
Comparison:
Perforce and Git

Perforce 2012.1 and Git version 1.7.3

This document compares Perforce (version 2012.1)
and Git version 1.7.3. Read this comparison to:

•	Understand	the	major	feature	differences
•	See how Perforce and Git compare on qualitative

aspects such as usability and administration
•	Get	a	general	comparison	of	the	effects	of	scaling	

on both systems

Table of Contents

Executive Summary ___ 5

Overview __ 5

A Word on Architecture __ 10

Working Effectively ___ 6

Branching and Merging

Branch Creation and Usage ___ 6

Sparse Branching __ 6

Merging Changes ___ 6

Cherry Picking Revisions for a Merge __ 8

Renaming and Refactoring Files ___ 8

Task-based Work __ 9

Switching Tasks and Storing Work-in-Progress _________________________________ 9

Link to Task Management ___ 9

Workspace Model __ 9

Ease of Use ___ 9

Graphical Applications and Integrations ______________________________________ 9

Identify Changes __ 9

Collaboration ___ 9

Code Sharing and Dependency Management _________________________________ 9

Perforce Views and Streams ___ 9

Git Sub-modules and Sub-trees ___ 9

Branching and Release Management __ 9

Project Creation __ 9

Promoting Work ___ 9

Understanding The Branch Model ___ 9

A Release Management Scenario __ 9

The Scenario in Perforce __ 9

The Scenario in Git __ 9

Digital Assets That Cannot Be Merged __ 9

Visual Tools for Collaboration ___ 9

Application Lifecycle Management (ALM) and Community Development ____________ 9

Scalability __ 10

Large File Management ___ 10

Cross-Platform Compatibility ___ 10

Remote Development ___ 10

Extensions: APIs and Scripting __ 10

Administration and Management

Setup and Deployment ___ 10

Security, Authentication, and Access Control ____________________________________ 10

Auditing __ 6

Backup and Maintenance ___ 10

The Basics __ 6

Repository Verification and Maintenance _____________________________________ 6

Recovering Lost Workspaces __ 6

Policy Management __ 10

Triggers __ 6

Reporting and Data Mining ___ 6

Support and Services __ 6

Conclusion

Learn More

Evaluating Perforce __ 10

Scheduling a Demo of Perforce ___ 10

Migrating to Perforce __ 10

1

EXECUTIVE SUMMARY
The traditional strengths of Perforce as a shared software
version management system satisfy the requirements of the
enterprise environment: release management, scalability, global
collaboration, and security are all vital to the enterprise, or indeed
most modern development teams.

More recently, distributed version control systems (DVCSs) —
most notably Git—have gained adoption in other usage models,
including traditional enterprise environments. DVCSs started
to appear in 2001. These tools were originally designed for the
open source usage model: widely dispersed collaborators working
mostly independently, but sharing work on a limited basis.

Although the architecture of a DVCS is interesting from a
technical	perspective,	the	workflow	aspects	are	more	important,	
as they have highlighted unsolved problems for many individual
users.

Intensive research has revealed that the most compelling reasons
for adoption of a DVCS are:

•	 Private local branching, or the ability to work freely outside
the constraints of the enterprise version control model. This
autonomy spurs creativity and results in better work.

•	 A	quick	and	simple	workflow	for	common	tasks.

•	 Connection independent versioning, or the ability to work
effectively	with	a	slow	or	non-existent	connection	to	the	rest	of	
the enterprise.

Perforce has studied how the problems highlighted by DVCS
can	be	solved	effectively.	Rather	than	starting	from	scratch	or	
attempting to add enterprise features to DVCS, combining
the power of shared software version management with the
flexibility	of	DVCS	offers	the	best	solution	to	the	enterprise	and	
to individual users. And that is the ultimate goal: providing a tool
and	a	model	that	facilitate	effective	work.

In	this	paper	we	attempt	to	analyze	the	solutions	offered	by	
Perforce and Git, a popular DVCS. Focusing on qualitative aspects
such as usability and administration, we compare Perforce version
2012.1 with Git version 1.7.3.

Attribute Git Perforce

Working Effectively
Perforce (via P4Sandbox) and Git offer powerful workflow and distributed working solutions.

Branching and Merging Quick and effective private branching.
	Rebasing	provides	extra	flexibility	for	private	work.

P4Sandbox	supports	easy	private	branch	creation	
and use. Streams provide guidance for branching
operations.
Powerful merge GUI.
More	granular	and	flexible	branching	operations.

Task-based Work Easy task branching and branch switching.
Work-in-progress	can	be	stashed	but	not	easily	
shared.
Some task management integration.

Easy task branching, branch switching, and
automatic	saving	of	work-in-progress.
Shelves	offer	simple	task	hand-off	and	review.
Integrates easily with task management.

Workspace Model A workspace is a simple view of an entire
repository.

Supports	flexible	workspace	views.

Ease of Use Several GUI clients available for different
platforms, with limited feature sets, targeted at
technical users.
Globally	unique	(but	non-intuitive)	revision	
identifiers.
Simple tags (labels) can be used at the repository
level.

Powerful visual tools available for technical and
non-technical	users.
Easy organizational and identification techniques,
including	flexible	labels.

OVERVIEW

2

Attribute Git Perforce

Collaboration
Perforce offers more powerful and flexible tools for collaboration, which allow release managers and product architects to guide
the work of the team.

Code Sharing Sub-modules	allow	code	sharing,	but	require	extra	
planning and disciplined usage.

Several methods, notably streams, available to easily
share code between projects and manage module
dependencies.
 Relationships between modules can be guided by
the project architect.

Branching and Release
Management

Creating a new project requires creating a new
repository.
More work required to model the overall release
management process.

Several projects can be hosted in a single server,
simplifying release management.
Streams provide a powerful framework for guiding
collaboration.

Working on Files That Cannot
be Merged

No support for file locking or concurrent edit
notifications.

Supports file locking and concurrent edit
notifications in a single branch.

Visual Tools to Aid
Collaboration

Visual tools display information about a single
repository.

Visual	tools	provide	rich	contextual	information	
about the project(s) of interest.

ALM and Community
Development

Community	sites	provide	ALM-like	features	and	
management tools.

Superior collaboration tools for teams.
Integrates into any ALM suite and provides own
management tools.
Free for open source use.

Scalability
Perforce scales to manage thousands of users and terabytes of data, while still facilitating collaboration. Scaling Git requires extra
systems and tools to integrate and maintain.

Large Files Very poor handling of large files without additional
systems.

Efficient storage and use of large files.

Cross-platform Compatibility Standard or community supported distributions
available for all major platforms. Uneven Windows
support.

Supports all major platforms. Services and
applications interoperate across platforms.

Distributed Development Excellent	support	for	distributed	work. P4Sandbox	offers	excellent	support	for	distributed	
private work.
Perforce has several tools to sustain distributed
development for the shared repository.

Extensions Stable	C++	API.	Many	extensions	built	around	
command line interface and API.

Supported APIs for many platforms and languages,
including web services.

