendence basis

(§III.4).
8. Every countable Abelian group has a unique divisible closure (§III.6).
9. König’s lemma: Every infinite, finitely branching tree has an infinite

path (§III.7).
10. Ramsey’s theorem for colorings of [N]3, or of [N]4, [N]5, . . . (§III.7).

Theorem I.9.4 (Reverse Mathematics for Π1
1-CA0). Within RCA0 one can

prove that Π1
1-CA0 is equivalent to each of the following ordinary mathe-

matical statements:

1. Every tree has a largest perfect subtree (§VI.1).
2. The Cantor/Bendixson theorem: Every closed subset of R, or of any

complete separable metric space, is the union of a countable set and a
perfect set (§VI.1).

3. Every countable Abelian group is the direct sum of a divisible group
and a reduced group (§VI.4).

4. Every difference of two open sets in the Baire space NN is determined
(§VI.5).

5. Every Gδ set in [N]N has the Ramsey property (§VI.6).
6. Silver’s theorem: For every Borel (or coanalytic, or Fσ) equivalence

relation with uncountably many equivalence classes, there exists a
nonempty perfect set of inequivalent elements (§VI.3).
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More Reverse Mathematics results will be stated in §§I.10 and I.11 and
proved in chapters IV and V, respectively. The significance of Reverse
Mathematics for our Main Question will be discussed in §I.12.

Notes for §I.9. Historically, Reverse Mathematics may be viewed as a
spin-off of Friedman’s work [65, 66, 71, 72, 73] attempting to demonstrate
the necessary use of higher set theory in mathematical practice. The theme
of Reverse Mathematics in the context of subsystems of Z2 first appeared in
Steel’s thesis [256, chapter I] (an outcome of Steel’s reading of Friedman’s
thesis [62, chapter II] under Simpson’s supervision [230]) and in Friedman
[68, 69]; see also Simpson [238]. This theme was taken up by Simpson and
his collaborators in numerous studies [236, 241, 76, 235, 234, 78, 79, 250,
243, 246, 245, 21, 27, 28, 280, 80, 113, 112, 247, 127, 128, 26, 93, 248]
which established it as a subject. The slogan “Reverse Mathematics” was
coined by Friedman during a special session of the American Mathematical
Society organized by Simpson.

I.10. The System WKL0

In this section we introduce WKL0, a subsystem of Z2 consisting of RCA0

plus a set existence axiom known as weak König’s lemma. We shall see that,
in the notation of §I.9, WKL0 = S2 is intermediate between RCA0 = S1 and
ACA0 = S3. We shall also state several results of Reverse Mathematics with
respect to WKL0 (theorem I.10.3 below).

In order to motivate WKL0 in terms of foundations of mathematics, con-
sider our Main Question (§I.1) as it applies to three specific theorems of
ordinary mathematics: the Bolzano/Weierstraß theorem, the Heine/Borel
covering lemma, the maximum principle. We have seen in I.8.4, I.8.6, I.8.7
that these three theorems are not provable in RCA0. However, we have
definitively answered the Main Question only for the Bolzano/Weierstraß
theorem, not for the other two. We have seen in I.9.1 that Bolzano/Weierstraß
is equivalent to ACA0 over RCA0.

It will turn out (theorem I.10.3) that the Heine/Borel covering lemma,
the maximum principle, and many other ordinary mathematical theorems
are equivalent to each other and to weak König’s lemma, over RCA0. Thus
WKL0 is the weakest natural subsystem of Z2 in which these ordinary math-
ematical theorems are provable. Thus WKL0 provides the answer to these
instances of the Main Question.

It will also turn out that WKL0 is sufficiently strong to accommodate
a large portion of mathematical practice, far beyond what is available in
RCA0, including many of the best-known non-constructive theorems. This
will become clear in chapter IV.
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We now present the definition of WKL0.

Definition I.10.1 (weak König’s lemma). The following definitions are
made within RCA0. We use {0, 1}<N or 2<N to denote the full binary tree,
i.e., the set of (codes for) finite sequences of 0’s and 1’s. Weak König’s
lemma is the following statement: Every infinite subtree of 2<N has an
infinite path. (Compare definition I.6.5 and example I.8.8.)

WKL0 is defined to be the subsystem of Z2 consisting of RCA0 plus weak
König’s lemma.

Remark I.10.2 (ω-models of WKL0). By example I.8.8, the ω-model REC
consisting of all recursive subsets of ω does not satisfy weak König’s lemma.
Hence REC is not a model of WKL0. Since REC is the minimum ω-model of
RCA0 (remark I.7.5), it follows that RCA0 is a proper subsystem of WKL0.
In addition, I.8.8 implies that WKL0 is a subsystem of ACA0. That it is a
proper subsystem is not so obvious, but we shall see this in §VIII.2, where
it is shown for instance that REC is the intersection of all ω-models of
WKL0. Thus we have

RCA0 $ WKL0 $ ACA0

and there are ω-models for the independence.

We now list several results of Reverse Mathematics with respect to WKL0.
These results will be proved in chapter IV.

Theorem I.10.3 (Reverse Mathematics for WKL0). Within RCA0 one can
prove that WKL0 is equivalent to each of the following ordinary mathemat-
ical statements:

1. The Heine/Borel covering lemma: Every covering of the closed in-
terval [0, 1] by a sequence of open intervals has a finite subcovering
(§IV.1).

2. Every covering of a compact metric space by a sequence of open sets
has a finite subcovering (§IV.1).

3. Every continuous real-valued function on [0, 1], or on any compact
metric space, is bounded (§IV.2).

4. Every continuous real-valued function on [0, 1], or on any compact
metric space, is uniformly continuous (§IV.2).

5. Every continuous real-valued function on [0, 1] is Riemann integrable
(§IV.2).

6. The maximum principle: Every continuous real-valued function on
[0, 1], or on any compact metric space, has, or attains, a supremum
(§IV.2).

7. The local existence theorem for solutions of (finite systems of) ordinary
differential equations (§IV.8).
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8. Gödel’s completeness theorem: every finite, or countable, consistent
set of sentences in the predicate calculus has a countable model (§IV.3).

9. Every countable commutative ring has a prime ideal (§IV.6).
10. Every countable field (of characteristic 0) has a unique algebraic clo-

sure (§IV.5).
11. Every countable formally real field is orderable (§IV.4).
12. Every countable formally real field has a (unique) real closure (§IV.4).
13. Brouwer’s fixed point theorem: Every uniformly continuous function

φ : [0, 1]n → [0, 1]n has a fixed point (§IV.7).
14. The separable Hahn/Banach theorem: If f is a bounded linear func-

tional on a subspace of a separable Banach space, and if ‖f‖ ≤ 1, then

f has an extension f̃ to the whole space such that ‖f̃‖ ≤ 1 (§IV.9).

Remark I.10.4 (mathematics within WKL0). Theorem I.10.3 illustrates
how WKL0 is much stronger than RCA0 from the viewpoint of mathemat-
ical practice. In fact, WKL0 is strong enough to prove many well known
nonconstructive theorems that are extremely important for mathematical
practice but not true in the ω-model REC, hence not provable in RCA0 (see
§I.8).

Remark I.10.5 (first order part of WKL0). We have seen that WKL0 is
much stronger than RCA0 with respect to both ω-models (remark I.10.2)
and mathematical practice (theorem I.10.3, remark I.10.4). Nevertheless,
it can be shown that WKL0 is of the same strength as RCA0 in a proof-
theoretic sense. Namely, the first order part of WKL0 is the same as that
of RCA0, viz. Σ0

1-PA. (See also remark I.7.6.) In fact, given any model
M of RCA0, there exists a model M ′ ⊇ M of WKL0 having the same first
order part as M . This model-theoretic conservation result will be proved
in §IX.2.

Another key conservation result is that WKL0 is conservative over the
formal system known as PRA or primitive recursive arithmetic, with respect
to Π0

2 sentences. In particular, given a Σ0
1 formula ϕ(m,n) and a proof of

∀m ∃nϕ(m,n) in WKL0, we can find a primitive recursive function f : ω →
ω such that ϕ(m, f(m)) holds for allm ∈ ω. This interesting and important
result will be proved in §IX.3.

Remark I.10.6 (Hilbert’s program). The results of chapters IV and IX
are of great importance with respect to the foundations of mathematics,
specifically Hilbert’s program. Hilbert’s intention [114] was to justify all of
mathematics (including infinitistic, set-theoretic mathematics) by reducing
it to a restricted form of reasoning known as finitism. Gödel’s [94, 115,
55, 222] limitative results show that there is no hope of realizing Hilbert’s
program completely. However, results along the lines of theorem I.10.3
and remark I.10.5 show that a large portion of infinitistic mathematical
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practice is in fact finitistically reducible, because it can be carried out in
WKL0. Thus we have a significant partial realization of Hilbert’s program
of finitistic reductionism. See also remark IX.3.18.

Notes for §I.10. The formal system WKL0 was first introduced by Fried-
man [69]. In the model-theoretic literature, ω-models of WKL0 are some-
times known as Scott systems, referring to Scott [217]. Chapter IV of this
book is devoted to the development of mathematics within WKL0 and Re-
verse Mathematics for WKL0. Models of WKL0 are discussed in §§VIII.2,
IX.2, and IX.3 of this book. The original paper on Hilbert’s program is
Hilbert [114]. The significance of WKL0 and Reverse Mathematics for par-
tial realizations of Hilbert’s program is expounded in Simpson [246].

I.11. The System ATR0

In this section we introduce and discuss ATR0, a subsystem of Z2 con-
sisting of ACA0 plus a set existence axiom known as arithmetical transfinite
recursion. Informally, arithmetical transfinite recursion can be described
as the assertion that the Turing jump operator can be iterated along any
countable well ordering starting at any set. The precise statement is given
in definition I.11.1 below.

From the standpoint of foundations of mathematics, the motivation for
ATR0 is similar to the motivation for WKL0, as explained in §I.10. (See
also the analogy in I.11.7 below.) Using the notation of §I.9, ATR0 = S4

is intermediate between ACA0 = S3 and Π1
1-CA0 = S5. It turns out that

ATR0 is equivalent to several theorems of ordinary mathematics which are
provable in Π1

1-CA0 but not in ACA0.
As an example, consider the perfect set theorem: Every uncountable

closed set (or analytic set) has a perfect subset. We shall see that ATR0

is equivalent over RCA0 to (either form of) the perfect set theorem. Thus
ATR0 is the weakest natural subsystem of Z2 in which the perfect set the-
orem is provable. Actually, ATR0 provides the answer not only to this
instance of the Main Question (§I.9) but also to many other instances of it;
see theorem I.11.5 below. Moreover, ATR0 is sufficiently strong to accom-
modate a large portion of mathematical practice beyond ACA0, including
many basic theorems of infinitary combinatorics and classical descriptive
set theory.

We now proceed to the definition of ATR0.

Definition I.11.1 (arithmetical transfinite recursion). Consider an arith-
metical formula θ(n,X) with a free number variable n and a free set vari-
able X . Note that θ(n,X) may also contain parameters, i.e., additional
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free number and set variables. Fixing these parameters, we may view θ as
an “arithmetical operator” Θ : P (N) → P (N), defined by

Θ(X) = {n ∈ N : θ(n,X)} .

Now let A,<A be any countable well ordering (definition I.6.1), and con-
sider the set Y ⊆ N obtained by transfinitely iterating the operator Θ
along A,<A. This set Y is defined by the following conditions: Y ⊆ N×A
and, for each a ∈ A, Ya = Θ(Y a), where Ya = {m : (m, a) ∈ Y } and
Y a = {(n, b) : n ∈ Yb ∧ b <A a}. Thus, for each a ∈ A, Y a is the result of
iterating Θ along the initial segment of A,<A up to but not including a,
and Ya is the result of applying Θ one more time.

