

<Insert Picture Here>

C++ for the rest of us
Paolo Carlini
PhD

The recent history

• After the 1998 Standard, the ISO C++ Committee
remained essentially in “bug-fix mode” until about
2003, when Technical Corrigendum 1 (TC1) has been
issued
– C++98 + TC1 is informally known as C++03

• Afterwards, as you can also read in some of Bjarne
Stroustrup papers back then, the plan was essentially
working on new pure library facilities, which had
suffered in the first Standard, with many last minute
changes and rejections
– eg, no hashed containers
– nothing about threads, concurrency

The recent history (2)

• That attitude resulted first in a Technical Report,
known as TR1 (paper #: N1836), issued in 2005,
including many useful additions
– Almost fully implemented in GCC

• After that, however, the plans changed (I was not
there to report why and how, sorry...) and new core
language features entered the discussions of the
“evolution” subcommittee.

• The idea of a completely new standard became
known as C++0x, meaning that people wanted to
have it within the first decade of the 21th century,
about 10 years after the first one...

The recent history (3)

• Unfortunately, no serious milestones set, no feature
freezes, lots and lots of new reasonable (and much
less reasonable ;) core language proposals over the
years, until 2007!

• People realized about a year ago that, given all the
bureaucracy needed for the last steps, there were no
real hopes anymore to have the new standard ready
by 2009: in fact, it will be C++1x.
– Potentially interesting facilities recently dropped: garbage

collection, modules, filesystem library, ...
– Some of those already scheduled for TR2
– (More or less) official statement of feature completeness

The final steps toward the new standard

• … but now finally we are almost there! March, 26th,
on the iso-all mailing list:

“This morning, the FCD text was completed by our
tireless project editor Pete Becker, approved by the
review committee of Steve Adamczyk and Howard
Hinnant, and sent to SC22 for FCD ballot. The CD1
record of response was also delivered by Barry
Hedquist on Wednesday. The SC22 secretariat has
confirmed receipt of both required documents, and has
informed us that the FCD ballot will begin today and
close on July 26.”

The final steps toward the new standard (2)

• Next step after the FCD (Final Committee Draft) will
be the FDIS (Final Draft International Standard)

• Reasonably, the actual C++1x Standard will be
published in 2011, but the technical work towards it
will end in 2010.

• Some useful references:
– http://www.research.att.com/~bs/what-is-2009.pdf
– http://www2.research.att.com/~bs/C++0xFAQ.html
– http://www.research.att.com/~bs/hopl-almost-final.pdf

http://www.research.att.com/~bs/what-is-2009.pdf
http://www2.research.att.com/~bs/C++0xFAQ.html
http://www.research.att.com/~bs/hopl-almost-final.pdf

The most important new features?

• Many, even counting all the ideas lately dropped or
delayed to TR2 and in particular the recent removal of
the famous “Concepts”:
– Arguably, the language is growing very big, huge, too huge
– The FCD is about 1300 pages vs 783 pages for the C++03

Standard. The library sections alone are almost three times
as large.

– As happens, big companies with representatives in the
Committee pushed for idiosyncratic requirements ;)

– Luckily, people like Bjarne Stroustrup still care a lot about
teachability and comprehensibility and try to keep the
situation under control

The most important new features? (2)

• A subset of changes, in the core language and in the
library, just standardize existing and well established
practice

• Typical examples in the core language:
– Extern template
– decltype (GCC's typeof, improved, preserves references)
– long long
– namespace association (also called “strong using”)

• first implemented in GCC and heavily used by libstdc++-v3
for its debug-mode and parallel-mode

– C99 preprocessor
– __func__
– general attributes, thread local storage ...