3

Attribute Git Perforce

Administration and Management
Perforce provides reliable management tools and support. Basic Git administration is straightforward, but additional work or tools
required in a team setting. Git support provided by community.

Setup and Deployment Administration involves coordination with IT and
individual repository maintainers.
Release management strategy affects deployment.

Straightforward architecture with minimal
infrastructure requirements.
A single administrator can maintain Perforce for
hundreds of users.

Security and Access Control Authentication done via HTTP server or operating
system.
Access control is done at the repository level, which
impacts the development model.

Centrally managed, granular authentication and
access control mechanisms.
Scales well for sites of any size.
Auditing built in.

Backup and Maintenance Backing up a single repository is simple.
Each repository in the deployment must be backed
up and maintained, although cloned repositories
offer some backup capability by default.
Backups must include hooks, security
configuration, and other metadata.

Well-established,	centrally	administered	backup,	
recovery, and maintenance procedures.

Policy Management Supports hooks but relies more on upstream
committers to guide or enforce policy across an
entire team.

Triggers and broker provide easy ways to provide
structure and guidance to a team.

Reporting and Data Mining Simple reporting for a single project (repository). Rich reporting on all aspects of all projects.
Sophisticated data mining available via report
engines.

Support and Services Supported via community. World-class	technical	support	and	related	services.

4

A Word on Architecture
Although the architecture of a software version management
system is not of primary concern to most users, the architecture
of a DVCS has important usage implications.

A software version management system such as Perforce uses
a single canonical representation of the repository’s data. All
users connect to a shared versioning service which updates this
canonical data set. The deployment architecture may contain
tools such as replication services to help with performance
or support, but fundamentally there is still a single copy of
important data.

Perforce	uniquely	offers	P4Sandbox,	a	tool	that	supports	
independent work with tight integration to the shared repository.

 A DVCS like Git uses a single, independent repository for
each workspace. Often a DVCS is designed such that a single
repository contains a single project’s data, and most actions
operate	on	the	entire	repository.	In	a	typical	workflow,	one	person	
maintains a repository that accepts changes from contributors.
Each contributor will start by cloning a complete copy of that
repository.

A single contributor will make changes privately and push them
upstream when ready (or request that the shared repository
maintainer pull their changes).

Pro	Git	(Apress,	2009)	has	an	excellent	starting	discussion	on	the	
usual	Git	workflows.	There	is	no	definitive	deployment	diagram	
for	Git,	but	a	sample	deployment	or	workflow	architecture	is	
shown in Figure 6.

WORKING EFFECTIVELY
Software version management provides the tools and framework
for users to understand and evolve their digital assets.

In this section we consider how Perforce and Git help users do
their	work	effectively	at	the	private	or	local	level.

Branching and Merging
Branching and merging is the process of creating new copies of
digital assets, working on them concurrently, and at some point
sharing changes between those copies. Branching and merging
can	occur	privately	to	facilitate	working	on	specific	tasks	or	just	
to	experiment,	or	publicly,	to	allow	teams	to	work	in	parallel	and	
collaborate.

The ability to freely create and use private branches has proven to
be	a	powerful	productivity	boost:	users	are	able	to	experiment,	be	
creative, and use branches to manage work on several tasks. Work
in	progress	is	committed	frequently,	and	different	approaches	
to a problem are tried. Work does not need to be shared until it
reaches a point of maturity.

This autonomy has led to more productive work. In this section
we discuss the ease of creating and using branches at the private
(local or individual) level.

Branch Creation and Usage
The mechanics of creating and using a new branch in Git are
very	simple.	Branches	exist	in	the	Git	metadata	but	are	not	
directly	reflected	in	the	local	directory	structure.	Git’s	isolation	of	

Shared Versioning Service

Proxy Service

Replication
Service

P4Sandbox P4Sandbox

Figure 1: Perforce deployment architecture

5

branches from the directory tree makes it easy to delete unwanted
branches. a task more commonly done at the private rather than at
the team or enterprise level.

The relationship between branches in a Git repository is purely a
matter of convention; all branches have equal weight in Git.

Most Git commands operate on the entire repository, so there
is	little	ability	to	branch	and	work	on	only	a	subset	of	files,	or	
create new views of the directory tree. Git does have the ability to
checkout only a subset of a repository, but most commands are
not granular in scope.

In Perforce, the mechanics of creating and using a new branch
are straightforward. With the Perforce Streams framework
introduced	in	Perforce	2011.1,	the	process	is	simplified,	and	can	
be done quickly and intuitively in the associated visual tools.

Branches	exist	in	the	Perforce	metadata	and	are	reflected	in	the	
directory structure. A branch in Perforce is, from one perspective,
just another directory in the workspace. If we choose, we can see
as many branches of as many projects in our workspace as we like.
(Of course, if we prefer to have a workspace only contain a single
branch, we can create new workspaces for new branches.) A good
naming	convention	for	branches	will	immediately	expose	some	
structure in the directory layout. When working in the Perforce
Streams framework, the relationship between branches is also
codified.	(see	Understanding	the	Branch	Model).

Perforce, by virtue of branch and stream views, more easily
supports	creating	complex	branches.	We	can	use	branch	
mappings,	for	example,	to	move	all	documentation	files	into	a	
different	location	when	creating	a	release	branch.	Or,	we	can	use	
the virtual module technique to work with only a subset of a
branch	for	bug	fixing	(see	Perforce	Views	and	Streams).	

In a shared repository, there are often policy restrictions governing
the creation and usage of new branches. Branch location,
ownership,	and	usage	must	be	determined	in	the	context	of	
the overall release management framework. Additionally,
the proliferation of branches in a shared repository may have
performance impacts. Because of these reasons, users often are not
free	to	create	new	branches	at	will.	The	new	P4Sandbox	product	
provides	the	extra	layer	of	isolation	that	allows	Perforce	users	
to create and use private branches easily without impacting the
shared service.

Sparse Branching
Sparse	branches	are	constructed	by	only	branching	the	files	
actually	modified,	and	otherwise	using	files	from	

the parent branch. Sparse branching keeps branches small and
branching operations fast.

Git	supports	the	effective	equivalent	of	sparse	branching	by	
default. Branch creation is simply a reference in the Git metadata;
new	file	revisions	are	only	created	upon	commit	of	actual	
changes. Git’s lightweight branches are part of the reason that Git
branching is considered fast and easy.

Perforce branches are fully populated by default on the shared
service, which is perhaps a simpler model when collaboration
between	several	users	is	intended.		When	working	in	P4Sandbox,	
a	just-in-time	branching	process	is	used	that	is	very	similar	to	
sparse	branching.	Branching	in	P4Sandbox	as	a	result	is	also	very	
fast and easy.

Merging Changes
Merging or propagating change is necessary both at the private
(local) and public levels. Both Perforce and Git handle common
merge tasks easily, although Perforce provides a powerful
graphical merge tool, P4Merge, when manual review is necessary.

Perforce’s Streams framework provides structure and guidance for
merging changes (see Understanding the Branch Model). Perforce
also	provides	more	flexibility	when	choosing	how	to	merge	
changes.	Perforce’s	two-phase	integrate	and	resolve	process	allows	
developers to run a merge, then choose the resolve action (merge
strategy)	that	is	most	appropriate	for	each	file.