Finally, arithmetical transfinite recursion is the axiom scheme assert-
ing that such a set Y exists, for every arithmetical operator Θ and every
countable well ordering A,<A. We define ATR0 to consist of ACA0 plus the
scheme of arithmetical transfinite recursion. It is easy to see that ATR0 is a
subsystem of Π1

1-CA0, and we shall see below that it is a proper subsystem.

Example I.11.2 (the ω-model ARITH). Recall the ω-model

ARITH = Def((ω,+, ·, 0, 1, <))

= {X ⊆ ω : ∃n ∈ ωX ≤T TJ(n, ∅)}

consisting of all arithmetically definable subsets of ω (remarks I.3.3 and
I.3.4). We have seen that ARITH is the minimum ω-model of ACA0. Triv-
ially for each n ∈ ω we have TJ(n, ∅) ∈ ARITH; here TJ(n, ∅) is the result
of iterating the Turing jump operator n times, i.e., along a finite well order-
ing of order type n. On the other hand, ARITH does not contain TJ(ω, ∅),
the result of iterating the Turing jump operator ω times, i.e., along the well
ordering (ω,<). Thus ARITH fails to satisfy this instance of arithmetical
transfinite recursion. Hence ARITH is not an ω-model of ATR0.

Example I.11.3 (the ω-model HYP). Another important ω-model is

HYP = {X ⊆ ω : X ≤H ∅}

= {X ⊆ ω : X is hyperarithmetical}

= {X ⊆ ω : ∃α < ωCK
1 X ≤T TJ(α, ∅)} .

Here α ranges over the recursive ordinals, i.e., the countable ordinals which
are order types of recursive well orderings of ω. We use ωCK

1 to denote
Church/Kleene ω1, i.e., the least nonrecursive ordinal. Clearly HYP is
much larger than ARITH, and HYP contains many sets which are defined
by arithmetical transfinite recursion. However, as we shall see in §VIII.3,
HYP does not contain enough sets to be an ω-model of ATR0.
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Remark I.11.4 (ω-models of ATR0). In §§VII.2 and VIII.6 we shall prove
two facts: (1) every β-model is an ω-model of ATR0; (2) the intersection of
all β-models is HYP, the ω-model consisting of the hyperarithmetical sets.
From this it follows that HYP, although not itself an ω-model of ATR0, is
the intersection of all such ω-models. Hence ATR0 does not have a mini-
mum ω-model or a minimum β-model. Combining these observations with
what we already know about ω-models of ACA0 and Π1

1-CA0 (remarks I.3.4
and I.5.4), we see that

ACA0 $ ATR0 $ Π1
1-CA0

and there are ω-models for the independence.

We now list several results of Reverse Mathematics with respect to ATR0.
These results will be proved in chapter V.

Theorem I.11.5 (Reverse Mathematics for ATR0). Within RCA0 one can
prove that ATR0 is equivalent to each of the following ordinary mathemat-
ical statements:

1. Any two countable well orderings are comparable (§V.6).
2. Ulm’s theorem: Any two countable reduced Abelian p-groups which

have the same Ulm invariants are isomorphic (§V.7).
3. The perfect set theorem: Every uncountable closed, or analytic, set

has a perfect subset (§V.4, V.5).
4. Lusin’s separation theorem: Any two disjoint analytic sets can be sep-

arated by a Borel set (§§V.3, V.5).
5. The domain of any single-valued Borel set in the plane is a Borel set

(§V.3, V.5).
6. Every open, or clopen, subset of NN is determined (§V.8).
7. Every open, or clopen, subset of [N]N has the Ramsey property (§V.9).

Remark I.11.6 (mathematics within ATR0). Theorem I.11.5 illustrates
how ATR0 is much stronger than ACA0 from the viewpoint of mathematical
practice. Namely, ATR0 proves many well known ordinary mathematical
theorems which fail in the ω-models ARITH and HYP and hence are not
provable in ACA0 (see §I.4) or even in somewhat stronger systems such as
Σ1

1-AC0 (§VIII.4). A common feature of such theorems is that they require,
implicitly or explicitly, a good theory of countable ordinal numbers.

Remark I.11.7 (Σ0
1 and Σ1

1 separation). From the viewpoint of mathe-
matical practice, we have already noted an interesting analogy between
WKL0 and ATR0, suggested by the following equation:

WKL0

ACA0
≈

ATR0

Π1
1-CA0

.

We shall now extend this analogy by reformulating WKL0 and ATR0 in
terms of separation principles.
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Define Σ0
1 separation to be the axiom scheme consisting of (the universal

closures of) all formulas of the form

(∀n¬ (ϕ1(n) ∧ ϕ2(n))) →

∃X (∀n (ϕ1(n) → n ∈ X) ∧ ∀n (ϕ2(n) → n /∈ X)) ,

where ϕ1(n) and ϕ2(n) are any Σ0
1 formulas, n is any number variable, and

X is a set variable which does not occur freely in ϕ1(n)∧ϕ2(n). Define Σ1
1

separation similarly, with Σ1
1 formulas instead of Σ0

1 formulas. It turns out
that

WKL0 ≡ Σ0
1 separation ,

and

ATR0 ≡ Σ1
1 separation ,

over RCA0. These equivalences, which will be proved in §§IV.4 and V.5 re-
spectively, serve to strengthen the above-mentioned analogy between WKL0

and ATR0. They will also be used as technical tools for proving several of
the reversals given by theorems I.10.3 and I.11.5.

Remark I.11.8. Another analogy in the same vein as that of I.11.7 is

WKL0

RCA0
≈

ATR0

∆1
1-CA0

.

The system ∆1
1-CA0 will be studied in §§VIII.3 and VIII.4, where we shall

see that HYP is its minimum ω-model. Recall also (remark I.7.5) that REC
is the minimum ω-model of

RCA0 ≡ ∆0
1-CA0 .

Remark I.11.9 (first order part of ATR0). It is known that the first or-
der part of ATR0 is the same as that of Feferman’s system IR of predicative
analysis; indeed, these two systems prove the same Π1

1 sentences. Thus our
development of mathematics within ATR0 (theorem I.11.5, remark I.11.6,
chapter V) may be viewed as contributions to a program of “predicative
reductionism,” analogous to Hilbert’s program of finitistic reductionism
(remark I.10.6, section IX.3). See also the proof of theorem IX.5.7 below.

Notes for §I.11. The formal system ATR0 was first investigated by Fried-
man [68, 69] (see also Friedman [62, chapter II]) and Steel [256, chapter I].
A key reference for ATR0 is Friedman/McAloon/Simpson [76]. Chapter V
of this book is devoted to the development of mathematics within ATR0 and
Reverse Mathematics for ATR0. Models of ATR0 are discussed in §§VII.2,
VII.3 and VIII.6. The basic reference for formal systems of predicative
analysis is Feferman [56, 57]. The significance of ATR0 for predicative re-
ductionism has been discussed by Simpson [238, 246].
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I.12. The Main Question, Revisited

The Main Question was introduced in §I.1. We now reexamine it in light
of the results outlined in §§I.2 through I.11.

The Main Question asks which set existence axioms are needed to support
ordinary mathematical reasoning. We take “needed” to mean that the set
existence axioms are to be as weak as possible. When developing precise
formal versions of the Main Question, it is natural also to consider formal
languages which are as weak as possible. The language L2 comes to mind
because it is just adequate to define the majority of ordinary mathematical
concepts and to express the bulk of ordinary mathematical reasoning. This
leads in §I.2 to the consideration of subsystems of Z2.

Two of the most obvious subsystems of Z2 are ACA0 and Π1
1-CA0, and

in §§I.3–I.6 we outline the development of ordinary mathematics in these
systems. The upshot of this is that a great many ordinary mathematical
theorems are provable in ACA0, and that of the exceptions, most are prov-
able in Π1

1-CA0. The exceptions tend to involve countable ordinal numbers,
either explicitly or implicitly. Another important subsystem of Z2 is RCA0,
which is seen in §§I.7 and I.8 to embody a kind of formalized computable
or constructive mathematics. Thus we have an approximate answer to the
Main Question.

We then turn to a sharpened form of the Main Question, where we insist
that the ordinary mathematical theorems should be logically equivalent to
the set existence axioms needed to prove them. Surprisingly, this demand
can be met in some cases; several ordinary mathematical theorems turn out
to be equivalent over RCA0 to either ACA0 or Π1

1-CA0. This is our theme of
Reverse Mathematics in §I.9. But the situation is not entirely satisfactory,
because many ordinary mathematical theorems seem to fall into the gaps.

In order to improve the situation, we introduce two additional systems:
WKL0 lying strictly between RCA0 and ACA0, and analogously ATR0 lying
strictly between ACA0 and Π1

1-CA0. These systems are introduced in §§I.10
and I.11 respectively. With this expanded complement of subsystems of
Z2, a certain stability is achieved; it now seems possible to “calibrate” a
great many ordinary mathematical theorems, by showing that they are
either provable in RCA0 or equivalent over RCA0 to WKL0, ACA0, ATR0, or
Π1

1-CA0.
Historically, the intermediate systems WKL0 and ATR0 were discovered

in exactly in this way, as a response to the needs of Reverse Mathematics.
See for example the discussion in Simpson [246, §§4,5].

From the above it is clear that the five basic systems RCA0, WKL0, ACA0,
ATR0, Π1

1-CA0 arise naturally from investigations of the Main Question.
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The proof that these systems are mathematically natural is provided by
Reverse Mathematics.

As a perhaps not unexpected byproduct, we note that these same five
systems turn out to correspond to various well known, philosophically
motivated programs in foundations of mathematics, as indicated in ta-
ble 1. The foundational programs that we have in mind are: Bishop’s
program of constructivism [20] (see however remarks I.8.9 and IV.2.8);
Hilbert’s program of finitistic reductionism [114, 246] (see remarks I.10.6
and IX.3.18); Weyl’s program of predicativity [274] as developed by Fe-
ferman [56, 57, 59]; predicative reductionism as developed by Friedman
and Simpson [69, 76, 238, 247]; impredicativity as developed in Buch-
holz/Feferman/Pohlers/Sieg [29]. Thus, by studying the formalization of
mathematics and Reverse Mathematics for the five basic systems, we can
develop insight into the mathematical consequences of these philosophical
proposals. Thus we can expect this book and other Reverse Mathematics
studies to have a substantial impact on the philosophy of mathematics.

Table 1. Foundational programs and the five basic systems.

RCA0 constructivism Bishop

WKL0 finitistic reductionism Hilbert

ACA0 predicativism Weyl, Feferman

ATR0 predicative reductionism Friedman, Simpson

Π1
1-CA0 impredicativity Feferman et al.

I.13. Outline of Chapters II Through X

This section of our introductory chapter I consists of an outline of the
remaining chapters.

The bulk of the material is organized in two parts. Part A consists of
chapters II through VI and focuses on the development of mathematics
within the five basic systems: RCA0, WKL0, ACA0, ATR0, Π1

1-CA0. A
principal theme of Part A is Reverse Mathematics (see also §I.9). Part B,
consisting of chapters VII through IX, is concerned with metamathematical
properties of various subsystems of Z2, including but not limited to the
five basic systems. Chapters VII, VIII, and IX deal with β-models, ω-
models, and non-ω-models, respectively. At the end of the book there is
an appendix, chapter X, in which additional results are presented without
proof but with references to the published literature. See also table 2.
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Table 2. An overview of the entire book.

