

Linux Storage and Virtualization

Christoph Hellwig

Storage in Virtual Machines – Why?

 A disk is an integral part of a normal computer
 Most operating systems work best with local

disks
 Boot from NFS / iSCSI still has problems

 Simple integrated local storage is:
 Easier to setup than network storage
 More flexible to manage

 For the highend use PCI passthrough or Fibre
channel NPIV instead

A view 10.000 feet

 The host system or virtual machine
monitor (VMMVMM):
 exports virtual disks to the guest
 The guest uses them like real disks

 The virtual disks are backed by real devices..
 Whole disks / partitions / logical volumes

 .. or files
 Either raw files on a filesystem or image

formats

A virtual storage stack

 We have two full
storage stacks in the
host and in the guest
 Potentially also two

filesystem
 Potentially also a image

format (aka mini
filesystem)

Guest storage driver

Storage hw emulation

Image format

Host volume manager

Host filesystem

Guest filesystem

Host storage driver

Requirements (high level)

 The traditional storage requirements apply:
 Data integrityData integrity – data should actually be on disk

when the user / application require it
 Space efficiencySpace efficiency – we want to store the user /

application data as efficient as possible
 PerformancePerformance – do all of the above as fast as

possible
 Additionally there is a strong focus on:

 ManageabilityManageability – we potentially have a lots of
hosts to deal with

Requirements – guest

 None - Guests should work out of the box
 Migrating old operating system images to virtual

machines is a typical use case
 Any guest changes should be purely

optimizations for:
 Storage efficiency or
 Performance

Requirements – host

 The host is where all the intelligence sits
 Ensures data integrity

 Aka: the data really is on disk when the guest
thinks so

 Optimizantions of storage space usage

A practical implementation: QEMU/KVM

 KVM is the major virtualization solution for Linux
 Included in the mainline kernel, with lots of

development from RedHat, Novell, Intel, IBM and
various individual contributors

What is QEMU and what is KVM?

 QEMUQEMU primarily is a CPU emulator
 Grew a device model to emulate a whole

computer
 Actually not just one but a whole lot of them

 KVMKVM is a kernel module to use expose hardware
virtualization capabilities
 e.g. Intel VT-x or AMD SVM
 KVM uses QEMU for device emulation

 As far as storage is concerned they're the same

QEMU Storage stack overview

Host KernelHost Kernel

ATAATA SCSISCSI VirtioVirtio

VMDK / etc..VMDK / etc..RawRaw

Raw Posix / fileRaw Posix / file

LinuxLinux
 GuestGuest

OthersOthers
GuestsGuests

WindowsWindows
 GuestGuest

QEMUQEMU

TransportsTransports

Image FormatsImage Formats

Backend /Backend /
ProtocolProtocol

Posix file

Qcow2Qcow2

Storage transports

 QEMU provides a simple Intel ATAATA controller
emulation by default
 Works with about every operating systems

because it is so common
 Alternatively QEMU can emulate a Symbios SCSISCSI

controller

Paravirtualization

 ParavirtualizationParavirtualization means providing interfaces
more optimal than real hardware
 AdvantageAdvantage: should be faster than full

virtualization
 DisadvantageDisadvantage: requires special drivers for each : requires special drivers for each

guestguest

Paravirtualized storage transport

 QEMU provides paravirtualized devices using the
virtio framework

 Virtio-blk provides a simple block driver ontop of Virtio-blk provides a simple block driver ontop of
virtiovirtio
 Just simple read/write requestsJust simple read/write requests
 And SCSI requests through ioctlsAnd SCSI requests through ioctls


Life of an I/O request

Guest KernelGuest Kernel

Host KernelHost Kernel

QEMUQEMU

MMIO/PIOMMIO/PIO CompletionCompletion
InterruptInterrupt

InterruptInterrupt
InjectionInjection

TrapTrap

DMADMA

Posix file storage backend

 The primary storage backend
 Almost all I/O eventually ends up thereAlmost all I/O eventually ends up there

