
Comparison:
Perforce and Git

Perforce 2012.1 and Git version 1.7.3

This document compares Perforce (version 2012.1)
and Git version 1.7.3. Read this comparison to:

•	Understand the major feature differences
•	See how Perforce and Git compare on qualitative

aspects such as usability and administration
•	Get a general comparison of the effects of scaling

on both systems

Table of Contents

Executive Summary__ 5

Overview___ 5

A Word on Architecture ___ 10

Working Effectively__ 6

Branching and Merging

Branch Creation and Usage__ 6

Sparse Branching___ 6

Merging Changes_ ___ 6

Cherry Picking Revisions for a Merge _ __ 8

Renaming and Refactoring Files __ 8

Task-based Work___ 9

Switching Tasks and Storing Work-in-Progress__________________________________ 9

Link to Task Management__ 9

Workspace Model ___ 9

Ease of Use__ 9

Graphical Applications and Integrations _______________________________________ 9

Identify Changes ___ 9

Collaboration__ 9

Code Sharing and Dependency Management__________________________________ 9

Perforce Views and Streams__ 9

Git Sub-modules and Sub-trees_ ___ 9

Branching and Release Management___ 9

Project Creation _ __ 9

Promoting Work__ 9

Understanding The Branch Model__ 9

A Release Management Scenario___ 9

The Scenario in Perforce___ 9

The Scenario in Git_ __ 9

Digital Assets That Cannot Be Merged_ __ 9

Visual Tools for Collaboration__ 9

Application Lifecycle Management (ALM) and Community Development_____________ 9

Scalability_ __ 10

Large File Management__ 10

Cross-Platform Compatibility __ 10

Remote Development __ 10

Extensions: APIs and Scripting ___ 10

Administration and Management

Setup and Deployment __ 10

Security, Authentication, and Access Control _____________________________________ 10

Auditing___ 6

Backup and Maintenance __ 10

The Basics___ 6

Repository Verification and Maintenance ______________________________________ 6

Recovering Lost Workspaces___ 6

Policy Management ___ 10

Triggers___ 6

Reporting and Data Mining __ 6

Support and Services_ __ 6

Conclusion

Learn More

Evaluating Perforce ___ 10

Scheduling a Demo of Perforce __ 10

Migrating to Perforce ___ 10

1

EXECUTIVE SUMMARY
The traditional strengths of Perforce as a shared software
version management system satisfy the requirements of the
enterprise environment: release management, scalability, global
collaboration, and security are all vital to the enterprise, or indeed
most modern development teams.

More recently, distributed version control systems (DVCSs) —
most notably Git—have gained adoption in other usage models,
including traditional enterprise environments. DVCSs started
to appear in 2001. These tools were originally designed for the
open source usage model: widely dispersed collaborators working
mostly independently, but sharing work on a limited basis.

Although the architecture of a DVCS is interesting from a
technical perspective, the workflow aspects are more important,
as they have highlighted unsolved problems for many individual
users.

Intensive research has revealed that the most compelling reasons
for adoption of a DVCS are:

•	 Private local branching, or the ability to work freely outside
the constraints of the enterprise version control model. This
autonomy spurs creativity and results in better work.

•	 A quick and simple workflow for common tasks.

•	 Connection independent versioning, or the ability to work
effectively with a slow or non-existent connection to the rest of
the enterprise.

Perforce has studied how the problems highlighted by DVCS
can be solved effectively. Rather than starting from scratch or
attempting to add enterprise features to DVCS, combining
the power of shared software version management with the
flexibility of DVCS offers the best solution to the enterprise and
to individual users. And that is the ultimate goal: providing a tool
and a model that facilitate effective work.

In this paper we attempt to analyze the solutions offered by
Perforce and Git, a popular DVCS. Focusing on qualitative aspects
such as usability and administration, we compare Perforce version
2012.1 with Git version 1.7.3.

Attribute Git Perforce

Working Effectively
Perforce (via P4Sandbox) and Git offer powerful workflow and distributed working solutions.

Branching and Merging Quick and effective private branching.
 Rebasing provides extra flexibility for private work.

P4Sandbox supports easy private branch creation
and use. Streams provide guidance for branching
operations.
Powerful merge GUI.
More granular and flexible branching operations.

Task-based Work Easy task branching and branch switching.
Work-in-progress can be stashed but not easily
shared.
Some task management integration.

Easy task branching, branch switching, and
automatic saving of work-in-progress.
Shelves offer simple task hand-off and review.
Integrates easily with task management.

Workspace Model A workspace is a simple view of an entire
repository.

Supports flexible workspace views.

Ease of Use Several GUI clients available for different
platforms, with limited feature sets, targeted at
technical users.
Globally unique (but non-intuitive) revision
identifiers.
Simple tags (labels) can be used at the repository
level.

Powerful visual tools available for technical and
non-technical users.
Easy organizational and identification techniques,
including flexible labels.

OVERVIEW

2

Attribute Git Perforce

Collaboration
Perforce offers more powerful and flexible tools for collaboration, which allow release managers and product architects to guide
the work of the team.

Code Sharing Sub-modules allow code sharing, but require extra
planning and disciplined usage.

Several methods, notably streams, available to easily
share code between projects and manage module
dependencies.
 Relationships between modules can be guided by
the project architect.

Branching and Release
Management

Creating a new project requires creating a new
repository.
More work required to model the overall release
management process.

Several projects can be hosted in a single server,
simplifying release management.
Streams provide a powerful framework for guiding
collaboration.

Working on Files That Cannot
be Merged

No support for file locking or concurrent edit
notifications.

Supports file locking and concurrent edit
notifications in a single branch.

Visual Tools to Aid
Collaboration

Visual tools display information about a single
repository.

Visual tools provide rich contextual information
about the project(s) of interest.

ALM and Community
Development

Community sites provide ALM-like features and
management tools.

Superior collaboration tools for teams.
Integrates into any ALM suite and provides own
management tools.
Free for open source use.

Scalability
Perforce scales to manage thousands of users and terabytes of data, while still facilitating collaboration. Scaling Git requires extra
systems and tools to integrate and maintain.

Large Files Very poor handling of large files without additional
systems.

Efficient storage and use of large files.

