
Advances in science often come from identifying 
 invariances—those elements that stay constant when oth-
ers change. Kepler, for example, described the motion of 
planets. From an Earth-bound vantage point, planets seem 
to have strange and variable orbits. Not only do they differ 
in their speeds and locations, they even appear to back-
track at times (a phenomenon known as retrograde mo-
tion). Although planetary orbits appear variable, Kepler 
identified invariants in planetary motion. For example, all 
orbits follow ellipses in which the square of the orbital pe-
riod is proportional to the cube of the orbital radius. These 
invariances formed the basis for Newton’s subsequent the-
ory of mechanics (Hawking, 2002). A similar story holds 
in genetics, where Mendel’s discovery of invariant ratios 
in phenotypes served as an important precursor for the 
construction of genetic theory.

Although the search for invariances has often motivated 
theory in other domains, it has not had as much impact 
in psychology. Invariances are statements of equality, 
sameness, or lack of association, whereas in practice, the 
psychological field has a Popperian orientation, in which 
demonstrations of effects or associations are valued more 
than demonstrations of invariances (Meehl, 1978). As a 
contrast, we offer below a few examples of how scientific 
inquiry in cognitive psychology has benefited from con-
sideration of invariances:

1. It is often of great practical and theoretical interest to 
determine whether performance is invariant to readily ob-
servable variables. For example, several researchers have 
assessed whether cognitive skills vary with gender (e.g., 

Shibley Hyde, 2005, 2007). To believe that only effects 
of genders, rather than invariances across genders, will 
appear in performance strikes us as an extreme position. 
A second example comes from the domain of subliminal 
priming (see, e.g., Dehaene et al., 1998): To prove that 
subliminal priming occurs, it must be shown that detection 
or identification of the primes does not vary from chance 
(see Reingold & Merikle, 1988; Rouder, Morey, Speck-
man, & Pratte, 2007).

2. Conservation laws are instantiations of invariances. 
An example of a proposed conservation law is the Weber–
Fechner law (Fechner, 1860/1966), which states that the 
detectability of a briefly flashed stimulus is a function of 
its intensity divided by the intensity of the background. 
Accordingly, performance should be invariant when the 
intensities of the flash and background are multiplied by 
the same constant. Another example of a proposed conser-
vation law is the choice rule (Clarke, 1957; Luce, 1959; 
Shepard, 1957), which states that the preference for a 
choice is a function of the ratio of its utility divided by 
the summed utility of all available choices. The key in-
variance here concerns ratios of preferences between any 
two choices—for example, the preference for Choice A 
divided by that for Choice B. This ratio should not vary 
when choices are added or taken away from the set of 
available options.

3. Testing invariances is critical for validating paramet-
ric descriptions. Consider the example of Stevens (1957), 
who proposed that sensation follows a power function of 
intensity. It is reasonable to expect that the exponent of 
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Critiques of Inference by Significance Tests
Before introducing Bayes factors, we present two re-

lated critiques of classic null-hypothesis significance 
tests: (1) They do not allow researchers to state evidence 
for the null hypothesis, and, perhaps more importantly, 
(2) they overstate the evidence against the null hypoth-
esis. To make these critiques concrete, assume that each of 
N participants performs a task in two different experimen-
tal conditions. Let xi1 and xi2 denote the ith participant’s 
mean RT in each of the two conditions, and let yi denote 
the difference between these mean RTs. A typical test of 
the effect of conditions is a one-sample t test to assess 
whether the population mean of yi is different from zero. 
The model underlying this test is

 yi ~
iid Normal(µ, σ2), i 5 1, . . . , N.

The null hypothesis, denoted H0, corresponds to µ 5 0. 
The alternative, denoted H1, corresponds to µ  0.

The first critique, that null-hypothesis significance tests 
do not allow the analyst to state evidence for the null hy-
pothesis, can be seen by considering how p values depend 
on sample size. Significance tests seem quite reasonable 
if the null is false. In this case, the t values tend to become 
larger as sample size is increased; this in turn increases 
the probability of correctly rejecting the null. In the large-
sample limit—that is, as the sample size becomes arbi-
trarily large—the t value grows without bound, and the 
p value converges to zero. This behavior is desirable, be-
cause it implies that the null will always be rejected in 
the large-sample limit when the null is false. Research-
ers, therefore, can rest assured that increasing sample size 
will, on average, result in a gain of evidence against the 
null when the null is, indeed, false.

The situation is less desirable, however, if the null is 
true. When the null is true, the t values do not converge 
to any limit with increasing sample size. For sample sizes 
greater than 30 or so, the distribution of t values is well 
approximated by a standard normal distribution. Cor-
responding p values are also distributed; when the null 
is true, all p values are equally likely—that is, they are 
distributed uniformly between 0 and 1. This distribution 
holds regardless of sample size. The consequence of this 
fact is that researchers cannot increase the sample size to 
gain evidence for the null, because increasing the sample 
size does not affect the distribution of p values. Of course, 
this behavior is part of the design of significance tests and 
reflects Fisher’s view that null hypotheses are only to be 
rejected and never accepted (Meehl, 1978).

One pernicious and little-appreciated consequence 
of the inability to gain evidence for the null is that sig-
nificance tests tend to overstate the evidence against it 
(Edwards et al., 1963; Goodman, 1999; Jeffreys, 1961; 
Sellke, Bayarri, & Berger, 2001; Wagenmakers & Grün-
wald, 2006). A rejection of the null hypothesis may be an 
exaggeration of the evidence for an effect. To show this 
overstatement, we start by considering the behavior of sig-
nificance tests in the large-sample limit. It is reasonable 
to expect that in this limit, a method of inference always 
yields the correct answer. In statistics, this property is 

the power function will vary across variables of different 
intensities, such as brightness or loudness. As pointed out 
by Augustin (2008), however, it is critical that the expo-
nent be constant for a given-intensity variable. Exponents 
should not, for instance, depend on the specific levels cho-
sen in an experiment. Another example of a parametric 
description is from Logan (1988, 1992), who proposed 
that response time (RT) decreases with practice as a power 
function. For this description to be valid, an invariance in 
the exponent across various experimental elements would 
be expected (e.g., in alphabet arithmetic, the power should 
be invariant across addends).

