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Chapter 1

Introduction

Let us start by giving the (rough) statement of gauge gravity duality:

• Some quantum field theories are equivalent to (quantum) gravity theories.

• In particular limits, the gravity theory becomes classical and the corresponding quantum

field theory (QFT) strongly coupled.

The second point makes the duality particularly useful since by other methods, dynamical

processes are inaccessible in the strongly coupled regime of QFTs: Normally, QFT calculations

are done by means of perturbation theory, but this only works at weak coupling. Lattice

gauge theory might be a powerful way out of this dilemma, but it is hard to use for capturing

dynamics. Also, for technical reasons, it is problematic at high temperature or large density

and chemical potential.

The purpose of this lecture is the following:

• explain how and for which QFTs the gauge gravity duality works

• work out the details of the subtle limit

• give nice examples and applications

Gauge gravity duality originates from string theory. (However, there is a limit of the duality

in which string theory reduces to classical gravity, i.e. general relativity (GR).) The duality

generalizes the so-called AdS/CFT correspondence,

• AdS ≡ anti deSitter spacetime, a solution of Einstein’s equations

• CFT ≡ conformal field theory

a conjecture for equivalence between
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8 CHAPTER 1. INTRODUCTION

• string theory on certain ten dimensional backgrounds involving AdS spacetime

• four dimensional QFT with conformal symmetry (supersymmetric SU(N) Yang Mills)

There is no mathematical proof for the AdS/CFT correspondence but overwhelming evidence

of its correctness. The conjecture states that these two theories are equivalent including ob-

servables, states, correlation functions and dynamics. It is interesting to ask in which way the

conformal symmetry could be dropped in order to cover non-conformal theories such as QCD.

The ten dimensional spacetime of the string theory side contains a five dimensional anti deSitter

spacetime with a four dimensional boundary. The four dimensional QFT can be regarded as

living on this four dimensional boundary. In analogy to conventional holograms (which encode

three dimensional information on a lower dimensional surface), the AdS/CFT correspondence

is said to realize the holographic principle.

As in any field theory, symmetrie are of central importance for gauge gravity duality. The

two equivalent theories have the same symmetries. Moreover, the correspondence provides a

one-to-one map between classical gravity fields and quantum operators of the field theory, i.e.

some sort of holographic dictionary. This map then identifies representations of the common

symmetry group.

As to the literature to this subject, there are (at present) no textbooks available. Let us

instead refer to the original papers [1], [2], [3], [4] which marked the birth of the AdS/CFT

correspondence. Several review articles followed [5], [6], [7] which assume lots of background

knowledge and usually emphasize particular aspects of the duality. Finally, at later stages of

this course, [10], [11] are helpful references for applications.



Chapter 2

Preparations

sec:preparations

In this section we elucidate the several subject areas which will be connected by the correspon-

dence.

2.1 Conformal field theory in d dimensions

2.1.1 Conformal coordinate transformations
sec:CFT

Conformal coordinate transformations are defined as those local transformations xµ 7→ x′µ(x)

that leave angles invariant. In a Euclidean d-dimensional space Rd we therefore can write

dxµ dxµ = Ω−2(x) dx′µ dx′µ. (2.1.1) eq:metricTransf

The corresponding infinitesimal coordinate transformation from old coordinates x to new ones

x′ looks like

x′
µ

= xµ + vµ(x) (2.1.2)

and we have

Ω(x) = 1 − σ(x) , σ(x) =
1

d
∂ · v(x) . (2.1.3) 2,3

Equivalently to (2.1.1) we can formulate an equation for the vector v, the conformal Killing

equation,

∂µvν + ∂νvµ = 2σ(x) ηµν , (2.1.4) eq:confKilling

taking its trace yields the expression (2.1.3) for σ(x). We will work in d dimensional Euclidean

space where ηµν = δµν . Solutions v to (2.1.4) are referred to as conformal Killing vectors, the

most general one reads

vµ = aµ + ωµν x
ν + λ xµ + bµx

2 − 2 (b · x)xµ , ωµν = −ωνµ . (2.1.5) eq:solutionsForv

9
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This Killing vector leads to the scale factor σ(x) = λ − 2(b · x). Equation (2.1.5) is valid for

any d. Note that in the special case of d = 2 the conformal Killing equation (2.1.4) is nothing

but the Cauchy-Riemann equations

∂1v1 = ∂2v2 , ∂1v2 = −∂2v1 . (2.1.6)

Thus, in d = 2 all holomorphic functions v(x) are solutions and generate conformal coordi-

nate transformations. In this case we have an infinite number of functions solving (2.1.5),

accompanied by an infinite number of associated conserved quantities.

However, we will mostly consider theories in d = 4 dimensions, for example in Minkowski space

or on the boundary of Ads5. Here we have a finite amount of conserved quantities. Counting

the independent components of the factors in the solutions (2.1.5) amounts to a total number

of 15:

aµ 4

ωµν + 6

λ + 1

bµ + 4

total 15

The general conformal Killing vector (2.1.5) may be viewed as the combination of elementary

transformations. The group of ”large” conformal transformation is generated by infinitesimal

elements of the conformal algebra. We define locally orthogonal tranformations R correspond-

ing to a group element g of the conformal group as

Rg
µα(x) := Ωg(x)

∂x′µ
∂xα

. (2.1.7)

One can easily show that R ∈ O(d), i.e. that Rg
µα(x)Rg

να(x) = δµν . The group multiplication

and the inverse are given as follows:

Rg′(gx)Rg(x) = Rg′g(x) ,
(
Rg(x)

)−1
= Rg−1

(gx) (2.1.8)

With these we can construct translations and rotations as

x′µ = Rµν xν + aµ , Ω(x) = 1 . (2.1.9)

Scale transformations (↔ λ) and special conformal transformations (↔ bµ) involve a non-trivial

Ω factor:

x′µ = λxµ , Ω(x) = λ (2.1.10)



2.1. CONFORMAL FIELD THEORY IN D DIMENSIONS 11

x′µ =
xµ + bµx

2

Ωg(x)
, Ωg(x) = 1 + 2b · x+ bx2. (2.1.11)

Together, these transformations form a group isomorphic to SO(d + 1, 1) (or SO(d, 2) in

Minkowski spacetime). All transformations belonging to this group can be constructed by

performing translations, rotations, and inversions ; the latter are given by

x′µ =: (ix)µ =
xµ
x2

, Ωi(x) = x2 (2.1.12)

Ri
µν(x) =: Iµν(x) = δµν − 2

xµxν
x2

. (2.1.13)

Special conformal transformations can be composed by concatenating inversion + translation +

inversion.

2.1.2 Conformal fields and correlation functions

So far we examined coordinate transformations. Now we will investigate the behaviour of fields.

For instance, the N = 4 super Yang Mills theory (SYM) mentioned in the introduction only

contains fields transforming covariantly under the conformal group. In general QFTs (such as

QED or QCD), conformal symmetry is generically broken by quantum effects (anomalies).

Necessary condition for a field theory to be conformally symmetric is a vanishing β-function.

The latter describes the change of a coupling g with energy scales µ, i.e.

β(g) = µ
∂g

∂µ
, (2.1.14)

so β(g) = 0 rephrases scale invariance.

A conformally covariant operator O of a conformal field theory (CFT) transforms as follows

under infinitesimal conformal transformations (with Killing vector v and σ = ∂ · v/d):

δvO = − (LvO) , Lv = v(x) · ∂ + ∆σ(x)− 1

2
∂[µvν](x)Sµν (2.1.15)

Here, ∆ denotes the scaling dimension of the operator O and Sµν a generator of O(d) in an

appropriate representation. It only affects spinor-, vector- and tensor fields but no scalars ϕ:

δvϕ = −
(
v(x) · ∂ + ∆σ(x)

)
ϕ (2.1.16)

In general QFTs, correlation functions are defined as time ordered vacuum expectation values,

e.g. a two point function of some field ϕ is given by

〈ϕ(x)ϕ(y)〉 := 〈0| T ϕ(x)ϕ(y) |0〉 , (2.1.17) 2,5

three-, four- and higher point functions by analogous expressions. Generically, their computa-

tion is quite involved and possible only in the framework of perturbation theory.
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Let us also give the path integral analogue of the definition (2.1.17) in the operator approach. In

a scalar field theory governed by action S[ϕ], the partition function Z and a general correlation

function 〈O〉 is defined by the path integrals

Z :=

∫
Dϕ e−S[ϕ] , 〈O〉 :=

1

Z

∫
Dϕ O e−S[ϕ] . (2.1.18)

In CFTs, conformal symmetry is so strong that it determines the form of the two- and three

point correlation functions up to a managable number of parameters. In the notation (x−y)2 =

(x− y)µ(x− y)µ, the two- and three point functions of scalars ϕi with scale dimensions ∆i are

given by

〈ϕ1(x)ϕ2(y)〉 :=
c δ∆1,∆2

(x− y)2∆1
(2.1.19)

〈ϕ1(x)ϕ2(y)ϕ3(z)〉 :=
k

(x− y)∆1+∆2−∆3 (y − z)−∆1+∆2+∆3 (x− z)∆1−∆2+∆3
(2.1.20)

with constants c, k determined by the field content.