Introduction Chapter I introductory survey

Chapter II RCA0

Part A Chapter III ACA0

(mathematics within Chapter IV WKL0

the 5 basic systems) Chapter V ATR0

Chapter VI Π1
1-CA0

Part B Chapter VII β-models

(models of Chapter VIII ω-models

various systems) Chapter IX non-ω-models

Appendix Chapter X additional results

Part A: Mathematics Within Subsystems of Z2. Part A consists
of a key chapter II on the development of ordinary mathematics within
RCA0, followed by chapters III, IV, V, and VI on ordinary mathematics
within the other four basic systems: ACA0, WKL0, ATR0, and Π1

1-CA0,
respectively. These chapters present many results of Reverse Mathematics
showing that particular set existence axioms are necessary and sufficient
to prove particular ordinary mathematical theorems. Table 3 indicates in
more detail exactly where some of these results may be found. Table 3 may
serve as a guide or road map concerning the role of set existence axioms in
ordinary mathematical reasoning.

Chapter II: RCA0. In §II.1 we define the formal system RCA0 consist-
ing of ∆0

1 comprehension and Σ0
1 induction. After that, the rest of chapter

II is concerned with the development of ordinary mathematics within RCA0.
Although chapter II does not itself contain any Reverse Mathematics, it is
necessarily a prerequisite for all of the Reverse Mathematics results to be
presented in later chapters. This is because RCA0 serves as our weak base
theory (see §I.9 above).

In §II.2 we employ a device reminiscent of Gödel’s beta function to prove
within RCA0 that finite sequences of natural numbers can be encoded as
single numbers. This encoding is essential for §II.3, where we prove within
RCA0 that the class of functions from f : Nk → N, k ∈ N, is closed under
primitive recursion. Another key technical result of §II.3 is that RCA0

proves bounded Σ0
1 comprehension, i.e., the existence of bounded subsets

of N defined by Σ0
1 formulas.

Armed with these preliminary results from §§II.2 and II.3, we begin
the development of mathematics proper in §II.4 by discussing the number
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Table 3. Ordinary mathematics within the five basic systems.

RCA0 WKL0 ACA0 ATR0 Π1
1-CA0

analysis (separable):

differential equations IV.8 IV.8

continuous functions II.6, II.7 IV.2, IV.7 III.2

completeness, etc. II.4 IV.1 III.2

Banach spaces II.10 IV.9, X.2 X.2

open and closed sets II.5 IV.1 V.4, V.5 VI.1

Borel and analytic sets V.1 V.1, V.3 VI.2, VI.3

algebra (countable):

countable fields II.9 IV.4, IV.5 III.3

commutative rings III.5 IV.6 III.5

vector spaces III.4 III.4

Abelian groups III.6 III.6 V.7 VI.4

miscellaneous:

mathematical logic II.8 IV.3

countable ordinals V.1 V.6.10 V.1, V.6

infinite matchings X.3 X.3 X.3

the Ramsey property III.7 V.9 VI.6

infinite games V.8 V.8 VI.5

systems N, Z, Q, and R. Also in §II.4 we present an important completeness
property of the real number system, known as nested interval completeness.
An RCA0 version of the Baire category theorem for k-dimensional Euclidean
spaces Rk, k ∈ N, is stated; the proof is postponed to §II.5.

Sections II.5, II.6, and II.7 discuss complete separable metric spaces in
RCA0. Among the notions introduced (in a form appropriate for RCA0) are
open sets, closed sets, and continuous functions. We prove the following
important technical result: An open set in a complete separable metric

space Â is the same thing as a set in Â defined by a Σ0
1 formula with an

extensionality property (II.5.7). Nested interval completeness is used to
prove the intermediate value property for continuous functions φ : R →
R in RCA0 (II.6.6). A number of basic topological results for complete
separable metric spaces are shown to be provable in RCA0. Among these
are Urysohn’s lemma (II.7.3), the Tietze extension theorem (II.7.5), the
Baire category theorem (II.5.8), and paracompactness (II.7.2).
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Sections II.8 and II.9 deal with mathematical logic and countable alge-
bra, respectively. We show in §II.8 that some surprisingly strong versions
of basic results of mathematical logic can be proved in RCA0. Among these
are Lindenbaum’s lemma, the Gödel completeness theorem, and the strong
soundness theorem, via cut elimination. To illustrate the power of these
results, we show that RCA0 proves the consistency of elementary function
arithmetic, EFA. In §II.9 we apply the results of §§II.3 and II.8 in a discus-
sion of countable algebraically closed and real closed fields in RCA0. We use
quantifier elimination to prove within RCA0 that every countable field has
an algebraic closure, and that every countable ordered field has a unique
real closure. (Uniqueness of algebraic closure is discussed later, in §IV.5.)

Section II.10 presents some basic concepts and results of the theory of
separable Banach spaces and bounded linear operators, within RCA0. It is
shown that the standard proof of the Banach/Steinhaus uniform bounded-
ness principle, via the Baire category theorem, goes through in this setting.

Chapter III: ACA0. Chapter III is concerned with ACA0, the formal
system consisting of RCA0 plus arithmetical comprehension. The focus of
chapter III is Reverse Mathematics with respect to ACA0. (See also §§I.4,
I.3, and I.9.)

In §III.1 we define ACA0 and show that it is equivalent over RCA0 to Σ0
1

comprehension and to the principle that for any function f : N → N, the
range of f exists. This equivalence is used to establish all of the Reverse
Mathematics results which occupy the rest of the chapter. For example,
it is shown in §III.2 that ACA0 is equivalent to the Bolzano/Weierstraß
theorem, i.e., sequential compactness of the closed unit interval. Also in
§III.2 we introduce the notion of compact metric space, and we show that
ACA0 is equivalent to the principle that any sequence of points in a compact
metric space has a convergent subsequence. We end §III.2 by showing that
ACA0 is equivalent to the Ascoli lemma concerning bounded equicontinuous
families of continuous functions.

Sections III.3, III.4, III.5 and III.6 are concerned with countable algebra
in ACA0. It is perhaps interesting to note that chapter III has much more
to say about algebra than about analysis.

We begin in §III.3 by reexamining the notion of an algebraic closure

h : K → K̃ of a countable field K. We define a notion of strong algebraic
closure, i.e., an algebraic closure with the additional property that the
range of the embedding h exists as a set. Although the existence of algebraic
closures is provable in RCA0, we show in §III.3 that the existence of strong
algebraic closures is equivalent to ACA0. Similarly, although it is provable
in RCA0 that any countable ordered field has a real closure, we show in
§III.3 that ACA0 is required to prove the existence of a strong real closure.
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In §III.4 we show that ACA0 is equivalent to the theorem that every
countable vector space over a countable field (or over the rational field
Q) has a basis. We then refine this result (following Metakides/Nerode
[187]) by showing that ACA0 is also equivalent to the assertion that every
countable, infinite dimensional vector space over Q has an infinite linearly
independent set. We also obtain similar results for transcendence bases of
countable fields.

In §III.5 we turn to countable commutative rings. We use localization to
show that ACA0 is equivalent to the assertion that every countable com-
mutative ring has a maximal ideal. In §III.6 we discuss countable Abelian
groups. We show that ACA0 is equivalent to the assertion that, for every
countable Abelian group G, the torsion subgroup of G exists. We also show
that, although the existence of divisible closures is provable in RCA0, the
uniqueness requires ACA0

In §III.7 we consider Ramsey’s theorem. We define RT(k) to be Ramsey’s
theorem for exponent k, i.e., the assertion that for every coloring of the
k-element subsets of N with finitely many colors, there exists an infinite
subset of N all of whose k-element subsets have the same color. We show
that ACA0 is equivalent to RT(k) for each “standard integer” k ∈ ω, k ≥ 3.
From the viewpoint of Reverse Mathematics, the case k = 2 turns out to
be anomalous: RT(2) is provable in ACA0 but neither equivalent to ACA0

nor provable in WKL0. See also the notes at the end of §III.7. Another
somewhat annoying anomaly is that the general assertion of Ramsey’s the-
orem, ∀kRT(k), is slightly stronger than ACA0, due to the fact that ACA0

lacks full induction.
An interesting technical result of §III.7 is that ACA0 is equivalent to

König’s lemma: every infinite, finitely branching tree T ⊆ N<N has an
infinite path. It turns out that ACA0 is also equivalent to a much weaker
sounding statement, namely König’s lemma restricted to binary trees. (A
tree T ⊆ N<N is defined to be binary if each node of T has at most two
immediate successors.) The binary tree version of König’s lemma is to be
contrasted with its special case, weak König’s lemma: every infinite tree
T ⊆ 2<N has an infinite path. It is important to understand that, in terms
of set existence axioms and Reverse Mathematics, weak König’s lemma
is much weaker than König’s lemma for binary trees. These observations
provide a transition to the next chapter, which is concerned only with weak
König’s lemma and not at all with König’s lemma for binary trees.

Chapter IV: WKL0. Chapter IV focuses on Reverse Mathematics with
respect to the formal system WKL0 consisting of RCA0 plus weak König’s
lemma. (See also the previous paragraph and §I.10.)

We begin in §IV.1 by showing that weak König’s lemma is equivalent over
RCA0 to the Heine/Borel covering lemma: every covering of the closed unit
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interval [0, 1] by a sequence of open intervals has a finite subcovering. We
then generalize this result by showing that WKL0 proves a Heine/Borel
covering property for arbitrary compact metric spaces. In order to obtain
this generalization, we first prove a technical result: WKL0 proves bounded
König’s lemma, i.e., König’s lemma for subtrees of N<N which are bounded.
(A tree T ⊆ N<N is said to be bounded if there exists a function g : N → N
such that τ(m) < g(m) for all τ ∈ T , m < lh(τ).) We also develop some
additional technical results which are needed in later sections.

Section IV.2 shows that various properties of continuous functions on
compact metric spaces are provable in WKL0 and in fact equivalent to weak
König’s lemma over RCA0. Among the properties considered are uniform
continuity, Riemann integrability, the Weierstraß polynomial approxima-
tion theorem, and the maximum principle. A key technical notion here is
that of modulus of uniform continuity (definition IV.2.1).

In §IV.3 we return to mathematical logic. We show that several well
known theorems of mathematical logic, such as the completeness theorem
and the compactness theorem for both propositional logic and predicate
calculus, are each equivalent to weak König’s lemma over RCA0. Our results
here in §IV.3 are to be contrasted with those of §II.8.

Sections IV.4, IV.5 and IV.6 deal with countable algebra in WKL0. We
show in §IV.5 that weak König’s lemma is equivalent to the assertion that
every countable field has a unique algebraic closure. (We have already seen
in §II.9 that the existence of algebraic closures is provable in RCA0.) In
§IV.4 we discuss formally real fields, i.e., fields in which −1 cannot be writ-
ten as a sum of squares. We show that weak König’s lemma is equivalent
over RCA0 to the assertion that every countable formally real field is order-
able, and to the assertion that every countable formally real field has a real
closure. In order to prove these results of Reverse Mathematics, we first
prove a technical result characterizing WKL0 in terms of Σ0

1 separation; see
also §I.11.

In §IV.6 we show that WKL0 proves the existence of prime ideals in
countable commutative rings. The argument for this result is somewhat
interesting in that it involves not only two applications of weak König’s
lemma but also bounded Σ0

1 comprehension. In addition, we obtain rever-
sals showing that weak König’s lemma is equivalent over RCA0 to the ex-
istence of prime ideals, or even of radical ideals, in countable commutative
rings. These results stand in contrast to §III.5, where we saw that ACA0 is
needed to prove the existence of maximal ideals in countable commutative
rings. Thus it emerges that the usual textbook proof of the existence of
prime ideals, via maximal ideals, is far from optimal with respect to its use
of set existence axioms.
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Sections IV.7, IV.8 and IV.9 are concerned with certain advanced topics
in analysis. We begin in §IV.7 by showing that the well known fixed point
theorems of Brouwer and Schauder are provable in WKL0. In §IV.8 we use
a fixed point technique to prove Peano’s existence theorem for solutions of
ordinary differential equations, in WKL0. We also obtain reversals showing
weak König’s lemma is needed to prove the Brouwer and Schauder fixed
point theorems and Peano’s existence theorem. On the other hand, we note
that the more familiar Picard existence and uniqueness theorem, assuming
a Lipschitz condition, is already provable in RCA0 alone.