4. Assessing invariances is also critical for showing se-
lective influence, which is a key method of benchmarking 
formal models. Debner and Jacoby (1994), for instance, 
tested Jacoby’s (1991) process dissociation model by 
manipulating attention at study in a memory task. This 
manipulation should affect parameters that index con-
scious processes but not those that index automatic ones. 
Similarly, the theory of signal detection (Green & Swets, 
1966) stipulates that base-rate manipulations affect cri-
teria but not sensitivity. Hence, an invariance of sensitiv-
ity over this manipulation is to be expected (Egan, 1975; 
Swets, 1996).

This small, selective set of examples demonstrates the 
appeal of testing invariances for theory building. Even so, 
it is worth considering the argument that invariances do 
not exist, at least not exactly. Cohen (1994), for example, 
started with the proposition that all variables affect all oth-
ers to some, possibly small, extent. Fortunately, there is 
no real contradiction between adhering to Cohen’s view 
that invariances cannot hold exactly and assessing invari-
ances for theory building. The key here is that invariances 
may not hold exactly for relatively trivial reasons that are 
outside the domain of study. When they hold only approxi-
mately, they often provide a more parsimonious descrip-
tion of data than do the alternatives and can serve as guid-
ance for theory development. Hence, whether one believes 
that invariances may hold exactly or only approximately, 
the search for them is intellectually compelling.

Perhaps the biggest hurdle to assessing invariances is 
methodological. Invariances correspond to the null hy-
pothesis of equality, but conventional significance tests do 
not allow the analyst to state evidence for a null hypoth-
esis. If an invariance holds, even approximately, then the 
best-case significance test outcome is a failure to reject, 
which is interpreted as a state of ignorance. In this article, 
we recommend Bayes factors (Kass & Raftery, 1995) as a 
principled method of inference for assessing both invari-
ances and differences. Bayes factors have been recom-
mended previously in the psychological literature (see, 
e.g., Edwards, Lindman, & Savage, 1963; Lee & Wagen-
makers, 2005; Myung & Pitt, 1997; Wagenmakers, 2007). 
In this article, we develop Bayes factor tests for paired 
(one-sample) and grouped (two-sample) t tests. Moreover, 
we provide a freely available, easy-to-use, Web-based pro-
gram for this analysis (available at pcl.missouri.edu). We 
anticipate that the approach presented here will generalize 
to factorial designs across several variables.
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null if the alternative is typical (µ 5 30) but favors the 
alternative if the alternative is a small effect (µ 5 10). It 
is an undeniable fact that inference depends on how much 
weight the researcher places on various alternatives. Sub-
sequently, we will discuss strategies for weighting alterna-
tives. The second lesson is that significance tests overstate 
the evidence against the null in finite samples because the 
null may be more plausible than other reasonable alterna-
tives. As a rule of thumb, inference based on evaluating a 
null without comparison to alternatives tends to overstate 
the evidence against the null. Some examples of this ten-
dency include:

Confidence intervals (CIs). Cumming and Finch (2001), 
Masson and Loftus (2003), and Kline (2004), among 
many others, have recommended using CIs for inference. 
We recommend CIs for reporting data, but not for infer-
ence (Rouder & Morey, 2005). The problem with confi-
dence intervals for inference is that they, like significance 
tests, have a fixed probability of including the null when 
the null is true, regardless of sample size. This property 
implies that evidence cannot be gained for the null, and, 
consequently, there is a tendency to overstate the evidence 
against it. For the one-sample case, the null is rejected if 
the CI around the mean does not include zero. This test is, 
of course, equivalent to significance testing and suffers 
analogously to the example above.

Probability of replication (prep ). Killeen (2005, 2006) 
recommends computing the predictive posterior prob-
ability that a different sample from the same experiment 
would yield an effect with the same sign as the original. 
Inference is performed by rejecting the null if this prob-
ability is sufficiently large. Although this approach may 
appear attractive, it is not designed to assess the replica-

termed consistency, and inconsistent inferential methods 
strike us as unsatisfying. If the null is false (µ  0), signif-
icance tests are consistent: The p values converge to zero, 
and the null is always rejected. If the null is true (µ 5 0), 
however, significance tests are inconsistent: Even in the 
large-sample limit, the analyst mistakenly rejects the null 
with probability α. This inconsistency is a bias to over-
state the evidence against the null. This bias would be of 
only theoretical interest if it held exclusively in the large-
sample limit. But in fact, it holds for realistic sample sizes 
as well, and therefore is of practical concern. To show this 
bias in realistic sample sizes, we present an argument mo-
tivated by that of Sellke et al.

Suppose that each of 100 participants provides 100 RT 
measurements in each of two conditions. Let us assume 
that RTs for each individual in each condition have a stan-
dard deviation (std) of 300 msec, which is reasonable for 
RTs with means between 500 and 1,000 msec. The analyst 
tabulates participant-by-condition means, denoted x1i and 
x2i. These participant-by-condition means have standard 
deviations of 300/√100 5 30. From these means, partici-
pant difference scores, yi 5 x2i 2 x1i, are calculated, and 
the standard deviation1 of yi is √2 3 30 ≈ 42. Let us as-
sume that the difference scores reveal a y 5 10-msec RT 
advantage for one experimental condition over the other. 
The t statistic is t 5 √N 3 y/std( y) 5 10 3 10 / 42 5 2.38. 
The associated p value is about .02. The conventional 
wisdom is that this is a case in which the null hypothesis 
is not tenable. We show below that this conclusion is an 
overstatement.