Cross-platform Compatibility Standard or community supported distributions
available for all major platforms. Uneven Windows
support.

Supports all major platforms. Services and
applications interoperate across platforms.

Distributed Development Excellent support for distributed work. P4Sandbox offers excellent support for distributed
private work.
Perforce has several tools to sustain distributed
development for the shared repository.

Extensions Stable C++ API. Many extensions built around
command line interface and API.

Supported APIs for many platforms and languages,
including web services.

3

Attribute Git Perforce

Administration and Management
Perforce provides reliable management tools and support. Basic Git administration is straightforward, but additional work or tools
required in a team setting. Git support provided by community.

Setup and Deployment Administration involves coordination with IT and
individual repository maintainers.
Release management strategy affects deployment.

Straightforward architecture with minimal
infrastructure requirements.
A single administrator can maintain Perforce for
hundreds of users.

Security and Access Control Authentication done via HTTP server or operating
system.
Access control is done at the repository level, which
impacts the development model.

Centrally managed, granular authentication and
access control mechanisms.
Scales well for sites of any size.
Auditing built in.

Backup and Maintenance Backing up a single repository is simple.
Each repository in the deployment must be backed
up and maintained, although cloned repositories
offer some backup capability by default.
Backups must include hooks, security
configuration, and other metadata.

Well-established, centrally administered backup,
recovery, and maintenance procedures.

Policy Management Supports hooks but relies more on upstream
committers to guide or enforce policy across an
entire team.

Triggers and broker provide easy ways to provide
structure and guidance to a team.

Reporting and Data Mining Simple reporting for a single project (repository). Rich reporting on all aspects of all projects.
Sophisticated data mining available via report
engines.

Support and Services Supported via community. World-class technical support and related services.

4

A Word on Architecture
Although the architecture of a software version management
system is not of primary concern to most users, the architecture
of a DVCS has important usage implications.

A software version management system such as Perforce uses
a single canonical representation of the repository’s data. All
users connect to a shared versioning service which updates this
canonical data set. The deployment architecture may contain
tools such as replication services to help with performance
or support, but fundamentally there is still a single copy of
important data.

Perforce uniquely offers P4Sandbox, a tool that supports
independent work with tight integration to the shared repository.

 A DVCS like Git uses a single, independent repository for
each workspace. Often a DVCS is designed such that a single
repository contains a single project’s data, and most actions
operate on the entire repository. In a typical workflow, one person
maintains a repository that accepts changes from contributors.
Each contributor will start by cloning a complete copy of that
repository.

A single contributor will make changes privately and push them
upstream when ready (or request that the shared repository
maintainer pull their changes).

Pro Git (Apress, 2009) has an excellent starting discussion on the
usual Git workflows. There is no definitive deployment diagram
for Git, but a sample deployment or workflow architecture is
shown in Figure 6.

WORKING EFFECTIVELY
Software version management provides the tools and framework
for users to understand and evolve their digital assets.

In this section we consider how Perforce and Git help users do
their work effectively at the private or local level.

Branching and Merging
Branching and merging is the process of creating new copies of
digital assets, working on them concurrently, and at some point
sharing changes between those copies. Branching and merging
can occur privately to facilitate working on specific tasks or just
to experiment, or publicly, to allow teams to work in parallel and
collaborate.

The ability to freely create and use private branches has proven to
be a powerful productivity boost: users are able to experiment, be
creative, and use branches to manage work on several tasks. Work
in progress is committed frequently, and different approaches
to a problem are tried. Work does not need to be shared until it
reaches a point of maturity.

This autonomy has led to more productive work. In this section
we discuss the ease of creating and using branches at the private
(local or individual) level.

Branch Creation and Usage
The mechanics of creating and using a new branch in Git are
very simple. Branches exist in the Git metadata but are not
directly reflected in the local directory structure. Git’s isolation of

Shared Versioning Service

Proxy Service

Replication
Service

P4Sandbox P4Sandbox

Figure 1: Perforce deployment architecture

5

branches from the directory tree makes it easy to delete unwanted
branches. a task more commonly done at the private rather than at
the team or enterprise level.

The relationship between branches in a Git repository is purely a
matter of convention; all branches have equal weight in Git.

Most Git commands operate on the entire repository, so there
is little ability to branch and work on only a subset of files, or
create new views of the directory tree. Git does have the ability to
checkout only a subset of a repository, but most commands are
not granular in scope.

In Perforce, the mechanics of creating and using a new branch
are straightforward. With the Perforce Streams framework
introduced in Perforce 2011.1, the process is simplified, and can
be done quickly and intuitively in the associated visual tools.

Branches exist in the Perforce metadata and are reflected in the
directory structure. A branch in Perforce is, from one perspective,
just another directory in the workspace. If we choose, we can see
as many branches of as many projects in our workspace as we like.
(Of course, if we prefer to have a workspace only contain a single
branch, we can create new workspaces for new branches.) A good
naming convention for branches will immediately expose some
structure in the directory layout. When working in the Perforce
Streams framework, the relationship between branches is also
codified. (see Understanding the Branch Model).

Perforce, by virtue of branch and stream views, more easily
supports creating complex branches. We can use branch
mappings, for example, to move all documentation files into a
different location when creating a release branch. Or, we can use
the virtual module technique to work with only a subset of a
branch for bug fixing (see Perforce Views and Streams).

In a shared repository, there are often policy restrictions governing
the creation and usage of new branches. Branch location,
ownership, and usage must be determined in the context of
the overall release management framework. Additionally,
the proliferation of branches in a shared repository may have
performance impacts. Because of these reasons, users often are not
free to create new branches at will. The new P4Sandbox product
provides the extra layer of isolation that allows Perforce users
to create and use private branches easily without impacting the
shared service.

Sparse Branching
Sparse branches are constructed by only branching the files
actually modified, and otherwise using files from

the parent branch. Sparse branching keeps branches small and
branching operations fast.

Git supports the effective equivalent of sparse branching by
default. Branch creation is simply a reference in the Git metadata;
new file revisions are only created upon commit of actual
changes. Git’s lightweight branches are part of the reason that Git
branching is considered fast and easy.