The most important new features? (3)

• Typical examples in the library:
– unordered (ie, hashed) containers
– C99 compatibility
– singly linked list (very close to the legacy HP / SGI slist)
– additional algorithms (also already in the “STL”)
– enable_if

• These changes are generally considered all very
welcome and uncontroversial

The most important new features? (4)

• Another rather uncontroversial class tries to avoid
unnecessary inconveniences and limitations. Some
examples for the core language:
– default template arguments for function templates
– variadic templates
– right angle brackets
– forward declaration of enumerations
– local and unnamed types as template arguments

• And for the library:
– specify header dependencies
– simple numeric access (ie, beefed up atoi, strtol, & co)
– improved const-correctness everywhere
– generalized constant expressions

The most important new features? (5)

• Performance is still on the forefront today as it was 10
years ago, and another subset of changes has strictly
(or largely) to do with it. Eminent examples:
– rvalue references and “move semantics”
– less restrictive characterization of POD-ness
– placement insert for containers
– Improved, so called “scoped”, allocator model

• With minor reservations for placement insert, IMHO
all great and uncontroversial improvements
– but rvalue references are conceptually highly non-trivial (more

later in this presentation)

The most important new features? (6)

• A separate class for some “fancy” new features in the
core language:
– Lambda expressions and closures

• Apparently an often requested improvement, directly
inspired from functional programming

• Delivered in GCC 4.5.0 (and MSVC 10)
– auto (ie, deducing the type of variable from its initializer

expression)
• especially convenient with iterators and containers

– initializer lists
– template aliases (“template typedefs”)
– for-loop
– delegating / inheriting constructors

The most important new features? (7)

• … and another for useful additions / improvements to
the runtime library
– Everything coming straightly from TR1

• with important improvements too, see the case of
<random>, coming directly from Fermilab' in the field
experience with huge “Monte Carlo” computations

– unique_ptr (replacement for auto_ptr)
– minimal unicode support / new character types
– iostream / locale improvements and fixes of long standing

issues
• eg, parsing of integer and floating point types, satisfactory

diagnosis of overflow situations

... and the GCC effort

• A few active committee members are implementing
the new features in GCC (eg, for some time Doug
Gregor, Jonathan Wakely, me, Jason Merrill, more).

• Detailed web pages track the evolution of the so-
called C++0x mode of GCC (will become an alias for
C++1x mode, of course), the reference one being, for
core compiler and library features, respectively:

http://gcc.gnu.org/projects/cxx0x.html

http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.200x

... and the GCC effort (2)

• Microsoft people liked the GCC way of presenting the
implementation status ;)
(http://blogs.msdn.com/vcblog/archive/2010/04/06/c-0x-core-language-features-in-vc10-the-table.aspx)

• For the time being all the C++1x core language and
library features exist in parallel with the default C++98
ones, no ABI breakages, that of course means some
code duplication and “dirty” preprocessor tricks, but
that's life
– Note that the Committee only recently realized that eventually

most implementations will be necessarily forced to break the
C++98 ABI, because, eg, std::list::size now is constant time,
or std::string cannot be reference-counted anymore.

http://blogs.msdn.com/vcblog/archive/2010/04/06/c-0x-core-language-features-in-vc10-the-table.aspx

Move semantics in some detail

“Move semantics is mostly about performance
optimization: the ability to move an expensive object
from one address in memory to another, while
pilfering resources of the source in order to construct
the target with minimum expense”

(From N1377, Hinnant, Dimov, and Abrahams)

Move semantics in some detail (2)

• Move semantics ideas already exists in the current C++03
language and library, to a certain extent:
– Copy constructor elision in some contexts

• Aka, NRVO, Named Return Value Optimization
– auto_ptr “copy”

• Special non-const reference constructor – i.e.,
auto_ptr(auto_ptr& a) - which takes ownership

– list::splice
• “Copy” of elements from list to list in O(1) via simple

pointer adjustments
– Swap on containers

• Swap specialization able to deal with the whole container
by swapping the pointers to the underlying data structure

Move semantics in some detail (3)

• In order to support a general use of such ideas, a new kind
of reference is needed, able to bind to temporaries, an
rvalue reference (vs lvalue reference):

void foo(A& t); // Cannot bind to a temporary
void foo(const A& t); // Can't change it

void foo(A&& t); // Yes! foo can steal the resources
 // owned by the temporary t

Move semantics in some detail (4)

• Then rvalue references can be used to implement
move semantics, e.g., by adding a move constructor
and a move assignment operator to a class:

class A
{

// …

A(A&& a);
A& operator=(A&& a);

};

Move semantics: (toy) string example

class string
{

char* data; size_t size;
public:

// …

string(string&& s)
: data(s.data), size(s.size) // Pilfering!
{ s.data = 0; s.size = 0; } // NB: s left
 // consistent
 // for sane
 // destruction
string& operator=(string&& s)
{ swap(s); return *this; } // Pilfering!