Git, on the other hand, requires choosing a merge strategy in
advance for the entire branch.

Cherry Picking Revisions for a Merge
Cherry picking revisions for a merge is not a best practice by any
means, but is sometimes necessary. The most common scenario
involves an urgent need to promote one piece of new development
code to a release maintenance branch. Perforce gives you complete
control over which revisions to include in a merge, using any of its
revision	specifiers	using	the	p4 integ command.

Git	provides	two	very	different	commands	to	use	to	perform	a	
selective merge. The git cherry-pick command works on a
single revision, and there is a detailed formula involving the git
rebase command that works on ranges of revisions.

It is important to note the distinction between Perforce’s
integration command and Git’s rebase operation. Perforce’s
integration command always understands and records merge
history.	Subsequent	merges	after	cherry-picking	will	know,	and	
respect,	that	a	cherry-pick	was	done.	

Git rebase does not impact merge history; it is more similar to
replaying a set of edits after updating a branch to a new starting
point. Git’s rebase operation is best used in isolation. Rebasing
after	pushing	changes	upstream	will	lead	to	a	future	complex	
merge.

6

This behavior is due to one of Git’s core use cases, selectively
integrating patches into a master repository. In this situation, it is
actually not desired to properly record merge history between the
master repository and the contributing repository.

Renaming and Refactoring Files
Renaming	a	file	often	causes	a	problematic	situation	during	a	
merge.	Let’s	say	that	we	have	a	file	named	edit.c on trunk, and
we’ve renamed it to write.c on a development branch. When
merging between the two branches in the future, there are several
ways we might want the software version management system to
handle	the	relationship	between	these	files.	

•	 Propagate the rename to trunk.

•	 Do not propagate the rename, but continue to propagate
changes between edit.c on trunk and write.c on the
development branch.

•	 Ignore	any	future	changes	to	either	file	when	merging	between	
these branches.

Perforce	gives	us	the	flexibility	to	choose	any	of	these	options.	
The default behavior is to propagate the rename, but we can
use the branch or stream view to choose another option. This
flexibility	is	due	to	Perforce	Inter-File	Branching.

Git	also	supports	renaming	or	moving	a	file.	The	git merge
command detects this operation and handles it by propagating
the rename. However, it does not provide a mechanism to ignore
changes	for	this	file.	Propagating	changes	between	the	new	and	
old names is possible, but only if the rename action is ignored by
merging that change with the “ours” merge strategy. Subsequent
merges will then propagate changes between the old and new
names. Since a merge operates on an entire branch, renames must
be handled carefully if the default Git handling is not desired;
otherwise the “ours” merge strategy will ignore other changes as
well.

Task-based Work
Task-focused	development	enhances	productivity,	and	is	
particularly useful for Agile development methodologies that
organize work around stories and tasks.

Switching Tasks and Storing Work-in-
Progress
Both	Perforce	(via	P4Sandbox)	and	Git	provide	excellent	support	
for quickly updating a local workspace to focus on a new task.
Creating	new	private	branches	to	work	on	different	tasks	is	very	
fast. Switching between these branches is easy, as both Perforce
and	Git	offer	in-place	branching.

P4Sandbox	also	offers	the	ability	to	automatically	save	work-in-
progress via Perforce’s shelving feature. That makes switching
tasks (branches) even easier.

Perforce’s shelving feature is more powerful in many respects
than Git’s stash mechanism. Perforce shelves can be shared with
other	users	(when	not	working	in	P4Sandbox),	offering	a	simple	
code	review	and	task	hand-off	capability.	Git	stashes	offer	a	
distinctive	queue	workflow	that	is	appealing	in	ways,	but	sharing	
work in progress requires distribution via patches or published
branches.

Link to Task Management
Task management (defect tracking or project management) tools
provide	the	context	to	understand	commits	in	a	software	version	
management system: why the change is being made and how it
relates to requirements, test cases, and QA plans. Establishing
the link between the software version management system and
task management is important for improving transparency and
collaboration.

Perforce, via its jobs system, provides a reliable and intuitive way
to link the software version management system information to
tasks. The Perforce Defect Tracking Gateway provides replication
of information between Perforce and popular tools like HP
Quality Center, JIRA, Redmine, and Bugzilla. Other integrations
are	offered	for	similar	tools.

Git relies on community supported plugins to link to task
management, and these plugins often rely on commit comment
scanning, which is unreliable.

Workspace Model
Perforce	allows	very	flexible	views		in	application	workspaces.	
The	workspace	view	defines	the	files	visible	in	the	workspace	
and	the	location	of	those	files	on	the	local	file	system.	Since	each	
Git workspace is a clone of the entire repository, the user has less
granular control over the composition of a workspace.

Users	can	easily	rearrange	files	in	their	workspace	to	match	
the requirements of a build tool, for instance. Consider a Java
development	effort	that	started	with	this	directory	structure:
 - src/java

 - test/java

 - doc/license

On one platform we need to compile this project using Maven,
which	dictates	a	different	directory	structure:
 - src/main/java

 - src/test/java

 - license.txt

7

Rearranging the directory structure this way using a Perforce
workspace or stream view is trivial, does not require a commit,
and can be easily reproduced for other users. Changes made to
the	files	under	the	new	directory	structure	would	transparently	
flow	back	to	the	files	in	the	original	location	in	the	repository.

Achieving	a	similar	goal	with	Git	would	be	difficult	without	
resorting	to	file	system	links,	which	are	difficult	to	deploy	
automatically. Git’s read-tree and filter-branch commands
provide a directory mapping function, but are not considered
typical	end-user	commands,	and	do	not	allow	pushing	changes	
transparently	between	the	files	in	the	original	directory	structure	
and the remapped copies.

Ease of Use
Modern software version management tools are quickly
becoming repositories for more than purely technical data.
The software version management system, by virtue of its
file	handling	and	security	features,	lends	itself	readily	to	
managing a broader set of documents than just source code.
The software version management system is commonly used
to store documentation for products and processes, and may
well be the only system available that can satisfy the audit
requirements	of	defense	or	Sarbanes-Oxley	environments.	Even	
in distributed open source communities, an accessible software
version management system will encourage contributions from
documentation writers, graphic artists, translators, and other
segments of the community.

Given that the users of software version management system data
may well be outside of the technical role, it should be accessible
to	novice	and	non-technical	users.

Graphical Applications and Integrations
Graphical applications (GUIs) are an important tool for most
users. For less technically oriented users, a GUI may be the
only application that will ever be truly useful and accessible.
For novices, a GUI provides a quick and easy way to start using
the tool. And even for advanced users, some software version
management operations, like viewing branch history, lend
themselves	more	readily	to	a	GUI	than	to	a	command-line	
interface.

Perforce’s	GUI,	P4V,	is	officially	supported	and	available	on	
all	major	platforms.	P4V	offers	a	nearly	complete	set	of	user	
functions, a growing subset of administrative commands, and
visualization	tools,	including	Stream	Graph,	Time-lapse	View,	
the	Revision	Graph,	and	Folder	Diff.	