Perforce branches are fully populated by default on the shared
service, which is perhaps a simpler model when collaboration
between several users is intended. When working in P4Sandbox,
a just-in-time branching process is used that is very similar to
sparse branching. Branching in P4Sandbox as a result is also very
fast and easy.

Merging Changes
Merging or propagating change is necessary both at the private
(local) and public levels. Both Perforce and Git handle common
merge tasks easily, although Perforce provides a powerful
graphical merge tool, P4Merge, when manual review is necessary.

Perforce’s Streams framework provides structure and guidance for
merging changes (see Understanding the Branch Model). Perforce
also provides more flexibility when choosing how to merge
changes. Perforce’s two-phase integrate and resolve process allows
developers to run a merge, then choose the resolve action (merge
strategy) that is most appropriate for each file.

Git, on the other hand, requires choosing a merge strategy in
advance for the entire branch.

Cherry Picking Revisions for a Merge
Cherry picking revisions for a merge is not a best practice by any
means, but is sometimes necessary. The most common scenario
involves an urgent need to promote one piece of new development
code to a release maintenance branch. Perforce gives you complete
control over which revisions to include in a merge, using any of its
revision specifiers using the p4 integ command.

Git provides two very different commands to use to perform a
selective merge. The git cherry-pick command works on a
single revision, and there is a detailed formula involving the git
rebase command that works on ranges of revisions.

It is important to note the distinction between Perforce’s
integration command and Git’s rebase operation. Perforce’s
integration command always understands and records merge
history. Subsequent merges after cherry-picking will know, and
respect, that a cherry-pick was done.

Git rebase does not impact merge history; it is more similar to
replaying a set of edits after updating a branch to a new starting
point. Git’s rebase operation is best used in isolation. Rebasing
after pushing changes upstream will lead to a future complex
merge.

6

This behavior is due to one of Git’s core use cases, selectively
integrating patches into a master repository. In this situation, it is
actually not desired to properly record merge history between the
master repository and the contributing repository.

Renaming and Refactoring Files
Renaming a file often causes a problematic situation during a
merge. Let’s say that we have a file named edit.c on trunk, and
we’ve renamed it to write.c on a development branch. When
merging between the two branches in the future, there are several
ways we might want the software version management system to
handle the relationship between these files.

•	 Propagate the rename to trunk.

•	 Do not propagate the rename, but continue to propagate
changes between edit.c on trunk and write.c on the
development branch.

•	 Ignore any future changes to either file when merging between
these branches.

Perforce gives us the flexibility to choose any of these options.
The default behavior is to propagate the rename, but we can
use the branch or stream view to choose another option. This
flexibility is due to Perforce Inter-File Branching.

Git also supports renaming or moving a file. The git merge
command detects this operation and handles it by propagating
the rename. However, it does not provide a mechanism to ignore
changes for this file. Propagating changes between the new and
old names is possible, but only if the rename action is ignored by
merging that change with the “ours” merge strategy. Subsequent
merges will then propagate changes between the old and new
names. Since a merge operates on an entire branch, renames must
be handled carefully if the default Git handling is not desired;
otherwise the “ours” merge strategy will ignore other changes as
well.

Task-based Work
Task-focused development enhances productivity, and is
particularly useful for Agile development methodologies that
organize work around stories and tasks.

Switching Tasks and Storing Work-in-
Progress
Both Perforce (via P4Sandbox) and Git provide excellent support
for quickly updating a local workspace to focus on a new task.
Creating new private branches to work on different tasks is very
fast. Switching between these branches is easy, as both Perforce
and Git offer in-place branching.

P4Sandbox also offers the ability to automatically save work-in-
progress via Perforce’s shelving feature. That makes switching
tasks (branches) even easier.

Perforce’s shelving feature is more powerful in many respects
than Git’s stash mechanism. Perforce shelves can be shared with
other users (when not working in P4Sandbox), offering a simple
code review and task hand-off capability. Git stashes offer a
distinctive queue workflow that is appealing in ways, but sharing
work in progress requires distribution via patches or published
branches.

Link to Task Management
Task management (defect tracking or project management) tools
provide the context to understand commits in a software version
management system: why the change is being made and how it
relates to requirements, test cases, and QA plans. Establishing
the link between the software version management system and
task management is important for improving transparency and
collaboration.

Perforce, via its jobs system, provides a reliable and intuitive way
to link the software version management system information to
tasks. The Perforce Defect Tracking Gateway provides replication
of information between Perforce and popular tools like HP
Quality Center, JIRA, Redmine, and Bugzilla. Other integrations
are offered for similar tools.

Git relies on community supported plugins to link to task
management, and these plugins often rely on commit comment
scanning, which is unreliable.

Workspace Model
Perforce allows very flexible views in application workspaces.
The workspace view defines the files visible in the workspace
and the location of those files on the local file system. Since each
Git workspace is a clone of the entire repository, the user has less
granular control over the composition of a workspace.

Users can easily rearrange files in their workspace to match
the requirements of a build tool, for instance. Consider a Java
development effort that started with this directory structure:
	 -	 src/java

	 -	 test/java

	 -	 doc/license

On one platform we need to compile this project using Maven,
which dictates a different directory structure:
	 -	 src/main/java

	 -	 src/test/java

	 -	 license.txt

7

Rearranging the directory structure this way using a Perforce
workspace or stream view is trivial, does not require a commit,
and can be easily reproduced for other users. Changes made to
the files under the new directory structure would transparently
flow back to the files in the original location in the repository.

Achieving a similar goal with Git would be difficult without
resorting to file system links, which are difficult to deploy
automatically. Git’s read-tree and filter-branch commands
provide a directory mapping function, but are not considered
typical end-user commands, and do not allow pushing changes
transparently between the files in the original directory structure
and the remapped copies.

Ease of Use
Modern software version management tools are quickly
becoming repositories for more than purely technical data.
The software version management system, by virtue of its
file handling and security features, lends itself readily to
managing a broader set of documents than just source code.
The software version management system is commonly used
to store documentation for products and processes, and may
well be the only system available that can satisfy the audit
requirements of defense or Sarbanes-Oxley environments. Even
in distributed open source communities, an accessible software
version management system will encourage contributions from
documentation writers, graphic artists, translators, and other
segments of the community.