Section IV.9 is concerned with Banach space theory in WKL0. We build
on the concepts and results of §§II.10 and IV.7. We begin by showing
that yet another fixed point theorem, the Markov/Kakutani theorem for
commutative families of affine maps, is provable in WKL0. We then use this
result to show that WKL0 proves a version of the Hahn/Banach extension
theorem for bounded linear functionals on separable Banach spaces. A
reversal is also obtained.

Chapter V: ATR0. Chapter V deals with mathematics in ATR0, the
formal system consisting of ACA0 plus arithmetical transfinite recursion.
(See also §I.11.) Many of the ordinary mathematical theorems considered
in chapters V and VI are in the areas of countable combinatorics and clas-
sical descriptive set theory. The first few sections of chapter V focus on
proving ordinary mathematical theorems in ATR0. Reverse Mathematics
with respect to ATR0 is postponed to §V.5.

Chapter V begins with a preliminary §V.1 whose purpose is to elucidate
the relationships among Σ1

1 formulas, analytic sets, countable well order-
ings, and trees. An important tool is the Kleene/Brouwer ordering KB(T )
of an arbitrary tree T ⊆ N<N. Key properties of the Kleene/Brouwer con-
struction are: (1) KB(T ) is always a linear ordering; (2) KB(T ) is a well
ordering if and only if T is well founded. The Kleene normal form theorem
is proved in ACA0 and is then used to show that any Π1

1 assertion ψ can be
expressed in ACA0 by saying that an appropriately chosen tree Tψ is well
founded, or equivalently, KB(Tψ) is a well ordering.

In §V.2 we define the formal system ATR0 and observe that it is strong
enough to accommodate a good theory of countable ordinal numbers, en-
coded by countable well orderings. In §V.3 we show that ATR0 is also strong
enough to accommodate a good theory of Borel and analytic sets in the
Cantor space 2N. In this setting, the well known theorems of Souslin (“B is
Borel if and only if B and its complement are analytic”) and Lusin (“any
two disjoint analytic sets can be separated by a Borel set”) are proved,
along with a lesser known closure property of Borel sets (“the domain of
a single-valued Borel relation is Borel”). In §V.4 we advance our exam-
ination of classical descriptive set theory by showing that the perfect set
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theorem (“every uncountable analytic set has a nonempty perfect subset”)
is provable in ATR0. This last result uses an interesting technique known
as the method of pseudohierarchies, or “nonstandard H-sets”, i.e., arith-
metical transfinite recursion along countable linear orderings which are not
well orderings.

In §V.5, most of the descriptive set-theoretic theorems mentioned in
§§V.3 and V.4 are reversed, i.e., shown to be equivalent over RCA0 to
ATR0. The reversals are based on our characterization of ATR0 in terms
of Σ1

1 separation. See also §I.11. We also present the following alternative
characterization: ATR0 is equivalent to the assertion that, for any sequence
of trees 〈Ti : i ∈ N〉, if each Ti has at most one path, then the set {i : Ti
has a path} exists. This equivalence is based on a sharpening of the Kleene
normal form theorem.

We have already observed that the development of mathematics within
ATR0 seems to go hand in hand with a good theory of countable ordinal
numbers. In §V.6 we sharpen this observation by showing that ATR0 is
actually equivalent over RCA0 to a certain statement which is obviously
indispensable for any such theory. The statement in question is, “any two
countable well orderings are comparable”, abbreviated CWO. The proof
that CWO implies ATR0 is rather technical and uses what are called double
descent trees.

In §V.7 we return to the study of countable Abelian groups (see also
§§III.6 and VI.4). We show that ATR0 is needed to prove Ulm’s theorem for
reduced Abelian p-groups, as well as some consequences of Ulm’s theorem.
The reversals use the fact that ATR0 is equivalent to CWO. Ulm’s theorem
is of interest with respect to our Main Question, because it seems to be one
of the few places in analysis or algebra where transfinite recursion plays an
apparently indispensable role.

In §§V.8 and V.9 we consider two other topics in ordinary mathematics
where strong set existence axioms arise naturally. These are (1) infinite
game theory, and (2) the Ramsey property.

The games considered in §V.8 are Gale/Stewart games, i.e., infinite
games with perfect information. A payoff set S ⊆ NN is specified. Two
players take turns choosing nonnegative integers m1, n1, m2, n2, . . . , with
full disclosure. The first player is declared the winner if the infinite sequence
〈m1, n1,m2, n2, . . . 〉 belongs to S. Otherwise the second player is declared
the winner. Such a game is said to be determined if one player or the other
has a winning strategy. Letting S be any class of payoff sets, S-determinacy
is the assertion that all games of this class are determined. It is well known
that strong set existence axioms are correlated to determinacy for large
classes of games. A striking result of this kind is due to Friedman [66, 71],
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who showed that Borel determinacy requires ℵ1 applications of the power
set axiom.

We show in §V.8 that ATR0 proves open determinacy, i.e., determinacy
for all games in which the payoff set S ⊆ NN is open. This result uses pseu-
dohierarchies, just as for the perfect set theorem. We also obtain a reversal,
showing that open determinacy or even clopen determinacy is equivalent to
ATR0 over RCA0. Our argument for the reversal proceeds via CWO. Along
the way we obtain the following preliminary result: determinacy for games
of length 3 is equivalent to ACA0 over RCA0.

As a consequence of open determinacy in ATR0, we obtain the following
interesting theorem: ATR0 proves the Σ1

1 axiom of choice. (More informa-
tion on Σ1

1 choice is in §VIII.4.)
In §V.9 we deal with a well known topological generalization of Ramsey’s

theorem. Let [N]N be the Ramsey space, i.e., the space of all infinite subsets
of N. Note that [N]N is canonically homeomorphic to the Baire space NN

via Φ : [N]N ∼= NN defined by

Φ−1(f) = {f(0) + 1 + · · · + 1 + f(n) : n ∈ N} .

A set S ⊆ [N]N is said to have the Ramsey property if there exists X ∈ [N]N

such that either [X ]N ⊆ S or [X ]N ∩ S = ∅. (Here [X ]N denotes the set of
infinite subsets of X .) The main result of §V.9 is that ATR0 is equivalent
over RCA0 to the open Ramsey theorem, i.e., the assertion that every open
subset of [N]N has the Ramsey property. The clopen Ramsey theorem is
also seen to be equivalent over RCA0 to ATR0.

Chapter VI: Π1
1-CA0. Chapter VI is concerned with mathematics and

Reverse Mathematics with respect to the formal system Π1
1-CA0, consist-

ing of ACA0 plus Π1
1 comprehension. We show that Π1

1-CA0 is just strong
enough to prove several theorems of ordinary mathematics. It is interest-
ing to note that several of these ordinary mathematical theorems, which
are equivalent to Π1

1 comprehension, have “ATR0 counterparts” which are
equivalent to arithmetical transfinite recursion. Thus chapter VI on Π1

1-CA0

goes hand in hand with chapter V on ATR0.
In §§VI.1 through VI.3 we consider several well known theorems of clas-

sical descriptive set theory in Π1
1-CA0. We begin in §VI.1 by showing that

the Cantor/Bendixson theorem (“every closed set consists of a perfect set
plus a countable set”) is equivalent to Π1

1 comprehension. This result for
the Baire space NN and the Cantor space 2N is closely related to an anal-
ysis of trees in N<N and 2<N, respectively. The ATR0 counterpart of the
Cantor/Bendixson theorem is, of course, the perfect set theorem (§V.4).

In §VI.2 we show that Kondo’s theorem (coanalytic uniformization) is
provable in Π1

1-CA0 and in fact equivalent to Π1
1 comprehension over ATR0.
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The reversal uses an ATR0 formalization of Suzuki’s theorem on Π1
1 single-

tons.
In §VI.3 we consider Silver’s theorem: For any coanalytic equivalence re-

lation with uncountably many equivalence classes, there exists a nonempty
perfect set of inequivalent elements. We show that a certain carefully stated
reformulation of Silver’s theorem is provable in ATR0. (See lemma VI.3.1.
The proof of this lemma is somewhat technical and uses formalized hy-
perarithmetical theory (§VIII.3) as well as Gandy forcing over countable
coded ω-models.) We then use this ATR0 result to show that Silver’s the-
orem itself is provable in Π1

1-CA0. We also present a reversal showing that
Silver’s theorem specialized to ∆0

2 equivalence relations is equivalent to Π1
1

comprehension over RCA0 (theorem VI.3.6).
In §VI.4 we resume our study of countable algebra. We show that Π1

1

comprehension is equivalent over RCA0 to the assertion that every countable
Abelian group can be written as the direct sum of a divisible group and a
reduced group. The ATR0 counterpart of this assertion is Ulm’s theorem
(§V.7). Combining these results, we see that Π1

1-CA0 is just strong enough
to develop the classical structure theory of countable Abelian groups as
presented in, for instance, Kaplansky [136].

In §§VI.5 and VI.6 we resume our study of determinacy and the Ramsey
property. We show that Π1

1 comprehension is just strong enough to prove
Σ0

1∧Π0
1 determinacy and the ∆0

2 Ramsey theorem. The ATR0 counterparts
of these results are, of course, Σ0

1 determinacy (i.e., open determinacy)
and the Σ0

1 Ramsey theorem (i.e., the open Ramsey theorem). Our proof
technique in §VI.6 uses countable coded β-models (§VII.2).

Section VI.7 serves as an appendix to §§VI.5 and VI.6. In it we re-
mark that stronger forms of Ramsey’s theorem and determinacy require
stronger set existence axioms. For instance, the ∆1

1 Ramsey theorem (i.e.,
the Galvin/Prikry theorem) and ∆0

2 determinacy each require Π1
1 transfi-

nite recursion (theorem VI.7.3). Moreover, there are yet stronger forms of
Ramsey’s theorem and determinacy which go beyond Z2 (remarks VI.7.6
and VI.7.7).

Note: The results in §VI.7 are stated without proof but with appropriate
references to the published literature.

This completes our summary of part A.

Part B: Models of Subsystems of Z2. Part B is a fairly thorough
study of metamathematical properties of subsystems of Z2. We consider
not only the five basic systems RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0 but
also many other systems, including ∆1

k-CA0 (∆1
k comprehension), Π1

k-CA0

(Π1
k comprehension), Σ1

k-AC0 (Σ1
k choice), Σ1

k-DC0 (Σ1
k dependent choice),

Π1
k-TR0 (Π1

k transfinite recursion), and Π1
k-TI0 (Π1

k transfinite induction),
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for arbitrary k in the range 1 ≤ k ≤ ∞. Table 4 lists these systems in order
of increasing logical strength, also known as consistency strength.

We have found it convenient to divide the metamathematical material
of part B into three chapters dealing with β-models, ω-models, and non-
ω-models respectively. This threefold partition is perhaps somewhat mis-
leading, and there are many cross-connections among the three chapters.
This is mostly because the chapters which are ostensibly about β- and ω-
models actually present their results in greater generality, so as to apply
also to β- and ω-submodels of a given model, which need not itself be a
β- or ω-model. Table 4 indicates where the main results concerning β-, ω-
and non-ω-models of the various systems may be found.

Chapter VII: β-models. Recall from definition I.5.3 that a β-model is
an ω-modelM such that for any arithmetical formula θ(X) with parameters
from M , if ∃X θ(X) then (∃X ∈M) θ(X). Such models are of importance
because the concept of well ordering is absolute to them.