Other	powerful	applications	include	the	Perforce	Eclipse	plug-
in and a new Visual Studio integration. Perforce is leveraging

HTML5, JavaScript, and web services to provide new integration
and	plug-in	possibilities.	Perforce’s	new	Stream	Graph,	for	
instance, is built into P4V, and has already been replicated as a
JavaScript-based	applet.

Perforce	also	supports	integrations	with	Microsoft	Office	and	
popular graphics programs like Adobe Photoshop.

Git	is	distributed	with	two	GUIs,	each	offering	a	different	set	of	
features,	and	neither	offering	a	featureset	comparable	to	P4V.	
Several	other,	unofficial	GUIs	are	available	for	Git,	but	are	in	
various	stages	of	completeness	and	stability.		Git	does	not	offer	
integration	with	Microsoft	Office	or	programs	like	Photoshop.	
Thus, a Git user wanting to work in a GUI will need to learn
more than one environment, and could still be forced to the
command	line	for	even	non-administrative	functions.	

Identifying Changes
Perforce	uses	changelist	numbers	as	unique	identification	points	
in the history of the entire repository. These changelist numbers
are	sequential	in	the	order	of	commit.	Each	file	also	has	its	own	
revision numbers.

Besides	serving	as	an	identification	point,	pending	changelists	
provide a way for developers to separate work into logical groups
in	a	workspace.	For	instance,	one	changelist	may	include	files	
for	a	bug	fix,	while	another	changelist	contains	files	targeted	at	
new feature work. Changelists also serve as the basis for Perforce
shelves (see Code Sharing and Dependency Management).

Perforce provides two types of labels: automatic labels to
reference	a	set	of	files	at	a	particular	revision,	and	static	labels	to	
provide	additional	flexibility.	Both	can	reference	subsets	of	files	at	
different	revisions	or	points	in	time.

Because	Git	must	handle	commits	from	different	repositories,	
revisions	receive	a	40	digit	SHA	number	as	an	identifier.	Files	
do not have their own revision numbers. In order to determine
the relationship between two revisions, a command such as git
log or a graphical application must be used. The globally unique
identifier	is	useful	in	some	contexts	but	more	difficult	to	work	
with for the typical user.

Git provides no facility for grouping work in progress in a single
branch. By default git commit works	on	all	pending	files,	and	
a	developer	can	indicate	individual	files	to	commit.	Separating	
work into logical units is often done by making private topic
branches for each task.

Git	tags	are	similar	to	Perforce	automatic	labels,	but	less	flexible.	
They reference the state of the entire repository as of a particular
commit.

8

Collaboration
TAnother primary function of software version management is
to enable collaboration between team members. Collaboration
may occur for teams working on a single project, between teams
working	on	different	versions	of	a	single	projects,	or	between	
teams working on distinct but dependent projects.

Code Sharing and Dependency
Management
Often we may wish to share code between projects in the software
version	management	system.	For	example,	a	common	library	
module	may	be	developed	in	its	own	project,	but	exposed	as	a	
read-only	component	to	other	projects.	

Perforce’s	flexible	data	model	and	tools	provide	an	easier	solution	
for	managing	the	relationships	between	different	projects	and	
modules.

Perforce Views and Streams
Perforce gives us several ways to handle this situation. If the
other	project	is	hosted	in	a	different	service,	we	can	use	Perforce’s	
remote depot feature for code drops. For projects in the same
server, we can branch a module into another project, and prevent
modifications	via	the	permissions	system.	

Perhaps	the	simplest	approach	uses	flexible	branch,	workspace,	
and stream views to include part of one project as a component in
another project. These views are easy to change, particularly when
working	with	streams.	The	stream	view,	once	defined	by	the	
project	architect,	flows	automatically	to	all	users	of	that	stream.	

This technique allows for selectively branching only a subset of a
project, while still providing a fully populated working copy for
local use. More importantly, it also provides an easy framework

for managing dependencies between projects.

For	example,	consider	a	project	with	five	modules.	Of	these	five,	
three are actually imported from other products, and another is
not	going	to	be	modified	during	the	current	development	effort	
(see Figure 2).

It is important for the average user to easily obtain a coherent
working copy of the project, with each module imported from
the	correct	place,	and	with	accidental	modifications	to	read-only	
modules prevented. It is also important for the project architect,
who	understands	the	sometimes	complex	relationships	between	
modules,	to	be	able	to	easily	define	this	information	and	share	it	
with others. Perforce Streams provide this capability out of the
box,	where	previously	branch	and	workspace	views	with	scripting	
assistance, were used.

Perforce labels are also very useful when working with modular
digital	development	to	reference	disparate	sets	of	files	developed	
by	different	teams.	These	labels	can	then	be	used	to	identify	the	
modules	that	comprise	a	release,	for	example.

Git Sub-modules and Sub-trees
In Git, each repository is a single project, so the only way to share
code	between	two	projects	is	to	use	either	sub-modules		or	sub-
trees.	Sub-modules	allow	us	to	include	one	external	repository	
as	a	sub-directory	of	another.	The	granularity	of	the	sub-module	
concept	is	limited,	however;	we	cannot	expose	just	a	piece	of	the	
external	repository.	This	implies	that	defining	the	modules	and	
their dependencies must be done correctly in advance, which can
be	difficult	for	complex	projects.

Once	a	project	is	defined	that	includes	one	or	more	sub-modules,	
other	developers	can	clone	the	project.	Using	sub-modules	does	
require	a	bit	of	extra	work,	however:	

Figure 2: Modular development model

Imported module

2 week sprints

Nightly refreshes

6 month cycle
4-6 week sprints

Active module

Read-only module

Imported module

External library

9

•	 The submodule init and submodule update commands
must be used when cloning from a project that includes
sub-modules.	

•	 The submodule update command must be run separately
from the pull command when updating a repository that
includes	sub-modules.	

•	 When	modifying	a	sub-module,	it	must	be	pushed	separately	
from the rest of the repository.

Sub-trees	are	similar	in	concept	to	sub-modules;	they	allow	the	
inclusion	of	one	tree	as	a	sub-directory	in	another	tree.	Sub-trees	
are	normally	used	in	read-only	fashion,	and	require	the	use	of	a	
specific	git merge	strategy	to	work	correctly.	Similar	to	sub-
modules,	they	require	extra	work	to	set	up	and	maintain.	

Consider	again	our	project	with	five	modules.	Although	Git	
would	provide	tools	to	assemble	the	five	modules	into	a	single	
working	project,	it	requires	extra	initial	setup	and	care	when	
working. Git’s tags (labels) would not be able to identify the
cross-project	set	of	files	that	comprise	a	coherent	project.	Perhaps	
more importantly, Git does not provide the access control
mechanisms	to	prevent	accidental	updates	of	the	read-only	
modules. Like many aspects of DVCS, code sharing requires
careful planning and disciplined usage.

Branching and Release Management
The	efficient	management	of	branches	is	one	of	the	core	
functions of the software version management system.
Often called release management, this task includes designing
an	effective	model	for	concurrent	development,	building	
and releasing a product, and maintaining releases. This
section discusses the public aspects of branching and release
management.