Given that the users of software version management system data
may well be outside of the technical role, it should be accessible
to novice and non-technical users.

Graphical Applications and Integrations
Graphical applications (GUIs) are an important tool for most
users. For less technically oriented users, a GUI may be the
only application that will ever be truly useful and accessible.
For novices, a GUI provides a quick and easy way to start using
the tool. And even for advanced users, some software version
management operations, like viewing branch history, lend
themselves more readily to a GUI than to a command-line
interface.

Perforce’s GUI, P4V, is officially supported and available on
all major platforms. P4V offers a nearly complete set of user
functions, a growing subset of administrative commands, and
visualization tools, including Stream Graph, Time-lapse View,
the Revision Graph, and Folder Diff.

Other powerful applications include the Perforce Eclipse plug-
in and a new Visual Studio integration. Perforce is leveraging

HTML5, JavaScript, and web services to provide new integration
and plug-in possibilities. Perforce’s new Stream Graph, for
instance, is built into P4V, and has already been replicated as a
JavaScript-based applet.

Perforce also supports integrations with Microsoft Office and
popular graphics programs like Adobe Photoshop.

Git is distributed with two GUIs, each offering a different set of
features, and neither offering a featureset comparable to P4V.
Several other, unofficial GUIs are available for Git, but are in
various stages of completeness and stability. Git does not offer
integration with Microsoft Office or programs like Photoshop.
Thus, a Git user wanting to work in a GUI will need to learn
more than one environment, and could still be forced to the
command line for even non-administrative functions.

Identifying Changes
Perforce uses changelist numbers as unique identification points
in the history of the entire repository. These changelist numbers
are sequential in the order of commit. Each file also has its own
revision numbers.

Besides serving as an identification point, pending changelists
provide a way for developers to separate work into logical groups
in a workspace. For instance, one changelist may include files
for a bug fix, while another changelist contains files targeted at
new feature work. Changelists also serve as the basis for Perforce
shelves (see Code Sharing and Dependency Management).

Perforce provides two types of labels: automatic labels to
reference a set of files at a particular revision, and static labels to
provide additional flexibility. Both can reference subsets of files at
different revisions or points in time.

Because Git must handle commits from different repositories,
revisions receive a 40 digit SHA number as an identifier. Files
do not have their own revision numbers. In order to determine
the relationship between two revisions, a command such as git
log or a graphical application must be used. The globally unique
identifier is useful in some contexts but more difficult to work
with for the typical user.

Git provides no facility for grouping work in progress in a single
branch. By default git commit works on all pending files, and
a developer can indicate individual files to commit. Separating
work into logical units is often done by making private topic
branches for each task.

Git tags are similar to Perforce automatic labels, but less flexible.
They reference the state of the entire repository as of a particular
commit.

8

Collaboration
TAnother primary function of software version management is
to enable collaboration between team members. Collaboration
may occur for teams working on a single project, between teams
working on different versions of a single projects, or between
teams working on distinct but dependent projects.

Code Sharing and Dependency
Management
Often we may wish to share code between projects in the software
version management system. For example, a common library
module may be developed in its own project, but exposed as a
read-only component to other projects.

Perforce’s flexible data model and tools provide an easier solution
for managing the relationships between different projects and
modules.

Perforce Views and Streams
Perforce gives us several ways to handle this situation. If the
other project is hosted in a different service, we can use Perforce’s
remote depot feature for code drops. For projects in the same
server, we can branch a module into another project, and prevent
modifications via the permissions system.

Perhaps the simplest approach uses flexible branch, workspace,
and stream views to include part of one project as a component in
another project. These views are easy to change, particularly when
working with streams. The stream view, once defined by the
project architect, flows automatically to all users of that stream.

This technique allows for selectively branching only a subset of a
project, while still providing a fully populated working copy for
local use. More importantly, it also provides an easy framework

for managing dependencies between projects.

For example, consider a project with five modules. Of these five,
three are actually imported from other products, and another is
not going to be modified during the current development effort
(see Figure 2).

It is important for the average user to easily obtain a coherent
working copy of the project, with each module imported from
the correct place, and with accidental modifications to read-only
modules prevented. It is also important for the project architect,
who understands the sometimes complex relationships between
modules, to be able to easily define this information and share it
with others. Perforce Streams provide this capability out of the
box, where previously branch and workspace views with scripting
assistance, were used.

Perforce labels are also very useful when working with modular
digital development to reference disparate sets of files developed
by different teams. These labels can then be used to identify the
modules that comprise a release, for example.

Git Sub-modules and Sub-trees
In Git, each repository is a single project, so the only way to share
code between two projects is to use either sub-modules or sub-
trees. Sub-modules allow us to include one external repository
as a sub-directory of another. The granularity of the sub-module
concept is limited, however; we cannot expose just a piece of the
external repository. This implies that defining the modules and
their dependencies must be done correctly in advance, which can
be difficult for complex projects.

Once a project is defined that includes one or more sub-modules,
other developers can clone the project. Using sub-modules does
require a bit of extra work, however:

Figure 2: Modular development model

Imported module

2 week sprints

Nightly refreshes

6 month cycle
4-6 week sprints

Active module

Read-only module

Imported module

External library

9

•	 The submodule init and submodule update commands
must be used when cloning from a project that includes
sub-modules.

•	 The submodule update command must be run separately
from the pull command when updating a repository that
includes sub-modules.

•	 When modifying a sub-module, it must be pushed separately
from the rest of the repository.

Sub-trees are similar in concept to sub-modules; they allow the
inclusion of one tree as a sub-directory in another tree. Sub-trees
are normally used in read-only fashion, and require the use of a
specific git merge strategy to work correctly. Similar to sub-
modules, they require extra work to set up and maintain.

Consider again our project with five modules. Although Git
would provide tools to assemble the five modules into a single
working project, it requires extra initial setup and care when
working. Git’s tags (labels) would not be able to identify the
cross-project set of files that comprise a coherent project. Perhaps
more importantly, Git does not provide the access control
mechanisms to prevent accidental updates of the read-only
modules. Like many aspects of DVCS, code sharing requires
careful planning and disciplined usage.