Four point correlators 〈ϕ1(x)ϕ2(y)ϕ3(z)ϕ4(w)〉 are less constraint by the symmetry since they

involve dimensionless cross ratios (x−y)2

(z−w)2 and (x−z)2

(y−w)2 .

2.1.3 The energy momentum tensor in a CFT

The symmetric energy momentum tensor Tµν subject to the conservation law ∂µT
µν = 0 (or

rather ∇µT
µν = 0 in curved spacetime) generates the Noether currents associated with confor-

mal symmetry. The infinitesimal transformations with conformal Killing vector vµ gives rise to

the conserved current

jµ = T µν vν . (2.1.21)

In this subsection, we will now show an important property of the energy momentum tensor in

a conformal field theory, namely its tracelessness T µµ = 0.

It is a common method in QFT to introduce sources for operators in a QFT’s action, and then

express the operator (in correlation functions) as the functional derivative of the generating

functional. To do so, the action S0 of our theory is modified by an additive term which couples

the operator to its source. For instance consider some scalar operator ϕ and its source J ,

S[ϕ, J ] = S0[ϕ] +

∫
ddx ϕ(x) J(x) . (2.1.22)

Correlation function of that operator ϕ may now be calculated as the functional derivative of

the generating functional W [J ] := − lnZ[J ] of the theory with respect to the source J , e.g.

〈ϕ(x)〉 ∝ δW [J ]

δJ(x)
. (2.1.23)
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One can also apply this procedure to vector- and tensor operators,

S = S0 +

∫
ddx

(
ϕJ + VµA

µ + Tµν g
µν
)
. (2.1.24)

It can be shown that the source of the energy momentum tensor is exactly the quantity that

has the properties of the metric. So the energy momentum tensor is obtained by calculating

Tµν(x) = − 2√
| det g|

δW [g]

δgµν(x)
. (2.1.25) eq:defEMTensor

The metric transforms under conformal coordinate transformations induced by a vector field v

as δvg
µν = 2σgµν , so requiring invariance of W implies

0 = δvW [g] =

∫
ddx

δW [g]

δgµν(x)
δvg

µν(x) =

∫
ddx

(
−
√
| det g|Tµν

2

)
·
(
2σ gµν

)
= −

∫
ddx

√
| det g|T µ

µ · σ . (2.1.26)

Since T µ
µ vanishes upon integration against an arbitrary function σ, one can conclude the

announced tracelessness of the energy momentum tensor

T µ
µ = 0 . (2.1.27)

2.2 N = 4 super Yang Mills theory
sec:maxiSusy

In this section we want to develop the field theory side of the AdS/CFT correspondence – the

maximally supersymmetric SU(N) gauge theory. This N = 4 super Yang Mills theory is an

example for a d = 4 dimensional CFT. In the following, the ingredients will be introduced step

by step.

2.2.1 Non-abelian gauge theories

Super Yang Mills theory is a non-abelian gauge theory, i.e. its fields take values in the algebra

of a non-abelian gauge group. QED, on the other hand, is associated with the abelian gauge

group U(1). Let us take it as an introductory example for the necessity of a gauge field:

Consider a complex scalar field ϕ(x) transforming under local U(1) transformations as

ϕ(x) → eiϑ(x) ϕ(x) , ∂µϕ(x) → ∂µ
(
eiϑ(x) ϕ(x)

)
6= eiϑ(x) · ∂µϕ(x) . (2.2.1)

The derivative ∂µϕ obviously does not transform like the field ϕ itself, so a connection Aµ is

required in order to define a gauge covariant derivative:

Dµϕ(x) :=
(
∂µ + iAµ

)
ϕ(x) → eiϑ(x) ·Dµϕ(x) ⇔ Aµ → Aµ − ∂µϑ (2.2.2)
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With Aµ transforming like that, we can use the covariant derivative Dµ to construct gauge

invariant objects (e.g. kinetic terms in the action). Furthermore, the field strength tensor

Fµν := ∂µAν − ∂νAµ (2.2.3)

is unaffected by gauge transformations of Aµ since ∂[µ∂ν]ϑ = 0.

The most important examples of non-abelian gauge groups in these lectures are SU(N) with

N ≥ 2. One has to distinguish two transformation properties of fields under the non-abelian

SU(N):

• Fields transforming in the fundamental representation of the gauge group are elements of

an N dimensional vector space:

qi(x) →
(
eiϑ

a(x)Ta
)
i
j qj(x) , i, j = 1, 2, ..., N (2.2.4)

The SU(N) generators T a are traceless hermitian N ×N matrices and ensure that eiϑ
aTa

is unitary. If the parameters ϑa(x) are infinitesimal, the field qi is shifted by an algebra

element

qi(x) → qi(x) + iϑa(x) (T a)i
j qj(x) (2.2.5)

• Fields transforming in the adjoint representation of the gauge group are aligned into the

N2 − 1 dimensional algebra su(N),

φi
j ≡ φa (T a)i

j →
(
eiϑ

bT b
)
i
k φa (T a)k

l
(
e−iϑ

cT c
)
l
j . (2.2.6)

Infinitesimally, conjugation by a group element eiϑ
aTa involves the commutator [T a, T b] =

ifabcT c of the su(N) generators:

φa T a → φa T a + i
(
ϑb T bφa T a − φa T a ϑb T b

)
= φa T a − i ϑb φa

[
T a , T b

]
= φa T a + fabc φa ϑb T c (2.2.7)

Non-abelian gauge fields Aµ = AaµT
a give rise to a non-abelian field strength tensor in the

adjoint representation

Fµν := ∂µAν − ∂νAµ + ig
[
Aµ , Aν

]
=

(
∂µA

a
ν − ∂νA

a
µ − g fabcAbµA

c
ν

)
T a . (2.2.8)
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The transformation properties of Fµν can be deduced from its alternative definition as a com-

mutator of (non-abelian) gauge covariant derivatives (with g denoting the gauge coupling)

(Dµ)i
j := δi

j ∂µ + ig Aaµ (T a)i
j , Fµν = − i

g

[
Dµ , Dν

]
. (2.2.9)

One can thus form a gauge invariant action for the field strength by taking a trace over the i, j

indices of the generators:

S[A] ∼
∫

d4x Tr
{
F µν Fµν

}
(2.2.10)

The non-linear contribution to Fµν gives rise to interactions with the vertices

PICTURE: 3 vertex ∼ g, 4 vertex ∼ g2

Later, we will discuss QCD, an SU(3) Yang Mills theory of gluons together with fundamental

quarks. It has two essential features following from the negative sign of the β function

• asymptotic freedom, attenuation of the coupling in the UV region, i.e. limµ→∞ g(µ) = 0

• confinement, the coupling g grows rapidly in the IR regime µ→ 0

2.2.2 The 1/N expansion

It was suggested by Gerald t’Hooft that non-abelian gauge theories may simplify when SU(N)

is studied in the limit N → ∞. The diagrammatic expansion of SU(N) field theory suggests

that it is a free string theory in the N →∞ limit with string coupling 1/N .

To understand this, let us consider a toy model: let φaλ denote a set of fields with an adjoint

index a and a label λ for spin- or flavour degrees of freedom. We assume that the interaction

vertices mimic Yang Mills theory – a three point vertex ∼ g and a four point vertex ∼ g2. The

toy model’s Lagrangian then reads

L ∼ Tr
{

dφλ dφλ
}

+ g cµνλ Tr
{
φµ φν φλ

}
+ g2 dµνλρ Tr

{
φµ φν φλ φρ

}
. (2.2.11)

A rescaling gφλ 7→ φλ turns it into

L ∼ 1

g2

(
Tr
{

dφλ dφλ
}

+ cµνλ Tr
{
φµ φν φλ

}
+ dµνλρ Tr

{
φµ φν φλ φρ

})
. (2.2.12) 2,20

To have a well-defined N →∞ limit, it is convenient to introduce the t’Hooft coupling

λ := g2N . (2.2.13)

If we send N → ∞ at constant λ, the coefficient of (2.2.12) diverges but the number N2 − 1

of components in the fields diverges as well. This point becomes clearer after an analysis of
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Feynman graphs in the t’Hooft limit. The propagator will have the following SU(N) index

structure to ensure tracelessness,〈
φi

j(x)φk
l(y)
〉
∼

(
δi
l δk

j − 1

N
δi
j δk

l

)
, (2.2.14)

regardless of the spacetime dependence. In the N → ∞ limit, the second term can be safely

ignored, this suggests double line notation

PICTURE of a i-k over j-l double line

Feynman diagrams then become networks of double lines. Vertices scale as N
λ

, propagators

as λ
N

, and the sum over indices in a trace contributes a factor of N for each closed loop. If

we introduce shorthands (V,E, F ) for the numbers of vertices, propagators (edges) and loops

(faces) respectively, diagrams are proportional to

diagram(V,E, F ) ∼ NV−E+F λE−V = Nχ λE−V . (2.2.15)

The power of the expansion parameter N is precisely the Euler characteristic

χ := V − E + F = 2 − 2 g , (2.2.16)

related to the surface’s number of handels (the genus) g.

