
Wireless Personal Communications6: 311–335, 1998.
c 1998Kluwer Academic Publishers. Printed in the Netherlands.

On Limits of Wireless Communications in a Fading Environment
when Using Multiple Antennas

G.J. FOSCHINI and M.J. GANS
Lucent Technologies, Bell Labs. Innovations, Crawford Hill Laboratory – R137, 791 Holmdel-Keyport Road,
Holmdel, New Jersey 07733-0400, U.S.A.

Abstract. This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth
efficient delivery of higher bit-rates in digital wireless communications and to also begin to look into how
these limits might be approached. We examine exploitation of multi-element array (MEA) technology, that is
processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications.
Specifically, we present some basic information theory results that promise great advantages of using MEAs in
wireless LANs and building to building wireless communication links. We explore the important case when the
channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which
is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA
technology and we see how the capacity scales with increasing SNR for a large but practical number,n, of antenna
elements atbothtransmitter and receiver.

We investigate the case of independent Rayleigh faded paths between antenna elements and find that with
high probability extraordinary capacity is available. Compared to the baselinen = 1 case, which by Shannon’s
classical formula scales as one more bit/cycle for every 3 dB of signal-to-noise ratio (SNR) increase, remarkably
with MEAs, the scaling is almost liken more bits/cycle for each 3 dB increase in SNR. To illustrate how great this
capacity is, even for smalln, take the casesn = 2, 4 and 16 at an average received SNR of 21 dB. For over 99%
of the channels the capacity is about 7, 19 and 88 bits/cycle respectively, while ifn = 1 there is only about 1.2
bit/cycle at the 99% level. For say a symbol rate equal to the channel bandwith, since it is the bits/symbol/dimension
that is relevant for signal constellations, these higher capacities are not unreasonable. The 19 bits/cycle forn = 4
amounts to 4.75 bits/symbol/dimension while 88 bits/cycle forn = 16 amounts to 5.5 bits/symbol/dimension.

Standard approaches such as selection and optimum combining are seen to be deficient when compared to
what will ultimately be possible. New codecs need to be invented to realize a hefty portion of the great capacity
promised.
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1. Introduction

We report a theoretical and numerical estimation of the ultimate limits of bandwidth efficient
delivery of high bit-rate digital signals in wireless communication systems when multi-element
arrays (MEAs) are used. An information-theoretic approach is taken to investigate, for a fading
environment, the value of using a substantial number of antenna elements atboth transmitter
and receiver. We constrain the channel bandwidth and total transmitted power and show that
by forming a channel using increased spatial dimensions one can get extraordinarily large
capacity.

The analysis is conducted in an idealized propagation context tailored to give insight into
wireless LAN applications and other wireless applications where at leastnominallythere is
extremely limited mobility, like when transmit and receive MEAs are affixed to buildings.
None-the-less, we allow that changes in the propagation environment occur but on a very slow
time scale compared to the burst rate. E.g., a user at a desk on a LAN can move within the
workspace and cause the channel to change. Our idealized model allows the channel, fixed
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during a burst, to randomly change from burst to burst. We conduct a “quasi-static” analysis,
in which one calculates capacity as if a randomly selected channel is unchanged during a burst.
The burst is assumed to be of long enough duration that the standard infinite time horizon
view of information theory offers meaningful results. (Say, e.g., for several megasymbols per
second burst rate with several thousand symbols in a burst with the channel changing on a
scale of seconds.) The channel characteristic is not known at the transmitter but the receiver
knows (tracks) the characteristic which is subject to Rayleigh fading. Lack of knowledge of the
channel characteristic at the transmitter is deemed to be a practical assumption as otherwise
a fast feedback link would be required. Significant processing can be involved in exploiting
MEAs, so it is of interest to avoid the additional complication of accommodating yet another
layer of processing to include a feedback link. Furthermore, if we had allowed feedback to
inform the transmitter, the extra time involved in incorporating the feedback loop could erode
the validity of assuming that the channel is virtually unchanged.

This paper is restricted to analyzing the narrow band case where the bandwidth is taken to be
narrow enough that the channel can be treated as flat over frequency. Then we express capacity
in units of bps/Hz, or, equivalently, bits/cycle. For illustrative purposes, we concentrate on
the case of an equal number of transmit and receive antennas but our numerical results will
also include comparisons with more standard diversity methods like when there is only one
transmitting antenna but many receiving antennas and vice-versa. We will often assume an
environment of a large number of scatterers so that the Rayleigh fading model is appropriate.
The assumption ofindependentRayleigh paths that we will also often make, is to be thought
of as an idealized version of the result that for antenna elements placed on a rectangular lattice
with half wavelength (�=2) spacing, the path losses tend to roughly decorrelate [1]. Note that,
for example, with a 5 GHz carrier frequency�=2 is only about 3 cm. So at sufficiently high
carrier frequencies there can be great opportunity for accommodating numerous antennas in
the regions of space occupied by the communicating stations.

Mostly, capacity is treated here as a random variable and a key goal is to find the
complementary cumulative distribution functions(ccdfs). Such functions show how enor-
mous the capacity can be. For the baseline case of a single transmit and a single receive
antenna, it is well known that Shannon’s classical capacity formula indicates that in the high
signal-to-noise (SNR) ratio realm a 3 dB increase in SNR is roughly worth about one more
bit/cycle of capacity. Analyzing the case of independent Rayleigh faded paths betweenn
antenna elements at both transmitter and receiver, we will find that, remarkably, for largen
the scaling isn more bits/cycle for every 3 dB SNR improvement. We will set a threshold
percentage, say, e.g., 99%, and then read from the ccdf graphs the capacity that we can provide
with 99% probability. This 99% level amounts to 1% probability of outage (writePout = 1%).
For a symbol rate equal to the channel bandwidth the achievable capacity may, in many cases,
at first seem inordinately high, some examples will involve tens, even hundreds, of bits/cycle.
However, viewed in terms of bits/cycle/dimension the capacity will be seen to be much more
reasonable.

We will see the capacity deficiency of standard MEA architectures relative to whenn
antenna elements are used at both transmitter and receiver. Looking toward implementations,
it is of value for an architecture to be based on the highly developed technology of one
dimensional (1-D) codecs. For the simplest interesting case,n = 2, we report the relative
merit of some efficient architectures that employ two antennas at both communication sites
and that are also based on 1-D codecs.
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The exceedingly large capacities that we uncover opens up the path to achieve the ambitious
bit-rates at very low error rates that will be needed in the future. Indeed, the work reported
here of the effect on capacity of deploying MEAs was originally motivated by the growing
efforts on evolving indoor wireless LAN technology [2–4]. There is very extensive work on
the subject of MEAs. E.g., see [1] and [5–20] and their references for leads into this literature.
It will be evident from the results that we will present here, that those capacities pale in
comparison with capacities that can be projected when MEAs are deployed at both transmitter
andreceiver.

We will not deal here with the subject of multiple access (or interferers) but we will study
a form of self-interference. In the references joint detection [20] and interference cancellation
[17] schemes are employed to improve the performance of multiple user systems. Regarding
other related work we also mention [21] where measurement and ray tracing calculations
were used to examine indoor path loss variations versus both transmitter and receiver local
displacements.

