Featured Video

Video Gallery

Featured Image

Photo Gallery
Space Exploration Technologies
Falcon 9

Falcon 9 Overview



The Falcon launch vehicle family provides breakthrough advances in reliability, cost, flight environment and time to launch. In providing our launch and placement services, we recognize that nothing is more important than getting our customer's satellite or other spacecraft safely to its intended destination.

Like Falcon 1, Falcon 9 is a two stage, liquid oxygen and rocket grade kerosene (RP-1) powered launch vehicle. It uses the same engines, structural architecture (with a wider diameter), avionics and launch system. The Falcon 9 rocket delivered back-to-back successes with its first three debut launches.  All three flights achieved 100% of mission objectives and the third flight made history, making SpaceX the first commercial company in history to visit the International Space Station.


Falcon 9 User's Guide
(2.9 mb)
Planning document for potential and current customers of SpaceX launch and placement services using the Falcon 9 launch vehicle.
Additional information regarding these services, including pricing and performance, is provided below.

Length: 69.2 m (227 ft)
Width: 3.6 m (12 ft)
Thrust (sea level): 5.88 MN (1,320,000 lbf)



The Falcon 9 rocket carrying the Dragon spacecraft as it lifts off from SpaceX's launch pad in Cape Canaveral, Florida.

Quarter section of the 5.2 m Falcon 9 fairing at SpaceX's Hawthorne, CA headquarters.


First Stage


The Falcon 9 tank walls and domes are made from aluminum lithium alloy. SpaceX uses an all friction stir welded tank, the highest strength and most reliable welding technique available. Like Falcon 1, the interstage, which connects the upper and lower stage for Falcon 9, is a carbon fiber aluminum core composite structure. The separation system is a larger version of the pneumatic pushers used on Falcon 1.

Nine SpaceX Merlin engines power the Falcon 9 first stage with 147,000 lbs-f sea level thrust per engine for a total thrust on liftoff of just over 1.3 Million lbs-f. After engine start, Falcon is held down until all vehicle systems are verified to be functioning normally before release for liftoff.


Falcon 9 Engines Close Up


Second Stage


The second stage tank of Falcon 9 is simply a shorter version of the first stage tank and uses most of the same tooling, material and manufacturing techniques. This results in significant cost savings in vehicle production.

A single Merlin engine powers the Falcon 9 upper stage with an expansion ratio of 117:1 and a nominal burn time of 345 seconds. For added reliability of restart, the engine has dual redundant pyrophoric igniters (TEA-TEB).



SpaceX Merlin Engine


Merlin Engine

The main engine, called Merlin, was developed internally at SpaceX, but draws upon a long heritage of space proven engines. The pintle style injector at the heart of Merlin was first used in the Apollo Moon program for the lunar module landing engine, one of the most critical phases of the mission.

Propellant is fed via a single shaft, dual impeller turbo-pump operating on a gas generator cycle. The turbo-pump also provides the high pressure kerosene for the hydraulic actuators, which then recycles into the low pressure inlet. This eliminates the need for a separate hydraulic power system and means that thrust vector control failure by running out of hydraulic fluid is not possible. A third use of the turbo-pump is to provide roll control by actuating the turbine exhaust nozzle (on the second stage engine).

Combining the above three functions into one device that we know is functioning before the vehicle is allowed to lift off means a significant improvement in system level reliability.

Sea Level Thrust : 147,000 lbf
Vacuum Thrust: 161,000 lbf
Sea Level Isp: 282s
Vacuum Isp: 311s

With a vacuum specific impulse of 311s, Merlin is the highest performance gas generator cycle kerosene engine ever built, exceeding the Boeing Delta II main engine, the Lockheed Atlas II main engine and the Saturn V F-1.



Designed for Maximum Reliability


The vast majority of launch vehicle failures in the past two decades can be attributed to three causes: engine, stage separation and, to a much lesser degree, avionics failures. An analysis (p. 23) of launch failure history between 1980 and 1999 by Aerospace Corporation showed that 91% of known failures can be attributed to those subsystems.


Engine Reliability


Falcon 9 has nine Merlin engines clustered together. This vehicle will be capable of sustaining an engine failure at any point in flight and still successfully completing its mission. This actually results in an even higher level of reliability than a single engine stage. The SpaceX nine engine architecture is an improved version of the architecture employed by the Saturn V and Saturn I rockets of the Apollo Program, which had flawless flight records despite losing engines on a number of missions.

Another notable point is the SpaceX hold-before-release system — a capability required by commercial airplanes, but not implemented on many launch vehicles. After first stage engine start, the Falcon is held down and not released for flight until all propulsion and vehicle systems are confirmed to be operating normally. An automatic safe shut-down and unloading of propellant occurs if any off nominal conditions are detected.


Avionics Reliability


Falcon 9 will have triple redundant flight computers and inertial navigation, with a GPS overlay for additional orbit insertion accuracy. We have gone the extra mile in building a first class avionics system to provide our customers' medium and intermediate class satellites with the same avionics quality enjoyed by multi-billion dollar large satellites.



NASA's Choice to Resupply the Space Station


In December 2008, NASA announced the selection of SpaceX's Falcon 9 launch vehicle and Dragon Spacecraft to resupply the International Space Station (ISS). The $1.6 billion contract represents a minimum of 12 flights, with an option to order additional missions for a cumulative total contract value of up to $3.1 billion.


NASA cited SpaceX's significant strengths as follows:

  • First stage engine-out capability
  • Dual redundant avionics system
  • Structural safety factor in excess of industry standards
  • Enhanced schedule efficiencies
  • Reduced overall technical risk to ISS cargo supply


Fairing Volume


Below are the standard fairing dimensions for Falcon 9. Dimensions are in meters and in inches inside the brackets. Custom fairings are available at incremental cost.

Falcon 9 - 5.2 meter diameter fairing



SpaceX Launch and Placement Services



Mission Management


Each customer works closely with a single SpaceX contact, a Mission Manager, who in turn works closely with the SpaceX technical execution staff and all associated licensing agencies in order to achieve a successful mission using the Falcon 9 launch vehicle. The SpaceX Mission Manager is responsible for coordinating mission integration analysis and documentation deliverables, planning integration meetings and reports, and coordinating all integration and test activities associated with the mission. The Mission Manager will also facilitate customer insight during the launch campaign. Though the launch operations team is ultimately responsible for customer hardware and associated Ground Support Equipment, the Mission Manager will coordinate all launch site activities to ensure customer satisfaction during this
critical phase.



Pricing


In facilitating SpaceX services, the Falcon 9 launch vehicle will offer the lowest cost per pound/kilogram to orbit, despite providing breakthrough improvements in reliability.

SpaceX offers open and fixed pricing for launch services based on SpaceX's standard statement of work. Additional mission assurance activities or other non-standard services are available for an additional charge. Modest discounts are available for contractually committed, multi-launch purchases. A half bay flight of Falcon 9 is available to accommodate customers with payloads (e.g., satellites or other spacecraft) in between Falcon 1 and 9. Please contact us on details for this accommodation.

Price $54M*

*Paid in full standard launch prices for 2012. Please contact us for details at sales@spacex.com


Performance


Launch Site: Cape Canaveral Air Force Station
   
Mass to Low Earth Orbit (LEO): 13,150 kg (29,000 lb)
Inclination: 28.5 degree
   
Mass to Geosynchronous Transfer Orbit (GTO): 4,850 kg (10,692 lb)
Inclination: 27 degree
   


For further information, contact us at sales@spacex.com.



Return to top | Return home