Move semantics: (toy) string example (2)

• The extremely efficient move constructor and move
assignment operator are automatically called, instead
of the normal copying ones, when a temporary is
involved.

• Actually, much more is possible. Consider:

string s0(“1234567890”);
string s1 = ((s0 + “a”) + “b”) + “cd”;

– Normally, each operator+() allocates memory
(NRVO helps only for the copy constructor itself)...

Move semantics: (toy) string example (3)

• Overloads of operator+() for rvalue references can be
added, appending to temporaries, e.g.:

string&&
operator+(string&& x, const string& y)
{ return x += y; }

• In the example, if the temporary created for s0 +
“a” has sufficient capacity, memory is allocated only
once!

Move semantics: std::vector example

• All the non-node-based containers can also exploit
the move-ability (i.e., availability of move constructor
and move assignment operator) of a type in the
internal implementation details of operations such as
insert and erase.

• In that case, the internal memory management
operations can just copy pointers to data, instead of
copying the actual raw data

Move semantics: std::vector example (2)

• The core idea enabling such optimizations is that
when it's safe to pilfer from a data source the
implementation can explicitly cast it to its rvalue
reference type - std::move is available for this
purpose - and automatically activate move constructor
and move assignment operator on it thereafter

• Then, just as an example, user code like:

string s(1000, ' ');
vector<string> v(1000, s):
v.insert(v.begin(), s); // ~100 times faster!

Move semantics: std::vector example (3)

• More generally, types like vector<list<int> >,
that is a vector (a non-node-based container) of lists
(node-based containers), can also exploit the move-
ability of the inner type during the internal memory
management operations.

• Further improvements are possible (push_back
operations, etc...)

• Much more...

• By the way, all of this is already implemented in the
GCC runtime library, libstdc++-v3

Move semantics: algorithms

• Several of the std algorithms can also take advantage
from move semantics
– Either because temporary buffers can benefit from

it (e.g., stable_partition, stable_sort, etc.)
– Or, trivially, because the semantics really calls for

moves not copies (e.g., remove, unique, sort)
• For instance, unique can be changed to exploit

move semantics by simply adjusting one line to
use std::move. The GCC implementation looks
like the below (slightly simplified for expositional
purposes):

Move semantics: std::unique example

template<typename _ForwardIter>
 _ForwardIter
 unique(_ForwardIter __first, _ForwardIter __last)

{
// Skip the beginning, if already unique
// ...
_ForwardIter __dest = __first;
++__first;
while (++__first != __last)
 if (!(*__dest == *__first))

 *++__dest = std::move(*__first);
return ++__dest;

}

Some “system-level” features

• A well known weakness of the C++98 Standard is the
complete lack of support for, eg:
– Concurrency

• threads
• mutexes
• atomic operations
• exception handling across threads

– Concepts of system clock, timers
– Filesystem abstractions
– Some parts of the current specifications even run against an

efficient implementation in a multithreaded environment
• eg, the case of string

Some “system-level” features (2)

• A specific sub-group has been established to work on
the long standing concurrency issues, with the active
participation of leading authorities in the field, eg:
– Paul E. McKenney (IBM)
– Hans-J. Boehm (HP)
– Lawrence Crowl (Google)
– Peter Dimov
– ...

• By now the work is almost finished and the meetings
are spent reviewing all the new features approved for
core and library

Some “system-level” features (3)

• Useful background papers:
– N2480: A Less Formal Explanation of the Proposed C++

Concurrency Memory Model
– N2167: Linux Kernel Reference Counting
– N2197: Prism: A Principle-Based Sequential Memory Model

for Microsoft Native Code Platforms
– ...

• Given the time constraints, a special effort went into
selecting minimal but self-consistent and extremely
solid proposals...