Project Creation
The process of creating a new project in the software version
management	system	illustrates	a	fundamental	difference	
between Perforce and Git. In Perforce, adding a new project
simply means choosing an area of the depot to use for the new
project, and deciding on an appropriate branch model. Once a
depot location for the new project is chosen, the project manager
defines	a	stream	or	template	workspace	and	adds	the	new	
content.

In Git, a project is a repository. To add a new project in Git,
we actually need to make a new repository.

We must choose the physical storage location for the new
repository, and decide where the master repository is to be

hosted	for	team	use.	Additional	configuration	may	be	necessary	
to support access via the HTTP or SSH protocols (see Security,
Authentication, and Access Control). The repository deployment
model must be designed and communicated to the project team.
Then the new content can be added to the master repository.

Promoting Work
One common problem to consider is the need to merge upstream
changes	before	promoting	finished	work.	

This vital step ensures that the work in question has been
reconciled	against	all	upstream	improvements	and	bug	fixes.	

With larger teams using Git, and branch operations done at the
repository	level,	each	user	must	be	up-to-date	against	the	entire	
upstream repository before promoting from his or her private
repository. This leads to a work slowdown as the process of
merging	and	promoting	is	effectively	serialized.

Perforce,	on	the	other	hand,	only	requires	that	the	individual	files	
in	question	be	up-to-date	before	promoting	work.	In	practice,	
work should be merged and tested at the module level. This
granularity allows easier concurrent work on large teams.

Understanding the Branch Model
A key part of release management is understanding the overall
structure of the branch model. How does one branch relate to
another, is the branch more stable, and where should changes in
one branch be merged? Answering these questions is important
when managing concurrent development by several teams, or
maintaining older releases. Perforce Streams allow the project
architect to codify this information.

Perforce uses the information to guide merges, ensuring that
changes	flow	through	the	appropriate	merge	pathways.	Streams	
provide an understanding of the structure of a project, and allow
the	project	architect	to	define	how	change	should	flow.	The	
intuitive picture provided by the Stream Graph also helps users
understand the project, and most branching operations can be
easily automated (see Figure 3).

Without Streams, a project architect could still implement an
effective	branch	model	using	Perforce	directory	structure	and	
workspaces.

Git	does	not	offer	a	similar	way	to	comprehend	the	overall	branch	
model. This information must be understood by convention
or documentation. Since a Git branching model may actually
include several repositories, it is important that the release
manager or project architect document the design.

10

When changes are ready to merge, the Stream Graph provides
visual	notifications	via	the	arrows	between	streams;	merging	
changes	to	the	right	place	is	accomplished	by	simple	point-and-
click operations (see Figure 5).

Without using Streams, the process is essentially the same,
but	uses	a	different	set	of	tools.	For	example,	the	MergeQuest	
component	of	the	P4Eclipse	plug-in	offers	a	visual	representation	
of	a	non-streams	branch	model.

The Scenario in Git
In	Git,	the	release	manager	and	project	architect	would	define	
a	multi-repository	Git	deployment	(see	Figure	6).	A	single	Git	
repository could have the branches indicated in Figure 4, but
without	add-on	tools,	Git	access	control	is	at	the	repository	level,	
not	the	branch	level.	For	the	purpose	of	controlling	the	flow	of	
change, several repositories are necessary. Changes to the access
control	for	the	project	may	entail	manually-intensive	changes	of	
HTTP or SSH access settings (see Security, Authentication, and
Access Control).

This model, often called the “dictator and lieutenants” model, is
commonly used in Git. Branches in a single repository are often
short-lived,	and	having	one	person	pull	changes	prevents	other	
developers from running into merge problems.

Each developer has his or her own repository, representing the
dev branches. Project leads (lieutenants) control the integration
repository, representing the int branch. A project manager
(dictator) would control access to the main repository and create
release repositories as required. The lieutenants and dictator
must pull changes from lower level repositories when necessary,
or otherwise integrate patches from developers. This model also
implies that, instead of switching branches to work on a bug
fix	for	a	release,	a	developer	has	to	create	a	clone	of	the	release	
repository.

A Release Management Scenario
Consider a project following the mainline branching model
(see Figure 4). There are four branching levels: dev, int, main,
and rel. The lowest level development branches focus on
individual modules of the project. The diagram shows the typical
branching operations that occur during development and release
maintenance.	Notably,	work	like	bug	fixes	is	merged	down	to	less	
stable branches, and stable development is promoted up to more
stable branches.

As	discussed	in	other	sections,	the	different	release	management	
and branching models in Perforce and Git have broad
implications for ease of collaboration and administration.

The Scenario in Perforce
In Perforce, the release manager and project architect would
define	the	branch	model,	and	perhaps	model	it	with	a	Stream	
depot. The two dev branches include only a subset of the project;
this	information	is	also	included	in	the	stream	definitions.	If	
at	some	point	in	the	future	the	definition	of	the	dev branches
changes,	the	stream	view	is	altered	and	that	information	flows	
automatically to all users.

Any user on the team can easily create a new workspace and start
working on one of the development streams. Users may choose
to	use	P4Sandbox	for	more	effective	private	work,	in	which	case	
P4Sandbox	will	handle	the	data	transfer	to	the	shared	repository.

Access can be controlled for each level of the branch model using
Perforce protections (see Security, Authentication, and Access
Control). Write access at each level is granted to appropriate
users, say only the project leads can integrate changes into the
int branch. Access control changes are completed quickly using a
graphical administration tool.

dev2.3

rel2.1 rel2.2 rel2.3

main

Figure 3: Stream Graph shows a branch model as defined by a project architect

11

Digital Assets That Cannot
Be Merged
Although	enabling	concurrent	modification	of	files	is	a	core	
function of a software version management system, some digital
assets	must	be	worked	on	serially.	Some	files	are	difficult,	if	
not	impossible,	to	merge,	such	as	images,	movies,	and	office	
documents.	Other	files	are	extremely	sensitive	to	change,	such	
as	programming	interface	definitions.	As	a	collaboration	tool	the	
software version management system helps prevent parallel work
on	these	files.

Perforce	has	support	for	locking	files	in	a	single	branch	in	order	to	
prevent	concurrent	modifications.	Locking	can	be	accomplished	
on	an	ad-hoc	basis	or	systematically	using	file	type	modifiers.	And	
of	course,	Perforce	can	show	if	other	users	have	a	file	checked	out,	
which	helps	avoid	potential	conflicts.	All	of	these	benefits	are	
made	possible	by	Perforce’s	model	of	opening	a	file	before	starting	
work on it. Although Perforce users can choose to work without
opening	files	first,	in	some	cases	the	benefits	of	collaboration	
outweigh	the	cost	of	the	extra	workflow	step.

Git’s	distributed	design	prevents	any	type	of	file	locking	or	
editing	notification,	so	concurrent	modification	of	files	cannot	be	
prevented.