 Simply backs disk images using a regular file or
device file

Posix storage backend - AIO

 The qemu main loop is effectively singe threaded:
 Time spent there blocks execution of the guest
 I/O needs to be offloaded as fast as possible

 I/O backends need to implement asynchronous
semantics

Posix storage backend - AIO

 AIO support in hosts is severly lacking
 Use a thread pool to hand off I/O by default

 Alternatively support for native Linux AIO:
 Only works for uncached access (O_DIRECT)
 Still can be synchronous for many use cases

Posix storage backend – vectored I/O

 Typical I/O requests from guests are split into
non-contingous parts
 scatter/gather lists

 In the optimal case a whole SG list is sent to the
host kernel in one request

 preadv/pwritev system calls

Posix storage backend - AIO

 AIO support in hosts is severly lacking
 Use a thread pool to hand off I/O by default

 Alternatively support for native Linux AIO:
 Only works for uncached access (O_DIRECT)
 Still can be synchronous for many use cases

Posix storage backend – I/O restrictions

 O_DIRECT requires strict alignment and specific
I/O sizes
 Try to align memory allocations inside Qemu
 The Posix backend needs to perform

read/modify/write cycles in the worst case
 The alignment and size restrictions vary

 There is no proper way to query the kernel for
the restrictions

 In Linux they generally depend on the sector
size

Spot the error..

Data integrity in QEMU / caching modes

 cache=none
 uses O_DIRECT I/O that bypasses the

filesystem cache on the host
 cache=writethrough

 uses O_SYNC I/O that is guaranteed to be
commited to disk on return to userspace

 cache=writeback
 uses normal buffered I/O that is written back

later by the operating system

Data integrity - cache=writethrough

 This mode is the safest as far as qemu is This mode is the safest as far as qemu is
concernedconcerned
 There are no additional volatile write caches in There are no additional volatile write caches in

the hostthe host
 The downside is that it's rather slowThe downside is that it's rather slow

Data integrity - cache=writeback

 When the guest writes data we simply put it in When the guest writes data we simply put it in
the filesystem cachethe filesystem cache
 No guarantee that it actually goes to diskNo guarantee that it actually goes to disk
 Which is actually very similar to how modern Which is actually very similar to how modern

disks workdisks work

Data integrity - cache=writeback

 The guest needs to issue a cache flush command The guest needs to issue a cache flush command
to make sure data goes to diskto make sure data goes to disk
 Similar to real modern disks with writeback Similar to real modern disks with writeback

cachescaches
 Modern operating systems can deal with thisModern operating systems can deal with this

 And the host needs to actually implement the And the host needs to actually implement the
cache flush command and advertise it:cache flush command and advertise it:
 The QEMU SCSI emulation has always done thisThe QEMU SCSI emulation has always done this
 IDE and virtio only started this very recentlyIDE and virtio only started this very recently

Data integrity - cache=none

 Direct transfer to disk should imply it's safeDirect transfer to disk should imply it's safe
 Except that it is not:Except that it is not:

 Does not guarantee disk caches are flushedDoes not guarantee disk caches are flushed
 Does not give any guarantees about metadataDoes not give any guarantees about metadata

 Thus also needs an explicit cache flushThus also needs an explicit cache flush

Performance – large sequential I/O

sequential read 8GBsequential read 8GB sequential write 8GBsequential write 8GB
0 MB/s0 MB/s

20 MB/s20 MB/s

40 MB/s40 MB/s

60 MB/s60 MB/s

80 MB/s80 MB/s

100 MB/s100 MB/s

120 MB/s120 MB/s

140 MB/s140 MB/s

NativeNative
QEMU pthreadsQEMU pthreads
QEMU AIOQEMU AIO

Performance – 256 kilobyte random I/O

random read 256KBrandom read 256KB random write 256KBrandom write 256KB
0 MB/s0 MB/s