Some “system-level” features (4)

• Among the most important library additions, already in
the working paper - and also available in the GCC
runtime, libstdc++-v3:
– N2497: Multi-threading Library for Standard C++

• The <thread> part proper comes rather directly from the
solid experience in the “Boost” project (at www.boost.org,
useful background documentation available), a relatively
thin wrapper around the POSIX interface. No surprises.

• Also includes <mutex> and <condition_variable>
• For the latter a very useful background paper is available:

N2406: Mutex, Lock, Condition Variable Rationale
• By the way, in preparation for the growing importance

of POSIX in C++, a namespace has been reserved

http://www.boost.org/

Some “system-level” features (5)

• In N2406, one can learn that 4 different kinds of
mutexes are provided in the <mutex> package:
– mutex
– recursive_mutex
– timed_mutex
– recursive_timed_mutex

• Each provides both lock and try_lock
• Also, very convenient in C++ (thus reimplemented

dozens of times...), using the “RAII” idiom:
– lock_guard
– unique_lock (more flexible, “moveable”)

• Errors managed via a new lock_error exception

Some “system-level” features (6)

• Other, slightly more sophisticated, kinds of mutexes
and related facilities are postponed to TR2
– shared_mutex, a mutex supporting both unique (write) and

shared (read) ownership
– shared_lock
– upgrade_lock
– transfer_lock

• Does the current C++0x / TR2 split make sense?
– Can experiment with GCC, an implementation is available in

libstdc++-v3
• A call_once facility is also part of the package, also

very welcome, reimplemented so many times...

Some “system-level” features (7)

• The package <condition_variable> appears pretty
essential
– condition_variable (waits on unique_lock<mutex>)
– condition_variable_any (more flexible, can wait on user

supplied lock types)

• For timing, all the multi-threading facilities (currently)
rely on the new header <chrono>
– N2661: A Foundation to Sleep On

• also provides interesting support facilities (common_type;
ratio, for compile time manipulation of rational values)

• complete in libstdc++v3, can experiment with it

Some “system-level” features (8)

• Several different types of clocks are supported:
– system_clock
– monotonic_clock
– high_resolution_clock

• Try to model the different options currently available
to the POSIX C programmer, in order of accuracy
– ftime (legacy)
– gettimeofday
– clock_gettime

• monotonic
• high resolution

• The specifications are precision neutral, ready for
sub-nanosecond accuracies.

Some “system-level” features (9)

• N2427: C++ Atomic Types and Operations first
described another very welcome addition
– Background on the concurrency memory model in N2334:

Concurrency memory model.
– The new facilities are available in <cstdatomic> (and

stdatomic.h>)
– Largely inspired by the __sync_* builtin functions available in

recent GCCs (and ICC).
– A complete reference implementation also part of the

proposal
– The adopted paper also includes some discussion of the

basic design points
• but beware this is the result of years of debates about the

finest details, further background papers readily available.

Some “system-level” features (10)

• All the expected operations are provided: atomic
stores, loads, swaps, compare and swap, etc...

• A parameter with values in the memory_model
enumeration is consistently used
– memory_order_relaxed, memory_order_acquire,

memory_order_release, memory_order_acq_rel,
memory_order_seq_cst

• Three main classes + freestanding functions
– atomic_bool
– atomic_integral (integral ranges over all the standard integral

types)
– atomic_address

Some “system-level” features (11)

• Support to lock-free algorithms
– compile-time and run-time queries to determine whether or

not operations are lock-free
• Per-variable fence operations
• Atomic accesses to share_ptr are also provided,

approved at the Sophia meeting (N2674: Shared_ptr
atomic access)

• More ...

Conclusions

• Let's stop here.
• Remember: your feedback is important, please take

some time to read the papers or the FCD, get in touch
with the authors. Constructive feedback is always
welcome, nobody in the committee wants to deliver a
defective standard!

• In libstdc++-v3 many features are early available for
practical experimentation, send your observations to
libstdc++@gcc.gnu.org

• ... or simply to me ;)
paolo.carlini@oracle.com

mailto:libstdc++@gcc.gnu.org
mailto:paolo.carlini@oracle.com

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