2. Mathematical Model for Wireless Channels

Our focus is on a single point-to-point channel. The perspective is a complex baseband view
involving a fixed linear matrix channel with additive white gaussian noise (AWGN). Although
fixed, the channel will often be taken to be random. Time is taken to be discrete. We need to
list more notation and some basic assumptions:

� Number of antennas: Transmit:nT and Receive:nR. We will use the descriptor (nT , nR).
� Transmitted signals(t): The total power is constrained tôP regardless of the value ofnT

(the dimension ofs(t)). The bandwidth is narrow enough that we can treat the channel
frequency characteristic as flat over frequency.

� Noise at receiver�(t): complexnR�DAWGN with statistically independent components
of identical powerN at each of thenR receiver branches.

� Received signalr(t): nR � D received signal so that at each point in time there is one
complex vector component per receive antenna. When there is only one transmit antenna,
it radiates power̂P and we denote the average power at the output of each of the receiving
antennas byP .

� Average SNR at each receiver branch:� = P=N independent ofnT .
� Matrix channel impulse response:g(t) hasnT columns andnR rows. We useG(f)

for the Fourier transform ofg(t). Consistent with the narrowband assumption, we treat
this (matrix) transform as constant over the band of interest, writingG, suppressing
the frequency dependence. So, except forg(0), g(t) is the zero matrix. Often, it will be
convenient to represent the matrix channel response in normalized form,h(t). Specifically,
related toG, we have the matrixH, where the equation̂P 1=2 �G = P 1=2 �H defines the
relationship so,g(t) = (P=P̂ )1=2 � h(t). We say more about the explicit form ofH for
the important Rayleigh fading case in Section 4.

The following standard notation will be needed:0 for vector transpose,y for transpose
conjugate, det for determinant,In for then � n identity matrix,Ef:g for expectation and�
for convolution.

The basic vector equation describing the channel operating on the signal is

r(t) = g(t) � s(t) + �(t): (1)
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The two vectors being added are complexnR �D vectors (2nR real dimensions). Using the
narrowband assumption, we simplify, replacing convolution by product and write

r(t) = (P=(P̂ � nT ))1=2 � h(0) � s(t) + �(t): (2)

3. Generalized Capacity Formula and Some Examples

The standard formula for the Shannon capacity [22–24] expressed in bps/Hz is

C = log2(1+ � � jHj2): (3)

where the normalized channel power transfer characteristic isjHj2. (in this 1-D caseH is
simply a complex scalar.) It is evident that for high SNRs a 3 dB increase in� gives another
bit/cycle capacity.

We are interested in capacity computations having to do with space diversity in which the
receiver takes full advantage of what the vectorr conveys about the transmitted signal. Assume
that, since the transmitter does not know the channel, the transmitted signal power is simply
distributed equally over thenT transmitting antennas. ThenT transmitted signal components
are taken to be statistically independent gaussians. The virtue of a gaussian distribution for
the transmitted signal is well established, see [25], and for more details involving matrix
channels see [26]. (The collection of random variables comprising thenT real, along with
the nT imaginary parts of all of the transmitted signal components are assumed to be a
set of 2nT equal power independent gaussians.) The reader may wonder: independence, why
independence?After all, there are many signal paths between transmitter elements and receiver
elements and in case a path turns out poorly should we not have redundancy to protect against
such a weak signal path? Otherwise would not the capacity simply benT times the minimum
of the capacities attained with thenT component signals? To answer this, we note that, through
the device of a one-time pad [27], shared by transmitter and receiver, it is not contradictory
for the transmitted signal components to be, at the same time, statistically independent of each
other and redundant.

To explain how this can be we give a very exaggerated illustration in this paragraph. Start
with a bit stream, in the form of, say, an i.i.d. sequence of bits each equally likely to be a
zero or a one. Moreover, we havenT identical copies of this same stream. Furthermore, we
havenT transmitted signals conveyingnT identical bit streams all encoded in precisely the
same way intonT identical gaussian waveforms. Now say we want insteadnT independent
gaussian waveforms but each encoding the same original bit stream. One can simply convert
thenT identical data streams intonT statistically independent data streams with a one-time
pad. We just subject each uncoded bit to an independent flip of a fair coin and change the
bit or not according to a head or tail outcome. The list ofnT coin flip outcomes elaborated
over time constitutes the one-time pad. The receiver is privy to the one-time pad and treats it
as part of the encoding process. Encoding the bits streams after the one-time pad operation
givesnT statistically independent gaussian waveforms each containing precisely the same
information content. For this example of exaggerated statistical dependence we see that the
encoded signal hasnT -fold redundancy andnT uncorrelated gaussian component waveforms,
both at the same time.
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Assuming that the transmitted signal vector is composed ofnT statistically independent
equal power components each with a gaussian distribution, the relevant capacity expression
can be derived (see Appendix). The convenient general capacity expression is

C = log2 det[InR + (�=nT ) �HHy] bps=Hz: (4)

In the rest of this section, and in Sections 4–7, we will specify (nT , nR) as well as certain
constraints on the means of transmission or reception or both, and then determine capacity
under the imposed constraints. Formula (4), or simple variants of the formula, will be used
repeatedly.

We next apply (4) to some special cases. To hint at results to come, the example where
H = In is worth registering. We get

Cn = n � log2(1+ (�=n)) ! �= ln(2) asn!1: (5)

Unlike in (3), capacity scales linearly, rather than logarithmically, with increasing SNR. This
hints at a significant advantage to using parallel information transmission. In this simple
example we haveorthogonalparallel channels. However, as we shall see, with the parallelism
offered by deploying MEAs at both sites, the signal component traversing different paths can
interfere and consequently any possibility of advantage must be carefully assessed. We will
do this in Section 4 analytically and then numerically in Sections 5–7. Drawing on (4) we will
see, that in contrast to what is expressed by (5), with certain MEA arrangements there is a
very significant capacity improvement with increasingn.

It is helpful to consider (5) in terms of a specific example ofn uncoupled transmission
lines (H = In). If we choose to send all our power on one of the lines, our capacity is only
log2(1 + �), which is much less than indicated in (5). A simple way in which the equality
in (5) can be achieved is to divide the power equally between then lines and sendn equal
rate independent signals. (We stress that we have been careful to account for the effect of
equal power division on the received SNR.) Thus, one should use all the lines available.
In effect, wireless communication has many lines available through radiation, and in many
cases one should use these multiple lines. Of course the “radiation” lines are coupled and
subject to fading, but as we will show, these “problems” can be dealt with through the use of
redundant signals and detection schemes which take advantage of the multi-dimensionality of
the channel.

Next we present the formula for optimum receive diversity, showing how the reception
of the signal from one transmitter by many receivers increases capacity. Optimum refers
to taking full advantage of what the received vectorr = (r1(t); r2(t); � � � rnR(t))0 tells us
about the transmitted signal. We call this system an optimum combining, OC(nR), system. Its
capacity is

C = log2

"
1+ � �

nRX
i=0

jHij2
#
: (6)

Contrasting with Equation (2), we see thatjHj2 is replaced by a sum of squares and that the
noise power level is just that of (any) one of thenR channels. While we found this capacity
imposing no constraint of linear combining of the antenna outputs, the capacity expressed by
(6) turns out to be exactly thatlinear combination of the antenna outputs that maximizes the
information that the output contains about the input signal. This optimum linear combiner
is the well known “maximal ratio combiner”. In what follows we will present applications
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involving random channels where thisnR-fold diversity serves the dual role of capturing more
of the transmitter power and stabilizing channel (spatial) fluctuations. This standard method
of diversity will be contrasted with numerous other methods.