One way of quantifying the evidence in the data is to 
compute the likelihood of observing a t value of 2.38 
under various hypotheses. The likelihood of t 5 2.38 for 
the null is the density of a t distribution with 99 degrees of 
freedom evaluated at 2.38. This likelihood is small, about 
.025. Differences in RTs tend to vary across tasks, but even 
so, it is common for reliable differences to be 30 msec or 
more. The likelihood that t 5 2.38 for the more typical 
difference of 30 msec is the density of a noncentral t dis-
tribution with 99 degrees of freedom and a noncentrality 
parameter of (√N )µ/σ, which is about 7.1. This likelihood 
is quite small, about .000006. The likelihood ratio of the 
null versus this typical effect is about 3,800:1 in favor of 
the null. Hence, a likelihood ratio test of the null versus a 
typical effect strongly favors the null.

Figure 1 shows this likelihood ratio for a range of al-
ternatives. The filled square shows the likelihood ratio for 
the example above of the null hypothesis versus a typical 
effect of 30 msec. The null has greater likelihood for all 
effects greater than about 20 msec. The fact that there is 
a large range of reasonable alternatives against which the 
null is preferable is not captured by the p value. In view of 
this fact, rejection of null hypotheses by consideration of 
p values under the null strikes us, as well as several other 
commentators, as problematic.

There are two related lessons from the demonstration 
above. The first is that the choice of alternative matters. 
The evidence in the example above provides different sup-
port for the null depending on the alternative. It favors the 
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Figure 1. Likelihood ratio (null/alternative) as a function of the 
alternative for a hypothetical data set (t 5 2.38, 100 participants 
observing 100 trials in each of two conditions). Even though the 
null is rejected by a standard significance test, there is not strong 
evidence against it as compared with the specific alternative.
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observed data are termed posterior; an appropriate statis-
tic for comparing hypotheses is the posterior odds:

 Ω =
( )
( )

Pr

Pr

H

H
0

1

|

|
,

data

data
 

where H0 and H1 denote the null and alternative hypoth-
eses, respectively. Odds are directly interpretable. For in-
stance, if V 5 19, the null is 19 times more probable than 
the alternative, given the data. As Laplace first noted al-
most 200 years ago, computing posterior odds on hypoth-
eses is natural for scientific communication (as cited in 
Gillispie, Fox, & Grattan-Guinness, 1997, p. 16). Jeffreys 
recommends that odds greater than 3 be considered “some 
evidence,” odds greater than 10 be considered “strong 
evidence,” and odds greater than 30 be considered “very 
strong evidence” for one hypothesis over another.

The posterior odds are given by
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The term Pr(H0)/Pr(H1) is the prior odds. In practice, 
it is often natural to set the prior odds to 1.0, a position 
that favors neither the null nor the alternative. The terms 
f (data | H0) and f (data | H1) are called the marginal like-
lihoods and are denoted more succinctly as M0 and M1, 
respectively. The posterior odds is, therefore,
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All of the evidence from the data is expressed in the ratio 
of marginal likelihoods. This ratio is termed the Bayes 
factor (Jeffreys, 1961; Kass & Raftery, 1995) and is de-
noted by B01:

 B
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Marginal likelihoods for a given hypothesis H are given 
by

 
M f p dH H HH

= ∈∫θθ θθ θθ θθΘ ( ; ) ( ) ,y
 

where ΘH denotes the parameter space under hypothesis 
H, fH denotes the probability density function of the data 
under hypothesis H, y denotes the data, and pH denotes 
the prior distribution on the parameters. This equation is 
most profitably viewed as a continuous average of likeli-
hoods in which priors pH serve as the weights. If a prior 
places weight on parameter values that are very unlikely 
to have produced the data, the associated low likelihood 
values will drag down the average. Hence, in order for the 
marginal likelihood of a model to be competitive, the prior 
should not attribute undue mass to unreasonable param-
eter values. As will be discussed in the next section, this 

bility of invariances. As discussed by Wagenmakers and 
Grünwald (2006), prep is logically similar to p values in 
that the distribution does not change with sample size 
when the null holds. As such, it is open to the critiques of 
p values above.

Neyman–Pearson (NP) hypothesis testing with fixed α. 
In NP testing, the researcher may specify an alternative to 
the null and then choose a decision criterion on the basis 
of consideration of Type I and Type II error rates. Typically, 
however, psychologists fix the decision criterion with ref-
erence to the null alone—that is, with fixed α, say α 5 
.05. This choice is not necessitated by NP testing per se; 
instead, it is a matter of convention in practice. With this 
choice, NP is similar to Fisher significance testing based 
on p values, at least for many common tests (see Lehmann, 
1993, for details). Consequently, it is similarly biased to-
ward overstating the evidence against the null. This point is 
made elegantly by Raftery (1995). NP testing can be made 
consistent by allowing Type I error rates to decrease toward 
zero as the sample size increases. How this rate should de-
crease with sample size, however, is neither obvious nor 
stipulated by the statistical theory underlying NP testing.

The Akaike information criterion (AIC). The AIC 
(Akaike, 1974) is a method of model selection (rather than 
testing) that is occasionally used in psychology (exam-
ples include Ashby & Maddox, 1992; Rouder & Ratcliff, 
2004). One advantage of the AIC is that it seemingly may 
be used to state evidence for the null hypothesis. To use 
the AIC, each model is given a score:

 AIC 5 22 log L 1 2k,

where L is the maximum likelihood under the model and k 
is the number of required parameters. The model with the 
lowest AIC is preferred. AIC, however, has a bias to over-
state the evidence against the null. This bias is easily seen 
in the large-sample limit for the one-sample case. If the 
AIC is consistent, the Type I error rate should decrease to 
zero in the large-sample limit. According to AIC, the al-
ternative is preferred when 22 log (L1 2 L0) . 2, and the 
Type I error rate is the probability of this event when the 
null is true. Under the null, the quantity 22 log (L1 2 L0) 
is asymptotically distributed as a chi-square with one de-
gree of freedom (see Bishop, Fienberg, & Holland, 1975). 
The Type I error rate in the limit is therefore the prob-
ability that this chi-square distribution is greater than 2.0, 
which is about .157 rather than 0.