20 MB/s20 MB/s

40 MB/s40 MB/s

60 MB/s60 MB/s

80 MB/s80 MB/s

100 MB/s100 MB/s

120 MB/s120 MB/s

140 MB/s140 MB/s

160 MB/s160 MB/s

180 MB/s180 MB/s

NativeNative
QEMU pthreadsQEMU pthreads
QEMU AIOQEMU AIO

Performance – 16 kilobyte random I/O

random read 16KBrandom read 16KB random write 16KBrandom write 16KB
0 MB/s0 MB/s

10 MB/s10 MB/s

20 MB/s20 MB/s

30 MB/s30 MB/s

40 MB/s40 MB/s

50 MB/s50 MB/s

60 MB/s60 MB/s

70 MB/s70 MB/s

80 MB/s80 MB/s

NativeNative
QEMU pthreadsQEMU pthreads
QEMU AIOQEMU AIO

Disk image formats

 Users want volume-manager like features in
image files
 Copy-on write snapshots
 Encryption
 Compression

 Also VM snapshots need to store additional
metadata

Disk Image formats - Qcow2

 QcowQcow was the initial QEMU image format to provide
copy on write snapshots

 In Qemu 0.8.3 Qcow2Qcow2 was added to add additional
features and now is the standard image format for
QEMU

 Provides cluster based copy on write snaphots
 Supports encryption and compression
 Allows to store additional metadata for VM

snaphots

Disk image format data integrity issues

 A disk image is a minimal filesystem

 Metadata for block allocation tables
 Reference counts for snapshots

 So the same integrity issues apply:

 A guest cache flush needs to guarantee all
metadata updates are on disk

 Multiple metadata updates need to be ordered
 Multiple metadata updates should be transactional

or a image check is required on an unclean
shutdown

Qcow2 data integrity issues

 Until recently Qcow2 did not care about metadata
integrity.

 Recently Qcow2 was changed to write metadata
synchronously.

 Performance for some workloads decreased to a
large extent.

 Work is under way to implement metadata integrity
more efficiently.

Qcow2 performance – streaming write

Qemu 0.12.4Qemu 0.12.4 Qemu 0.12.5Qemu 0.12.5
0 seconds0 seconds

50 seconds50 seconds

100 seconds100 seconds

150 seconds150 seconds

200 seconds200 seconds

250 seconds250 seconds

cache=writebackcache=writeback
cache=writethroughcache=writethrough
cache=nonecache=none

Numbers from Alexander Loob <psionyx@gmx.de>1GB streaming write using dd bs=1024k count=1024

Qed image format

 New simplified image format proposed by IBM in
September 2010:

 No support for internal snapshots, encyption,
compression.

 Requires sparse file support.
 Initial implementation supports very efficient

metadata operations

 But requires a image check on unclean shutdown.

Qcow2 vs Qed performance

sequential write, 1 threadsequential write, 1 thread sequential write, 16 threadssequential write, 16 threads random write, 1 threadrandom write, 1 thread random write, 16 threadsrandom write, 16 threads
0 MB/s0 MB/s

20 MB/s20 MB/s

40 MB/s40 MB/s

60 MB/s60 MB/s

80 MB/s80 MB/s

100 MB/s100 MB/s

120 MB/s120 MB/s

140 MB/s140 MB/s

160 MB/s160 MB/s

QedQed
Qcow2Qcow2

Numbers from Khoa Huynh <khoa@us.ibm.com>FFSB on ext4 in the guest

Storage protocol drivers

 Qemu allows other images to reside outside the Qemu allows other images to reside outside the
local filesystem.local filesystem.

 ProtocolProtocol drivers implement the storage access: drivers implement the storage access:
 The The curlcurl backend allows using VM images from backend allows using VM images from

the internet over http and ftp connectionsthe internet over http and ftp connections.
 The nbdnbd backend allows direct access to nbd

servers.
 The sheepdogsheepdog backs images by a distributed

storage protocol.