Any physical quantity in this theory is given by a perturbative expansion of type

∞∑
g=0

N2−2g

∞∑
i=0

cg,i λ
i =

∞∑
g=0

N2−2g fg(λ) (2.2.17)

with fg(λ) a polynomial in the t’Hooft coupling. For large N , the series is clearly dominated by

surfaces of minimal genus, the so-called planar diagrams. As an example, compare the following

vacuum amplitudes

(—) with N2 and non-planar (X) with N0

The form of this expansion is the same as in a perturbative theory of closed oriented strings

with string coupling 1
N

. The propagator and the interaction vertex of a closed string is depicted

below.

PIC: Zylinder und Hose

In this simple toy model, one cannot say which string theory fits to the perturbative series.

For N = 4 SYM, however, the AdS/CFT correspondence tells us which string theory leads to

the correct expansion: ten dimensional type IIB superstring theory on AdS5 × S5.

2.2.3 Supersymmetry

We know to have Poincaré symmetry in the flat Minkowski spacetime, which is equipped with

a ”mostly positive” metric of signature η = diag(−,+,+,+). Generators of translations and
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Lorentz transformations will be denoted as Pµ and Lµν respectively. Supersymmetry now

enlarges the Poincaré algebra[
Lµν , Pλ

]
= −i (ηµλ Pν − ηνλ Pµ) (2.2.18) L,P[

Lµν , Lλρ
]

= −i (ηµλ Lνρ − ηµρ Lνλ + ηνρ Lµλ − ηνλ Lµρ) (2.2.19) L,L

by including spinor supercharges Q. In so-called Weyl notation we have aleft-handed spinor Qa
α

and its right-handed counterpart Q̄aα̇ = (Qa
α)† where the SL(2,C) indices α, α̇ take values 1, 2

and a counts the number of independent supersymmetries a = 1, . . . ,N . The Q’s transform as

Weyl spinors of SO(1, 3) ∼= SL(2,C)/Z2.

The two-component Weyl spinor notation is related to the Dirac four-spinor notation by

Qa
D =

 Qa
α

Q̄aα̇

 , γµ =

 0 σµ
αβ̇

σ̄µα̇β 0

 , (2.2.20)

where σµ = (−1, σi) and σ̄µ = (−1,−σi) are four vectors of 2× 2 matrices with the standard

Pauli matrices σi as their spatial entries.

The supercharges commute with the generators of translations but otherwise obey the algebra{
Qa
α , Q̄bβ̇

}
= − 2σµ

αβ̇
Pµ δ

a
b ,

{
Qa
α , Q

b
β

}
= 2 εαβ Z

ab . (2.2.21) eq:susyAlgebra

Here the operators Zab are referred to as central charges. They commute with all the Poincaré-

and supersymmetry generators Qa and need to by antisymmetric Zab = −Zba in order to respect

the anticommutator’s symmetry. Therefore, for N = 1 supersymmetry, we have Z = 0.

The supersymmetry algebra (2.2.21) is invariant under global phase rotations of the super-

charges Qa
1,2 into each other. This forms an R symmetry group denoted as U(1)R. In addition,

when N > 1, the different supercharges may be rotated into one another under the unitary

group SU(N)R which extends the R symmetry.

The field theory in the AdS/CFT dictionary has N = 4 supersymmetries. Let us briefly

explain why this is the maximal supersymmetry for a pure gauge theory without gravity: Each

supercharge Qa
α, Q̄aα̇ changes the spin of the state it acts on by 1/2. In absence of gravity,

helicities between -1 and +1 occur, hence no spin modification greater than 2 = Nmax · 1/2 is

allowed.

In the N = 4 theory we have R symmetry SU(4) ∼= SO(6). Exactly this is the isometry group

of the sphere in the AdS5 × S5 background of the string theory side of the correspondence.

The AdS5 factor has the symmetries encoded by SO(4, 2) in Minkowski space or SO(5, 1)

in a Euclidean formulation. These groups are isomorphic to the conformal group in d = 4

dimensions according to our analysis in subsection 2.1.1.
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field range representation of SU(4)R

vector Aµ (1) singlet

Weyl fermions λaα, λ̄aα, a = 1, 2, 3, 4 (4) fundamental

real scalars X i, i = 1, 2, . . . , 6 (6) adjoint

Table 2.1: The field content of the N = 4 supersymmetry multiplet and the representation in

which these fields transform with respect to the R symmetry group SU(4)R
∼= SO(6)R tab:n4content

2.2.4 Field content of N = 4 supersymmetric field theory

Representations of the supersymmetry algebra make up the SUSY multiplets. Their com-

ponents are spin 1 vector fields, spin 1
2

fermion fields and spin 0 scalar fields. In N = 4

supersymmetry we encounter maximal supersymmetry if s = 1 is the highest spin in a SUSY-

multiplet. This implies that we cannot describe gravity with this theory, because the graviton

is supposed to have spin 2.

For any N with 1 ≤ N ≤ 4 we encounter one gauge multiplet, which is a multiplet transforming

in the adjoint representation of the gauge group (while we are used to have matter fields in

the fundamental representation in non-supersymmetric theories). For N = 4 this is the only

possible multiplet.

Lower symmetry N = 1 and N = 2 also admits matter multiplets which we will not discuss

here, though. (But to make you familiar with the names, the multiplet in the fundamental

representation in N = 1 SUSY is called chiral multiplet, and the multiplet in the fundamental

representation inN = 2 SUSY is called the hypermultiplet). The content of theN = 4 multiplet

is given in table 2.1. Note that this theory is non-chiral. The Lagrangian may be written as

L = Tr

{
− 1

2 g2
Fµν F

µν +
θI

8π2
Fµν F̃

µν − i
∑
a

λ̄a σ̄µDµλa

−
∑
i

DµX
iDµX i + g

∑
a,b,i

Cab
i λa

[
X i , λb

]
+ g

∑
a,b,i

C̄iab λ̄
a
[
X i , λ̄b

]
+

g2

2

∑
i,j

[
X i , Xj

]2}
.

(2.2.22) eq:N4Lagrangian

Here the trace is summing over gauge indices α̃, β̃ which are suppressed in the expression above.

They appear if we rewrite the adjoint fields correctly as linear combinations of the generators

TA of the gauge group, e.g. X i = X iATA β̃
α̃ . The symbol θI denotes the instanton number and

F̃µν = 1
2
εµνλρF

λρ.

The Cab
i are the structure constants of SU(4)R. Note that there is only one coupling constant

g. On the classical level this theory is conformal with engeneering dimensions of the fields as
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[Aµ] = 1, [λ] = 3/2, [X] = 1 and therefore [g] = 0. The dimensionless coupling and absence of

any mass term are necessary for conformal invariance.

The Lagrangian (2.2.22) is invariant under SUSY-transformations given by

(δX i)aα =
[
Qa

α , X
i
]

= Ciab λαb,

(δλβb)
a
α =

{
Qa

α , λβb
}

= F+
µν (σµν ε)αβ δ

a
b +

[
X i , Xj

]
εαβ (Cij)

a
b

(δλ̄ b
β̇

)aα =
{
Qa

α , λ̄
b
β̇

}
= C ab

i σµ
αβ̇
DµX

i

(δAµ)aα =
[
Qa

α , A
µ
]

= σµ
αβ̇
λ̄β̇a .

(2.2.23)

Note that F+
µν is the self-dual part 1

2
(Fµν + F̃µν) of the field strength, and the constants (Cij)

a
b

are related to bilinears in Clifford Dirac matrices of SO(6)R.

Upon quantization of this theory, one finds that the β-function vanishes to all orders of pertu-

bation theory (and even non-perturbatively), therefore we are left with a CFT even at quantum

level.

2.2.5 The superconformal algebra and its representations

The concept of supersymmetry together with the conformal group form the superconformal

group SU(2, 2|4). The SU(2, 2) part represents the symmetry of the Weyl spinors while the

SU(4) refers to the R symmetry group SU(4)R of the N = 4 supersymmetry.

The AdS/CFT map will provide a direct one to one mapping between operators on both sides

of the correspondence. This relies heavily on the fact that on both sides the operators fall into

representations of the same symmetry groups.

The generators of the superconformal group are given by

• Conformal symmetry with generators Pµ, Lµν , D, Kµ: In addition to the Poincaré algebra

(2.2.18) and (2.2.19), the conformal algebra involves commutators[
D , Pµ

]
= −i Pµ[

D , Kµ

]
= iKµ[

Lµν , D
]

= 0[
Lµν , Kρ

]
= −i (ηµρKν − ηνρKµ)[

Pµ , Kν

]
= 2i Lµν − 2i ηµν D

(2.2.24)

• R symmetry SO(6)R
∼= SU(4)R with generators TA, A = 1, 2, . . . , 15. The SO(4, 2)- and

SU(4)R subgroups commute.

• Poincaré supersymmetry with generators Qa
α, Q̄a

α̇, a = 1, 2, 3, 4 subject to (2.2.21).
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• Conformal supersymmetry generators Sαa and S̄α̇a which introduce the following anti-

commutation relations:{
Qa
α , Q

b
β

}
=

{
Sαa , Sβb

}
=

{
Qa
α , S̄

b
β̇

}
= 0{

Qa
α , Q̄β̇b

}
= 2 (σµ)αβ̇ Pµ δ

a
b{

Saα , S̄β̇b
}

= 2 (σµ)αβ̇Kµ δ
a
b{

Qa
α , Sβb

}
= εαβ δ

a
b D +

1

2
δab Lµν (σµν ε)αβ

(2.2.25)

Central charges are assumed to vanish throughout the rest of these lectures.