In summary, conventional significance tests do not 
allow the researcher to state evidence for the null. Hence, 
they are not appropriate for competitively testing the null 
against the alternative. As mentioned previously, invari-
ances may play a substantial role in theory building. 
Hence, methods for testing them are needed.

Bayes Factors
We advocate inference by Bayes factors (Jeffreys, 1961; 

Kass & Raftery, 1995). This method is logically sound and 
yields a straightforward and natural interpretation of the 
evidence afforded by data. In Bayesian statistics, it is pos-
sible to compute the probability of a hypothesis condition-
ally on observed data. Quantities that are conditional on 
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is specified. Figure 2A shows the effect of the choice of 
the alternative, µ1 (measured in units of σ), on the Bayes 
factor for a few values of y (also measured in units of σ) 
when N 5 100.2 This simple example illustrates that as 
the alternative is placed farther from the observed data, 
the Bayes factor increasingly favors the null. Moreover, 
when the alternative is unrealistically far from the data, 
the Bayes factor provides unbounded support for the null 
hypothesis over this alternative. This insight that unreal-
istic alternatives yield support for the null will be utilized 
in specifying appropriate alternatives.

In the example above, we assumed that the alternative was 
at a single point. This assumption, however, is too restrictive 
to be practical. Instead, it is more realistic to consider an 
alternative that is a distribution across a range of outcomes. 
For example, we may place a normal prior on µ:

	 µ ~ Normal(0, σµ2).

The normal is centered around zero to indicate no prior com-
mitment about the direction of effects. To use this normal 
prior, the analyst must set σµ2 a priori. The critical question 
is how the choice of σµ2 affects the Bayes factor.3 One might 
set σµ2 5 ̀ , which specifies no prior information about µ. In 
fact, this setting is used as a noninformative prior in Bayes-
ian estimation of µ (see, e.g., Rouder & Lu, 2005).

Figure 2B shows the effect of the choice of σµ2 (mea-
sured in units of σ) on the resulting Bayes factor for a few 
values of y (also measured in units of σ) when N 5 100. 
As σµ2 becomes large, the value of B01 increases, too. To 
understand why this behavior occurs, it is helpful to recall 
that the marginal likelihood of a composite hypothesis is 
the weighted average of the likelihood over all constituent 
point hypotheses, where the prior serves as the weight. As 

fact is important in understanding why analysts must com-
mit to reasonable alternatives for principled inference.

For the one-sample application, the null model has a 
single parameter, σ2, and the alternative model has two 
parameters, σ2 and µ. The marginal likelihoods are
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For the one-sample case, priors are needed on σ2 to de-
scribe the null hypothesis. Likewise, priors are needed on 
µ and σ2 to describe the alternative. There are two different 
schools of thought on how to choose priors in Bayesian 
analysis. According to the first, subjective Bayes, school, 
priors should reflect the analyst’s a priori beliefs about 
parameters. These beliefs are informed by the theoreti-
cal and experimental context. According to the second, 
objective Bayes, school, priors should reflect as few as-
sumptions as possible. In this article, we take the objective 
approach; that is, we seek priors that reflect a minimum 
degree of information.

The Role of Priors
In this section, we discuss how the choice of priors af-

fects the resulting Bayes factor. This discussion directly 
motivates our recommendations and serves as a basis for 
interpreting and understanding Bayes factors.

It is easiest to build intuition about the role of the pri-
ors in a simple case. Assume that σ2 is known and the 
alternative is a point much like the null. The null is given 
by µ 5 0; the alternative is given by µ 5 µ1, where µ1 
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Figure 2. (A) Bayes factors as a function of the alternative. (B) Bayes factors as a function of prior standard deviation σµ for a nor-
mally distributed alternative. Lines depict different sample means (measured in units of standard deviation σ).
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ily. The advantage of this effect-size parameterization is 
that researchers have an intrinsic scale about the ranges 
of effect sizes that applies broadly across different tasks 
and populations. For instance, effect sizes of 1.0 are large; 
those of .02 are very small. Importantly, we can use this 
knowledge to avoid placing too much weight on unrea-
sonable effect-size values. For instance, we can all agree 
that priors that place substantial mass on effect sizes over 
6 are unrealistic; if a phenomenon yielded such large ef-
fect sizes, it would be so obvious as to make experiments 
hardly necessary.

One reasonable setting is σδ
2 5 1. The corresponding 

prior on effect size, a standard normal, is shown in Fig-
ure 3B (dashed line) and is known as the unit-information 
prior. The setting is reasonable because the distribution of 
effect sizes under the alternative does not include much 
mass on highly implausible effect sizes such as 6. One ad-
vantage of this setting is that small effects are assumed to 
occur with greater frequency than large ones, which is in 
accordance with what experimentalists tend to find. With 
this setting, it can be shown that the alternative has only a 
small amount of information—in fact, the amount in any 
single observation (see Kass & Wasserman, 1995). In fact, 
the unit-information prior underlies the Bayesian infor-
mation criterion (BIC; Raftery, 1995; Schwarz, 1978).

With the normal prior, the analyst commits to a single, 
specific value for σδ

2, such as σδ
2 5 1. There is, however, 

an even less informative formulation: Instead of setting σδ
2 

to a single value, it can be allowed to range over a distribu-
tion of values. Zellner and Siow (1980) recommend the 
following prior distribution for σδ

2 itself:

	 σδ
2 ~ inverse chi-square(1).

σµ2 is increased, there is greater relative weight on larger 
values of µ. Unreasonably large values of µ under the al-
ternatives provide increased support for the null (as shown 
in Figure 2A). When these unreasonably large values of 
µ have increasing weight, the average favors the null to a 
greater extent. Hence, specifications of alternatives that 
weight unreasonably large effects heavily will yield Bayes 
factors that too heavily support the null. Moreover, the set-
ting of σµ2 5 ` implies that the Bayes factor provides un-
bounded support for the null, a fact known as the Jeffreys– 
Lindley paradox (Lindley, 1957). Therefore, arbitrarily 
diffuse priors are not appropriate for hypothesis testing.