Throughout chapter VII, we find it convenient to consider a more general
notion: M is a β-submodel of M ′ if M is a submodel of M ′ and, for all
arithmetical formulas θ(X) with parameters from M , M |= ∃X θ(X) if and
only if M ′ |= ∃X θ(X). Thus a β-model is the same thing as a β-submodel
of the intended model P (ω).

Section VII.1 is introductory in nature. In it we characterize β-models of
Π1

1-CA0 in terms of familiar recursion-theoretic notions. Namely, M is a β-
model of Π1

1-CA0 if and only if M is closed under relative recursiveness and
the hyperjump. We also obtain the obvious generalization to β-submodels.
This is based on a formalized ACA0 version of the Kleene basis theorem,
according to which the sets recursive in HJ(X) form a basis for predicates
which are arithmetical in X , provided HJ(X) exists.

In §VII.2 we consider countable coded β-models, i.e., β-models of the
form M = {(W )n : n ∈ N} where W ⊆ N and (W )n = {m : (m,n) ∈ W}.
Within ACA0 we define the notion of satisfaction for such models, and we
prove within ACA0 that every such model satisfies ATR0 and all instances
of the transfinite induction scheme, Π1

∞-TI0, given by

∀X(WO(X) → TI(X,ϕ))

where ϕ is an arbitrary L2-formula. Here WO(X) says that X is a count-
able well ordering, and TI(X,ϕ) expresses transfinite induction along X
with respect to ϕ. We also prove within ACA0 that if HJ(X) exists then
there is a countable coded β-model M ≤T HJ(X) such that X ∈M . These
considerations have a number of interesting consequences: (1) Π1

∞-TI0 in-
cludes ATR0; (2) Π1

∞-TI0 is not finitely axiomatizable; (3) there exists a
β-model of Π1

∞-TI0 which is not a model of Π1
1-CA0; (4) Π1

1-CA0 proves the
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Table 4. Models of subsystems of Z2.

β-models ω-models non-ω-models

RCA0 VIII.1 IX.1

WKL0 VIII.2; see note 1 IX.2–IX.3

Π0
1-AC0 ” ”

Π0
1-DC0 ” ”

strong Π0
1-DC0 ” ”

ACA0 VIII.1; see note 2 IX.1, IX.4.3–IX.4.6

∆1
1-CA0 VIII.4; see note 2 IX.4.3–IX.4.6

Σ1
1-AC0 ” ”

Σ1
1-DC0 VIII.4–VIII.5; notes 2, 3

Π1
1-TI0 ”

ATR0 VII.2–VII.3, VIII.6 VIII.5–VIII.6; note 2 IX.4.7

Π1
2-TI0 VII.2.26-VII.2.32 see note 2

Π1
∞-TI0 VII.2.14-VII.2.25 VIII.5.1-VIII.5.10; note 2

strong Σ1
1-DC0 VII.6–VII.7 see notes 2 and 4 IX.4.8–IX.4.10

Π1
1-CA0 VII.1–VII.5, VII.7 ” ”

∆1
2-CA0 VII.5–VII.7 ” ”

Σ1
2-AC0 VII.6 ” ”

Σ1
2-DC0 ” ”

Π1
1-TR0 VII.1.18, VII.5.20, VII.7.12 VIII.4.24; see note 2

strong Σ1
2-DC0 VII.6–VII.7 see notes 2 and 4 IX.4.8–IX.4.14

Π1
k+2-CA0 VII.5–VII.7 see note 2 ”

∆1
k+3-CA0 ” ” ”

Σ1
k+3-AC0 VII.6 ” ”

Σ1
k+3-DC0 ” ”

Π1
k+2-TR0 VII.5.20, VII.7.12 VIII.4.24; see note 2

strong Σ1
k+3-DC0 VII.6–VII.7 see note 2 IX.4.8–IX.4.14

Π1
∞-CA0 VII.5–VII.7 ”

Σ1
∞-AC0 VII.6–VII.7 ”

Σ1
∞-DC0 ” ”

Notes:

1. Each of Π0
1-AC0 and Π0

1-DC0 and strong Π0
1-DC0 is equivalent to WKL0. See

lemma VIII.2.5.
2. The ω-model incompleteness theorem VIII.5.6 applies to any system S ⊇

ACA0. The ω-model hard core theorem VIII.6.6 applies to any system S ⊇

weak Σ1
1-AC0. Quinsey’s theorem VIII.6.12 applies to any system S ⊇

ATR0.
3. Π1

1-TI0 is equivalent to Σ1
1-DC0. See theorem VIII.5.12.

4. Σ1
2-AC0 is equivalent to ∆1

2-CA0. Σ1
2-DC0 is equivalent to ∆1

2-CA0 plus Σ1
2

induction. Strong Σ1
1-DC0 and strong Σ1

2-DC0 are equivalent to Π1
1-CA0 and

Π1
2-CA0, respectively. See remarks VII.6.3–VII.6.5 and theorem VII.6.9.
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consistency of Π1
∞-TI0. We also obtain some technical results characterizing

Π1
2 sentences that are provable in Π1

∞-TI0 and in Π1
2-TI0.

In §VII.3 we introduce set-theoretic methods. We employ the language
Lset = {∈,=} of Zermelo/Fraenkel set theory. Of key importance is an
Lset-theory ATR

set
0 , among whose axioms are the Axiom of Countability,

asserting that all sets are hereditarily countable, and Axiom Beta, assert-
ing that for any regular (i.e., well founded) binary relation r there exists a
collapsing function, i.e., a function f such that f(u) = {f(v) : 〈v, u〉 ∈ r}
for all u ∈ field(r). By using well founded trees to encode hereditarily
countable sets, we define a close relationship of mutual interpretability be-
tween ATR0 and ATR

set
0 . Under this interpretation, Σ1

k+1 formulas of L2

correspond to Σset
k formulas of Lset (theorem VII.3.24). Thus any formal

system T0 ⊇ ATR0 in L2 is seen to have a set-theoretic counterpart T set
0 in

Lset (definition VII.3.33). We point out that several familiar subsystems
of Z2 have elegant characterizations in terms of their set-theoretic coun-
terparts. For instance, the principal axiom of Π0

∞-TI
set
0 is the ∈-induction

scheme, and the principal axiom of Σ1
2-AC

set
0 is Σset

1 collection.
In §VII.4 we explore Gödel’s theory of constructible sets in a form ap-

propriate for the study of subsystems of Z2. We begin by defining within
ATR

set
0 the inner model Lu of sets constructible from u, where u is any

given nonempty transitive set. After that, we turn to absoluteness results.
We prove within Π1

1-CA
set
0 that the formula “r is a regular relation” is

absolute to Lu. This fact is used to prove Π1
1-CA

set
0 versions of the well

known absoluteness theorems of Shoenfield and Lévy. We consider the in-
ner models L(X) and HCL(X) of sets that are constructible from X and
hereditarily constructibly countable from X , respectively, where X ⊆ ω. We
prove within Π1

1-CA
set
0 that HCL(X) satisfies Π1

1-CA
set
0 plus V = HCL(X),

and that Σ1
2 and Σset

1 formulas are absolute to HCL(X). We prove within
ATR

set
0 that if HCL(X) 6= L(X) then HCL(X) satisfies Π1

∞-CA
set
0 .

In §§VII.5, VII.6 and VII.7 we apply our results on constructible sets to
the study of β-models of subsystems of second order arithmetic which are
stronger than Π1

1-CA0.
Section VII.5 is concerned with strong comprehension schemes. The main

result is that if T0 is any one of the systems Π1
1-CA0, ∆1

2-CA0, Π1
2-CA0,

∆1
3-CA0, . . . , then T0 implies its own relativization to the inner models

L(X) ∩ P (N), X ⊆ N. This has several interesting consequences: (1)
T0 +∃X ∀Y (Y ∈ L(X)) is conservative over T0 for Π1

4 sentences; (2) T0 has
a minimum β-model, and this minimum β-model is of the form Lα ∩ P (ω)
where α is an appropriately chosen countable ordinal. (These minimum
β-models and their corresponding ordinals turn out to be distinct from one
another; see §VII.7.) We also present generalizations involving minimum
β-submodels of a given model.
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Section VII.6 is concerned with several strong choice schemes, i.e., in-
stances of the axiom of choice expressible in the language of second order
arithmetic. Among the schemes considered are Σ1

k choice

∀n ∃Y η(n, Y ) → ∃Z ∀n η(n, (Z)n) ,

Σ1
k dependent choice

∀n ∀X ∃Y η(n, Y ) → ∃Z ∀n η(n, (Z)n, (Z)n) ,

and strong Σ1
k dependent choice

∃Z ∀n ∀Y (η(n, (Z)n, Y ) → η(n, (Z)n, (Z)n)) .

The corresponding formal systems are known as Σ1
k-AC0, Σ1

k-DC0, and
strong Σ1

k-DC0, respectively. The case k = 2 is somewhat special. We show
that ∆1

2 comprehension implies Σ1
2 choice, and even Σ1

2 dependent choice
provided Σ1

2 induction is assumed. We also show that strong Σ1
2 dependent

choice is equivalent to Π1
2 comprehension. These equivalences for k = 2

are based on the fact that Σ1
2 uniformization is provable in Π1

1-CA0. Two
proofs of this fact are given, one via Kondo’s theorem and the other via
Shoenfield absoluteness.

For k ≥ 3 we obtain similar equivalences under the additional assumption
∃X ∀Y (Y ∈ L(X)), via Σ1

k uniformization. We then apply our conservation
theorems of the previous section to see that, for each k ≥ 3, Σ1

k choice
and strong Σ1

k dependent choice are conservative for Π1
4 sentences over

∆1
k comprehension and Π1

k comprehension, respectively. Other results of a
similar character are obtained. The case k = 1 is of a completely different
character, and its treatment is postponed to §VIII.4.

Section VII.7 begins by generalizing the concept of β-model to βk-model,
i.e., an ω-model M such that all Σ1

k formulas with parameters from M are
absolute to M . (Thus a β1-model is the same thing as a β-model.) It is
shown that, for each k ≥ 1,

∀X ∃M (X ∈M ∧M is a countable coded βk-model)

is equivalent to strong Σ1
k dependent choice. This implies a kind of βk-model

reflection principle (theorem VII.7.6). Combining this with the results of
§§VII.5 and VII.6, we obtain several noteworthy corollaries, e.g., the fact
that ∆1

k+1-CA0 proves the existence of a countable coded β-model of Π1
k-

CA0 which in turn proves the existence of a countable coded β-model of
∆1
k-CA0. From this it follows that the minimum β-models of Π1

1-CA0, ∆1
2-

CA0, Π1
2-CA0, ∆1

3-CA0, . . . are all distinct.

Chapter VIII: ω-models. The purpose of chapter VIII is to study
ω-models of various subsystems of Z2. We focus primarily on the five
basic systems: RCA0, WKL0, ACA0, ATR0, Π1

1-CA0. We note that each
of these systems is finitely axiomatizable. We also obtain some general
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results about fairly arbitrarily L2-theories, which may be stronger than
Π1

1-CA0 and need not be finitely axiomatizable. Many of our results on ω-
models are formulated more generally, so as to apply also to ω-submodels
of a given non-ω-model.

Section VIII.1 is introductory in nature. We characterize models of RCA0

and ACA0 in terms of Turing reducibility and the Turing jump operator. We
show that the minimum ω-models of RCA0 and ACA0 are REC = {X : X
is recursive} and ARITH = {X : X is arithmetical} respectively. We apply
the strong soundness theorem and countable coded ω-models to show that
ATR0 proves the consistency of ACA0, which in turn proves the consistency
of RCA0.