The fields Aµ(x), λaα(x), λ̄aα̇(x) and X i(x) of the SUSY multiplet (a = 1, 2, 3, 4 and i = 1, 2, ..., 6)

can be used to construct composite operators of N = 4 SYM. Some regularization prescription

is needed when multiplying fields at the same spacetime point.

We define a superconformal primary operator O by

[
S , O

]
= 0 , (2.2.26) 2,40

i.e. the O’s are the lowest dimensional operators in a representation of SU(2, 2|4). This is the

generalization of the primary operator condition [Kµ,O] = 0 in bosonic conformal field theory

(which is in fact implied by (2.2.26) since two S generators anticommute to K’s).

An operator O′ is a superconformal descendant of O if

O′ =
[
Q , O

]
, (2.2.27)

O and O′ then belong to the same superconformal multiplet, i.e. the same representation of

SU(2, 2|4). The scale dimension is shifted as ∆O′ = ∆O + 1
2
.

Of central importance are single trace operators (taking a trace is necessary to ensure gauge

invariance)

O = Tr
{
X(i1 X i2 ... X in)

}
= sTr

{
X i1 X i2 ... X in

}
(2.2.28)

They are also referred to as half BPS states since they are annihilated by half the spinorial

generators S (but not by the other half Q).

2.3 Anti-de Sitter space

In this section we will examine the Anti-de Sitter spacetime and compare it to flat Minkowski

spacetime. As mentioned earlier, one side of the AdS/CFT correspondence is so-called type

IIB string theory formulated on the spacetime AdS5 × S5. We will not discuss string theory
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now. Instead we want to get familiar with the spacetime and see how it may be connected to

the more familiar Minkowski spacetime R1,3.

The most important facts about AdS5 × S5 spacetime for us are of geometrical nature. We

already stated that the isometry group of this spacetime is the same as the symmetry group of

the quantum field theory on the other side of the correspondence.

The key result of this section will be that the boundary of the Euclidian compactification

of AdS5 spacetime is equal to compactified R4, which is the Euclidean compactification of

the Minkowski spacetime we live in. To see this equivalence we will make use of so called

conformal diagrams which enable us to draw an image of the entire spacetime on a single sheet

of paper making the causal structure of the spacetime visible. A short introduction to conformal

diagrams is for example given in appendix H of [8].

The (p + 2)-dimensional version AdSp+2 of this spacetime can be defined as the embedding of

a hyperboloid (with AdS radius L)

X2
0 + X2

p+2 −
p+1∑
i=1

X2
i = L2 (2.3.1)

into a flat (p+ 3)-dimensional space Rp+3 with metric

ds2 = − dX2
0 − dX2

p+2 +

p+1∑
i=1

dX2
i . (2.3.2) eq:adsEmbedMetric

The AdS radius is a measure for the constant curvature: Riemann tensor and cosmological

constant are given by

Rµνλρ = − 1

L2

(
gµλ gνρ − gµρ gνλ

)
, Λ = − d (d− 1)

L2
< 0 (2.3.3)

where d is the dimension of the boundary.

One possible parametrization of this spacetime is given by

X0 = L cosh ρ cos τ

Xp+2 = L cosh ρ sin τ

Xi = LΩi sinh ρ

(2.3.4) eq:adsParamGlobal

with angular coordinates Ωi, i = 1, . . . , p+1 such that
∑

i Ω
2
i = 1 and ranges 0 ≤ ρ, 0 ≤ τ < 2π

for the remaining coordinates.

Inserted into (2.3.2), this yields the metric

ds2 = L2
(
− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2

p

)
. (2.3.5) eq:adsMetricGlobal
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It features a timelike killing vector ∂τ on the whole manifold, so τ may be called the global

time coordinate. The isometry group SO(2, p+ 1) of AdSp+2 has a maximal compact subgroup

SO(2)× SO(p+ 1), the former generating translations in τ , the latter rotating the Xi’s.

picture of AdS as hyperboloid?

Near ρ = 0 we have cosh ρ ≈ 1 and sinh ρ ≈ ρ, so in this environment the metric of AdS5

looks like

ds2 ≈ L2
(
− dτ 2 + dρ2 + ρ2 dΩ2

3

)
(2.3.6)

and thus is seen to be topologically S1 × R4. The S1 parametrized by the time coordinate

τ represents closed timelike curves. To prevent inconsistencies concerning causality, AdS5

is therefore regarded as the causal spacetime obtained by unwrapping these circles, taking

−∞ < τ <∞ without any identification.

Introducing a new coordinate θ, the metric (2.3.5) becomes that of the Einstein static universe

R× Sp:

tan θ = sinh ρ ⇒ ds2 =
L2

cos2 θ

(
− dτ 2 + dθ2 + sin2 θ dΩ2

3

)
. (2.3.7)

However, since 0 ≤ θ < π
2
, only half of R × Sp. The causal structure remains unchanged

when scaling this metric to get rid of the overall factor. Further, adding the point θ = π
2

corresponding to spatial infinity results in the compactified spacetime

ds2 = − dτ 2 + dθ2 + sin2 θ dΩ2
3 , 0 ≤ θ ≤ π

2
, −∞ < τ <∞ . (2.3.8) eq:adsCompact

If we specify boundary conditions on R× Sp at θ = π
2
, then the Cauchy problem is well-posed.

As one can easily read off from (2.3.8), the θ = π
2

boundary of conformally compactified AdSp+2

is identical to the conformal compactification of (p+ 1) dimensional Minkowski spacetime.

Let us take a quick look at the special case of conformally compactified (1 + 1) dimensional

Minkowski spacetime. It is convenient to introduce light cone coordinates,

u± := t ± x ⇒ ds2 = − dt2 + dx2 = − du+ du− . (2.3.9)

If we furthermore restrict the coordinates to a finite range, a useful choice is

u± =: tan ũ± , ũ± =:
τ ± ϑ

2
⇒ ds2 =

− dτ 2 + dϑ2

4 cos2 ũ+ cos2 ũ−
. (2.3.10)

Another neat parametrization of AdSp+2 are the Poincaré coordinates which cover half of the
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hyperboloid. Introduce (y, t, ~x) such that y > 0 and ~x ∈ Rp, then:

X0 =
1

2y

(
1 + y2 (L2 + ~x2 − t2)

)
Xp+1 =

1

2y

(
1 − y2 (L2 − ~x2 + t2)

)
Xp+2 = Ly t

Xi = Ly xi

(2.3.11)

The boundary at y →∞ can be better analyzed in terms of a new variable u

u :=
1

y
⇒ ds2 = L2

(
du2

u2
+

1

u2
ηij dxi dxj

)
. (2.3.12) 2,last

After a conformal rescaling by u2, we obtain the Minkowski metric by freezing u = 0.
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Chapter 3

Introduction to superstring theory

This chapter aims to give a brief introduction to selected aspects of superstring theory. Of

course, we cannot provide a self-contained course about this topic, the following sections will

shed light only on those aspects which are relevant for the AdS/CFT correspondence.

As we have emphasized before, the AdS/CFT map relates the N = 4 SYM field theory to string

theory. Relations of that type have been known for some time, in fact the original motivation to

study string theory in the 1960’s was to describe mesons and hadrons (bound states of quarks).

This picture gives a relation between mass m and spin J of hadrons, m2 = J/α′ + const. The

m2(J) plot is known as Regge trajectory and the parameter α′ as Regge slope. Mass and angular

momentum are assumed to come from a rotating relativistic string.

3.1 Bosonic strings in Minkowski spacetime

The basic idea behind the bosonic string is to take one-dimensional strings as the fundamental

objects rather than point particles. Such a string sweeps out a 1+1 dimensional worldsheet (cf.

worldline of point particles). Strings can be closed or open – closed string will represent the

gravity side of the correspondence whereas open strings will cover the gauge sector.

The worldsheet is parametrized by two coordinates, proper time τ and the spatial extent σ of

the string. The embedding of the worldsheet of the fundamental string into the target spacetime

is defined by functions Xµ(τ, σ).

The string action is simply given by the worldsheet area (similar to the length of a point

particle’s worldline),

S =
1

2πα′

∫
d2σ

√
− det ∂αXµ ∂βXµ , (3.1.1) 3,1

where (σ0, σ1) ≡ (τ, σ) and α′ is the inverse string tension.