Selection diversity capacity is that offered by the best of thenR channels, i.e.,

C = maxm log2[1+ � � jHmj2] = log2[1+ � � maxmjHmj2]: (7)

The maximization is overfm j 0� m � nRg. While selection diversity is inferior to optimum
combining, it can be simpler to implement. We will need additional capacity formulas for when
MEA technology is more fully exploited, but first we require some notation for the channel
of primary interest.

4. Capacities when the Matrix Channel is Rayleigh

A “quasi-static” analysis in which capacity is calculated as if a randomly selected channel is
essentially not changing during a (long) burst is employed. The idea is that, whether for LAN
or inter-building applications, channels change, but, the time constant of change is assumed
negligible on the scale of a burst duration. E.g., an application might involve a burst rate of
several Mbps so that while a burst only lasts for, say, a few ms, it spans such a large number
of symbols that the standard infinite time horizon information theory view is a valuable
idealization. For each channel realization we use (4) to get capacity. As already mentioned,
we aim to plot graphs of capacity ccdfs.

The random channel model we treat here is the Rayleigh channel model. The Rayleigh
channel model forH (nR � nT channel matrix) has i.i.d., complex, zero mean, unit variance
entries:

Hij = Normal(0;1=
p

2) +
p
�1 � Normal(0;1=

p
2); (8)

consequently,jHijj2 is a �2
2 variate but normalized soEjHij j2 = 1. Regarding the i.i.d.

assumption, independence is usually just an approximation, which improves as array element
spacing becomes large compared to� [15–16]. However, we expect that with the i.i.d. ide-
alization capacity estimates can be useful even for spacings as small as�=2, because good
diversity performance maintains even for correlation as high as 0.5 [1].

While theH matrix is assumed to have been measured at the receiver, say using a training
preamble, the channel matrix is not known at the transmitter. From [28], we have that, in a
random channel context such as ours, a single code can be used by the transmitter even though
H is not known at the transmitter and any one of an ensemble of channels might be realized.
So remarkably, the results in [28] assure us that, in principle, robust codes are possible that can
cope with a wide range of possibilities forH. Later, in Section 6 and especially in Section 7,
in some simple contexts we will indicate ways that coded modulations can be structured to
deal effectively with great uncertainty as to what the channel realization will be.

The capacities of some Rayleigh channels are now expressed using chi-squared variates.
We will often not follow the usual custom of using one letter for a random variable and then
adding a phrase to convey how the random variable is distributed. Instead, in a slight abuse
of standard notation, we opt for a more expressive format of directly indicating the type of
distribution of the random variable. We start with a simple example exhibiting this type of
notation.

(A) NO DIVERSITY: nt = nR = 1

C = log2[1+ � � �2
2]: (9)



On Limits of Wireless Communications in a Fading Environment317

So the parameter� multiplies a chi-squared variate with two degrees of freedom.
(B) RECEIVE DIVERSITY: OC(n); nT = 1; nR = n

C = log2[1+ � � �2
2n]: (10)

Contrast this with the selection diversity formula log2[1+ � �maxfn independent�2
2sg].

(C) TRANSMIT DIVERSITY: nT = n; nR = 1

C = log2[1+ (�=n) � �2
2n]: (11)

Compare with log2[1+� ��2
2] which is the formula for when all transmitted signal components

are exactly the same. One often hears that with transmit diversity the SNR improves by
10� log10n as if the capacity were log2[1+ n � � � �2

2]. We would expect that behavior if each
of thenT transmitted signal components was the same and each had powerP̂ . That is not
permitted since we require that the total transmitted power is held constant independently of
nT . In our setting, the average SNR (averaged over channel realizations) is� at each receiving
antenna no matter how many transmitting antennas are used.

(D) COMBINED TRANSMIT-RECEIVE DIVERSITY: We will only neednT = nR,
however,nT � nR is easily accommodated so we include it as well. (For the interesting
(nT < nR) case, namelynT = 1 we already know the exact capacity formula.) In Section 5.1
we will prove the following lower bound on capacity:

C >
nTX

k=nT�(nR�1)

log2[1+ (�=nT ) � �2
2k]: (12)

Contrast this bound with
PnT

i=1 log2[1+ (�=nT ) � �2
2nRi] wherei is used to index statistically

independent chi-squared variates each with 2nR degrees of freedom.) This later formula is an
upper bound on capacity. It represents the very artificial case when each ofnT transmitted
signal components is received by a separate set ofnR antennas in a manner where each signal
component is received with no interference from the others. In other words when the vector
components are conveyed overnT “channels” that are uncoupled and each channel has a
separate set ofnR receive antennas. With such a contrivance there are a total ofnR � nT
receive antennas.

(E) SPATIAL CYCLING USING ONE TRANSMITTER AT A TIME: We will compare the
right hand side of (12) with what is obtained whennT transmitters as well asnR receivers are
used but only one transmitter is used at a time: we cycle through allnT transmitters periodically
with periodnT . Beside being associated with a simple implementation, this method has the
feature that the cycling assures nontrivial dwelling on the better ofnT transmitters as well.
This method avoids catastrophic interference, indeed, with this method there is no interference
at all. This technique represents a minor form of combined transmit-receive diversity and since
we are using only one transmitter at time, is a singular departure from the ongoing assumption
in our examples of using all transmitters simultaneously. The capacity formula for spatial
cycling is

C = (1=nT ) �
nTX
i=1

log2[1+ � � �2
2nRi]: (13)
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The transmitter does not know the channel so this formula needs proof (see Section 4.1.2).1

We will see (Section 4.1.1.1) that for (D) for the (n; n) case, capacity grows linearly
with largen. The spatial cycling method (E) is of much more limited merit as we will see
in Section 6. Simple analysis shows that the capacity given by (13) (and (10) for B)) grows
only logarithmically withn. Note that the variance of the random capacity that is given by
Equation (13) goes to zero asn ! 1 and it does so even more rapidly than the variance of
the capacity given by (10).

4.1. DERIVATIONS ASSOCIATED WITHCOMBINED TRANSMIT-RECEIVE DIVERSITY: CASES
(D) AND (E)

We now give the mathematical details associated with results we have stated on the more
complex of the cases we are addressing, namely, cases (D) and (E). First we deal with the
lower bound on capacity given by (12). We will also include an asymptotic, largen, analysis
of this bound. Secondly, we give the mathematical justification for (13). This justification will
prove quite useful since the essentials of the argument that we give will apply to several other
communication systems that we will encounter in the numerical examples sections. (These
are examples that use related forms of spatial cycling.)

4.1.1. Derivation of the Lower Bound on Capacity

To derive the lower bound we need a result on random matrices from [29] that builds on
earlier work in [30]. We writem for nT andn for nR. We will employ the notion ofunitarily
equivalent rectangular matrices, see [31].

H is unitarily equivalent to an m by n matrix

2
666664

x2m 0 � � � 0

y2(n�1) x2(m�1) � �
... ...

...
...

y2 x2(m�(n�1)) 0 � � � 0

3
777775 (14)

wherex2
j andy2

j are distributed as�2 variables with j degrees of freedom (i.e.,�2
j).

2 The x and
y elements here are all non-negative and independent. All matrix entries below the y stripe
and to the right of the x stripe are understood to be zero.