In §VIII.2 we consider models of WKL0. We begin by showing that WKL0

proves strong Π0
1 dependent choice, which in turn implies the existence of a

countable coded strict β-model. Such a model necessarily satisfies WKL0, so
we are surprisingly close to asserting that WKL0 proves its own consistency
(see however remark VIII.2.14). In particular, ACA0 actually does prove the
consistency of WKL0, via countable coded ω-models (corollary VIII.2.12).
Moreover, WKL0 has no minimal ω-model (corollary VIII.2.8).

The rest of §VIII.2 is concerned with the basis problem: Given an infi-
nite recursive tree T ⊆ 2<ω, to find a path through T which is in some
sense “close to being recursive.” We obtain three results, the low basis
theorem, the almost recursive basis theorem, and the GKT basis theorem,
which provide various solutions of the basis problem. They also imply the
existence of countable ω-models of WKL0 with various properties (theorems
VIII.2.17, VIII.2.21, VIII.2.24). In particular, REC is the intersection of
all ω-models of WKL0 (corollary VIII.2.27).

In §VIII.3 we develop the technical machinery of formalized hyperarith-
metical theory. We define the H-sets HX

a for X ⊆ N and a ∈ OX . We
note that ATR0 is equivalent to ∀X ∀a (O(a,X) → HX

a exists). We prove
ATR0 versions of the major classical results: invariance of Turing degree
(VIII.3.13); ∆1

1 = HYP (VIII.3.19); the theorem on hyperarithmetical quan-
tifiers (VIII.3.20, VIII.3.27). The latter result involves pseudohierarchies.
An unorthodox feature of our exposition is that we do not use the recursion
theorem.

In §VIII.4 we use the machinery of §VIII.3 to study ω-models of the
systems ∆1

1-CA0, Σ1
1-AC0, and Σ1

1-DC0. We also consider a closely re-
lated system known as weak Σ1

1-AC0. We show that HYP = {X : X is
hyperarithmetical} is the minimum ω-model of each of these four systems.
The proof of this result uses Π1

1 uniformization. Although the main re-
sults of classical hyperarithmetical theory are provable in ATR0 (§VIII.3),
the existence of the ω-model HYP is not (remark VIII.4.4). Nevertheless,
we show that ATR0 proves the existence of countable coded ω-models of
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Σ1
1-AC0 etc. (theorem VIII.4.20). Indeed, ATR0 proves that HYP is the

intersection of all such ω-models (theorem VIII.4.23). In particular, ATR0

proves the consistency of Σ1
1-AC0 etc.

In §VIII.5 we present two surprising theorems of Friedman which apply
to fairly arbitrary L2-theories S ⊇ ACA0. They are: (1) If S is recursively
axiomatizable and has an ω-model, then so does S ∧ ¬∃ countable coded
ω-model of S. (2) If S is finitely axiomatizable, then Π1

∞-TI0 proves S → ∃
countable coded ω-model of S. Note that (1) is an ω-model incompleteness
theorem, while (2) is an ω-model reflection principle. Combining (1) and
(2), we see that if S is finitely axiomatizable and has an ω-model, then
there exists an ω-model of S which is does not satisfy Π1

∞-TI0 (corollary
VIII.5.8).

At the end of §VIII.5 we prove that Π1
1 transfinite induction is equiva-

lent to ω-model reflection for Σ1
3 formulas, which is equivalent to Σ1

1 de-
pendent choice (theorem VIII.5.12). From this it follows that there exists
an ω-model of ATR0 in which Σ1

1-DC0 fails (theorem VIII.5.13). This is in
contrast to the fact that ATR0 implies Σ1

1-AC0 (theorem V.8.3).
Section VIII.6 presents several hard core theorems. We show that any

model M of ATR0 has a proper β-submodel; indeed, by corollary VIII.6.10,
HYPM is the intersection of all such submodels. We also prove the following
theorem of Quinsey: if M is any ω-model of a recursively axiomatizable
L2-theory S ⊇ ATR0, then M has a proper submodel which is again a
model of S (theorem VIII.6.12). Indeed, HYPM is the intersection of all
such submodels (exercise VIII.6.23). In particular, no such S has a minimal
ω-model.

Chapter IX: non-ω-models. In chapter IX we study non-ω-models of
various subsystems of Z2. Section IX.1 deals with RCA0 and ACA0. Sections
IX.2 and IX.3 are concerned with WKL0. Section IX.4 is concerned with
various systems including Π1

k-CA0 and Σ1
k-AC0, k ≥ 0. For most of the

results of chapter IX, it is essential that our systems contain only restricted
induction and not full induction. Many of the results can be phrased as
conservation theorems. The methods of §§IX.3 and IX.4 depend crucially
on the existence of nonstandard integers.

We begin in §IX.1 by showing that every model M of PA can be ex-
panded to a model of ACA0. The expansion is accomplished by letting
SM = Def(M) = {X ⊆ |M | : X is first order definable over M allowing
parameters from M}. From this it follows that PA is the first order part of
ACA0, and that ACA0 has the same consistency strength as PA. We then
prove analogous results for RCA0. Namely, every model M of Σ0

1-PA can
be expanded to a model of RCA0; the expansion is accomplished by letting
SM = ∆0

1-Def(M) = {X ⊆ |M | : X is ∆0
1 definable over M allowing pa-

rameters from M}. The delicate point of this argument is to show that the
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expansion preserves Σ0
1 induction. It follows that Σ0

1-PA is the first order
part of RCA0, and that RCA0 has the same consistency strength as Σ0

1-PA.
In §IX.2 we show that WKL0 has the same first order part and consistency

strength as RCA0. This is based on the following model-theoretic result due
to Harrington: Given a countable model M of RCA0, we can construct a
countable model M ′ of WKL0 such that M is an ω-submodel of M ′. The
model M ′ is obtained from M by iterated forcing, where at each stage we
force with trees to add a generic path through a tree. Again, the delicate
point is to verify that Σ0

1 induction is preserved. This model-theoretic
result implies that WKL0 is conservative over RCA0 for Π1

1 sentences.
In §IX.3 we introduce the well known formal system PRA of primitive

recursive arithmetic. This theory of primitive recursive functions contains
a function symbol and defining axioms for each such function. We prove
the following result of Friedman: WKL0 has the same consistency strength
as PRA and is conservative over PRA for Π0

2 sentences. Our proof uses a
model-theoretic method due to Kirby and Paris, involving semiregular cuts.
The foundational significance of PRA is that it embodies Hilbert’s concept of
finitism. Therefore, Friedman’s theorem combined with the mathematical
work of chapters II and IV shows that a significant portion of mathematical
practice is finitistically reducible. Thus we have a partial realization of
Hilbert’s program; see also remark IX.3.18.

In §IX.4 we use recursively saturated models to prove some surprising
conservation theorems for various subsystems of Z2. The main results may
be summarized as follows: For each k ≥ 0, Σ1

k+1-AC0 has the same consis-

tency strength as Π1
k-CA0 and is conservative over Π1

k-CA0 for Π1
l sentences,

l = min(k + 2, 4). These results are due to Barwise/Schlipf, Feferman,
Friedman, and Sieg. We also obtain a number of related results.

Section IX.5 is a very brief discussion of Gentzen-style proof theory, with
emphasis on provable ordinals of subsystems of Z2.

This completes our summary of part B.

Appendix: Chapter X: Additional Results. Chapter X is an ap-
pendix in which some additional Reverse Mathematics results and problems
are presented without proof but with references to the published literature.

In §X.1 we consider measure theory in subsystems of Z2. We introduce
the formal system WWKL0 consisting of RCA0 plus weak weak König’s
lemma and show that it is just strong enough to prove several measure
theoretic results, e.g., the Vitali covering theorem. We also consider mea-
sure theory in stronger systems such as ACA0.

In §X.2 we mention some additional results on separable Banach spaces
in subsystems of Z2. We note that WKL0 is just strong enough to prove
Banach separation. We develop various notions related to the weak-∗ topol-
ogy on X∗, the dual of a separable Banach space. We show that Π1

1-CA0 is
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just strong enough to prove the existence of the weak-∗-closed linear span
of a countable set Y in X∗.

In §X.3 we consider countable combinatorics in subsystems of Z2. We
note that Hindman’s theorem lies between ACA0 and a slightly stronger
system, ACA

+
0 . We mention a similar result for the closely related Auslan-

der/Ellis theorem of topological dynamics. In the area of matching theory,
we show that the Podewski/Steffens theorem (“every countable bipartite
graph has a König covering”) is equivalent to ATR0. At the end of the
section we consider well quasiordering theory, noting for instance that the
Nash-Williams transfinite sequence theorem lies between ATR0 and Π1

1-CA0.
In §X.4 we initiate a project of weakening the base theory for Reverse

Mathematics. We introduce a system RCA
∗
0 which is essentially RCA0 with

Σ0
1 induction weakened to Σ0

0 induction. We also introduce a system WKL
∗
0

consisting of RCA
∗
0 plus weak König’s lemma. We present some conserva-

tion results showing in particular that RCA
∗
0 and WKL

∗
0 have the same

consistency strength as EFA, elementary function arithmetic. We note that
several theorems of countable algebra are equivalent over RCA

∗
0 to Σ0

1 in-
duction. Among these are: (1) every polynomial over a countable field has
an irreducible factor; (2) every finitely generated vector space over Q has
a basis.

I.14. Conclusions

In this chapter we have presented and motivated the main themes of the
book, including the Main Question (§§I.1, I.12) and Reverse Mathematics
(§I.9). A detailed outline of the book is in section I.13. The five most
important subsystems of second order arithmetic are RCA0, WKL0, ACA0,
ATR0, Π1

1-CA0. Part A of the book consists of chapters II through VI and
focuses on the development of mathematics in these five systems. Part B
consists of chapters VII through IX and focuses on models of these and
other subsystems of Z2. Additional results are presented in an appendix,
chapter X.
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locally compact, 91
locally finite, 92, 416

local ring, 121–122
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unpublished, 234, 315

Marcone, IX, 222, 229, 238, 410, 418, 419

Marker, IX, 239

Markov/Kakutani fixed point theorem, 50,
165–166

marriage theorem, 416

Martin, IX, 249

Martin-Löf, 407

matching, 415–416

perfect, 416

mathematical logic, 1, 47

mathematics

computable, 26

constructive, VIII, 32, 33, 81, 91, 141,
143, 405

constructivism, 44

core, VIII

countable, 1

impredicative, 23, 44

non-set-theoretic, 1

nonconstructive, 38

ordinary, 1, 9, 14, 34

table, 46

predicative, 42, 44, 229, 400, 414

recursive, 26, 32

reverse, 26, 32–36, 45

set-theoretic, 1, 2, 14

uncountable, 1

within ACA0, 9–16, 41, 47–48, 61, 109–
130, 410, 413–416, 418–420

table, 46

within ATR0, 41, 50–52, 61, 173–223,
410, 415–416, 418–419

table, 46

within Π1
1-CA0, 19–23, 52–53, 60, 225–

249, 412–413, 418–419

table, 46

within RCA0, 27–33, 38, 45–47, 61, 65–
107, 420–421

table, 46

within WKL0, 38, 48–50, 60, 131–171,
410, 416

table, 46
Mathias, IX, 218, 248
MathText, X
maximal ideal, 13, 35, 48, 49, 120–122
maximum principle, 31, 32, 36, 37, 49, 91,