To use the normal prior for the alternative, the re-
searcher must specify reasonable values for the variance 
σµ2. One approach is to customize this choice for the para-
digm at hand. For example, the choice σµ 5 20 msec may 
be reasonable for exploring small effects such as those in 
priming experiments. The value of σµ should be greater 
with more-variable data, such as those from complicated 
tasks or from clinical populations.

A well-known and attractive alternative to placing pri-
ors on the mean µ is to place them on effect size, where 
effect size is denoted by δ and given as δ 5 µ/σ. The null 
hypothesis is δ 5 0. Alternatives may be specified as a 
normal prior on effect size:

	 δ ~ Normal(0, σδ
2),

where σδ
2 is specified a priori (Gönen, Johnson, Lu, & 

Westfall, 2005). Reparameterizing the model in terms 
of effect size δ rather than mean µ does not change the 
basic nature of the role of the prior. If σδ

2 is set unrealisti-
cally high, the Bayes factor will favor the null too heav-
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of Zellner and Siow. The JZS prior serves as the objective 
prior for the one- and two-sample cases.

A Bayes-Factor One-Sample t Test
In the previous section, we outlined the JZS and unit-

information priors, with the JZS prior being noninforma-
tive for the one-sample case. In this section, we present 
and discuss the Bayes factors for the JZS prior. The first 
step in derivation is to compute marginal likelihoods M0 
and M1 (by averaging the likelihoods with weights given 
by the priors). These marginal likelihoods are then divided 
to yield the Bayes factor. At the end of this process, Equa-
tion 1 (below) results for the Bayes factor, where t is the 
conventional t statistic (see, e.g., Hays, 1994), N is the 
number of observations, and v 5 N 2 1 is the degrees 
of freedom. We refer to Equation 1 as the JZS Bayes fac-
tor for the one-sample problem. We recommend this JZS 
Bayes factor as a default for conducting Bayesian t tests.

To our knowledge, Equation 1 is novel. The derivation is 
straightforward and tedious and not particularly informa-
tive. Gönen et al. (2005) provided the analogous equation 
for the unit-information Bayes factor. Liang et al. (2008) 
provided the corresponding JZS Bayes factors for testing 
slopes in a regression model.

Although Equation 1 may look daunting, it is simple to 
use. Researchers need only provide the sample size N and 
the observed t value. There is no need to input raw data. 
The integration is over a single dimension and is compu-
tationally straightforward. We provide a freely available 
Web-based program that computes the JZS Bayes fac-
tor for input values of t and N (pcl.missouri.edu). It also 
computes the unit-information Bayes factor—that is, the 
Bayes factor when the unit-information prior is assumed.

Table 1 provides critical t values needed for JZS Bayes 
factor values of 1/10, 1/3, 3, and 10 as a function of sam-
ple size. This table is analogous in form to conventional 
t value tables for given p value criteria. For instance, sup-
pose a researcher observes a t value of 3.3 for 100 obser-
vations. This t value favors the alternative and corresponds 
to a JZS Bayes factor less than 1/10 because it exceeds 
the critical value of 3.2 reported in the table. Likewise, 
suppose a researcher observes a t value of 0.5. The cor-
responding JZS Bayes factor is greater than 10 because 
the t value is smaller than 0.69, the corresponding criti-
cal value in Table 1. Because the Bayes factor is directly 
interpretable as an odds ratio, it may be reported without 
reference to cutoffs such as 3 or 1/10. Readers may decide 
the meaning of odds ratios for themselves.

Figure 4 shows the critical t value needed for JZS Bayes 
factors of 1/10, a substantial amount of evidence in favor 
of the alternative (solid line). For large sample sizes, in-

The inverse chi-square family provides useful priors in 
Bayesian statistics (see, e.g., Gelman, Carlin, Stern, & 
Rubin, 2004). The density function of the inverse chi-
square with one degree of freedom is shown in Figure 3A. 
Mass falls off for very small and very large values of σδ

2; 
that is, σδ is constrained to be somewhat near 1.0. This 
specification is less informative than the previously dis-
cussed unit-information prior, which requires σδ

2 5 1.
Even though we explicitly place a prior on σδ

2, there is a 
corresponding prior on effect size obtained by integrating 
out σδ

2. Liang, Paulo, Molina, Clyde, and Berger (2008) 
noted that placing a normal on effect size with a variance 
that is distributed as an inverse chi-square is equivalent to 
placing the following prior on effect size:

	 δ ~ Cauchy.

The Cauchy distribution is a t distribution with a single 
degree of freedom. It has tails so heavy that neither its 
mean nor its variance exist. A comparison of the Cauchy 
prior to the unit-information prior is shown in Figure 3B. 
As can be seen, the Cauchy allows for more mass on large 
effects than the standard normal. Consequently, Bayes 
factors with the Cauchy prior favor the null a bit more 
than those with the unit-information prior. It is important 
to note that the Cauchy was not assumed directly; it results 
from the assumption of a normal distribution on δ with 
variance σδ

2 distributed as an inverse chi-square. Jeffreys 
(1961) was the first to consider the Cauchy specification 
of the alternative for Bayes factor calculations.

In the preceding analyses, we assumed that σ2, the vari-
ability in the data, is known. Fortunately, it is relatively easy 
to relax this assumption. The intuition from the preceding 
discussion is that priors on parameters cannot be too vari-
able, because they then include a number of unreasonable 
values that, when included in the average, lower the mar-
ginal likelihood. This intuition is critical for comparisons of 
models when a parameter enters into only one of the models, 
as is the case for parameter δ. It is much less critical when 
the parameter in question enters into both models, as is the 
case for parameter σ2. In this case, having mass on unrealis-
tic values lowers the marginal likelihood of both models, and 
this effect cancels in the Bayes factor ratio. For the one- and 
two-sample cases, a very broad noninformative prior on σ2 
is possible. We make a standard choice: p(σ2) 5 1/σ2. This 
prior is known as the Jeffreys prior on variance (Jeffreys, 
1961). The justification for this choice, though beyond the 
scope of this article, is provided in all Bayesian textbooks.