Branching and Release Management
The efficient management of branches is one of the core
functions of the software version management system.
Often called release management, this task includes designing
an effective model for concurrent development, building
and releasing a product, and maintaining releases. This
section discusses the public aspects of branching and release
management.

Project Creation
The process of creating a new project in the software version
management system illustrates a fundamental difference
between Perforce and Git. In Perforce, adding a new project
simply means choosing an area of the depot to use for the new
project, and deciding on an appropriate branch model. Once a
depot location for the new project is chosen, the project manager
defines a stream or template workspace and adds the new
content.

In Git, a project is a repository. To add a new project in Git,
we actually need to make a new repository.

We must choose the physical storage location for the new
repository, and decide where the master repository is to be

hosted for team use. Additional configuration may be necessary
to support access via the HTTP or SSH protocols (see Security,
Authentication, and Access Control). The repository deployment
model must be designed and communicated to the project team.
Then the new content can be added to the master repository.

Promoting Work
One common problem to consider is the need to merge upstream
changes before promoting finished work.

This vital step ensures that the work in question has been
reconciled against all upstream improvements and bug fixes.

With larger teams using Git, and branch operations done at the
repository level, each user must be up-to-date against the entire
upstream repository before promoting from his or her private
repository. This leads to a work slowdown as the process of
merging and promoting is effectively serialized.

Perforce, on the other hand, only requires that the individual files
in question be up-to-date before promoting work. In practice,
work should be merged and tested at the module level. This
granularity allows easier concurrent work on large teams.

Understanding the Branch Model
A key part of release management is understanding the overall
structure of the branch model. How does one branch relate to
another, is the branch more stable, and where should changes in
one branch be merged? Answering these questions is important
when managing concurrent development by several teams, or
maintaining older releases. Perforce Streams allow the project
architect to codify this information.

Perforce uses the information to guide merges, ensuring that
changes flow through the appropriate merge pathways. Streams
provide an understanding of the structure of a project, and allow
the project architect to define how change should flow. The
intuitive picture provided by the Stream Graph also helps users
understand the project, and most branching operations can be
easily automated (see Figure 3).

Without Streams, a project architect could still implement an
effective branch model using Perforce directory structure and
workspaces.

Git does not offer a similar way to comprehend the overall branch
model. This information must be understood by convention
or documentation. Since a Git branching model may actually
include several repositories, it is important that the release
manager or project architect document the design.

10

When changes are ready to merge, the Stream Graph provides
visual notifications via the arrows between streams; merging
changes to the right place is accomplished by simple point-and-
click operations (see Figure 5).

Without using Streams, the process is essentially the same,
but uses a different set of tools. For example, the MergeQuest
component of the P4Eclipse plug-in offers a visual representation
of a non-streams branch model.

The Scenario in Git
In Git, the release manager and project architect would define
a multi-repository Git deployment (see Figure 6). A single Git
repository could have the branches indicated in Figure 4, but
without add-on tools, Git access control is at the repository level,
not the branch level. For the purpose of controlling the flow of
change, several repositories are necessary. Changes to the access
control for the project may entail manually-intensive changes of
HTTP or SSH access settings (see Security, Authentication, and
Access Control).

This model, often called the “dictator and lieutenants” model, is
commonly used in Git. Branches in a single repository are often
short-lived, and having one person pull changes prevents other
developers from running into merge problems.

Each developer has his or her own repository, representing the
dev branches. Project leads (lieutenants) control the integration
repository, representing the int branch. A project manager
(dictator) would control access to the main repository and create
release repositories as required. The lieutenants and dictator
must pull changes from lower level repositories when necessary,
or otherwise integrate patches from developers. This model also
implies that, instead of switching branches to work on a bug
fix for a release, a developer has to create a clone of the release
repository.

A Release Management Scenario
Consider a project following the mainline branching model
(see Figure 4). There are four branching levels: dev, int, main,
and rel. The lowest level development branches focus on
individual modules of the project. The diagram shows the typical
branching operations that occur during development and release
maintenance. Notably, work like bug fixes is merged down to less
stable branches, and stable development is promoted up to more
stable branches.

As discussed in other sections, the different release management
and branching models in Perforce and Git have broad
implications for ease of collaboration and administration.

The Scenario in Perforce
In Perforce, the release manager and project architect would
define the branch model, and perhaps model it with a Stream
depot. The two dev branches include only a subset of the project;
this information is also included in the stream definitions. If
at some point in the future the definition of the dev branches
changes, the stream view is altered and that information flows
automatically to all users.

Any user on the team can easily create a new workspace and start
working on one of the development streams. Users may choose
to use P4Sandbox for more effective private work, in which case
P4Sandbox will handle the data transfer to the shared repository.

Access can be controlled for each level of the branch model using
Perforce protections (see Security, Authentication, and Access
Control). Write access at each level is granted to appropriate
users, say only the project leads can integrate changes into the
int branch. Access control changes are completed quickly using a
graphical administration tool.

dev2.3

rel2.1 rel2.2 rel2.3

main

Figure 3: Stream Graph shows a branch model as defined by a project architect

11

Digital Assets That Cannot
Be Merged
Although enabling concurrent modification of files is a core
function of a software version management system, some digital
assets must be worked on serially. Some files are difficult, if
not impossible, to merge, such as images, movies, and office
documents. Other files are extremely sensitive to change, such
as programming interface definitions. As a collaboration tool the
software version management system helps prevent parallel work
on these files.

Perforce has support for locking files in a single branch in order to
prevent concurrent modifications. Locking can be accomplished
on an ad-hoc basis or systematically using file type modifiers. And
of course, Perforce can show if other users have a file checked out,
which helps avoid potential conflicts. All of these benefits are
made possible by Perforce’s model of opening a file before starting
work on it. Although Perforce users can choose to work without
opening files first, in some cases the benefits of collaboration
outweigh the cost of the extra workflow step.

Git’s distributed design prevents any type of file locking or
editing notification, so concurrent modification of files cannot be
prevented.

Visual Tools for Collaboration
An important factor to consider when evaluating the effectiveness
of a visual tool is the amount of information and context
presented about the bigger picture. Knowing the overall branch
model or the released projects for a single business unit is crucial
information for many users.