25
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In order to get rid of the square root in view of quatization, a worldsheet metric hαβ(σ) is

introduced as an auxiliary field subject to certain constraints. This gives rise to the Polyakov

action

S = − 1

4πα′

∫
d2σ
√
−hhαβ ∂αXµ ∂βXµ . (3.1.2) 3,2

The equation of motion for Xµ is a relativistic wave equation. In the gauge with hαβ = ηαβ =

diag(−1, 1), it takes the particularly simple form

(∂2
τ − ∂2

σ)Xµ(τ, σ) = 0 . (3.1.3) 3,3

This is supplemented by the Virasoro constraints

∂τX
µ ∂σXµ = ∂τX

µ ∂τXµ − ∂σX
µ ∂σXµ = 0 . (3.1.4) 3,4

3.1.1 Closed strings in Minkowski spacetime

For AdS/CFT, it is essential to have two different types of strings, closed and open ones,

depending on the boundary conditions they satisfy. Closed strings are equivalent to a circle,

they do not have endpoints and satisfy periodic boundary conditions. With σ ∈ [0, 2π[ we have

Xµ(τ, 0) = Xµ(τ, 2π) , ∂σX
µ(τ, 0) = ∂σX

µ(τ, 2π) (3.1.5) 3,5

and also hαβ(τ, 0) = hαβ(τ, 2π). The mode expansion for the closed string is governed by the

solutions to the wave equation (3.1.3) which split into left- and right movers

Xµ(τ, σ) = Xµ
L(τ + σ) + Xµ

R(τ − σ) . (3.1.6) 3,6

The periodic boundary conditions give rise to a discrete Fourier expansion

Xµ
L(τ + σ) =

xµ0
2

+ α′ pµL (τ + σ) + i

√
α′

2

∑
n6=0

α̃µn
n
e−in(τ+σ)

Xµ
R(τ − σ) =

xµ0
2

+ α′ pµR (τ − σ) + i

√
α′

2

∑
n 6=0

αµn
n
e−in(τ−σ)

(3.1.7) 3,7

The xµ0 and pµ = pµL = pµR are center of mass positions and -momenta, the latter can be viewed

as the zero modes of the expansion via αµ0 = α̃µ0 =
√

α′

2
pµ. The constraint pµ = pµL = pµR is

enforced by periodicity. Reality of Xµ requires αµ−n = (αµn)∗ and α̃µ−n = (α̃µn)∗.

In the quantization procedure, the αn modes become creation- and annihilation operators, e.g.

the graviton as the lowest closed string excitation corresponds to the massless spin 2 state

αµ−1α̃
ν
−1|0, 0, k〉.



3.2. BOSONIC STRING THEORY IN BACKGROUND FIELDS 27

3.1.2 Open strings in Minkowski spacetime

Open strings have two endpoints. The usual convention is to delimit σ ∈ [0, π[ in this sector. In

each direction µ of spacetime, either Neumann- or Dirichlet boundary conditions are possible:

• Neumann boundary conditions

∂σXµ(τ, 0) = ∂σXµ(τ, π) = 0 (3.1.8) 3,8

Momentum flow through the endpoints of the string is forbidden by Neumann boundary

conditions. This is reflected in the Neumann mode expansion

Xµ(τ, σ) = xµ0 + 2α′ pµ τ + i
√

2α′
∑
n6=0

αµn
n
e−inτ cos(nσ) . (3.1.9) 3,9

Left- and right movers are reflected into each other. Again, αµ0 =
√

2α′pµ.

• Dirichlet boundary conditions

Now the endpoints of the string are fixed

Xµ(τ, 0) = Xµ(τ, π) = xµ0 , (3.1.10) 3,10

which gives rise to the mode expansion

Xµ(τ, σ) = xµ0 +
√

2α′
∑
n6=0

αµn
n
e−inτ sin(nσ) . (3.1.11) 3,11

Open string boundary conditions (b.c.) can be interpreted as follows: Dirichlet b.c. define a

hyperplane in target space, so-called Dp branes, on which open strings can end. In p spatial

dimensions and in the time direction, Dirichlet b.c. are used whereas in the other directions

Neumann b.c. are imposed.

The quantization procedure naturally leads to a massless spin 1 state αµ−1|0, k〉, the photon.

3.2 Bosonic string theory in background fields

Up to now, we have considered the propagation of open and closed strings in Minkowski space-

time. By coupling the fundamental string to the massless closed string excitations (which in-

volve the graviton), strings propagating through curved background spacetime (such as AdS5×
S5) can be described. In particular, the symmetric traceless part of the state αµ−1α̃

ν
−1|0, 0, k〉 ↔

gµν can be identified with the metric of the target spacetime.
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3.2.1 Background fields of the closed string sector
sec:3,1

Weyl invariance of string theory implies that spacetime has to satisfy the vacuum Einstein

equations. The Polyakov action becomes

S = − 1

4πα′

∫
d2σ
√
−hhαβ ∂αXµ ∂βX

ν gµν(X) . (3.2.1) 3,12

In addition, we have a Kalb Ramond field B[µν] and a dilaton ϕ associated with the remaining

irreducibles α
[µ
−1α̃

ν]
−1|0, 0, k〉 and αµ−1α̃−1µ|0, 0, k〉. Their action reads

SB,ϕ =
1

4πα′

∫
d2σ
√
−h

(
i εαβ ∂αX

µ ∂βX
ν Bµν(X) + α′Rh ϕ(X)

)
. (3.2.2) 3,13

By comparison with the string theory perturbative expansion, we find a string coupling gs = eϕ.

To ensure Weyl invariance of the quantized theory, we have to impose tracelessness of the

worldsheet energy momentum tensor. In bosonic string theory, this is possible in D = 26

spacetime dimensions only. The critical dimension of superstring theory is D = 10. The

worldsheet energy momentum trace reads

Tα α = − 1

2α′
βgµν h

αβ ∂αX
µ ∂βX

ν − i

2α′
βBµν ε

αβ ∂αX
µ ∂βX

ν − 1

2
βϕRh (3.2.3)

where Rh denotes the Ricci scalar on the worldsheet (with respect to the metric hαβ) and the

β functions are given as follows (to order α′):

βgµν = −α′
(

(Rg)µν + ∇µ∇νϕ −
1

4
HµλρHν

λρ

)
βBµν = α′

(
− 1

2
∇λHλµν + ∇λϕHλµν

)
βϕµν = α′

(
− 1

2
∇2ϕ + ∇µϕ∇µϕ − 1

2ϕ
HµνλH

µνλ

)
.

(3.2.4) 3,16

(By the usual method of differential forms, one defines a field strength H = dB for the Kalb

Ramond field,

Hµνλ := ∂µBνλ + ∂νBλµ + ∂λBµν . ) (3.2.5) 3,14

The theory is Weyl invariant if βgµν = βBµν = βϕ = 0. Remarkably, the vanishing of the β

functions (3.2.4) may be derived as equations of motion from the target spacetime action

S =
1

2κ0

∫
d26X

√
| det g| e−2ϕ

(
Rg + 4∇µϕ∇µϕ − 1

12
HµνλH

µνλ

)
. (3.2.6) 3,15

with spacetime Ricci scalar Rg built from the gµν metric. This is the effective action for the

massless string states αµ−1α̃
ν
−1|0, 0, k〉 ↔ gµν , Bµν , ϕ of the closed string sector. From the form

of S, the gµν field may be identified with the target spacetime metric.
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3.2.2 Background fields of the open string sector

Similarly, we may couple the open string to an abelian gauge field living on a D brane. This is

achieved via worldsheet action

SA =

∫
∂Σ

dτ Aµ(X) ∂τX
µ (3.2.7) 3,17

where ∂Σ is the boundary of the worldsheet. The effective spacetime action for the open string

sector (to leading order in α′) is given by

S = −C
∫

d26X e−ϕ Fµν F
µν . (3.2.8) 3,18

Therefore, the tree level open string physics is described by Yang Mills theory. Recall that

α′ can be interpreted as the squared string length, so the α′ → 0 limit extracts the point

particle-like behaviour.

A single D brane gives rise to the gauge group U(1), but this can be generalized to non-abelian

symmetry by taking a stack of coinciding D branes. Superposition of branes introduces non-

dynamical degrees of freedom (from the worldsheet point of view) called Chan Paton factors.

They arise on a stack of N Dp branes and are therefore assigned to the endpoints of the string.

The Chan Paton factor λij labels strings stretching from brane i to j where i, j = 1, 2, ..., N . The

matrix λ is an element of some Lie algebra. It turns out that the only Lie algebras consistent

with open string scattering amplitudes is U(N). Note that the Chan Paton degrees of freedom

parametrize a global symmetry on the worldsheet but a local symmetry in target spacetime.

The theory of open strings ending on coincident Dp branes can effectively by described by a

non-abelian gauge theory.

3.3 Superstring theory

Bosonic string theory which we have described so far has two major shortcomings. Firstly,

it contains tachyons in both the open string- and the closed string sector which are states of

negative mass square. Secondly, the bosonic string lacks fermionic degrees of freedom necessary

to model particles observed in nature.

Let us give the supersymmetrized Polyakov action for the string position Xµ and its worldsheet

superpartner Ψµ in conformal gauge hαβ(τ, σ) = eω(τ,σ)ηαβ:

S = − 1

4πα′

∫
d2σ

(
∂αXµ ∂

αXµ + iΨ̄µ γα ∂αΨµ

)
(3.3.1) 3,19

The Ψµ are spacetime vectors of two components spinors on the worldsheet, Ψµ =
(
ψµ−, ψ

µ
+

)T
with real entries ψµ±. The γα denote worldsheet γ matrices for which one possible representation
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is

γ0 =

 0 −1

1 0

 , γ1 =

 0 1

1 0

 . (3.3.2) 3,20

In terms of lightcone derivatives ∂± := ∂
∂σ±

with σ± = τ ± σ, the fermionic part of the action

(3.3.1) may be rewritten as

Sf =
i

2πα′

∫
d2σ

(
ψµ− ∂+ψ−µ + ψµ+ ∂−ψ+µ

)
, (3.3.3) 3,21

the equations of motion describe left- and right moving waves just like in the bosonic sector,

∂+ψ
µ
− = ∂−ψ

µ
+ = 0 . (3.3.4) 3,22

The total action is invariant under the worldsheet supersymmetry transformations δεX
µ = ε̄Ψµ

and δεΨ
µ = γα∂αX

µε where the parameter ε is an infinitesimal constant Majorana spinor.