With this choice for σ2, the specification of priors is 
complete. We refer to the combination of the Cauchy on ef-
fect size and the Jeffreys prior on variance as the JZS prior, 
in order to acknowledge the contributions of Jeffreys and 
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training was effective. The reported F value corresponds 
to a t value of 2.39. The JZS Bayes factor for this contrast 
is 0.63, which is about 1.6 to 1 in favor of the alternative. 
These odds, however, do not constitute much evidence for 
the effectiveness of the training program.

Subjectivity in Priors
The JZS prior is designed to minimize assumptions 

about the range of effect size, and in this sense it is an 
objective prior. In many cases, researchers have knowl-
edge of the domain that may improve inference. This 
knowledge may be incorporated by changing the form 
of the prior. On a rather mundane level, a researcher may 
believe that psychologists tend not to run experiments to 
search for effects so large that they may be confirmed 
with 10 or fewer observations. This belief implies that 
effect sizes much greater than 2.0 in magnitude are im-
probable, because larger effect sizes would be evident 
with only a handful of observations. This belief, which 
strikes us as reasonable in many contexts, might lead 
some analysts to choose the unit-information Bayes 
factor over the JZS Bayes factor, since the tails of the 
normal prior on effect size fall more quickly than those 
of the Cauchy (see Figure 3B). We recommend that re-
searchers incorporate information when they believe it 
to be appropriate. If they have no such information or 
wish not to commit to any, the JZS prior can serve as 
the noninformative default. The Web-based program also 
calculates unit-information Bayes factors.

Researchers may also incorporate expectations and 
goals for specific experimental contexts by tuning the 
scale of the prior on effect size. The JZS prior on effect 

creasingly larger t values are needed to maintain the same 
odds. This behavior ensures that the JZS Bayes factor 
does not favor the alternative when there are small effects 
in large samples. The dashed-and-dotted line shows the 
needed t value for p 5 .05. This t value does not increase 
with sample size. Also shown is the curve for the unit-
information Bayes factor (longer dashed line), which is 
derived from the unit-information prior (σδ

2 5 1) with a 
noninformative Jeffreys prior on σ2—that is, p(σ2) 5 1/σ2. 
As can be seen, the unit-information Bayes factor behaves 
similarly to the JZS Bayes factor. The shorter dashed line 
is for the BIC, which is discussed subsequently.

Figure 4 reveals that inference with a criterial p value 
of .05 admits much lower t values as evidence against the 
null hypothesis than do Bayesian methods with criterial 
odds of 10:1. This difference has implications in practice. 
We highlight a few recent examples from the literature 
in which researchers have rejected the null even though 
the posterior odds do not indicate that such a rejection is 
warranted. Grider and Malmberg (2008) assessed whether 
participants remembered emotional words better than 
neutral ones in a recognition memory task. In their Experi-
ment 3, they used a forced choice paradigm in which the 
targets and lures at test had the same emotional valence. 
The advantage of this design is that any difference in ac-
curacy could not be due to a response bias for a particular 
emotional-valence level. Grider and Malmberg claimed 
that emotional words were remembered better than neutral 
ones on the basis of two paired t tests on accuracy: one 
between neutral and positive words [.76 vs. .80; t(79) 5 
2.24] and one between neutral and negative words [.76 vs. 
.79; t(79) 5 2.03]. The JZS Bayes factors for these t val-
ues and the sample size of N 5 80 may be obtained from 
the Web-based program. The resulting values are B01 5 
1.02 and B01 5 1.56 for the two tests, which can only be 
considered as ambiguous evidence. The latter contrast is 
especially interesting because the evidence favors the null 
slightly (odds of 3:2), even though the null is rejected by 
a significance test with p , .05.

Another example comes from Plant and Peruche 
(2005), who assessed whether a sensitivity training pro-
gram reduced the likelihood that law enforcement offi-
cers mistakenly shot civilians in a computer simulation. 
They assessed how 48 participating officers performed 
before and after training. On the basis of a significant one-
sample F test [F(1,47) 5 5.70], they concluded that the 

Table 1 
Critical t Values

JZS Bayes Factor Value

 
Favors Null

Favors 
Alternative

 N  10  3  1/3  1/10  

5 – 0.40 3.15 4.97
10 – 0.89 2.73 3.60
20 – 1.20 2.64 3.26
50 – 1.51 2.68 3.17

100 0.69 1.72 2.76 3.20
200 1.08 1.90 2.86 3.27

 500  1.44  2.12  2.99  3.38  
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Figure 4. Critical t values needed for posterior odds of 10:1 
favoring the alternative for the JZS Bayes factor (solid line), the 
unit-information Bayes factor (longer dashed line), and the BIC 
(shorter dashed line), as well as critical t values needed for p , .05 
(dashed-and-dotted line).
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Figure 5 shows how the Bayes factor depends on sample 
size for the small true effect size of δ 5 .02. For small to 
moderate sample sizes, the Bayes factor supports the null. 
As the sample size becomes exceedingly large, however, 
the small deviations from the null are consequential, and 
the Bayes factor yields less support for the null. In the large-
sample limit, the Bayes factor favors the alternative, since 
the null is not exactly true. This behavior strikes us as ideal. 
With smaller sample sizes that are insufficient to differenti-
ate between approximate and exact invariances, the Bayes 
factors allows researchers to gain evidence for the null. 
This evidence may be interpreted as support for at least an 
approximate invariance. In very large samples, however, 
the Bayes factor allows for the discovery of small perturba-
tions that negate the existence of an exact invariance. In 
sum, the Bayes factor favors the more parsimonious null-
model description with small observed effect sizes unless 
the sample size is so large that even these small effects are 
not compatible with the null relative to the alternative.6