There is no single place to see whether any merges are pending
between several different Git repositories. The Git pull and push
commands can report pending merges between a parent and child
repository, but do not show a complete picture of pending merges
project-wide.

Since the dev branches need only a subset of the project,
developers need to make sure to not modify the read-only
modules in their project. Alternatively, the src and db modules
could be developed independently, which would require the
use of Git sub-trees or sub-modules and extra repositories
(see Figure 7). In either case, the segregation of the project
into modules must essentially be complete and static when
development begins.

Figure 5: Branch model seen in Perforce Stream Graph

MAIN
(restricted to project manager)

2.0 release
(release team)

branch for 2.0
release maintenance

branch for 3.X
development

branch
for 3.X features

bug �xes merged
to main

bug �xes merged
to development

Stable work promoted
to integration

3.X integration
(restricted to project leads)

3.X dev-src
(src development team)

3.X dev-src
(db development team)

Figure 4: Mainline branch model

3.X-Int

3.X-Int 3.X-Int

rel2.2

main

12

2.0 release
(release team)

3.x integration
(project leads)

Developer
Cloned

Repository

Developer
Cloned

Repository

Developer
Cloned

Repository

Main
(project manager)

Cloned
Repository

for Pathcing
Figure 6: Repositories for branch levels

db main
(db project manager)

src main
(src project manager)

2.0 src release
(release team)

Cloned
Repository

for Patching

Developer
Cloned

Repository

Developer
Cloned

Repository

2.0 db release
(release team)

sub-tree
references

3.x src integration
(src project leads)

3.x db integration
(db project leads)

sub-tree
references

Developer
Cloned

Repository

Developer
Cloned

Repository

Cloned
Repository

for Patching

Figure 7: Git deployment using sub-trees

13

SCALABILITY
Software version management provides the foundation
for modern digital asset development. A software version
management system must support a large user base distributed
around the world, and accommodate heavy usage.

Large File Management
Many industries use a software version management system to
manage large digital assets, including multimedia, graphics, and
documentation. These files, which are typically binary rather
than textual, can be very large.

Perforce is efficient at storing and distributing files of any type or
size. It has features that allow the storage of only a small number
of revisions of files, saving space on the service. Developers can,
using their workspace view, choose not to copy binary files from
the service. Legacy data can be moved into archive (offline)
storage areas.

Git, on the other hand, is inefficient at managing binary files:

•	 Since the entire repository is stored in every workspace, storing
large numbers of binary files leads to bloated workspaces. Git
has no way of only storing a handful of revisions of these files.
(Git’s sparse checkout feature does allow a working directory to
exclude certain files, but the data is still in the .git directory.)

•	 Git works at the repository level, and must process every file in
the repository for some actions, calculating a SHA1 ID for each
file along the way. Repositories over a few GB in size can quickly
become difficult to use on an average workstation.

•	 Git has difficulty adding large binary files to a repository,
because it uses a large amount of memory to process new files.
For example, adding a 3GB file on a workstation with 4GB of
RAM often results in out of memory errors.

Git is designed to work with text files, and the Git community
recommends using a dedicated system to version build artifacts
and other large files. That implies a second system with additional
overhead and the challenge of linking derived assets to the source
files in the software version management system.

Cross-Platform Compatibility
For enterprise users, the software version management system
should be well supported on all platforms in use. Installation
and upgrade procedures must be seamless and well documented.

The Perforce service program is available on Windows, Mac, and
most major versions of UNIX/Linux. The Perforce application

One Perforce service can host multiple projects and all of the
important branches for those projects. Thus, the visual tools
are able to show information about several projects, the branch
model, and directory structure, giving the user a much richer
visualization of the repository. These visual tools include the
Stream Graph, Time Lapse View, Merge Quest, and Revision
Graph.

Git graphical clients cannot show the relationship between a
local repository and an upstream repository. Additionally, Git
repositories are single projects, so a Git client can only show one
project at a time. Without additional tooling, a Git user cannot
know how his or her repository fits into the overall scheme of
the project or team. The Git user must obtain this important
information manually.

Application Lifecycle Management
(ALM) and Community
Development
ALM describes both a process and the associated tools for
managing the evolution of a project from requirements through
design, coding, test, and release.

A software version management system is the foundation of
successful ALM, providing the basis for code review, continuous
integration, and traceability of requirements and defects.

Part of the appeal of modern DVCSs systems like Git is the
availability of popular community sites such as GitHub. These
sites offer ALM-like features, such as discussion forums, basic
defect tracking, traceability, and notifications. Many of these
sites also provide additional management tools for security and
repository administration.

It is difficult to design one ALM toolset that meets the needs of all
users. Perforce offers superior ability to integrate into any ALM or
community site, by virtue of its fully-supported range of APIs and
the upcoming web services framework. Since Perforce supplies
its own comprehensive set of security and administration tools, it
only relies on other tools to provide complementary features.

The various community sites are perhaps best suited for projects
with very light collaboration. For true collaboration in a team
setting, Perforce has superior collaboration tools that make it
easier to accept contributions from others, fostering a more
dynamic interaction.

Perforce provides free licenses for open source projects, so a
Perforce service can act as the foundation for a public community
site. Perforce’s own upcoming community development site will
serve as such an example.

14

Custom integrations with other tools, build processes, scripts
that assist users and enforce policy, and backup scripts are just
a few examples of the useful ways to build on the software
version management system. How easily these extensions can
be implemented is an important aspect of the software version
management system.

Perforce has a command line application and several well-
supported APIs, including the C/C++ API, several APIs for
scripting languages, and a web services framework. Since all
of these elements are officially supported, users can rely on
consistent functionality on different platforms and using
different programming languages.

Git has an official C/C++ API, and several unofficial contributed
APIs for other languages. Since most of the APIs are not officially
supported, they may not be updated frequently, or may become
obsolete entirely

if community support wanes. A user requiring a stable, long lived
set of scripts and tools will be best served by using the C/C++ API
or the Git command line application.

ADMINISTRATION
AND MANAGEMENT
Because the software version management system contains valuable
data and is the foundation for most digital asset development
activities, it must be managed effectively. Backups, security, and
other administrative tasks should be reliable and easy to manage.