137–139

McAllister, IX
McAloon, IX, 42, 184, 196, 222, 283, 346,

400, 416
McNicholl, IX
measurable function, 408
measurable set, 408–409

regularity of, 410

measure
Borel, 142, 405–410
fair coin, 192, 406, 408
Haar, 410
Lebesgue, 406

measure theory, 60, 142–143, 405–410
Mendelson, 9
Metakides, IX, 48, 119, 149, 170
metric space

compact, 35, 37, 47, 49, 112–113, 137–
143

complete separable, 1, 14, 16, 28, 46, 81–
95, 228

locally compact, 91
Mileti, IX
Miller, IX, 419
Mines, 33
minimal bad sequence lemma, 418

minimal prime ideal, 122
minimization, 72
minimum β-model, 41, 56, 57

nonexistence of, 364–365
of ∆1

k
-CA0, 304–305, 313

of Π1
1-CA0, 18, 254–258

of Π1
k
-CA0, 18, 304–305, 313

of Π1
k
-TR0, 305, 319

ordinal of, 319
minimum ω-model, 9, 18, 25, 41

nonexistence of, 365–370
of ACA0, 110, 325
of ∆1

1-CA0, 352
of RCA0, 323
of Σ1

1-AC0, 58, 352

of Σ1
1-DC0, 352

Mints, IX
Mirsky, 130, 415
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models, see also β-models, ω-models, non-
ω-models

for L1

intended, 371

for L2, 3–4

intended, 4, 5

for Lset, 280

intended, 269, 284, 285

for predicate calculus, 95

for propositional logic, 145

of ACA0, 110, 322–326, 372–375, 393–
396

of ATR0, 258, 261–262, 269–282, 396

of ATRset
0 , 269–282

of ∆1
1-CA0, 346–355, 393–396

of ∆1
k
-CA0, 298–305, 318–319, 396–398

of Π1
1-CA0, 254–258, 397

of Π1
k
-CA0, 298–305, 318–319, 398

of Π1
∞-TI0, 264–267

of PRA, 383, 385–390

of RCA0, 322–326, 375–377, 386–390

of Σ1
1-AC0, 346–355, 393–396

of Σ1
1-DC0, 346–355

of Σ1
2-CA0, 397

of Σ1
k
-AC0, 305–315, 396–398

of Σ1
k
-DC0, 305–319

of strong Σ1
k
-DC0, 315–319

of subsystems of Z2, 5, 53–60

of T0, 282–283

of T set
0 , 282–283

of weak Σ1
1-AC0, 350–355

of WKL0, 326–334, 377–381, 386–390

table, 55

transitive, 269, 272, 280

model theory

recursive, 99

modulus of uniform continuity, 49, 137–
138, 141–143

Möllerfeld, IX

monotone convergence theorem, 111, 409

monotone function, 142

on the ordinals, 400

Montalban, IX

Morley, 99

Moschovakis, IX, 179, 217, 234, 249

Mostowski, 99, 283, 345

Mostowski collapsing lemma, 283

Müller, IX

Mummert, IX

Munich, X

Murawski, IX

Mycielski, IX

Mytilinaios, IX, 87

N (the natural numbers), 9–11

N<N (= Seq), 21, 70

NN (Baire space), 21, 84, 201
[N]N (Ramsey space), 52

Nash-Williams, 61, 418–419

National Science Foundation, X
natural number, 9, 10

neighborhood, 15, 22, 412

neighborhood condition, 15
Nerode, IX, 48, 119, 149, 170

nested interval completeness, 46, 79

Nies, IX
node

end, 21, 184

interior, 184
non-ω-models, 59–60, 371–402

of ACA0, 372–375

of ATR0, 396
of ∆1

k
-CA0, 398

of Π1
1-CA0, 397

of Π1
k
-CA0, 398

of RCA0, 375–377
of Σ1

1-AC0, 393–396

of Σ1
2-CA0, 397

of Σ1
k
-AC0, 396–398

of WKL0, 377–381

table, 55

nonconstructive mathematics, 38
nonstandard, 51, 59

normal form (algebraic), 208, 209, 239, 240

normal form theorem, 50, 51, 71, 175–177,
198–199, 219, 226, 238, 241, 249, 255,
279, 336, 341, 359, 363, 366, 378

NSF, X

number quantifier, 3, 6, 7

number systems, 10–13, 45, 75–81
number theory, 1

number variable, 2, 7, 8, 24

numerical term, 2, 24, 420

O(a, X), 335

O+(a, X), 335

OX , 335
OX

+ , 335

OF, 101

ω, 2, 9, 271, 414
ωω , 399–400, 417–418
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ω-models, 4, 6, 57–59, 321–370

coded, 259, 322
definition of, 254
finite, 367

hard core of, 334, 364
incompleteness, 59, 357–359
intersection of, 58, 59, 334, 364

minimum, 9, 18, 25, 41
of ACA0, 8, 9, 58, 322–326

minimum, 110, 325

of ATR0, 41, 361
of ∆1

1-CA0, 346–355
minimum, 352

of Π1
k
-CA0, 359, 365, 366

of RCA0, 25, 27, 58, 322–326
minimum, 323

of Σ1
1-AC0, 346–355, 416

minimum, 58, 352
of Σ1

1-DC0, 346–355
minimum, 352

of strong systems, 361–370
of weak Σ1

1-AC0, 350–355
of WKL0, 37, 326–334

reflection, 59, 355–362
Σ1

3, 360
table, 55

ω-submodels, 257, 365–370
hard core of, 370
intersection of, 370

ωω , 399–400, 417–418

ωCK
1 , 40, 305, 335

ωX
1 , 335

Omega Group, X
omitting types theorem, 370
open covering, 30, 37, 48, 92, 131–135

open determinacy, 41, 52, 53, 210–217
open mapping theorem, 16, 413
open Ramsey theorem, 52, 53, 217–222

open set, 15, 16, 46, 80, 84
operator

arithmetical, 40

bounded linear, 47, 104–106
continuous linear, 105
hyperjump, see hyperjump

jump, see Turing jump
orderable Abelian group, 148
orderable field, 38, 49, 102, 145–149
ordered field, 29, 101–102, 115

ordinal diagram, 401
ordinal height, 228
ordinal notation, 335

ordinal number, 19, 41, 50, 184, 271

arithmetic, 399
continuous function of, 400–401

provable, 372, 399–401
recursive, 40, 335, 399

ordinary mathematics, 1, 9, 14, 34

table, 46
ord(T0), 399

o(T ), 228
outline of this book, 44–61
overview of this book, VII–VIII, 44

table, 45
Oxford University, X

p-group

Abelian, 20, 41, 206
PA (Peano arithmetic), 8, 26, 59, 374, 400,

see also Z1

and ACA0, 374

Padma, X
pairing function, 10, 68

paracompact, 46, 92, 95
parameter, 3, 5, 7, 25, 39
Paris, X, 60, 75, 130, 386, 391

Parsons, IX, 27, 391
partition of unity, 93

path, 21, 126, 378
Peano, VII
Peano arithmetic, see PA

Peano existence theorem, 15, 50, 159–165
Pennsylvania State University, IX, X

perfect kernel, 21, 22, 226–228
perfect matching, 416
perfect set, 20, 35, 192–195, 227–228, 234–

238

perfect set theorem, 39, 41, 50, 52, 192–
195, 200–202, 234

perfect tree, 21, 35, 192, 226

ϕα(β), 400
Π0

1, 24
universal, 254, 323, 325, 327–331, 336,

338, 341, 360, 395

Π0
1-IND, 25

Π0
1 dependent choice, 58, 327, 334

Π0
1 induction, 25

Π0
1 separation, 148–149

Π0
k
, 27

Π0
k
-IND, 27

Π0
k

induction, 66

Π1
1, 16
and coanalytic sets, 233
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universal, 178

Π1
1-CA0, 16–19, 225–249

and coded β-models, 262–264

and Σ1
2-AC0, 397

β-models of, 18

minimum, 18, 254–258

mathematics within, 19–23, 52–53, 60,
225–249, 412–413, 418–419

table, 46

non-ω-models of, 397

ordinal of, 401

reverse mathematics for, 35, 52–53, 60,
225–249, 412–413, 418–419

Π1
1-CAset

0 , 282, 289–292, 295, 301, 302

Π1
1-TI0, 359–360

Π1
1-TR0, 248–249, 258, 292, 354

Π1
1-TRset

0 , 283, 292

Π1
1 comprehension, 225, see Π1

1-CA0

Π1
1 separation, 201

Π1
1 transfinite induction, 59, 359–360, see

Π1
1-TI0

Π1
1 transfinite recursion, 248, see Π1

1-TR0

Π1
1 uniformization, 58, 229–234, 308, 347

Π1
2-TI0, 56, 268

Π1
2 separation, 312

Π1
k
, 16

universal, 394

Π1
k
-CA0, 17, 27, 298–305

and Σ1
k+1

-AC0, 397–398

β-models of, 318

minimum, 18, 304–305, 313

non-ω-models of, 398

ω-models of, 359

Π1
k
-IND, 27

Π1
k
-TI0, 264, 361

Π1
k
-TR0, 248, 283, 354

β-models of, 319

minimum, 305, 319

Π1
k

comprehension, see Π1
k
-CA0

Π1
k

correctness, 394, 397, 398

Π1
k

transfinite induction, 264, 361, see Π1
k
-

TI0

Π1
k

transfinite recursion, 248, 305, 319, see

Π1
k
-TR0

Π1
∞-CA0, 17

Π1
∞-CAset

0 , 296

Π1
∞-TI0, 54, 59, 264–267, 355–361

not finitely axiomatizable, 267

Π1
∞-TIset0 , 283

Π1
∞ transfinite induction, see Π1

∞-TI0

Picard’s theorem, 50, 163–165

pigeonhole principle, 31
Πset

k
comprehension, 299

Πset
k

formula, 270
Podewski, 415

Podewski/Steffens theorem, 61, 415
Pohlers, X, 44, 401
point, 14, 28, 81

isolated, 20
polar, 412
polynomial, 13, 15, 89

irreducible factors of, 421
roots of, 421

polynomial ring, 99, 418

P (ω), 4
positive cone, 146
Pour-El, IX, 33, 165

power series, 89
power series ring, 418

power set axiom, 52, 238, 249
PRA (primitive recursive arithmetic), 38,

381–391
and WKL0, 389

consistency strength of, 390
definition of, 382
intended model of, 381

predicate calculus, 95, 144–145
predicative mathematics, VIII, 42, 44, 228,

400, 414
predicative reductionism, VIII, 42, 44

preface, VII–VIII
prenex formula, 367
prime ideal, 13, 38, 49, 120, 150–153, 391

minimal, 122
primitive recursion, 10, 11, 31, 45, 72, 75
primitive recursive arithmetic, see PRA

primitive recursive function, 38, 382–383
product set, 10, 71

product space, 82–84
compact, 112–113

projective hierarchy, 17, 211, 278, 283

proof, 95
proof theory, 38, 372, 391, 399–401
proper existence, 269

propositional connectives, 3, 32
propositional logic, 144–145
provability predicate, 95

provable ordinals, 372, 399–401
proximal, 414
pseudohierarchy, 51, 52, 58, 193–196, 212,

222, 335, 344
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pseudometric, 14