3.3.1 Open superstrings

Upon integrating the action (3.3.3) by parts, one encounters the boundary term

δSf =
i

4πα′

∫
dτ
(
ψµ− δψ−µ − ψµ+ δψ+µ

)∣∣∣σ=π

σ=0
. (3.3.5) 3,23

In the open string sector, we have to impose that the contributions from σ = 0 and σ = π

vanish separately. This is equivalent to

ψµ− δψ−µ − ψµ+ δψ+µ

∣∣∣
σ=0,π

= 0 ⇔ δ
(
ψ+µ

)2
∣∣∣
σ=0,π

= δ
(
ψ+µ

)2
∣∣∣
σ=0,π

= 0 . (3.3.6) 3,24

Since the overall sign of the spinor components can be chosen arbitrarily, we impose ψµ+(τ, 0) =

ψµ−(τ, 0), then the boundary condition at σ = π leaves two options corresponding to the Neveu

Schwarz- and the Ramond sector of the theory:

R : ψµ+(τ, π) = +ψµ−(τ, π)

NS : ψµ+(τ, π) = −ψµ−(τ, π)
(3.3.7) 3,25

These boundary conditions give rise to the Fourier expansions

R : ψµ∓(τ, π) =
1√
2

∑
n∈Z

dµn e
−inσ∓

NS : ψµ∓(τ, π) =
1√
2

∑
r∈Z− 1

2

bµr e
−irσ∓

(3.3.8) 3,26

with Grassmann valued modes dn, br. The string states are created by acting on the ground

state of the NS- and R sectors with creation operators. The NS ground state is tachyonic and
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will be removed from the spectrum. The spectrum of both NS- and R sector can be truncated

in a specific way which eliminates the tachyons. This truncation prescription is called GSO

projection due to Gliozzi, Scherk and Olive. This projection leaves an equal number of fermions

and bosons at each mass level and therefore paves the way for spacetime supersymmetry.

3.3.2 Closed superstrings

The closed sector of superstring theory can be constructed in four different ways. Each of left-

and right movers may be taken from open string NS- or R sectors. From spacetime point of

view, we find the following statistics for the states:

• NS-NS, R-R sectors ↔ spacetime bosons

• NS-R, R-NS sectors ↔ spacetime fermions

The NS-NS sector contains the fields gµν , Bµν , ϕ which we had already discussed in bosonic

string theory whereas the ”mixed” NS-R, R-NS sectors contain SUSY superpartners such as

gravitino and dilatino.

The R-R sector is more complicated due to the degenerate ground state. There are two possible

inequivalent R-R ground states (which differ by chirality), corresponding to type IIA- and type

II B superstring theory. In type IIB, left- and right moving sectors have the same chirality, this

leads to a scalar C0 and antisymmetric tensor fields C2 and C4 of rank 2 and 4 at the massless

level. Type IIA (with R-R ground states of opposite chiralities) gives rise to C1, C3 tensor

fields.

The Dp branes to which the Cp forms couple of course also differ between the two theories

type II B ↔ D1, D3, D5, D7, D9 branes

type II A ↔ D0, D2, D4, D6, D8 branes

where the D3 branes play a major role in the AdS/CFT correspondence. Although types IIA/B

are inequivalent theories, they are related by dualities.

As it was shown in the 90’s by Witten, there in fact three further consistent superstring theories

known as type I and heterotic string theories (with gauge groups SO(32) and E8 × E8). They

are connected with each other and the type II models by a web of dualities. For AdS/CFT

purposes, however, it is sufficient to focus on type II.

3.4 D branes

D branes have a dual interpretation which is crucial for the AdS/CFT correspondence:
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• hyperplanes where open strings can end

To lowest order in α′, massless excitations of D branes are described by supersymmetric

Yang Mills theory (with gauge group SU(N) in presence of N branes).

• solitonic solutions of type IIB supergravity in D = 10 dimensions

D branes are very massive and curve spacetime around them. The lowest energy closed

string excitations are gravitons.

The AdS/CFT is based on the identification of these two pictures in a particular limit!

3.4.1 Effective actions for D branes

Just as fundamental strings, D branes can couple to background fields, in particular to gravity.

We aim to find a world volume action describing their dynamics as a generalization of the

worldsheet action for strings. The background fields act as generalized couplings.

Let ξa denote the coordinates for the world volume of a Dp brane (which reduces to ξ0 = τ

and ξ1 = σ in case of the fundamental string). In direct analogy to the string worldsheet area

action, the bosonic part of the D brane action is given by

S(p)
DBI = −µp

∫
dp+1ξ e−ϕ

√
det
(
g∗ab + B∗ab + 2π α′ Fab

)
. (3.4.1) 3,27

The action (3.4.1) is known as Dirac Born Infeld action, or in short, DBI action. Its prefactor

µp = (2π)−pα′−(p+1)/2 relates to the (genuinely non-perturbative) brane tension Tp = µp/gs,

and g∗ is the induced metric on the brane obtained via pullback of the spacetime metric to the

brane worldvolume,

g∗ab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν . (3.4.2) 3,28

The same applies to the B field.

Expanding the DBI action in flat spacetime (with g∗ab = ηab) by means of det(1 + M) =

1 − 1
4
Tr{M2} for antisymmetric matrices M , we see that the DBI action for D3 branes is a

generalization of Yang Mills theory

S(p=3)
DBI ∼ α′−2

∫
d4ξ Tr

{
FabFab

}
, Fab = B∗ab + 2π α′ Fab . (3.4.3) 3,29

D branes also carry some charge under the R-R p form fields Cp. The full action describing

a charged BPS brane (named after Bogomolnyi, Prasad and Sommerfeld) involves a Chern

Simons term, S = SDBI ± SCS,

SCS = µp

∫
dp+1ξ

∑
q

C∗q+1 ∧ Tr
{
eF
}
, (3.4.4) 3,30
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it describes the interaction of the R-R fields Cq+1 with the NS-NS field B. The exponential of

the two form F has to be understood in terms of the wedge product.

BPS branes are stable due to charge conservation. In type IIA/B superstring theory, Dp branes

with p even/odd are BPS stable since R-R gauge potentials Cp+1 are present to which Dp branes

can couple. Unlike fundamental strings, D branes are non-perturbative objects since the tension

and therefore their energy scales as 1/gs, i.e. with the inverse string coupling.

3.4.2 D branes in supergravity
sec:Dsugra

We have discussed in subsection 3.2.1 that to leading order in α′ (i.e. at low energies when

only massless excitations contribute), Weyl invariance of the string worldsheet action in curved

background is equivalent to certain field equations which can be derived from a gravity action.

In superstring theory, this effective target space action is precisely that of supergravity. For this

reason, the supergravity theories are referred to as type IIA/B although they can be motivated

independent of string theory.

In type IIB supergravity, the bosonic field consists of the massless closed string states, gµν , Bµν

and ϕ from the NS-NS sector and the form the R-R form fields C0, C2 and C4. In addition,

there are fermions with an equal number of degrees of freedom as in the bosonic part.

Moreover, we define the axio-dilaton τ and a complex 3 form G3 by

τ := C0 + i e−ϕ , G3 := F3 − τ H3 (3.4.5) 3,31

where F3, H3 are the field strengths of C2 and B2 (in differential form notation F3 = dC2 and

H3 = dB2). The C4 potential is more conveniently represented by the field strength

F̃5 = dC4 +
1

2
B2 ∧ F3 −

1

2
C2 ∧ H3 . (3.4.6) 3,32

Let us finally introduce the rescalings g̃µν = e(ϕ0−ϕ)/6 and κ = κ0e
ϕ0 =

√
8πGN into the Einstein

frame, then the type IIB supergravity action is given by

SIIB =
1

2κ2

∫
d10x

√
−g̃

(
Rg̃ −

|∂µτ |2

2 (Im τ)2
− |G3|2

12 Im τ
− |F̃5|2

4 · 5!

)

+
1

8i κ2

∫
C4 ∧ G3 ∧ Ḡ3

Im τ
. (3.4.7) 3,33

The field strength F̃5 has to be self-dual in the sense that

(?F )µ1...µ5 = Fµ1...µ5 (3.4.8) 3,34

where the Hodge dual (?ω)k of a k form ω in D dimensions is defined by

(?ω)µ1...µD−k =
| det g|
k!

εν1...νkµ1...µD−k ω
ν1...νk , (3.4.9) 3,35
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e.g. ?Fµν = |det g|
2
εµνλρF

λρ in D = 4 dimensions.

Now let us look for solitonic solutions of the equations of motion due to (3.4.7). A Dp brane

is a BPS solution of 10 dimensional supergravity, i.e. it is annihilated by half the Poincaré

supercharges Qα. It has a p + 1 dimensional flat hypersurface with Poincaré invariance group

Rp+1 × SO(1, p). The transverse space is then of dimension D − p− 1.

Here, it would be nice to have a few more words about the ’BPS’ term and about the

relation between SUSY conditions and eq. of motion...