Setup and Deployment
The Perforce shared versioning service architecture is simple.
For core version management system functionality, the service
software is self-contained, including an embedded database for
tracking the metadata. By using standard file systems, network
features, and a single service, the only overhead added by Perforce
is that associated with backups and regular user maintenance
activities. The release management strategy has little impact on
the administrators.

Typically, one part-time Perforce administrator is adequate for
supporting about a hundred users.

Very little daily involvement from IT is necessary after the service
is installed; the Perforce administrator can manage users, groups,
and access control from within the product. (There is support for
authentication or single sign-on via LDAP or Active Directory if
required.)

programs are even more widely available. Perforce features full
interoperability between services and applications on different
platforms. The various Perforce APIs (including the command
line application) are supported across all major platforms, an
important point for software version management system
administrators and power users who rely on scripting.

Git, on the other hand, is only available as a reference
implementation on Linux; and more specifically, the only binary
distribution available from the official site is for the RPM package
manager. Well-supported binary distributions are available from
other sources for Mac OS X, Solaris, and other flavors of Linux
and UNIX.

Windows support for Git originally relied on the Cygwin
environment. A native Windows distribution supported by the
community is now available. Setting up a shared Git repository
on Windows still relies heavily on the Cygwin environment to
provide support for SSH and git-daemon.

Remote Development
A software version management system must support teams of
users at geographically remote locations. Remote development
support implies supporting the collaboration between these
teams, ensuring good performance globally, and supporting users
who are working without a connection to a shared network.

Git, as a DVCS, is well suited to distributed development
scenarios. It requires no sustained network connection between
distributed users, and also offers commands like patch and
bundle that support very sporadic collaboration. How effectively
Git can be used to sustain collaboration on a large team is an
important question addressed in the Collaboration section.

Perforce as a shared repository has a powerful set of tools to
support remote teams and maintain performance (see Figure 1).
These tools include the Perforce proxy, broker, and replication
services. Remote depots also facilitate code sharing between
separate service. In the future, support for federated service
architecture will improve remote support at the shared repository
level.

P4Sandbox offers excellent support for users without a sustained
network connection to the shared repository. Similar to Git, it
offers enough information to allow independent work.

Extensions: APIs and Scripting
Release managers, administrators, and other power users often
want or need to extend the software version management system.

15

products, managing security for a Git deployment is complex and
time consuming.

The lack of security facilities may actually be an advantage for
small, distributed open-source communities, since it implies less
administration, and users presumably know and trust each other.
However, the model would not scale well as open source projects
become larger. The inability to grant commit privileges to only
small portions of a large project is a significant disadvantage.

These scalability problems are the driving force behind Git add-
on layers such as Gitosis and Gitolite, which attempt to provide
solutions to the authentication and access control problems.

Additionally, in large environments, the need to set up a new
repository for each project (or long-lived branch level) is a
daunting prospect, implying additional overhead for security,
backups, and other tasks.

Auditing
In many environments, security concerns dictate strong auditing
controls for a software version management system. Perforce
provides an audit log mechanism that can record which users
accessed parts of the repository. Git does not provide a similar
facility; any authorized user can pull changes from a repository
with no audit trail, unless a logging system from another tool is
used.

Backup and Maintenance
The importance of a rigorous backup and recovery plan is
independent of the type of software version management system
used. However, fully backing up a Perforce service is easier to
manage in enterprise settings.

The Basics
Perforce backup and recovery procedures are well documented
and easy to implement. The tools for managing a warm or
nearly hot spare are reaching maturity, including full repository
replication tools. A backup of a Perforce repository normally
includes important supplementary data such as triggers and the
protections table (access control settings).

Backing up a Git server is very simple: clone or copy the
repository to a new server. Additional procedures are necessary
to back up hooks and security settings, which may depend on the
host operating system, a web server, or other user management
software.

Since a Git deployment may consist of several repositories, the
backup and recovery plan must include all of the important
repositories.

Administering a single Git repository is simple. However, since
Git relies on host SSH or HTTP accounts for authentication to a
shared repository, IT will be more heavily involved at many sites.
IT will also need to be involved in choosing and configuring the
protocol used for communication between repositories. Perhaps
most importantly, the Git deployment is heavily influenced by
the release management strategy (see A Release Management
Scenario).

Security, Authentication,
and Access Control
Perforce and Git operate under very different security and
authentication models.

Perforce supports a granular security model based on users and
groups. Authentication control is managed using passwords,
with the option to enforce password strength, or by integration
with an external password checker. Access control is centrally
administered through Perforce’s protection table. Access control
allows for several levels of access, and can be applied at granularity
down to individual files. Such a system is designed for strong
security management at organizations of any size, and allows
access to valuable intellectual property to be tightly controlled.

Git, on the other hand, was designed for a completely distributed
environment, presumably with each user on an isolated
workstation. Authentication control for a local repository is not
an issue, because users are on different networks; thus, Git does
not have the equivalent of a login command, and has no central
concept of users and groups. Rather, each user configures Git
with his or her (self-assigned) user name and email address.

Access control for Git shared repositories is managed by granting
pull (read) and push (write) access. Granting access is done by
creating SSH or HTTP server accounts for the committers, and
hence is not granular, in terms of level of access or area of access.
Since granting access to a shared repository can involve granting
write access to the server’s file system via SSH, a security breach
can corrupt the physical server itself, rather than just the software
version management system data.

Additional products exist that provide easier and more granular
access control for Git. However, these products are not part of the
official Git distribution, and often rely on Cygwin in Windows
environments. Hooks can also be used to provide more granular
access control, but such a solution is ad-hoc and requires heavy
customization.

It becomes apparent that in all but the simplest environments,
Git’s security model is insufficient. Without additional tools or

16

Perforce manages triggers centrally on the Perforce service. Trigger
configuration is versioned in the trigger table using the spec
depot, and with some simple techniques the triggers themselves
can be version managed. A wide variety of trigger types allow
administrators to easily enforce policy or provide guidance to
users. By working in P4Sandbox, individual developers can work
outside of the scope of these policies, but still be subject to the
policies when sharing changes with the shared versioning service.