Extension to Two-Sample Designs
The Bayes factor in Equation 1 is applicable for one-

sample designs and is analogous to a paired t test. One-
sample designs are common in experimental psychology 
because variables are often manipulated in a within-
 subjects manner. Between-subjects designs are also com-
mon and are often used to compare participant variables 
such as age or gender. For cases with two independent 

size can be generalized to δ ~ r 3 Cauchy, where r is a 
scale factor.4 The unit-information prior can be scaled, 
too: δ ~ Normal(0, r2). In this case, however, the term 
unit-information prior may be misleading, and we pre-
fer the term scaled-information prior.5 For both JZS and 
scaled-information priors, as r is increased, the Bayes fac-
tor provides increased support for the null. In Equation 1, 
the scale r is implicitly set to 1.0, which serves as a natural 
benchmark. Smaller values of r, say 0.5, may be appropri-
ate when small effect sizes are expected a priori; larger 
values of r are appropriate when large effect sizes are ex-
pected. The choice of r may be affected by theoretical con-
siderations, as well: Smaller values are appropriate when 
small differences are of theoretical importance, whereas 
larger values are appropriate when small differences most 
likely reflect nuisances and are of little theoretical impor-
tance. In all cases, the value of r should be chosen prior to 
analysis and without influence from the data. In summary, 
r 5 1.0 is recommended, though a priori adjustments may 
be warranted in certain contexts. The aforementioned 
Web-based program allows researchers to specify r, with 
r 5 1.0 serving as a default.

It may appear that Bayes factors are too dependent on 
the prior to be of much use. Perhaps researchers can en-
gineer any result they wish by surreptitiously choosing a 
self-serving prior. This appearance is deceiving. Bayes fac-
tors are not particularly sensitive to reasonable variation 
in priors, at least not with moderate sample sizes. In prac-
tice, dramatic changes in the priors often have marginal 
effects on the results. The previous example of the results 
from Grider and Malmberg (2008) is useful for making this 
point. The t value of 2.03 actually corresponded to slight 
evidence for the null (B01 5 1.56), even though the null 
was rejected at the p , .05 level. A reasonable conclusion 
is that there was not enough evidence in the experiment 
to express preference for either the null or the alternative 
hypothesis. The unit-information Bayes factor in this case 
is 1.21, which leads to the same conclusion. Suppose we 
commit a priori to an alternative that is characterized by 
very small effect sizes for Grider and Malmberg’s experi-
ments. Setting r 5 0.1, which seems too low, results in a 
JZS Bayes factor of 0.59. Although this value now slightly 
favors the alternative, it does not support a preference for it. 
For Grider and Malmberg’s data, any reasonable prior leads 
to the same conclusion, that the evidence does not support 
a preference. In general, researchers may differ in their 
choice of priors. If these differences are reasonable, they 
will have only modest effects on the resulting conclusions.

Bayes Factors With Small Effects
Previously, we considered the argument that invariances 

are only true approximately and never exactly (Cohen, 
1994). In this section, we explore the behavior of Bayes 
factors when an invariance holds approximately rather 
than exactly. As discussed previously, the view that the 
null can never hold exactly does not negate its usefulness 
as an idealization. Our main question is whether the Bayes 
factor provides an appropriate decision about whether the 
null or the alternative provides a better description of the 
data for very small true effect sizes.
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We have included critical t values for B* 5 1/10 (10:1 
favoring the alternative) in Figure 4. As can be seen, the 
BIC behaves well for large samples.

BIC is an asymptotic approximation to a Bayes factor 
with certain priors (Raftery, 1995). For the one-sample 
case, these priors are
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where ̂µ 5 y and ̂σ2 5 (1/N )Σ( yi 2 y)2 are the maximum 
likelihood estimators of µ and σ2, respectively. These 
priors are more informative than the ones we advocate. 
There are two main differences: (1) The prior variance on 
µ is the sample variance. In Bayesian inference, it is not 
valid to specify a prior that depends on the observed data. 
The justification for this prior is that it is a convenient 
large-sample approximation for a unit-information prior. 
Hence, it may only be interpreted for large-sized samples. 
The JZS and unit-information priors, on the other hand, 
do not depend on the observed data. As a consequence, 
the resulting Bayes factors may be interpreted with confi-
dence for all sample sizes. (2) Because BIC approximates 
a unit-information prior, it is slightly more informative 
than the JZS prior. As such, the resulting BIC values will 
slightly favor the alternative more than the JZS Bayes fac-
tor would.

BIC is not well-suited for mixed models, such as 
within-subjects ANOVA. The problem is that BIC is based 
on counting parameters. The more parameters a model 
has, the more it is penalized for complexity. In standard 
between-subjects designs with fixed effects, the number 
of parameters is unambiguous. In mixed designs, however, 
each participant is modeled as a random effect that is nei-
ther entirely free (the effects must conform to a particu-
lar distribution) nor heavily constrained. It is not obvious 
how these random effects are to be counted or penalized in 
BIC. Bayes factors also penalize complex models, but they 
do so without recourse to counting parameters. Instead, 
complex models are penalized by the diversity of data pat-
terns they explain (Myung & Pitt, 1997). It is known that 
JZS priors extend well to simple random- effects models 
(García-Donato & Sun, 2007), and we anticipate that they 
may be used more generally in mixed models, especially 
with within-subjects factorial designs.

General Discussion
There has been a long-lasting and voluminous debate 

in both psychology and statistics on the value of sig-
nificance tests. Most of this debate has centered on the 
proper way to test for effects. We advocate a different 
focus: Psychologists should search for theoretically in-
teresting invariances or regularities in data. Conventional 
significance tests are ill-suited for stating evidence for 

groups, the two-sample (groups) t test is appropriate. 
Below is the development of the JZS Bayes factor for the 
two-sample case.