A p brane in 10 dimensions has symmetries Rp+1 × SO(1, p) × SO(9 − p). An ansatz which

solves the equations of motion of type IIB supergravity is

ds2 =
1√
H(~y)

dxµ dxµ +
√
H(~y) d~y · d~y (3.4.10) 3,36

where xµ are the coordinates on the brane world volume and ~y denote the coordinates perpen-

dicular to the brane. It turns out by means of the supergravity equations of motion that

eϕ(~y) =
[
H(~y)

] 3−p
4 , H ≡ harmonic function of y =

√
~y · ~y . (3.4.11) 3,37

Far away from the brane, i.e. at y →∞, flat space has to be recovered, this boundary condition

uniquely fixes H to be

H(~y) = 1 +

(
L

y

)D−p−3

. (3.4.12) 3,38

L is a length scale related to the only dimensionful parameter α′. For a stack of N coincident

Dp branes, one finds

LD−p−3 = N gs (4π)(5−p)/2 Γ
(

7−p
2

)
α′(D−p−3)/2 . (3.4.13) 3,39

Let us finally summarize the special features of D3 branes:

• its worldvolume has 1+3 dimensional Poincaré invariance

• axion- and dilaton fields (C0, ϕ) are constant with relation to the coupling g2
YM = gs = eϕ

• it is a regular supergravity solution for y → 0

• it couples to a self-dual five form dC4 = F5 = ?F5

• string theory implies (since g2
YM = gs) that

L4 = 4π gs N α′2 = 4π λα′2 , λ = gs N ≡ t’Hooft coupling (3.4.14) 3,42



Chapter 4

The AdS/CFT correspondence

4.1 Maldacena’s original argument

Following the arguments of [5], let us consider type IIB string theory in 9+1 dimensional

spacetime with a stack of N D3 branes. There are two kinds of excitations:

• closed strings: excitations of empty space with the graviton as the massless mode

• open strings ending on the D3 branes: ∃ excitations of D branes

At energies below the string mass scale (α′)−1/2, only massless string states are excited:

• massless closed string states ↔ gravity multiplet of type IIB supergravity

• massless open strings states ↔ N = 4 vector multiplet in 3+1 dimensions, SU(N) SYM

4.1.1 D3 branes from the open string point of view

The low energy effective action for the massless excitations of N D3 branes in flat ten dimen-

sional space has the schematic form

S = Sbulk + Sbrane + Sint

Sbulk ≡ D = 10 supergravity including higher derivative terms, i.e. α′ corrections

Sbrane ≡ DBI- and CS action defined on 3+1 dimensional brane world volume:

for small α′, we get SYM ∼ Tr{FµνF µν} plus interactions ∼ α′Tr{F 4}+ ...

Sint ≡ bulk-brane interaction: leading term is appearance of the background

metric g in the brane action

35



36 CHAPTER 4. THE ADS/CFT CORRESPONDENCE

For α′ → 0, the bulk action becomes the Einstein Hilbert action with coupling κ ∼ gsα
′2. In

the expansion gµν = ηµν + κhµν about flat space (with Minkowski metric η), the leading terms

are

Sbulk =
1

2κ2

∫
d10x

√
|g|Rg ∼

∫
d10x

(
(∂h)2 + κ (∂h)2 h + ...

)
. (4.1.1) 3,43

In the low energy limit κ ∼ gsα
′2 → 0, the interaction terms O(κ) drop out, so gravity becomes

free at long distances. Similar behaviour can be observed in the Sint sector. The term ”low

energy limit” should not be taken too literally: the relevant energies E are certainly kept fixed

but we send the dimensionful parameter α′ → 0, therefore various dimensionless quantities such

as α′E2 are suppressed.

4.1.2 D3 branes from the closed string point of view

In their solitonic interpretation, D branes are viewed as massive charged objects which act as

sources for the various supergravity fields. Specializing (3.4.12) to D3 branes in ten dimensions

(D = 10 and p = 3) yields the metric

ds2 =
1√
H(~y)

ηµν dxµ dxν +
√
H(~y)

(
dy2 + y2 dΩ2

5

)
H(~y) = 1 +

(
L

y

)4

. (4.1.2) 3,44

Let us discuss the limits of this metric: When y4 � L4 = 4πgsNα
′2, one recovers flat 10 D

space. When y < L, on the other hand, the metric appears to be singular as y → 0. To

examine this limit more carefully, let us define a new coordinate u := L2/y. In the limit of

large u (where H = 1 + u4/L4 → u4/L4), the metric takes the asymptotic form

ds2
∣∣∣
u→∞

= L2

(
1

u2
ηµν dxµ dxν +

du2

u2
+ dΩ2

5

)
. (4.1.3) 3,41

In this near horizon limit y → 0⇔ u� L, the geometry close to the brane is regular and highly

symmetrical (with isometry group SO(4, 2) × SO(6)). Apart from the S5 sphere represented

by dΩ2
5, we rediscover the AdS5 metric (2.3.12).

An important property of the metric (4.1.2) is its non-constant redshift factor
(
H(~y)

)−1/4
= gtt

with an interesting near horizon limit:

(
H(~y)

)−1/4
=

(
1 + L4/y4

)−1/4
=

 ∼ 1 : large y

∼ y/L : small y
(4.1.4) 3,44a

The energy Ep of an object measured by an observer at constant position y differs from the

energy Ei of the same object, this time measured by an observer at infinity,(
H(~y)

)−1/4
Ep = Ei . (4.1.5) 3,45
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When the object approaches y → 0, it appears to have lower and lower energy to the observer

at infinity. This gives another, geometric notion of low energy regime. We have to distinguish

two kinds of low energy excitations:

• particles approaching y → 0

• massless particles propagating in the bulk (away from y = 0)

Their excitations decouple from each other in the low energy limit: Bulk massless particles

decouple from the near horizon region around y → 0. Excitations close to y = 0 are trapped

by the gravitational potential to the AdS5 × S5 region.

4.1.3 Different forms of the AdS/CFT correspondence

Both from the point of view of open strings’ field theory limit and from the supergravity

point of view, there are two decoupled theories in the low energy regime. One of them is free

supergravity in flat space, and we are led to identify it with the supersymmetric gauge theory

which appears in both descriptions:

N = 4 SYM with gauge group SU(N)
(∗)⇐⇒ type IIB supergravity

The (∗) above the arrow indicates that the correspondence claimed in this AdS/CFT conjecture

holds in the N →∞ limit at large and fixed t’Hooft coupling λ = gsN . Maldacena generalized

this idea to conjecture that the duality goes beyond the supergravity approximation.

The strongest form of the AdS/CFT correspondence conjectures that the duality between the

supersymmetric SU(N) gauge theory and type IIB supergravity holds for any value of N and

gs. This implies that N = 4 SYM is exactly equivalent to the full type IIB superstring theory

on AdS5 × S5. However, it is at present not possible to test the strongest form since there is

no consistent non-perturbative quantization of string theory yet, in particular not in curved

spacetime.

In the (modestly) strong form of the AdS/CFT conjecture, one keeps λ = gsN fixed while

sending N → ∞. In this case the ground state is classical type IIB string theory on AdS5 ×
S5. The perturbative expansion parameter is gs = λ/N � 1 on the string theory side, this

corresponds to a perturbative 1/N expansion on the field theory side.

Finally, there is the weak form of the AdS/CFT conjecture described above. It states that the

correspondence is only valid in the Maldacena limit N →∞ and λ very large. It relates N = 4

SYM at strong coupling and N →∞ with classical supergravity. In contrast to previous forms,
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α′ is assumed to be small now, and the α′ expansion of supergravity is dual to a field theory

expansion in λ−1/2 powers around the strong coupling limit.

weak form of AdS/CFT correspondence :

 λ→∞
N →∞

 ↔

 gs → 0

α′ → 0


The AdS/CFT map provides a weak/strong coupling duality:

• more complicated to test: only direct tests based on objects which are independent of the

coupling

• interesting predictive power: non-trivial prediction for strongly coupled gauge theories

4.2 Field operator map

The aim of this section is to work out the precise dictionary between objects of the two equiv-

alent theories,  N = 4 SYM

N, λ→∞

 ↔

 type IIB supergravity

on AdS5 × S5


in particular between representations of the common symmetry groups. We will relate field

theory operators to supergravity fields which transform in the same representation of the su-

perconformal group SU(2, 2|4) or its bosonic subgroup SO(6) × SO(4, 2). This provides a

one-to-one map between gauge invariant operators in N = 4 SYM and classical fields in IIB

supergravity on AdS5 × S5.

4.2.1 CFT correlation functions

A crucial role in testing the AdS/CFT correspondence is played by the computation and com-

parison of correlation functions. Correlators which obey non-renormalization theorems (i.e.

which are λ independent) will be of particular interest. Let us give a brief review of correlation

functions in QFT.