Since Git does not have a shared server, hooks must be installed
on each clone of each repository. Hook configuration is not
versioned, and there is no easy facility to map a version-controlled
hook into the appropriate directory. Although hooks can be used
on the master repository to enforce policy or provide guidance
to developers, there is no central way to manage these hooks for
all repositories in a project. Furthermore, git commit has a no-
verify option that lets users bypass some of the commit hooks.
Effectively managing Git hooks would require an additional layer
of tools.

Additional Options

Perforce provides other options to manage software version
management system policy. The Perforce Broker can act as an
intermediary between users and the shared versioning service. It
can reject actions under some conditions, redirect commands to
other service, and provide new commands and functionality. For
example, the Perforce Broker can add new commands to create
a new project. These commands would handle the mechanics of
branching, access control, and stream definition.

Other than hooks, Git does not offer a standard framework for
ad-hoc policy enforcement. New commands can be added by
writing plug-ins, but there is no equivalent to the Perforce Broker.

Many sites use a Git workflow where policy is enforced by
upstream committers, or their customized hooks. (See A Release
Management Scenario.)

Reporting and Data Mining
The information in the software version management system
metadata provides important metrics for the product managers.
This information can answer key questions about how many
files are changing during some timeframe, or how sensitive a
particular module is to bug reports.

Both Perforce and Git provide command-line tools and
API support for data mining. However, Perforce’s shared
repository will provide a unified view of an entire project (see
Understanding the Branch Model). A single Git repository will
provide information on only a single project, and probably only a
single important branch of a single project.

Repository Verification and Maintenance
Both Perforce and Git provide tools to verify repository integrity
and optimize the metadata. However, Perforce’s tools are more
consistent and easier to deploy in a team setting.

Perforce’s tools can easily be run as part of a backup strategy. If
any corruption is discovered, there are well-documented recovery
strategies for common problems. In a Perforce deployment, these
tasks are administrative in nature and transparent to users.

Git repositories should be frequently packed to ensure
performance and efficiency. Git has a data integrity checker but
recovery procedures are not consistent and may involve recovery
from clones of the repository. These chores are a responsibility for
each user.

Recovering Lost Workspaces
Application workspace metadata is stored on the Perforce
shared versioning service, and can even be versioned using a spec
depot. If a workspace is lost due to disk failure on a workstation,
the definition of the workspace—including metadata that
records which file revisions are synced to the workspace—can be
recovered. The only data lost would be any file content changes
not yet submitted to the versioning service.

In Git, the .git directory contains the repository/workspace
metadata. If this directory is lost or corrupted, then the
workspace is essentially unusable. If a workspace is lost, there is
no point of recovery unless a local backup procedure is in place.

In practice, this distinction is most important at the point at
which a workspace definition contains valuable information. For
a shared Perforce Service, versioning

the definition of a workspace is practical and prudent. For a
Git repository that is serving as a collaboration point, such as a
repository used for integration testing, the repository would need
to be regularly backed up.

Policy Management
Many sites choose to enforce business policies in the software
version management system. For example, a commit policy may
require changes in an important interface to be documented in
the same commit. Policy management can provide important
structure and guidance to the team.

Triggers
Triggers are commonly used to manage policy in the software
version management system.

17

LEARN MORE

Evaluating Perforce
More than 400,000 users at 5,500 companies rely on Perforce for
enterprise version management. Perforce encourages prospective
customers to judge for themselves during a typical 45-day
trial evaluation. Free technical support is included with your
evaluation. Get started: perforce.com/trial

Scheduling a Demo of Perforce
To learn more about Perforce, schedule an interactive demo
tailored to your requirements:

perforce.com/product/demos

Migrating to Perforce
Perforce Consulting Services has experience assisting customers
with migrations from various legacy software version
management systems. For more information, visit: perforce.
com/consulting

For intensive data mining, the Perforce database can be replicated
into a relational database. Report engines can then be used to run
custom reports.

Support and Services
Perforce Software provides technical support and related
services, including training, e-Learning, consulting, and remote
administration. Technical support is available around the world
on a 24x7 basis.

Git is informally supported by the user community. Support and
services may be available from third party vendors.

CONCLUSION
The challenges of modern digital asset development continue
to grow. Some of these challenges affect users at the private or
individual level, where users want to work creatively and quickly
in a resource-constrained environment. DVCS has proven very
effective at addressing these challenges.

Other challenges impact the team or enterprise. Pulling together
the work of a team of individuals into released products, scaling
up to support complex development efforts and large teams, and
managing security are all important considerations. Perforce has
excelled at managing the needs of teams and enterprises.

Git could be combined with Perforce or other systems

to provide the collaboration, scalability, and management tools
necessary in a complex environment. However, introducing a
second version management system adds more complexity.

With P4Sandbox, Perforce is offering a unique solution to the
problems faced by individual developers. Like Git, P4Sandbox
allows for productive private work. But P4Sandbox also offers
easy collaboration and access to the power of the shared
repository, as it works seamlessly with the main Perforce shared
versioning service. This solution meets the needs of all users of
the software version management system—individuals, teams,
release managers, and administrators—with a unified, powerful
set of products.

North America
Perforce Software Inc.
2320 Blanding Ave
Alameda, CA 94501
USA
Phone: +1 510.864.7400
info@perforce.com

Europe
Perforce Software UK Ltd.
West Forest Gate
Wellington Road
Wokingham
Berkshire RG40 2AT
UK
Phone: +44 (0) 845 345 0116
uk@perforce.com

Australia
Perforce Software Pty. Ltd.
Suite 3, Level 10
221 Miller Street
North Sydney
NSW 2060
AUSTRALIA
Phone: +61 (0)2 8912-4600
au@perforce.com

p e r f o r c e . c o m

Copyright © 2012 Perforce Software Inc. All rights reserved.
All trademarks or registered trademarks used herein are property of their respective owners.

	Executive Summary
	Overview
	Branching, Merging, and Release Management
	Branching Model and Guidance
	Indirect Merging Not Supported in TFS
	Inefficient Merges Lead to Conflicts
	Basic Branching and Merging
	Perforce
	Basic Branching and Merging
	Branching Model and Guidance

	Ignored Merge History Loses Data

	Workspace Management
	Perforce

	Perforce