1 Note, that when the transmitterdoesknow the channel, assuming that the same power, (P=nT ), is transmitted
out of each transmitter, Equation (13) also expresses the capacity. In that case the proof of (13) follows easily from
nT applications of Equation (6), one for each statistically independent row of theH matrix. This is because the
squared modulus of the entries of theH matrix are each independent chi-squared with two degrees of freedom.
Each column ofH corresponds to a different transmitter so an independentnR-fold sum of chi-squared variates
with two degrees of freedom is associated with each transmitter. The ((1/nT ) multiplier is because each of the
transmitters is used (1=nT ) of the time.

2 The�2
j distribution is usually defined as the distribution ofj sums of squares of standard gaussian variates. As

mentioned at the beginning of this section, we use a slightly modified form of this definition where the underlying
complexgaussian variates are normalized so that the real gaussians have standard deviation 1/

p
2.
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We use the representation (14) to rewriteInR + (�=nT )HHy. First defineX2j =

(�=nT )
1=2x2j andY2j = (�=nT )

1=2y2j so InR + (�=nT )HHy is thenR � nR matrix of
the form2
6666664

1+X2
2m X2mY2(n�1)

Y2(n�1)X2m 1+X2
2(m�1)

+ Y 2
2(n�1)

X2(m�1)Y2(n�2)

Y2(n�2)X2(m�1) 1+X2
2(m�2)

+ Y 2
2(n�2)

X2(m�2)Y2(n�3)

. . .

Y2X2(m�(n�2)) 1+X2
2(m�(n�1))

+ Y 2
2

3
7777775
:

(15)

We have displayed all nonzero entries in the first three and last rows.
In evaluating det (InR + (�=nT )HHy) we get, from the product of then main diagonal

terms in (15), a contribution of the formL+Q where

L =
mY

j=m�(n�1)

(1+X2
2j)

andQ is a positive number obtained by summing over only positive terms. The determinant
calculation involves a signed sum overn! permutations. Every permutation is a product
of transpositions and the negatively signed contributions to the determinant involve an odd
number of transpositions. Due to the structure exhibited in (15) it is evident that each such
negative term is cancelled by a distinct positive contribution toQ. Moreover,Q contains more
terms than needed to cancel all the negative terms. Therefore,C > L with probability one.

4.1.1.1 Capacity Lower Bound Analysis for a Large Number of Antennas.We explore further
the special case whennT = nR = n deriving the largen asymptotics for this lower bound
L = L(n). We will look at bounding capacity on a per dimension basis, that is we will look
at the lower boundL(n)=n of C(n)=n. It is convenient to study the sequence of random
variables[L(n)=n]n>0 via a perturbation analysis with (1=n) the perturbation parameter. We
start by rewriting the right hand side of (12) in terms of centered (at zero) chi-squared variates.
The centered variates are indicated withs in the place of�2s

c(n)=n > L(n)=n = (1=n) �
nX

k=1

log2[1+ (�=n) � (k + 2k)]: (16)

The constant term, that is the term that is asymptotically independent of the parameter (1/n),
is the term of primary interest to us. Note that limn!1 n�12k = 0 uniformly ink, since each
n�12k has an extra divisor ofn1=2 over what the Central Limit Theorem requires. (See, for
example, [32] for the Central Limit Theorem in communication theory contexts.) To find the
constant we write

L(n)=n � (1=n) �
nX

k=1

log2[1+ (k � �=n)] (n large): (17)

Using the trapezoidal rule we get

L(n)=n!
Z 1

0
log2[1+ x � �]dx (n large): (18)
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Consequently,

L(n)=n! (1+ ��1) � log2(1+ �)� log2 e asn!1: (19)

Noticing how (17) departs from the trapezoidal rule, we see that the integral (18) involves an
error relative to (17): More precisely we write

L(n)=n! (1+��1) � log2(1+�)� log2 e+n�1 � log2(1+�)1=2+ o(1=n) asn!1: (20)

The next term in the expansion ofL(n)=n can be shown to be normally distributed with
zero mean and variance vanishing asn increases. This vanishing stems from the fact that
the outsiden�1 multiplier appearing in the argument of the logarithm in (16) is more of a
normalization than the Central Limit Theorem requires. Specifically, the next term in the large
n expansion of (16) can be shown to be the stochastic integral with respect to standardized
white Gaussian noise

�

n � ln 2

Z 1

0

x1=2

1+ �x
dWx: (21)

Wx here is the standard Wiener process which is a zero mean Gaussian process with Probability
[W0 = 0] = 1 andE(Wx1 �Wx2) = min(x1; x2). See, for example, [33] for representing an
expression such as (21) using a sequence of equipartitions of the unit interval to enable us
relate to the first nonconstant term in the expansion the right hand side of (16). Reference [33]
is also used to conclude that the integral (21) is a zero mean Gaussian variate with variance
equal to the squaredL2 norm of the integrand times [�=(n � ln 2)]2. We can now write

C(n)=n > (1+ ��1) log2(1+ �)� log2 e+ "n + o(n�1) (22)

where the random variable"n has a Gaussian distribution with

Mean"n = (1=n) � log2(1+ �)�1=2 (23a)

and

Var "n =

�
1

n � ln 2

�2

�
�
ln(1+ �)� �

1+ �

�
: (23b)

We see that for largen the dominantC(n) term scales at least linearly with increasingn.
The slope lower bound is given by the right hand side of (19) which for� large is log2(�=e).

4.1.2. (nT ; nR) Capacity Derivation: One Spatially Cycled Transmitting Antenna/Symbol

To derive (13),3 instead of cycling the choice of transmit antenna, we will look at the capacity
of a system in which a one time-pad based on a fair die toss, one per transmitted symbol,
is used to choose the transmit antenna. Since the symbol transmission rates out of each of
the transmitting antennas using die tossing is the same as when cycling, the transmitter and
receiver can map the symbols from the die tossing format to the cycling format (or vice versa).
It is convenient to compute capacity with the equivalent die tossing format.

Channel capacity is defined in terms of mutual information between input and output,
I(input, output). (We are not concerned with optimizing the input alphabet density since we

3 Reference [34] (also [28]) provides a powerful abstract theory for treating time-varying channels that we could
look to use to produce (13). However, justification of (13) lends itself to a relatively straight-forward argument.
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are constrained to use a gaussian.) Reference [24] gives the following expression for the
mutual information in the case when the output is a multiple of the transmitted signal plus
independent additive noise:

I(input ; output) = "(output)� "(noise): (24)

In this formula"(:) represents entropy. Recall that for a random variable� the entropy,"(�), is
defined as the expectation of� log2 �, and entropy is especially easy to compute for gaussian
variates for which it turns out to be the base two logarithm of a multiple of the variance.

FornT = 1, we get from (24) the classical Shannon formula log2(1+ SNR) for capacity
of an AWGN channel. For (13), by the immediately following conditioning argument, we
will get an average ofnT such differences. Specifically, with die tossing, for each of the two
entropy terms compute the expectation by conditioning on thenT equally likely outcomes.
Then, since"(output) and"(noise) are each expressed as the sum ofnT conditional entropies
we obtain

I(input ; output) =
1
nT

�
nTX
i=1

"(output ji-th outcome)

� 1
nT

�
nTX
i=1

"(noise ji-th outcome):

(25a)

Rearrange this summation by collecting thenT pairs of identically conditioned terms to get

I(input ; output) =
1
nT

�
nTX
i=1

["(output ji-th outcome)� "(noise ji-th outcome)]: (25b)

The summands are justnT entropy differences each just like the difference encountered in
deriving the classical Shannon formula except that the SNRs depend oni. Consequently, the
rearranged sum is the average given by Equation (13).