Thin provisioning

 Simple example: a sparse image fileSimple example: a sparse image file
 Initially does not have blocks allocated to itInitially does not have blocks allocated to it
 Block get allocate on the first writeBlock get allocate on the first write

 To make it fully useful also needs to support To make it fully useful also needs to support
reclaiming space after deletionsreclaiming space after deletions

 An important topic both for high-end storage An important topic both for high-end storage
arrays and virtualizationarrays and virtualization

Thin provisioning - standards

 The T10 SBC standard for SCSI disks / storage The T10 SBC standard for SCSI disks / storage
arrays contains TP support in it's newest revisionsarrays contains TP support in it's newest revisions
 The UNMAP and WRITE SAME commands allow The UNMAP and WRITE SAME commands allow

telling the storage device to free datatelling the storage device to free data
 Perfect use case for qemu to know that the Perfect use case for qemu to know that the

guest has freed the storageguest has freed the storage
 The ATA spec has a similar TRIM command for The ATA spec has a similar TRIM command for

Solid State Drives (SSDs)Solid State Drives (SSDs)

Thin provisioning – implementation

 The guest needs extensive enablement for thin The guest needs extensive enablement for thin
provisioning:provisioning:
 Support in the device drivers to actually send Support in the device drivers to actually send

the commandsthe commands
 Code in the filesystem to track deleted spaceCode in the filesystem to track deleted space
 Guest enablement is shared with support for Guest enablement is shared with support for

thinkly provisionen RAID arrays and SSDsthinkly provisionen RAID arrays and SSDs

Thin provisioning - implementation

 Decoding the Decoding the WRITE SAMEWRITE SAME / / UNMAPUNMAP / / TRIMTRIM
commands is easycommands is easy

 Actually freeing space is harder:Actually freeing space is harder:
 The standard Posix APIs don't allow punching The standard Posix APIs don't allow punching

holes into filesholes into files
 Need filesystem specific extensions for that Need filesystem specific extensions for that

(e.g. in (e.g. in XFSXFS))

Thin provisioning - implementation

 Fine grained allocation and freeing of blocks is Fine grained allocation and freeing of blocks is
problematic:problematic:
 Causes fragmentation of the backing fileCauses fragmentation of the backing file
 Allocation overhead can be highAllocation overhead can be high

 Need good thresholds for freeing blocksNeed good thresholds for freeing blocks
 Similar problem faced by storage arraysSimilar problem faced by storage arrays
 SBC allows to communicate these thresholdsSBC allows to communicate these thresholds

 Block allocation also needs the same thresholdsBlock allocation also needs the same thresholds

Storage efficiency

 A big virtualization specific problem is to avoid A big virtualization specific problem is to avoid
duplicate storage of data data:duplicate storage of data data:
 Often many similar guests run on the same Often many similar guests run on the same

hosthost
 Two approaches:Two approaches:

 Image clones – start with a common image and Image clones – start with a common image and
track changes with a copy on write schemetrack changes with a copy on write scheme

 Data deduplication – find duplicate blocks and Data deduplication – find duplicate blocks and
merge them after the factmerge them after the fact

Backing images

 QEMU allows for copy on write images in the QEMU allows for copy on write images in the
QCOW2 format.QCOW2 format.
 Simple to set up and useSimple to set up and use

 LVM supports copy on write volumes (snapshots)LVM supports copy on write volumes (snapshots)
 Requires the usage of full block devices,Requires the usage of full block devices,

 Some modern filesystems (Some modern filesystems (btrfsbtrfs, , ocfs2ocfs2) allow) allow
file level snapshotsfile level snapshots

 None of the above two integrated with QEMU yetNone of the above two integrated with QEMU yet

Data deduplication

 All the above options have one disadvantage:All the above options have one disadvantage:
 The data sharing needs to be planned aheadThe data sharing needs to be planned ahead

 The term data deduplication is used for the The term data deduplication is used for the
process of finding these duplicates later and process of finding these duplicates later and
merging themmerging them
 A relatively expensive and slow process A relatively expensive and slow process

without additional metadatawithout additional metadata
 Hot topic in the storage industryHot topic in the storage industry
 Not yet implemented in QEMU or lower layersNot yet implemented in QEMU or lower layers

Questions?

 Thanks for your attention!
 Feel free to contact me at: hch@lst.de

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