Ψ0(Ωω), 401

Ψi(α), 400–401
Pudlák, 9, 27, 75, 377

Q (the rational numbers), 11, 12, 77
Q (Robinson’s system), 97, 99

quantifier, 32
bounded, 24, 65

hyperarithmetical, 58, 335, 342–346

number, 3, 6, 7
set, 3, 6

set-theoretic, 269
quantifier elimination, 47, 102

quasiordering, 417
Quinsey, 59, 370

Quinsey’s theorem, 365–370

quotient ring, 120

R (the real numbers), 12, 13, 77–81

Rabin, 102
radical ideal, 49, 152–153

Radó selection lemma, 129–130
Radon/Nikodym theorem, 410

Raghavan, X

ramified language, 285
Ramsey’s theorem, 35, 48, 52, 127–130,

220, 413, 417

arithmetical, 245–247
Borel, 248

clopen, 217–222

∆0
1, 217–222

∆0
2, 53, 245–247

∆0
k
, 218

∆1
1, 248–249

∆1
2, 249

∆1
k
, 218

open, 53, 217–222
Σ0

1, 217–222

Σ0
k
, 218

Σ0
∞, 245–247

Σ1
1, 248

Σ1
k
, 218

strong forms of, 53, 218, 248–249
Ramsey property, 23, 35, 41, 52, 218, 245–

249
Ramsey scheme, 218

Ramsey space, 52, 217
random real, 407

rank, 285
Rao, IX

Rathjen, IX

rational number, 11, 12, 76
Raymond N. Shibley Foundation, X

RCA0, 24–27, 65–107
and Σ0

1-PA, 377
consistency strength of, 58, 60, 324

finite axiomatizability of, 323
first order part of, 60, 377

mathematics within, 27–33, 38, 45–47,
65–107
table, 46

models of, 322–326

non-ω-models of, 375–377, 386–390
ω-models of, 25, 27, 58, 322–326

minimum, 323
ordinal of, 399
reverse mathematics for, 61, 420–421

RCA∗0 , 61, 420–421
RCOF, 101

realized, 392
real closed field, 101–102

R, 90

real closure, 29, 47, 49, 391
of formally real field, 147–148

of ordered field, 101–102
strong, 47, 115–116

real number, 12, 13, 28, 77

sequence of, 79
real world, 10

REC, 25, 29, 30, 37
hard core of ω-models, 334
minimum ω-model, 323

recurrent, 414
recursion

primitive, 10, 11, 31, 45
transfinite, 20, 22, 51

arithmetical, 39, 40, 179–184
recursion theorem, 58, 345
recursion theory, 8, 9, 24, 25, 27, 254

recursively enumerable set, 73
recursively saturated model, 60, 392

recursiveness
relative, see recursive in

recursive algebra, 28, 102

recursive analysis, 26, 28, 30
recursive comprehension, 24, 65, see also

RCA0

recursive counterexample, 28, 30, 32, 165,
170

recursive enumerability, 8, 24
recursive in, 8, 255, 323
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recursive join, 8

recursive linear ordering, 335
recursive mathematics, 26, 32

recursive model theory, 99
recursive ordinal, 40, 335, 399

recursive set, 323
reduced Abelian group, 20, 35, 41, 206–

210, 239–241
reductionism

finitistic, VIII, 39, 42, 44, 372
predicative, VIII, 42, 44

reflection, 253
β-model, 57, 315–319

ω-model, 59, 355–362
Σ1

3, 360
regularity, 272

axiom of, 272, 283
of bipartite graphs, 416

of measurable sets, 410
Rel, 271

relation, 271
relative hyperarithmeticity, 334–346, see

hyperarithmetical in
relative recursiveness, 255, see recursive in

relativization, 287, 294, 346
Remmel, IX

Ressayre, IX, 283
restricted-β-submodel, 268

restricted-Σ1
1, 268

restricted induction, 371
retract, 155

reverse mathematics, VIII, 26, 32–36, 39,
45

for ACA0, 35, 47–48, 61, 109–130, 410,
413–416, 418–420

for ATR0, 50–52, 61, 173–223, 410, 415–
416, 418–419

for Π1
1-CA0, 35, 52–53, 60, 225–249, 412–

413, 418–419

for RCA0, 61, 420–421
for stronger systems, 248–249

for WKL0, 48–50, 60, 131–171, 410, 416
Reverse Mathematics 2001, VIII
Richards, IX, 33, 165

Richman, 33, 207
Richter, 249

Riemann integral, 37, 49, 140–141, 143
Riesz representation theorem, 406, 410

Robertson, 401, 418
Robinson, 99, 391
Robinson’s system Q, 97, 99

Rogers, IX, 9, 66, 67, 71, 119, 179, 254

Rosenstein, 416

Rota, 165
Rothschild, 130, 414

RΣ1
1, 268

RT (Ramsey’s theorem), 218

rudimentary closure, 270
Ruitenburg, 33

rules

logical, 5
Russell, VII

Sacks, IX, 254, 283, 305, 345, 370, 391, 398
Saint-Raymond, 239

Sami, IX
unpublished, 238

Samuel, 122
satisfaction, 4, 54, 259, 280, 287, 294, 346,

358

for propositional logic, 145

saturated model, 60, 392
Scedrov, IX

Schauder fixed point theorem, 50, 157–159,
165

Schlipf, 60, 398

Schmerl, IX, 399
Schreier, 102, 145

Schütte, IX, 400, 401, 418

Schwartz, 106
Schwichtenberg, IX

Science Research Council, X
Scott, IX, 39, 334

Scott system, 39, 334
second order arithmetic, 6, see Z2

axioms of, 4

language of, 3, see L2

Seetapun, 130

semantics, 3
semiregular cut, 60, 386–389

sentence, 3
with parameters, 3

separable, 1, 14, 15, 28

separation, 23, 41, 50
analytic, 188–190, 196–197

Banach, 411
coanalytic, 191

of convex sets, 411
Π0

1, 148–149

Π1
1, 201

Π1
2, 312

Σ0
1, 42, 49, 146–148, 171
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Σ1
1, 42, 51, 196–197

Σ1
2, 312

Seq (= N<N), 21, 70, 174
Seq0, 210

Seq1, 210
sequence of rational numbers, 12
sequence of real numbers, 13
sequential compactness, 47, 110–114

set
analytic, 22, 41, 50, 173–179, 410

and Σ1
1, 177

countable, 192
arithmetical, 325
basic open, 15, 22, 80
Borel, 22, 23, 41, 50, 184–192, 218

countable, 194
regularity of, 410

bounded-weak-∗ closed, 412

bounded-weak-∗ open, 412
closed, 20, 46, 86, 87, 225, 227

located, 143
coanalytic, 232

and Π1
1, 233

compact, 112–113, 137–143
constructible, 18, 19, 56, 253, 283–298

convex, 411–413
dense open, 80
derived, 20
finite, 69

hyperarithmetical, 40, 41, 341, 346–352
M -coded, 386–387
M -finite, 385–386

measurable, 408–409
open, 15, 16, 46, 80, 84
perfect, 20, 35, 39, 41, 51, 52, 192–195,

227–228, 234–238
recursive, 323

recursively enumerable, 73
weak-∗ closed, 412
weak-∗ open, 412

Zermelo/Fraenkel, 269
set-theoretic counterpart, 56, 299
set-theoretic language, 269
set-theoretic mathematics, 1, 2

set-theoretic methods, 253
set-theoretic quantifier, 269

bounded, 270

set-theoretic variable, 269
set existence axioms, VIII, 2, 6, 23, 34, 248

and determinacy, 51
in ordinary mathematics, 1

table, 45

set quantifier, 3, 6

set theory, 1

axiomatic, 19, 298

descriptive, 19, 22, 23, 50, 52, 173, 176

Zermelo/Fraenkel, 23, 269, 283

set variable, 2, 4, 7, 8

Seymour, 401, 418

Shelah, IX, 239

Shepherdson, IX, 116, 120

Shibley, X

Shioji, IX, 158, 165, 170

Shoenfield, IX, 9, 56, 71, 254, 298, 334

Shoenfield absoluteness theorem, 253, 283,
284, 288–296, 298, 308

Shore, IX, 23, 170, 206, 416, 419

Sieg, IX, 44, 60, 391, 398, 399, 401

Sierpinski, 178

Σ0
1, 24

Σ0
1-CA0, 26

Σ0
1-IND, 25

Σ0
1-PA, 26, 27, 38, 60

first order part of RCA0, 377

first order part of WKL0, 381

Σ0
1-RT, 217–222

Σ0
1 ∧ Π0

1, 241

Σ0
1 bounding, 375, 420

Σ0
1 comprehension, 26, 34, 109

bounded, 45, 49, 73, 420, 421

Σ0
1 definability, 24

Σ0
1 determinacy, 210–217

Σ0
1 induction, 25, 375, 378

Σ0
1 Ramsey theorem, 217–222

Σ0
1 separation, 42, 49, 146–148, 171

Σ0
2 determinacy, 248

Σ0
k
, 27

Σ0
k
-IND, 27

Σ0
k
-RT, 218

Σ0
k

bounding

strong, 75

Σ0
k

comprehension

bounded, 73

Σ0
k

induction, 66

Σ0
k

Ramsey theorem, 218

Σ0
∞-RT, 218

Σ0
∞ Ramsey theorem, 245–247

Σ1
1, 16

and analytic sets, 177

universal, 341, 364

Σ1
1-AC0, 41, 59, 343, 361, 368
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and ACA0, 393–396

consistency strength of, 59, 353, 396

non-ω-models of, 393–396

ω-models of, 58, 346–355

coded, 352–354, 416

minimum, 58, 352

Σ1
1-DC0, 59, 359–361

consistency strength of, 353

ω-models of, 58, 346–355

coded, 352–354

minimum, 352

Σ1
1-IND, 349–350, 355, 370, 394–396

Σ1
1-MI0, 248

Σ1
1-TI0, 366, 370

Σ1
1 bounding, 178, 203, 206

Σ1
1 choice, 52, 235, 279, 368, see Σ1

1-AC0

in ATR0, 212–213, 217, 343

Σ1
1 dependent choice, 59, 359–361, see Σ1

1-
DC0

Σ1
1 determinacy, 249

Σ1
1 monotonic recursion, 248, 249

Σ1
1 Ramsey theorem, 248

Σ1
1 reflecting ordinals, 248, 249

Σ1
1 separation, 42, 51, 196–197

Σ1
1 transfinite induction, 366, see Σ1

1-TI0

Σ1
2-AC0

and Π1
1-CA0, 397

consistency strength of, 397

Σ1
2-CA0

non-ω-models of, 397

Σ1
2-IND, 397

Σ1
2 absoluteness, 291, 295

Σ1
2 choice, see Σ1

2-AC0

Σ1
2 dependent choice, see Σ1

2-DC0

Σ1
2 separation, 312

Σ1
2 uniformization, 57, 308–309

Σ1
3-RFN0, 360

Σ1
3 reflection, 360

Σ1
k
, 16

universal, 315

Σ1
k
-AC0, 57, 305–315

and Π1
k−1

-CA0, 397–398

consistency strength of, 60, 398

non-ω-models of, 396–398

ω-models of

coded, 354

Σ1
k
-CA0, 17, 27

Σ1
k
-DC0, 57, 305–319

ω-models of

coded, 354

Σ1
k
-IND, 27, 306, 318–319, 398

Σ1
k
-RFN0, 355, 361

Σ1
k
-RT, 218

Σ1
k
-TI0, 264, 319

Σ1
k

choice, 57, see Σ1
k
-AC0

Σ1
k

comprehension, see Σ1
k
-CA0

Σ1
k

dependent choice, 57, 305–319, see Σ1
k
-

DC0

Σ1
k

induction, 306

Σ1
k

Ramsey theorem, 218

Σ1
k

reflection, 361

Σ1
k

transfinite induction, 264, see Σ1
k
-TI0

Σ1
k

uniformization, 57, 312

Σ1
∞-AC0, 307

Σ1
∞-IND, 325, 353

Σ1
∞-RFN0, 355–361

Σ1
∞ reflection, 355–361

Σset
1 absoluteness, 295, 298

Σset
1 collection, 283

Σset
∞ collection, 283

Σset
k

choice, 299

Σset
k

formula, 270, 278

Silver, IX, 234, 238

Silver’s theorem, 35, 53, 192, 234–239

Simic, IX

Simpson, 33, 36, 39, 42, 43, 67, 74, 81, 87,
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