Let xi and yi denote the ith observations in the first and 
second groups, respectively. These observations are con-
ventionally modeled as

 xi ~
iid Normal µ α σ−( )2

2, ,   i 5 1, . . . , Nx ,

 yi ~
iid Normal µ α σ+( )2

2, ,   i 5 1, . . . , Ny ,

where µ and α denote the grand mean and total effect, 
respectively, and Nx and Ny denote the sample size for the 
first and second groups, respectively. The null hypoth-
esis corresponds to α 5 0. As before, it is convenient to 
consider an effect size, δ 5 α/σ. In this parameterization, 
the null hypothesis corresponds to δ 5 0; the JZS prior 
for δ under the alternative is given by

	 δ ~ Cauchy.

Priors are needed for µ and σ2. Fortunately, these pa-
rameters are common to both models, and the resulting 
Bayes factor is relatively robust to the choice. The Jeffreys 
noninformative prior on σ2, p(σ2) 5 1/σ2, is appropriate. 
A noninformative prior may also be placed on µ. In this 
prior, all values of µ are equally likely; this prior is de-
noted p(µ) 5 1.

Equation 1 may be adapted to compute the two-sample 
JZS Bayes factor with the following three substitutions: 
(1) The value of t is the observed two-sample (grouped) 
t value; (2) the effective sample size is N 5 NxNy/(Nx 1 
Ny); and (3) the degrees of freedom are v 5 Nx 1 Ny 2 2. 
Our Web-based program also computes JZS and unit 
Bayes factors for this two-sample case; the user need only 
input both sample sizes and the group t value.

Bayesian Information Criterion
The BIC (Schwarz, 1978) is a Bayesian model selec-

tion technique that has been recommended in psychology 
(see, e.g., Wagenmakers, 2007). In the BIC, each model 
is given a score:

 BIC 5 22 log L 1 k log N,

where L is the maximum likelihood of the model, N is the 
sample size, and k is the number of parameters. Models 
with lower BIC scores are preferred to models with higher 
ones. As pointed out by Raftery (1995), differences in 
BIC scores may be converted into an approximate Bayes 
factor:

 B01
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where BIC0 and BIC1 are the BIC scores for the null and 
the alternative, respectively. For the one-sample case, it is 
straightforward to show that
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invariances and, as a consequence, overstate the evidence 
against them.

It is reasonable to ask whether hypothesis testing is always 
necessary. In many ways, hypothesis testing has been em-
ployed in experimental psychology too often and too hast-
ily, without sufficient attention to what may be learned by 
exploratory examination for structure in data (Tukey, 1977). 
To observe structure, it is often sufficient to plot estimates 
of appropriate quantities along with measures of estimation 
error (Rouder & Morey, 2005). As a rule of thumb, hypoth-
esis testing should be reserved for those cases in which the 
researcher will entertain the null as theoretically interesting 
and plausible, at least approximately.

Researchers willing to perform hypothesis testing must 
realize that the endeavor is inherently subjective (Berger 
& Berry, 1988). For any data set, the null will be superior 
to some alternatives and inferior to others. Therefore, it 
is necessary to commit to specific alternatives, with the 
resulting evidence dependent to some degree on this com-
mitment. This commitment is essential to and unavoid-
able for sound hypothesis testing in both frequentist and 
Bayesian settings. We advocate Bayes factors because 
their interpretation is straightforward and natural. More-
over, in Bayesian analysis, the elements of subjectivity 
are transparent rather than hidden (Wagenmakers, Lee, 
Lodewyckx, & Iverson, 2008).

This commitment to specify judicious and reasoned al-
ternatives places a burden on the analyst. We have provided 
default settings appropriate to generic situations. Nonethe-
less, these recommendations are just that and should not be 
used blindly. Moreover, analysts can and should consider 
their goals and expectations when specifying priors. Sim-
ply put, principled inference is a thoughtful process that 
cannot be performed by rigid adherence to defaults.

There is no loss in dispensing with the illusion of ob-
jectivity in hypothesis testing. Researchers are acclimated 
to elements of social negotiation and subjectivity in sci-
entific endeavors. Negotiating the appropriateness of vari-
ous alternatives is no more troubling than negotiating the 
appropriateness of other elements, including design, oper-
ationalization, and interpretation. As part of the everyday 
practice of psychological science, we have the communal 
infrastructure to evaluate and critique the specification of 
alternatives. This view of negotiated alternatives is vastly 
preferable to the current practice, in which significance 
tests are mistakenly regarded as objective. Even though 
inference is subjective, we can agree on the boundaries 
of reasonable alternatives. The sooner we adopt inference 
based on specifying alternatives, the better.
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NOTES

1. The calculation of the standard deviation of yi assumes that there are no participant-by-item interactions. This assumption 
is made for computational convenience, and the presence of such interactions does not threaten the validity of the argument 
that significance tests overstate the evidence against the null hypothesis.

2. For the case in which the alternative is a point and σ is known,
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The Bayes factor is given by
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This Bayes factor is a function of  y/σ, the observed effect size, and µ1/σ, the effect size of the alternative.
3. The Bayes factor with the normal prior is
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This Bayes factor depends only on the observed effect size y/σ and the ratio σµ/σ.
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4. The scaled JZS Bayes factor is 

 B

t
v

Ngr t
Ng

v

01

2 1 2

2 1 2 2

1

1 1
1

=
+





+( ) +
+

− +

−

( )/

/

rr v
g e

v

g

2

1 2

1 2 3 2 1 22( )












− +

− − − ( )
( )/

/ / /( )π ddg
0

∞

∫
,  

where r is the scale factor.
5. The scaled-information Bayes factor is

 
B

t
v

Nr t

Nr

v

01

2 1 2

2 1 2 2

2

1

1 1
1

=
+





+( ) +
+

− +

−

( ) /

/

(( )












− +

v

v( ) /
,

1 2  

where r is the scale factor. The unit-information Bayes factor holds when r 5 1.
6. There is a more principled Bayes factor calculation for those who believe that the null can never be true a priori. The null 

may be specified as a composite—that is, as a distribution of effect sizes. A reasonable choice is that under the null, the effect 
size is normally distributed with a mean of 0 and a small standard deviation of, say, .05. If this standard deviation is much 
smaller than that for the alternative, then the JZS Bayes factor serves as a suitable approximation for moderate sample sizes.
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