Visual Tools for Collaboration
An	important	factor	to	consider	when	evaluating	the	effectiveness	
of	a	visual	tool	is	the	amount	of	information	and	context	
presented about the bigger picture. Knowing the overall branch
model or the released projects for a single business unit is crucial
information for many users.

There is no single place to see whether any merges are pending
between	several	different	Git	repositories.	The	Git	pull and push
commands can report pending merges between a parent and child
repository, but do not show a complete picture of pending merges
project-wide.

Since the dev branches need only a subset of the project,
developers	need	to	make	sure	to	not	modify	the	read-only	
modules in their project. Alternatively, the src and db modules
could be developed independently, which would require the
use	of	Git	sub-trees	or	sub-modules	and	extra	repositories	
(see Figure 7). In either case, the segregation of the project
into modules must essentially be complete and static when
development begins.

Figure 5: Branch model seen in Perforce Stream Graph

MAIN
(restricted to project manager)

2.0 release
(release team)

branch for 2.0
release maintenance

branch for 3.X
development

branch
for 3.X features

bug �xes merged
to main

bug �xes merged
to development

Stable work promoted
to integration

3.X integration
(restricted to project leads)

3.X dev-src
(src development team)

3.X dev-src
(db development team)

Figure 4: Mainline branch model

3.X-Int

3.X-Int 3.X-Int

rel2.2

main

12

2.0 release
(release team)

3.x integration
(project leads)

Developer
Cloned

Repository

Developer
Cloned

Repository

Developer
Cloned

Repository

Main
(project manager)

Cloned
Repository

for Pathcing
Figure 6: Repositories for branch levels

db main
(db project manager)

src main
(src project manager)

2.0 src release
(release team)

Cloned
Repository

for Patching

Developer
Cloned

Repository

Developer
Cloned

Repository

2.0 db release
(release team)

sub-tree
references

3.x src integration
(src project leads)

3.x db integration
(db project leads)

sub-tree
references

Developer
Cloned

Repository

Developer
Cloned

Repository

Cloned
Repository

for Patching

Figure 7: Git deployment using sub-trees

13

SCALABILITY
Software version management provides the foundation
for modern digital asset development. A software version
management system must support a large user base distributed
around the world, and accommodate heavy usage.

Large File Management
Many industries use a software version management system to
manage large digital assets, including multimedia, graphics, and
documentation.	These	files,	which	are	typically	binary	rather	
than	textual,	can	be	very	large.

Perforce	is	efficient	at	storing	and	distributing	files	of	any	type	or	
size. It has features that allow the storage of only a small number
of	revisions	of	files,	saving	space	on	the	service.	Developers	can,	
using	their	workspace	view,	choose	not	to	copy	binary	files	from	
the	service.	Legacy	data	can	be	moved	into	archive	(offline)	
storage areas.

Git,	on	the	other	hand,	is	inefficient	at	managing	binary	files:

•	 Since the entire repository is stored in every workspace, storing
large	numbers	of	binary	files	leads	to	bloated	workspaces.	Git	
has	no	way	of	only	storing	a	handful	of	revisions	of	these	files.	
(Git’s sparse checkout feature does allow a working directory to
exclude	certain	files,	but	the	data	is	still	in	the	.git directory.)

•	 Git	works	at	the	repository	level,	and	must	process	every	file	in	
the repository for some actions, calculating a SHA1 ID for each
file	along	the	way.	Repositories	over	a	few	GB	in	size	can	quickly	
become	difficult	to	use	on	an	average	workstation.	

•	 Git	has	difficulty	adding	large	binary	files	to	a	repository,	
because	it	uses	a	large	amount	of	memory	to	process	new	files.	
For	example,	adding	a	3GB	file	on	a	workstation	with	4GB	of	
RAM often results in out of memory errors.

Git	is	designed	to	work	with	text	files,	and	the	Git	community	
recommends using a dedicated system to version build artifacts
and	other	large	files.	That	implies	a	second	system	with	additional	
overhead and the challenge of linking derived assets to the source
files	in	the	software	version	management	system.

Cross-Platform Compatibility
For enterprise users, the software version management system
should be well supported on all platforms in use. Installation
and upgrade procedures must be seamless and well documented.

The Perforce service program is available on Windows, Mac, and
most	major	versions	of	UNIX/Linux.	The	Perforce	application	

One Perforce service can host multiple projects and all of the
important branches for those projects. Thus, the visual tools
are able to show information about several projects, the branch
model, and directory structure, giving the user a much richer
visualization of the repository. These visual tools include the
Stream Graph, Time Lapse View, Merge Quest, and Revision
Graph.

Git graphical clients cannot show the relationship between a
local repository and an upstream repository. Additionally, Git
repositories are single projects, so a Git client can only show one
project at a time. Without additional tooling, a Git user cannot
know	how	his	or	her	repository	fits	into	the	overall	scheme	of	
the project or team. The Git user must obtain this important
information manually.

Application Lifecycle Management
(ALM) and Community
Development
ALM describes both a process and the associated tools for
managing the evolution of a project from requirements through
design, coding, test, and release.

A software version management system is the foundation of
successful ALM, providing the basis for code review, continuous
integration, and traceability of requirements and defects.

Part of the appeal of modern DVCSs systems like Git is the
availability of popular community sites such as GitHub. These
sites	offer	ALM-like	features,	such	as	discussion	forums,	basic	
defect	tracking,	traceability,	and	notifications.	Many	of	these	
sites also provide additional management tools for security and
repository administration.

It	is	difficult	to	design	one	ALM	toolset	that	meets	the	needs	of	all	
users.	Perforce	offers	superior	ability	to	integrate	into	any	ALM	or	
community	site,	by	virtue	of	its	fully-supported	range	of	APIs	and	
the upcoming web services framework. Since Perforce supplies
its own comprehensive set of security and administration tools, it
only relies on other tools to provide complementary features.

The various community sites are perhaps best suited for projects
with very light collaboration. For true collaboration in a team
setting, Perforce has superior collaboration tools that make it
easier to accept contributions from others, fostering a more
dynamic interaction.

Perforce provides free licenses for open source projects, so a
Perforce service can act as the foundation for a public community
site. Perforce’s own upcoming community development site will
serve	as	such	an	example.	

14

Custom integrations with other tools, build processes, scripts
that assist users and enforce policy, and backup scripts are just
a	few	examples	of	the	useful	ways	to	build	on	the	software	
version	management	system.	How	easily	these	extensions	can	
be implemented is an important aspect of the software version
management system.

Perforce	has	a	command	line	application	and	several	well-
supported APIs, including the C/C++ API, several APIs for
scripting languages, and a web services framework. Since all
of	these	elements	are	officially	supported,	users	can	rely	on	
consistent	functionality	on	different	platforms	and	using	
different	programming	languages.

Git	has	an	official	C/C++	API,	and	several	unofficial	contributed	
APIs	for	other	languages.	Since	most	of	the	APIs	are	not	officially	
supported, they may not be updated frequently, or may become
obsolete entirely

if community support wanes. A user requiring a stable, long lived
set of scripts and tools will be best served by using the C/C++ API
or the Git command line application.