5. Capacity ccdf Comparisons for some (n, n) Cases

For fixed� andnT = nR = n we will look at some ccdfs often focusing onPout = 1%. We
will also find the SNR andn to meet a requiredPout requirement.

The ccdf of capacity, whenH is a Rayleigh matrix can be obtained from (4). In the more
ambitious examples reported in this sectionH is a large square matrix – up to 64 by 64.
We judged the random determinant to be a complicated function whose distribution was best
estimated by simply generating the complex gaussian variates by Monte-Carlo methods as
opposed to seeking to analytically determine the distribution. Having generated the underlying
gaussian variates for (4), it was advantageous to use these variates for estimating the ccdfs of
the other capacities as well.

For very small outages, say much less than 1%, it is worth noting that it is possible to
compute nearly all of the ccdfs that we will present using either closed form or standard
convolution routines utilizing the fast fourier transform (FFT). Indeed, one can see from the
various formulas that we presented for the Rayleigh channel, that the typical computation
involves simple functions of chi-squared variates or additions of simple functions of inde-
pendent chi-squared variates. For the latter, convolution methods based on the FFT are well
known to be extremely useful for computing probability distributions stemming from sums



322 G.J. Foschini and M.J. Gans

of independent variates. Refined analytical methods specifically targeting ultra-small outages
should also be considered to expedite computation of extreme tail probabilities.

Most runs used 10,000 realizations ofH. Forn = 2 generating a typical ccdf only takes
tens of seconds, whereas generating a ccdf for (64, 64) took several hours. Most examples
involve small values ofn: as we will see,n = 2 was, by far, the most common case. Numerical
Analysis Group’s (NAgr) routines [35] were used for random number generation, complex
determinants, etc.

For the most part, the systems that we report on are covered by the equations already given.
However, in addition, some standard computations with vectors will be required. Specifically,
we will refer to receiver processing involving nulling out all signal components but one. One
needs only to form a linear combination ofn�D vectors that is perpendicular ton�1 distinct
vectors where then vectors involved have, with probability one, full rank. An optimization
problem needs to be solved for the numerical work reported in Section 7: this problem and its
solution are presented there.

5.1. MARKED IMPROVEMENT OFOUTAGE PROBABILITY

Figures 1a and 1b depict capacity ccdf tails when the number,n, of both transmitter and
receiver antennas is two and four respectively. Capacity is measured in units of bits/cycle. The
average received SNR is a parameter covering the range 0–21 dB in steps of 3 dB. For contrast
each figure also includes the reference case of only one transmit and one receive antenna with
the corresponding eight curves for this reference case drawn using thin lines. We emphasize
that, regardless of the number of transmitters, the total power radiated by all transmitters is
the same as for the baseline case of only one transmitter. In the two figures the comparison
with the baseline case makes evident a highly significant improvement of the lowPout tails by
using more antennas.

To illustrate how great this capacity is, even for smalln, take the casesn = 2 and 4 at
an average received SNR of 21 dB. Look at Figures 1a–b. For over 99% of the channels the
capacity exceeds about 7 and 19bits/cyclerespectively, whereas, ifn = 1 there is only about
1 bit/cycle at the 99% level. For this same SNR and values ofn, at the 95% there is again very
substantial improvement in using more antennas at transmitter and receiver, although, not as
much as at the 99% level.

5.2. REASONABILITY OF NUMBER OFBITS PERCYCLE PERDIMENSION

Figures 1–b inform us that for a fixedPout the capacity improvement increases markedly
with the number of antennas. Forn = 4 the capacities might at first seem too large to be
reasonable, and, as already indicated, in many applications involving multi-GHz carriers there
can be room for an order of magnitude or so more antennas at both transmitter and receiver.
Out of context, if the symbol rate is about equal to the channel bandwidth, striving to attain a
hefty fraction (say 50%) of a capacity of several hundred bits per symbol would very likely
evoke concerns about astronomical constellation sizes. However, the perspective for assessing
constellation size considerations is theper dimensionperspective where we are counting one
(complex) dimension for each of then vector components of the transmitted signal. Figure 2
depicts the per dimension capacities forn = 16, 32 and 64, again for the parameter range of
0 to 21 dB in steps of 3 dB. For an SNR of 21 dB the 90% point (10% outage) forn = 32
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Figure 1. Capacity: Complementary Cumulative Distribution Functions. Assumes statistically independent
Rayleigh faded paths. Average received SNR is a parameter ranging from 0 to 21 dB in steps of 3 dB. (a)
Two antennas at both transmitter and receiver (bold line curves). Single antenna at both transmitter and receiver
shown for reference (thin line curves). (b) Same as (a) except four antennas depicted by bold line curves.
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Figure 2. Capacity: Complementary Cumulative Distribution Functions. Capacity represented in terms of
bits/Hertz/spatial dimension. Assumes statistically independent Rayleigh faded paths. Average received SNR
is a parameter ranging from 0 to 21 dB in steps of 3 dB. Number of antennas at both transmitter and receiver:
sixteen (thin line curves), thirty-two (medium line curves) and sixty-four (bold line curves).

Figure 2 shows 5.7 bits per symbol per (complex) dimension which is equivalent to 182.4 bits
per symbol assuming a symbol rate equal to the channel bandwidth.

The linear capacity growth hinted at by the lower bound analysis in Section 5 is apparent in
the strong tendency toward asymptotic constancy of the per dimension capacities illustrated in
Figure 2. Figure 2, as well as Figures 1a–b, also serve to illustrate that considerable capacity
is available even at an SNR of 0 dB. For example, look at the 99% point in Figure 2 forn of
32 and 64 we see about 0.8 bits/cycle/dimension. Forn = 16 the per dimension capacity is
very slightly less than 0.8.

6. Contrasting System Architectures

We will next explore the relative merits of various architectures including (1,nR) and (nT , 1)
systems, but most interestingly a number of (n, n) systems. Then we will also very briefly
mention multicarrier systems as well as systems designed for bulk data transfer.

6.1. THE CCDFS OFSOME (2, 2)AND (8, 8) SYSTEMS

Comparisons of the ccdfs of some architectures are shown in Figures 3a and 3b for two and
eight antennas respectively. For illustrative purposes a 21 dB average received SNR is used
for each figure. Look, for example, at Figure 3b (3a is similarly described). The boldest line
rightmost curve is the ccdf of capacity for the (8, 8) case. The thin line curve very close to it on
the left represents the lower bound approximation which is seen to be quite accurate. The thin
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line curve on the extreme left is the (1, 1) case which, as we have already learned to expect,
is very significantly surpassed by the (8, 8) case. Disposed just to the right of the (1, 1) curve
are three nearly parallel, predominantly vertical thin line curves. The leftmost, most inferior
of the three, is the (8, 1) curve. Its outage performance is seen to far surpass that of (1, 1). This
curve is followed on the right by two (1, 8) curves. The middle of the three curves is selection
diversity while the rightmost (best of the three) is OC(8).

At the low outage tail (ccdf near 100%) somewhat superior to OC(8) is an (8, 8) curve
corresponding to using all eight transmitters by simply cycling through all eight in sequence,
using only one transmitter at a time. This curve is nearly vertical at an abscissa of about 10
bits per cycle. The formula for this curve is given by Equation (13) in Section 4, a simple
analysis of which reveals this vertical asymptote to be log2(1+ n � �). Forn = 8 and an SNR
of 21 dB this evaluates to log2(1+8�102:1) which is about 10 bits per cycle which agrees with
Figure 3b. A straightforward perturbation analysis shows a much more severe decrease of the
variance with increasingn than for the full (n n) capacity which requires alln transmitters to
be used simultaneously. This comparative variance behavior is evidenced by the two boldest
curves in Figure 3b.