ADMINISTRATION
AND MANAGEMENT
Because the software version management system contains valuable
data and is the foundation for most digital asset development
activities,	it	must	be	managed	effectively.	Backups,	security,	and	
other administrative tasks should be reliable and easy to manage.

Setup and Deployment
The Perforce shared versioning service architecture is simple.
For core version management system functionality, the service
software	is	self-contained,	including	an	embedded	database	for	
tracking	the	metadata.	By	using	standard	file	systems,	network	
features, and a single service, the only overhead added by Perforce
is that associated with backups and regular user maintenance
activities. The release management strategy has little impact on
the administrators.

Typically,	one	part-time	Perforce	administrator	is	adequate	for	
supporting about a hundred users.

Very little daily involvement from IT is necessary after the service
is installed; the Perforce administrator can manage users, groups,
and access control from within the product. (There is support for
authentication	or	single	sign-on	via	LDAP	or	Active	Directory	if	
required.)

programs are even more widely available. Perforce features full
interoperability	between	services	and	applications	on	different	
platforms. The various Perforce APIs (including the command
line application) are supported across all major platforms, an
important point for software version management system
administrators and power users who rely on scripting.

Git, on the other hand, is only available as a reference
implementation	on	Linux;	and	more	specifically,	the	only	binary	
distribution	available	from	the	official	site	is	for	the	RPM	package	
manager.	Well-supported	binary	distributions	are	available	from	
other	sources	for	Mac	OS	X,	Solaris,	and	other	flavors	of	Linux	
and UNIX.

Windows support for Git originally relied on the Cygwin
environment. A native Windows distribution supported by the
community is now available. Setting up a shared Git repository
on Windows still relies heavily on the Cygwin environment to
provide support for SSH and git-daemon.

Remote Development
A software version management system must support teams of
users at geographically remote locations. Remote development
support implies supporting the collaboration between these
teams, ensuring good performance globally, and supporting users
who are working without a connection to a shared network.

Git, as a DVCS, is well suited to distributed development
scenarios. It requires no sustained network connection between
distributed	users,	and	also	offers	commands	like	patch	and	
bundle	that	support	very	sporadic	collaboration.	How	effectively	
Git can be used to sustain collaboration on a large team is an
important question addressed in the Collaboration section.

Perforce as a shared repository has a powerful set of tools to
support remote teams and maintain performance (see Figure 1).
These	tools	include	the	Perforce	proxy,	broker,	and	replication	
services. Remote depots also facilitate code sharing between
separate service. In the future, support for federated service
architecture will improve remote support at the shared repository
level.

P4Sandbox	offers	excellent	support	for	users	without	a	sustained	
network connection to the shared repository. Similar to Git, it
offers	enough	information	to	allow	independent	work.	

Extensions: APIs and Scripting
Release managers, administrators, and other power users often
want	or	need	to	extend	the	software	version	management	system.	

15

products,	managing	security	for	a	Git	deployment	is	complex	and	
time consuming.

The lack of security facilities may actually be an advantage for
small,	distributed	open-source	communities,	since	it	implies	less	
administration, and users presumably know and trust each other.
However, the model would not scale well as open source projects
become larger. The inability to grant commit privileges to only
small	portions	of	a	large	project	is	a	significant	disadvantage.

These	scalability	problems	are	the	driving	force	behind	Git	add-
on layers such as Gitosis and Gitolite, which attempt to provide
solutions to the authentication and access control problems.

Additionally, in large environments, the need to set up a new
repository	for	each	project	(or	long-lived	branch	level)	is	a	
daunting prospect, implying additional overhead for security,
backups, and other tasks.

Auditing
In many environments, security concerns dictate strong auditing
controls for a software version management system. Perforce
provides an audit log mechanism that can record which users
accessed parts of the repository. Git does not provide a similar
facility; any authorized user can pull changes from a repository
with no audit trail, unless a logging system from another tool is
used.

Backup and Maintenance
The importance of a rigorous backup and recovery plan is
independent of the type of software version management system
used. However, fully backing up a Perforce service is easier to
manage in enterprise settings.

The Basics
Perforce backup and recovery procedures are well documented
and easy to implement. The tools for managing a warm or
nearly hot spare are reaching maturity, including full repository
replication tools. A backup of a Perforce repository normally
includes important supplementary data such as triggers and the
protections table (access control settings).

Backing up a Git server is very simple: clone or copy the
repository to a new server. Additional procedures are necessary
to back up hooks and security settings, which may depend on the
host operating system, a web server, or other user management
software.

Since a Git deployment may consist of several repositories, the
backup and recovery plan must include all of the important
repositories.

Administering a single Git repository is simple. However, since
Git relies on host SSH or HTTP accounts for authentication to a
shared repository, IT will be more heavily involved at many sites.
IT	will	also	need	to	be	involved	in	choosing	and	configuring	the	
protocol used for communication between repositories. Perhaps
most	importantly,	the	Git	deployment	is	heavily	influenced	by	
the release management strategy (see A Release Management
Scenario).

Security, Authentication,
and Access Control
Perforce	and	Git	operate	under	very	different	security	and	
authentication models.

Perforce supports a granular security model based on users and
groups. Authentication control is managed using passwords,
with the option to enforce password strength, or by integration
with	an	external	password	checker.	Access	control	is	centrally	
administered through Perforce’s protection table. Access control
allows for several levels of access, and can be applied at granularity
down	to	individual	files.	Such	a	system	is	designed	for	strong	
security management at organizations of any size, and allows
access to valuable intellectual property to be tightly controlled.

Git, on the other hand, was designed for a completely distributed
environment, presumably with each user on an isolated
workstation. Authentication control for a local repository is not
an	issue,	because	users	are	on	different	networks;	thus,	Git	does	
not have the equivalent of a login command, and has no central
concept	of	users	and	groups.	Rather,	each	user	configures	Git	
with	his	or	her	(self-assigned)	user	name	and	email	address.

Access control for Git shared repositories is managed by granting
pull (read) and push (write) access. Granting access is done by
creating SSH or HTTP server accounts for the committers, and
hence is not granular, in terms of level of access or area of access.
Since granting access to a shared repository can involve granting
write	access	to	the	server’s	file	system	via	SSH,	a	security	breach	
can corrupt the physical server itself, rather than just the software
version management system data.

Additional	products	exist	that	provide	easier	and	more	granular	
access control for Git. However, these products are not part of the
official	Git	distribution,	and	often	rely	on	Cygwin	in	Windows	
environments. Hooks can also be used to provide more granular
access	control,	but	such	a	solution	is	ad-hoc	and	requires	heavy	
customization.

It becomes apparent that in all but the simplest environments,
Git’s	security	model	is	insufficient.	Without	additional	tools	or	

16

Perforce manages triggers centrally on the Perforce service. Trigger
configuration	is	versioned	in	the	trigger	table	using	the	spec	
depot, and with some simple techniques the triggers themselves
can be version managed. A wide variety of trigger types allow
administrators to easily enforce policy or provide guidance to
users.	By	working	in	P4Sandbox,	individual	developers	can	work	
outside of the scope of these policies, but still be subject to the
policies when sharing changes with the shared versioning service.