Two (8, 8) curves remain to be described. These are the two ccdfs that exhibit, by far,
the most substantial variances in the figure. For the leftmost of the remaining (8, 8) curves
the transmitted signal components are independently encoded so that there is no redundancy
betweenthe components of the vector. Also, the received vector is linearly processed in
an eightfold manner. Specifically, theith processing nulls out all transmitted vector signal
components except that from componenti (i = 1, 2, : : : 8). In this way there are eight
linear processors – amounting to eight linear combiners. In other words, the process involves
transmission and reception of eight separate data streams.

This last transmission process is improved by simply cycling each one of the eight sepa-
rately encoded data streams over the eight transmitters. The reason that cycling is superior is
that, when there is no cycling, one only obtains eight times the minimum of the eight signal
component capacities instead of the sum of the eight. The receiver is assumed privy to this
cycling. The heavier curve (8, 8) predominantly to the right represents the capacities when we
require that cycling be employed. Then there are eight subchannels each of which changes
state in a periodic fashion. By symmetry, the capacities of the eight subchannels are identical
to each other. With equal time in each state, a state known to the receiver, the capacity of each
subchannel is the average of the capacities associated with each state. The result that one can
simply average capacity in a case like this was treated in Section 4. Note at low outage levels
cycling is inferior to (1, 8) optimum combining.

We also looked into more elaborate ways than just simply cycling to avoid vulnerability to
the “worst received” of the signal components. We randomized the presentation of the eight
constituent modulated data streams to the eight transmitters with a highly volatile time varying
rotation (unitary to be precise) matrix valued process. The purpose of a volatile presentation
of the orientation of the signal vector is to move quickly away from a poor conjunction of the
matrix channel with the transmitted signal vector. The receiver was privy to the volatile signal
presentation process, which can be thought of as a spatial one-time-pad. We will not explain
this signal launching in further detail since its performance gain was negligibly different from
simply cycling. In fact, if the reader looks very closely at Figures 3a–b, the cycling curve
that we have described is really two nearly indistinguishable curves corresponding to these
two ways we devised to avoid vulnerability to the worst subchannel. There are better ways of
improving performance as we will see in Section 7.
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Figure 3. Contrasting Various Complementary Cumulative Distribution Functions of Capacity. Assumes statisti-
cally independent Rayleigh faded paths. Average received SNR= 21 dB. Parameter (number transmit antennas,
number receive antennas). (a) (2,2) and related cases (b) (8,8) and related cases.
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6.2. MULTI-CARRIER COMMUNICATION (MCC) ARCHITECTURES

Readers familiar with MCC [36] (also termed Multi-Tone Transmission) where broadened
bandwidth increases signal dimensionality, may wonder about its relationship to (n; n) sys-
tems. While it is beyond our scope here to quantitatively compare capacities with MCC we do
offer some brief qualitative comments. Assume that the MCC system hasn frequency bins and
is a (1,n0) system withn0 � n and with the samefixed total transmitted poweras the (n; n)
system to which it is compared. The (n; n) system is operated so (4) expresses capacity, so
for largen capacity grows linearly withn.

With MCC then frequency bins donot play a role corresponding ton distinct spatial
modes in an (n n) system. So, for a Rayleigh fading environment, fixing the total transmit
power, capacity scales very differently with space in an (n; n) system than with bandwidth in
an (1; n0) MCC system. With MCC, as bandwidth increases, capacity, measured in bps/Hz,
does not have the linear growth withn feature of an (n; n) system. A simple extension of
the argument for (5) usingn adjacent bands instead ofn modes shows this. Note that with
Rayleigh fading, with (1; n0) MCC, if you have power transmitted in a (frequency) bin it is
received in just that bin. However, with an (n; n) system, launch power in a spatial mode
and it gets received inall n “modes” (these are not eigenmodes since the transmitter lacks
channel knowledge). Thereby, the (n; n) system derives its advantage over MCC. True, in an
(n; n) system there is the random “destructive” cancellation of waves launched from different
antennas, whereas there is no interference from neighboring bins with (ideal) MCC. However,
the “destructiveness” was accounted for in our proof that for largen, (n; n) has linear inn
capacity growth (until the available surface is saturated with�=2 spaced antenna elements).

6.3. PERFORMANCECRITERION FORBULK DATA TRANSFER

We have taken burst communications as the perspective for evaluating performance and we
featured the capacity ccdf, denote here�(x). We mention in passing another view that is
appropriate for the scheduled communication of large files. Say thatq is the fraction of time
that is allotted to a user. Then if the user attempts to transmit at capacity4 x, capacityx is
achieved with probability�(x) and with probability 1� �(x) the transmission is completely
lost (zero capacity). Then, assuming communications are acked and nacked, over the long
term a rateq �maxx>0[x ��(x)] is clearly the best rate such a user can obtain. (We are assuming
the user does not process ack and nacks to strive to match transmissions to the channel). For
such an application a simple scheme like (n; n) with cycling when all transmitting antennas
are used simultaneously will be far improved over (n; n) with cycling when only one antenna
is used at a time. While we will not report any quantitative results here, this improvement
is evident from Figures 3a–b where we observe the great probability mass that the former
technique puts at high capacities where the latter method has no significant probability mass.

7. 1-D Codecs for 2-D Systems

Included in the comparisons in the previous section are architectures, that, employ, at bottom,
1-D codecs. The curves in Figure 3a–b for selection diversity and OC(n), the two curves having
to do with cycling and the curve labeled one by one all correspond to such architectures. These

4 We say “transmit at capacityx” to mean transmit at some hefty fraction of capacityx at some low bit error
rate.
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systems, along with others that we discuss, are structured so that a redundant coded message
is prepared for a burst in a manner that does not utilize any information about the specificH
outcome actually realized. The codec technology for achieving a hefty fraction of capacity for
the 1-D AWGN channel is very advanced [36–39] so it is worthwhile to look to leverage this
technology5 when seeking to exploit MEAs.

The diversity schemes we looked at, that are based on adapting one (complex) dimensional
architectures perform far better than (1, 1) but they are far from the (n; n) promise. These
inherently 1-D architectures can be surpassed by more complex inherently 1-D architectures.
E.g., instead of nulling for (n; n) with cycling, we could have used the eight linear receivers
giving the best SNR. Then for each of the signal components the othern� 1 components are
treated as part of the noise. We can even do better as we will show for the lowest interesting
value ofn here, namelyn = 2.