Since Git does not have a shared server, hooks must be installed
on	each	clone	of	each	repository.	Hook	configuration	is	not	
versioned,	and	there	is	no	easy	facility	to	map	a	version-controlled	
hook into the appropriate directory. Although hooks can be used
on the master repository to enforce policy or provide guidance
to developers, there is no central way to manage these hooks for
all	repositories	in	a	project.	Furthermore,	git	commit	has	a	no-
verify option that lets users bypass some of the commit hooks.
Effectively	managing	Git	hooks	would	require	an	additional	layer	
of tools.

Additional Options

Perforce provides other options to manage software version
management system policy. The Perforce Broker can act as an
intermediary between users and the shared versioning service. It
can reject actions under some conditions, redirect commands to
other service, and provide new commands and functionality. For
example,	the	Perforce	Broker	can	add	new	commands	to	create	
a new project. These commands would handle the mechanics of
branching,	access	control,	and	stream	definition.

Other	than	hooks,	Git	does	not	offer	a	standard	framework	for	
ad-hoc	policy	enforcement.	New	commands	can	be	added	by	
writing	plug-ins,	but	there	is	no	equivalent	to	the	Perforce	Broker.	

Many	sites	use	a	Git	workflow	where	policy	is	enforced	by	
upstream committers, or their customized hooks. (See A Release
Management Scenario.)

Reporting and Data Mining
The information in the software version management system
metadata provides important metrics for the product managers.
This information can answer key questions about how many
files	are	changing	during	some	timeframe,	or	how	sensitive	a	
particular module is to bug reports.

Both	Perforce	and	Git	provide	command-line	tools	and	
API support for data mining. However, Perforce’s shared
repository	will	provide	a	unified	view	of	an	entire	project	(see	
Understanding the Branch Model). A single Git repository will
provide information on only a single project, and probably only a
single important branch of a single project.

Repository Verification and Maintenance
Both Perforce and Git provide tools to verify repository integrity
and optimize the metadata. However, Perforce’s tools are more
consistent and easier to deploy in a team setting.

Perforce’s tools can easily be run as part of a backup strategy. If
any	corruption	is	discovered,	there	are	well-documented	recovery	
strategies for common problems. In a Perforce deployment, these
tasks are administrative in nature and transparent to users.

Git repositories should be frequently packed to ensure
performance	and	efficiency.	Git	has	a	data	integrity	checker	but	
recovery procedures are not consistent and may involve recovery
from clones of the repository. These chores are a responsibility for
each user.

Recovering Lost Workspaces
Application workspace metadata is stored on the Perforce
shared versioning service, and can even be versioned using a spec
depot. If a workspace is lost due to disk failure on a workstation,
the	definition	of	the	workspace—including	metadata	that	
records	which	file	revisions	are	synced	to	the	workspace—can	be	
recovered.	The	only	data	lost	would	be	any	file	content	changes	
not yet submitted to the versioning service.

In Git, the .git directory contains the repository/workspace
metadata. If this directory is lost or corrupted, then the
workspace is essentially unusable. If a workspace is lost, there is
no point of recovery unless a local backup procedure is in place.

In practice, this distinction is most important at the point at
which	a	workspace	definition	contains	valuable	information.	For	
a shared Perforce Service, versioning

the	definition	of	a	workspace	is	practical	and	prudent.	For	a	
Git repository that is serving as a collaboration point, such as a
repository used for integration testing, the repository would need
to be regularly backed up.

Policy Management
Many sites choose to enforce business policies in the software
version	management	system.	For	example,	a	commit	policy	may	
require changes in an important interface to be documented in
the same commit. Policy management can provide important
structure and guidance to the team.

Triggers
Triggers are commonly used to manage policy in the software
version management system.

17

LEARN MORE

Evaluating Perforce
More than 400,000 users at 5,500 companies rely on Perforce for
enterprise version management. Perforce encourages prospective
customers	to	judge	for	themselves	during	a	typical	45-day	
trial evaluation. Free technical support is included with your
evaluation. Get started: perforce.com/trial

Scheduling a Demo of Perforce
To learn more about Perforce, schedule an interactive demo
tailored to your requirements:

perforce.com/product/demos

Migrating to Perforce
Perforce	Consulting	Services	has	experience	assisting	customers	
with migrations from various legacy software version
management systems. For more information, visit: perforce.
com/consulting

For intensive data mining, the Perforce database can be replicated
into a relational database. Report engines can then be used to run
custom reports.

Support and Services
Perforce Software provides technical support and related
services,	including	training,	e-Learning,	consulting,	and	remote	
administration. Technical support is available around the world
on	a	24x7	basis.	

Git is informally supported by the user community. Support and
services may be available from third party vendors.

CONCLUSION
The challenges of modern digital asset development continue
to	grow.	Some	of	these	challenges	affect	users	at	the	private	or	
individual level, where users want to work creatively and quickly
in	a	resource-constrained	environment.	DVCS	has	proven	very	
effective	at	addressing	these	challenges.

Other challenges impact the team or enterprise. Pulling together
the work of a team of individuals into released products, scaling
up	to	support	complex	development	efforts	and	large	teams,	and	
managing security are all important considerations. Perforce has
excelled	at	managing	the	needs	of	teams	and	enterprises.

Git could be combined with Perforce or other systems

to provide the collaboration, scalability, and management tools
necessary	in	a	complex	environment.	However,	introducing	a	
second	version	management	system	adds	more	complexity.

With	P4Sandbox,	Perforce	is	offering	a	unique	solution	to	the	
problems	faced	by	individual	developers.	Like	Git,	P4Sandbox	
allows	for	productive	private	work.	But	P4Sandbox	also	offers	
easy collaboration and access to the power of the shared
repository, as it works seamlessly with the main Perforce shared
versioning service. This solution meets the needs of all users of
the software version management system—individuals, teams,
release	managers,	and	administrators—with	a	unified,	powerful	
set of products.

North America
Perforce Software Inc.
2320 Blanding Ave
Alameda, CA 94501
USA
Phone: +1 510.864.7400
info@perforce.com

Europe
Perforce Software UK Ltd.
West Forest Gate
Wellington Road
Wokingham
Berkshire RG40 2AT
UK
Phone: +44 (0) 845 345 0116
uk@perforce.com

Australia
Perforce Software Pty. Ltd.
Suite 3, Level 10
221 Miller Street
North Sydney
NSW 2060
AUSTRALIA
Phone: +61 (0)2 8912-4600
au@perforce.com

p e r f o r c e . c o m

Copyright © 2012 Perforce Software Inc. All rights reserved.
All trademarks or registered trademarks used herein are property of their respective owners.

	Executive Summary
	Overview
	Branching, Merging, and Release Management
	Branching Model and Guidance
	Indirect Merging Not Supported in TFS
	Inefficient Merges Lead to Conflicts
	Basic Branching and Merging
	Perforce
	Basic Branching and Merging
	Branching Model and Guidance

	Ignored Merge History Loses Data

	Workspace Management
	Perforce

	Perforce