First we discuss the maximization of the SNR with a linear operation on the received
vector when the AWGN vector involves (spatially) correlated components. We will encounter
instances of this maximization problem in Section 7.1 in analyzing the so-called MAX-MIN
communication system. The spatial “noise” correlation occurs for these systems, because, as
will be apparent, interference from other transmitted signal components than the one being
detected contribute to what we term “noise”. All transmitted signal components are eventually
detected and the spatial correlation does not thwart our capacity analysis since ultimately the
interference into each processed signal component is 1-D AWGN. The problem of computing
the optimum linear operation is that of maximizing a ratio of Hermetian quadratic forms. Let�
be the maximizing vector we seek. Useh�; �i for complex scalar product. The numerator form
(signal power) will turn out to be the absolute value squared of a linear functional, denote
jh�; �ij2 and the denominator form (“noise” power) ish�;Q�i whereQ is Hermetian and
positive definite. To do this optimization in a simple way note

max
� 6=0

jh�; �ij2
h�;Q�i

a
= max

� 6=0

jh�; �ij2
h�; qqy�i

b
= max

� 6=0

jh�; �ij2
hqy�; qy�i

c
= max

� 6=0

jh(qy)�1�; �ij2
jj�jj2

d
=

max� 6=0
jh�; q�1�ij2

jj�jj2
e
= hq�1�; q�1�i f

= h�;Q�1�i:
(26a–f)

Equation (26a) is becauseq is defined to be the unique positive definite square root ofQ.
Equation (26c) is because the Cauchy-Schwartz inequality can be attained with equality when
� is a scalar multiple of the other vector in the scalar product. The other three (26�) equations
are for obvious reasons.

The line of reasoning represented by (26a–f) appears in a different detection problem in
reference [40] and holds for any dimension. In the cases we will compute heren = 2. Then,
for detecting signali with signalj as the interferer, the right hand side of (26f) becomes

h�;Q�1�i = 1
2 � � � [jj(H1i;H2i)

0jj2 + 1
2 � � � jdet Hj2]=[1+ 1

2 � � � jj(H1j ;H2j)
0jj2]: (27)

7.1. THE MAX-MIN C OMMUNICATION SYSTEM

We include in Figure 3a a ccdf for another communication system that only uses 1-D codecs. It
is called the MAX-MIN system and its performance is given by the bold heavy dashed curve.

5 When cycling is involved, the 1-D decoder is nonstandard because of the cyclic nature of the SNR.
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We describe now the system giving this curve by detailing constriants that we impose to force
the use of 1-D codecs and at the same time yield a setup suited to performance assessment.
We constrain the encoding techniques for the two signal components to be identical and we
require each signal component to be responsible for half the payload. Each encoder, (one
for each signal component) is to operate without any knowledge of the information bits the
other is encoding – no redundancy between the two encoded signals. Next the constraints we
impose on detection. Detection is described in terms of two underlying detectors. Each of
the two underlying detectors is comprised of two levels of “optimum combining” one level
for detecting each of the transmitted signal components 1 and 2. The detector we shall use
is defined as the better of these two detectors each of which involves two stages of optimum
combining.

� DETECTOR 1: Detect signal component 1 first, using optimum combining, but treating
the “interference” contributions from signal component 2 as part of the gaussian noise.
Assuming 1 is detected successfully, its contribution is subtracted from the received
signal vector and then signal component 2 is extracted again by optimum combining.
Component 2 is impaired only by thermal noise since the effect of component 1 has been
removed.

� DETECTOR 2: The description is the same as for detector 1 except 1 and 2 are inter-
changed.

Consider the capacity of four “channels” corresponding to that obtained when using the
detectori to detect thejth signal component for the four (i, j) pairs. Therefore,Cij is the
capacity that a hypothetical “(i, j) channel” would have if we detected signalj in a process
in which signali is detected first. So there are four statistically dependent random capacities
denotedCij . Thus, for example,C22 is the capacity when detecting the signal transmitted
from the second transmit antenna by optimally combining the two receive antenna signals
in the presence of the noise power and the other interfering signal.C12 is the capacity when
detecting the signal transmitted from the second transmit antenna after having (a) first detected
the signal transmitted from the first transmit antenna, (b) subtracted it out of the outputs of the
two receiving antennas before (c) optimally combining them in the presence of noise, without
interference from the previously detected signal.

The capacity of the matrix channel when constrained to using only the first detector is
2 �min[C11; C12]. Note that the minimum, not the sum, gives the correct capacity because any
excess capacity of one component over another is worthless. The capacity when constrained to
using the second detector is 2�min[C21; C22]. The capacity of the better of these two detectors
is 2 � maxfmin[C11; C12];min[C21; C22]g. We note that given the outcome of the random
channel,H, it is a simple straight-forward exercise to compute the fourCijs to produce the
bold heavy dashed curve labeled MAX-MIN in Figure 3a. Around the 91% level (but not at
95% and above) the capacity is seen to surpass the best of all the other methods of using 1-D
codecs that are represented in the Figure 3a.

It is interesting to establish the very best that can be done using only 1-D codecs when
communicating over ann-D channel. Our simple MAX-MIN architecture served to highlight
the issue as well as to illustrate that nontrivial performance is in the offing.
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8. Summary

From Equation (4) we were able to derive a unified set of closed form capacity expressions for
key cases. These are Equations (5, 6, 9–11, 13). Equations (9–11, 13) apply to the important
case of a stochastic quasi-static channel characterized as having independent Rayleigh faded
paths between antenna elements. We derived and interpreted a capacity lower bound, inequality
(12) in Section 4 and we expressed its asymptotic behavior for a large number of antennas,
n, at both sites. In Section 6, in numerical work we highlighted the contrast with the baseline
case of a single transmit and a single receive antenna. In analyzing the case of independent
Rayleigh faded paths between antenna elements we again emphasized the (n,n) case. From the
aforementioned capacity lower bound asymptotics as expressed by Equation (22) in Section
4.1.1.1 and again in the numerical work in Sections 5 and 6 for the large SNR realm we
observed the scaling to be liken more bits/cycle for each 3 dB increase in SNR.

While, as is well known, receive diversity alone, especially optimal combining, offers
significant capacity improvement over single antenna reception, in contrast, the simultaneous
use of transmit and receive diversity greatly increases the capacity over what is possible with
just receive diversity. Using the equations that we derived in Section 5, in Section 6 curves
that quantified this benefit were presented. Specifically, under the constraint of fixed overall
transmitted power, we computed many examples to illustrate how great the capacity can be
relative to then = 1 baseline (Figures 1 and 2) and also relative to other diversity schemes
(Figure 3). We showed how great this capacity is, even for smalln. For example, in Figures
1a–b we saw the casesn = 2 and 4 at an average received SNR of 21 dB (other dB values
are also given). For over 99% of the channels the capacity exceeds about 7 and 19bits/cycle
respectively, whereas, ifn = 1 there is only about 1 bit/cycle at the 99% level.

Note, for example, for a symbol rate equal to the channel bandwidth, 19 bits/cycle for
n = 4 amounts to 4.75 bits/symbol/dimension. We have been careful to emphasize that, in
exploiting MEA technology, while the number of bits per (vector) symbol can be unusually
large, viewed in terms of bits/symbol/signal dimension the per component numbers can
be quite reasonable. In Figure 2 curves forn = 16, 32 and 64 were presented in terms
of bits/symbol/dimension. We see the strong tendency of the probability mass of the per
dimension capacity to coalesce to the right of log2(�=e) when� andn are large. This is
expressed by the lower bound (Equation (22)), which, for example, forn = 64 and an SNR
of 21 dB evaluates to about 5.6 bits/cycle/dimension. The more precise capacity calculation
for these values is shown in Figure 2 and puts the great predominance of the probability mass
at about 5.75 bits/cycle/dimension. For a 21 dB SNR Figure 2 also showed that even the
results forn = 16 and 32 were close to the asymptote. Figure 2 also demonstrated that MEA
technology offers considerable capacity at low outage even at an SNR of 0 dB.

In Section 6 we explored various simple architectures that used 1-D codecs in a multidi-
mensional setup. Forn = 2 and 8 we showed in Figure 3a and 3b respectively, how various
inherently 1-D architectures fared. For the lowPout tail we learned that none of these were
competitive with the best (n, n) performance corresponding to fully exploiting MEA technol-
ogy. However, one can obtain interesting levels of performance using only 1-D codecs. In the
context of very lowPout we found that while optimum combining performed well within the
class of such architectures, a variant of optimum combining that included cycling the transmit-
ted signal over different transmitters using only one transmitter at a time did even better. We
indicated how, with somewhat more advanced architectures (e.g., in two dimensional systems
the MAX-MIN) one could do still better at some outage levels.
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It is evident from the great capacity improvements that we presented, that exploitation of
MEAs can greatly advance indoor (and interbuilding) wireless data communications. Antenna
lattices can pave the surface of transmitter and receiver spaces and two states of polarization
are available. E.g., for indoor wireless LANs, we can anticipate bit rates far beyond where
they are today where very little of the diversity that is possible is used. Where LAN systems
may achieve 10’s of Mbps in 20 MHz in the near term, in the long term, with the large
n values that are possible. Gbps bit rates may be possible in such a bandwidth. It is also
clear from our results that, by far, most of the great improvement in bit rate will come from
processing spatially (compared to the incremental but none-the-less worthwhile advances in
spectral efficiency employing existing antenna systems).

9. Future Work Items Related to Antenna Theory

We have idealized the channel model and focused on information transmission aspects, but
the other important side of the coin in determining fundamental limits has to do with elec-
tromagnetic theory considerations. One wants to cram as many basic antenna elements as
can be productively used into the transmit and receive spaces. While we have succeeded here
in taking a first step, at this early stage the understanding of antenna theory associated with
packing of array elements is not at all adequate for us to provide the last word on ultimate
limits. Say the receiver (transmitter) surface is that of a box. How do the opposing faces
shadow one another? What is the interactive effect of arrays on surfaces at right angles to each
other? Advancing antenna theory to assess what can be achieved by packing antenna elements
in the transmit and receive spaces to maximize capacity is a most important area of research.
In the next subsection we discuss some practical antenna design considerations.

9.1. SOME PRACTICAL LIMITATIONS OF ANTENNAS

The capacity has been shown to increase drastically with the addition of more antennas. This
suggests cramming in as many antennas as space will allow. Indeed, if increased capacity is
essential, using antenna spacings smaller than�=2 to provide more antennas can provide a sig-
nificant capacity improvement. For the case of linear arrays or square arrays of equally spaced
antenna elements and incident rays uniformly distributed in azimuth, diversity advantage
improves even for antenna spacings of�=10, compared to fewer elements in the same overall
array size. [Reference 1, Figures 5.3–5 and 5.3–6]. There are some limitations, however.

First, the elements of the field transmission matrix become strongly correlated as the spacing
between antennas drops below�=4, assuming the significant rays are widely distributed (90
degrees or more) in angle at the antenna array. When the angular spread of the significant rays
is very narrow (30 degrees or less) the correlation between elements becomes strong at even
larger antenna spacings than�. (For narrow angular spreads, the correlation exceeds 0.5 for
broadside antenna spacings that are less than 1.9/[� � (angular spread in radians)], (see [1]
Chapter 1). However, even for fairly high correlations (less than 0.95), significant diversity
gains are still available (see Figure 5.2–10 in [1]).

Second, close spacing of antennas introduces mutual coupling between antennas. This
coupling makes it difficult to match the antenna impedance for efficient energy transfer to a
receiver or from a transmitter. Also the coupling causes a further increase in the correlation
between antenna signals. The amount of mutual coupling is a function of the spacing between
antennas, the number of antennas, and the direction of each ray relative to the array plane.
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In general the mutual coupling effect becomes greater as the antenna spacing decreases, as
the number of antennas increases, and as the ray direction moves from broadside to end fire
(shadowing). Typically, for rays restricted to near broadside, mutual coupling is small for�=2
spacing for any number of antennas. Because of the mutual coupling effect, there is minimal
advantage to be obtained by filling a volume with antennas, as compared to only placing
antennas on the bounding surface. The surface of the volume could be a case containing the
electronics of the communications system, and that case will shadow some of the antennas
for various ray directions, making those antennas of little use for those ray directions. Finally,
decreasing the spacing between antennas may require the antennas themselves to be reduced
in size beyond that appropriate for the carrier frequency, which again makes it difficult to
match the antenna impedance.

Section 5.3 of Reference 1 shows the diversity performance effects of correlation and mutu-
al coupling for linear and square arrays of half wave dipoles in the presence of rays arriving
uniformly over 360 degrees in azimuth. Optimum reception in the presence of Gaussian noise
is achieved as prescribed by the techniques of [41]. The significant result is that worthwhile
improvement over a single antenna can be obtained even with strong correlation and mutual
coupling. In cases where size is limited, as in pocket or wrist watch communicators, or where
higher capacity is needed for a desktop communicator of fixed size it may be necessary to use
multiple antennas with strong mutual coupling.

Appendix. Derivation: Formula for Capacity when MEAs Are Used

Assuming that the transmitted signal vector is composed ofnT statistically independent equal
power components each with a gaussiandistribution, the capacity expression (4) can be derived
from a general basic formula6 which appears in [25] and [43–44]. In our case the received
signal is linearly related to the transmitted signal as represented by Equation (1) in the text.
Then capacity takes the form

C = log2
detAs � detAr

detAu
: (A1)

In this expressionAs = E(ssy) = P̂ =nT � InT ; Ar = E(rry) = N � InR + P̂ =nT � GGy,
andAu = E(uuy) whereu is thenT + nR dimensional vector(s; r)0. SoAu hasAs in the
northwest corner andAr in the southeast corner. The remaining two corners are transpose
conjugates of each other. The northeast of these isP̂ =nT � Gy. The statistical independence
among all the components of thenT + nR dimensional vector (s; �) is what facilitated the
explicit computation ofAs,Ar andAu. This was because all matrix entries are variances and
covariances of gaussians. Some tedious algebra reduces this function of three determinants
into a usable form. The algebra to do so is simplified by the following identity from [31]

det
�
A C
B D

�
= detA � det(D � CA�1B) (A2)

6 The references have a version of (A1) for the real vector case from which the complex case follows. For real
signals and channels the formula looks just like (A1) except log2[:] is replaced by(1=2) � log2[:]. The vanishing
of the 1

2 in the complex case is explained as follows. Let K be the covariance matrix of anym � D complex
gaussian vector and let� denote the corresponding covariance of this vector expressed as a 2m �D real vector
(them real components, followed by them imaginary components). As [42] points out det[�] = (det[K])2. This
squaring of the determinants of the covariances of the complex gaussian vectors serves to cancel the1

2 multiplier
since(1=2) log2(det K)2 = log det K.
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which requires thatA be nonsingular and whileA andD need to be square, they do not need
to be of the same size. They are not the same size in some of our examples whereA = As,
D = Ar, etc. The identity (A2) facilitates expressing detAu as a multiple of detAs so
detAs can be cancelled in (A1). After the cancellation, the numerator in the argument of the
logarithm becomes det[N �InR+(P̂ =nT ) �GGy]. The denominator becomes det[N �InR ] and
can be moved to the numerator as det[N�1 � InR ]. Recalling that the product of determinants
is the determinant of the product and thatP̂ 1=2 �G = P 1=2 �H and� = P=N , the convenient
formula for generalized capacity is

C = log2 det[InR + (�=nT ) �HHy] bps=Hz : (4)
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