Composite operators with coinciding arguments such as
(
ϕ(x)

)2
require regularization, the

regularized version will be denoted by
[
ϕ2(x)

]
. Consider an n point function of composite

regularized gauge invariant operators Ok(x),

〈O1(x1)O2(x2) ...On(xn)〉 .
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An important tool to compute this correlator is the generating functional Z[J ] (and its analogue

W [J ] for connected diagrams) defined by

Z[J ] :=

〈
exp

(
−
∫

dDx LJ
)〉

= e−W [J ] (4.2.1) 4,1

where LJ is the Lagrangian of a given QFT with added source term coupled to a basis {Oi} of

gauge invariant local operators:

LJ = L +
∑
i

JiOi (4.2.2) 4,2

The n point function is then given by

〈O1(x1)O2(x2) ...On(xn)〉 =
δn lnZ[J ]

δJ1(x1) δJ2(x2) ... δJn(xn)

∣∣∣
Ji=0

. (4.2.3) 4,3

To calculate correlation functions in AdS5 × S5, it is convenient to work in Euclidean AdS5

with Poincaré coordinates

H :=
{

(z0, ~z), z0 > 0, ~z ∈ R4
}
, ∂H = R4 . (4.2.4) 4,4

The metric

ds2 =
1

z2
0

(
dz2

0 + d~z2
)

(4.2.5) 4,5

diverges at the boundary z0 → 0, but it is merely a coordinate singularity, not a curvature

singularity. The divergence may be removed by a Weyl rescaling. As we will see later, however,

sometimes it is necessary (and useful) to consider a cutoff at fixed z0 = ε. The UV cutoff Λ = 1
ε

is mapped to an IR cutoff ε in AdS. It is natural to assume that N = 4 SYM lives on the

boundary of AdS5.

Typical gauge invariant operators in SU(N) SYM with N = 4 in D = 4 are

O∆(x) := sTr
{
X i1 X i2 ... X i∆

}
= N (1−∆)/2Ci1...i∆ Tr

{
X i1 X i2 ... X i∆

}
. (4.2.6) 4,6

Here, ∆ denotes the conformal dimension of the operators, X i are the elementary scalar fields of

N = 4 SYM transforming in the representation (6) of SO(6) ∼= SU(4) and Ci1...i∆ fall into the

totally symmetric rank ∆ tensor representation of SO(6). The trace is taken over color indices

(recall that all the fields transform in the adjoint representation of SU(N)). The normalization

is chosen such that all planar graphs scale with N2.

4.2.2 The dual fields of supergravity

On the AdS side, we decompose all fields into Kaluza Klein towers on S5, i.e. we expand the

fields in spherical harmonics Y∆(~y) of S5:

ϕ(z, ~y) =
∞∑

∆=0

ϕ∆(z)Y∆(~y) (4.2.7) 4,7
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The ten dimensional Klein Gordon equation implies a massive wave equation in the five dimen-

sional AdS sector, (
�5 + m2

∆

)
ϕ∆(z) = 0 , m2

∆ = ∆ (∆ − 4) . (4.2.8) 4,8

It has two independent solutions which can be characterized by their asymptotics as z0 → 0:

ϕ∆(z0, ~z) ∼

 z∆
0 : normalizable

z4−∆
0 : non-normalizable

(4.2.9) 4,9

The non-normalizable fields define associated boundary fields [3] by virtue of

ϕ̄∆(~z) := lim
z0→0

ϕ∆(z0, ~z) z∆−4
0 . (4.2.10) 4,10

We may identify the normalizable AdS modes ϕ∆ as vacuum expectation values of the field

theory operators O∆ and the non-normalizable modes ϕ̄∆ as sources for these operators:

ϕ∆(z0, ~z) ∼ 〈O∆〉 z∆
0 + ϕ̄∆ z

4−∆
0 (4.2.11) 4,11

The mapping between correlation functions in SYM theory and the supergravity dynamics is

given as follows: The generating functional W [ϕ̄∆] for all correlators of single trace operators

O∆ in SYM is given in terms of the source fields ϕ̄∆. The boundary values of these supergravity

fields become the sources for the QFT. In other words, on the field theory side we have

e−W [ϕ̄∆] =

〈
exp

(
−
∫
∂H

d4z ϕ̄∆O∆

)〉
. (4.2.12) 4,12

The AdS side is governed by an action in terms of the bulk fields S[ϕ∆] in the framework of type

IIB supergravity on AdS5 × S5. The AdS/CFT conjecture for correlation functions says that

precisely this classical gravity action enters the generating functional for the subclass {O∆} of

operators in the N = 4 QFT. The AdS boundary conditions have to be adjusted to meet the

field theory values of the source fields:

W [ϕ̄∆] = S[ϕ∆]
∣∣∣
limz0→0 ϕ∆(z0,~z) z

∆−4
0 =ϕ̄∆(~z)

(4.2.13) 4,13

The action S is the generating functional for tree diagrams on AdS space, i.e. for the classical

expansion of correlators. These tree level graphs in AdS are referred to as Witten diagrams [2],

let us give the corresponding Feynman rules:

• Each external source ϕ̄∆(~z) is located at the boundary.

• Propagators depart from the external sources either to another boundary point or to an

interior interaction point (in which case they are called bulk-to-boundary propagators)
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• The structure of the interior interaction points is governed by the interaction vertices of

the supergravity action. These are obtained from the Kaluza Klein reduction on S5.

• Two interior interaction points may be connected by bulk-to-bulk propagators.

picture of 2pt, 3pt and 2 times 4pt (1 or 2 vertices)

4.2.3 AdS propagators
sec:adsprop

In this section we will derive the scalar propagator in Euclidean AdS spacetime H as defined

in (4.2.4). For simplicity, the AdS radius is set to L = 1. The four vector ~z in the metric

ds2 = 1
z2
0
(dz2

0 + d~z2) parametrizes the boundary ∂H. The geodesic distance is obtained by

solving the geodesic equation (where the parameter ξ is called chordal distance):

d(z, w) =

w∫
z

ds = ln

(
1 +

√
1 − ξ2

ξ

)
, ξ =

2 z0w0

z2
0 + w2

0 + (~z − ~w)2
(4.2.14) 4,15

Let us start from the scalar part of the action which we obtain by Kaluza Klein reduction of

the ten dimensional IIB supergravity on S5. Schematically we get

S[ϕ∆] =

∫
d5z

√
|g|
(

1

2
gµν ∂µϕ∆ ∂νϕ∆ +

m2
∆

2
ϕ∆ + Lint

)
(4.2.15) 4,16

where Lint denotes higher order interaction terms from KK reduction. Now the propagators

are represented by integral kernels K∆, G∆ subject to

ϕ∆(z) =

∫
∂H

d4~x K∆(z, ~x) ϕ̄∆(~x) ≡ bulk-to-boundary propagator (4.2.16) 4,17

ϕ∆(z) =

∫
H

d5x G∆(z, x) J(x) ≡ bulk-to-bulk propagator (4.2.17) 4,18

The scalar Green function satisfies

(
�g + m2

∆

)
G∆(z, x) = δ5(z, x) ≡

∏5
i=1 δ(zi − xi)√

|g|
, m2

∆ = ∆ (∆ − 4) (4.2.18) 4,19

where the action of the Laplacian �g on scalar fields is in general given by

�g ϕ = − 1√
|g|

∂µ
√
|g| gµν ∂νϕ (4.2.19)

and reduces to the following expression in the AdS metric (??):

�g

∣∣∣
AdS

= − z2
0 ∂

2
0 + (d− 1) z0 ∂0 − z2

0

d∑
i=1

∂2
i (4.2.20) 4,20
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This turns (4.2.18) into a hypergeometric equation. The Green function which solves it is thus

given by a hypergeometric function in the argument ξ from (4.2.14):

G∆(z, w) = G∆(ξ) =
C∆

2∆ (2∆− d)
ξ∆ F2,1

(
∆
2
, ∆+1

2
,∆− 1; ξ2

)
(4.2.21) 4,21

C∆ =
Γ(∆)

π2 Γ(∆− 2)

When x is located at the boundary, G∆ reduces to the bulk-to-boundary propagator

K∆(z, ~x) = C∆

(
z0

z2
0 + (~z − ~x)2

)∆

. (4.2.22) 4,22

Calculation of the two point function requires careful treatment of potential divergences at the

boundary. We Fourier transform the boundary coordinates to momentum space. The d + 1

dimensional bulk action

S[ϕ] =

∫
dd+1z

√
|g|
(

1

2
∂µϕ∂

µϕ +
m2

2
ϕ2

)
(4.2.23) 4,23

gives rise to a boundary term after integration by parts,

S[ϕ̄] =
1

2 εd−1

∫
dd~z ϕ̄(~z) ∂0ϕ(ε, ~z) , (4.2.24) 4,24

it is regularized by cutting off the z0 integral at z0 = ε. In the notation ϕ(ε, ~p) ≡ ϕ̄(~p)εd−∆, we

Fourier transform

ϕ(z0, ~z) =

∫
dd~p ei~p·~z ϕ(z0, ~p) (4.2.25) 4,25

in order to simplify the equations of motion:(
z2

0 ∂
2
0 − (d− 1) z0 ∂0 − (~p2 z2

0 + m2
∆)
)
ϕ(z0, ~p) = 0 (4.2.26) 4,26

This is a Bessel equation with solutions z
d/2
0 Kν(z0p) (where ν = ∆− d/2 and p =

√
~p · ~p). The

asymptotics is governed by limz0→∞ z
d/2
0 Kν(z0p) = 0 and Kν(z0 → 0) ∼ zd−∆

0 .

The normalized solutions of the boundary problem read

ϕ(z0, ~p) =
z
d/2
0 Kν(z0p)

εd/2Kν(εp)
ϕ̄(~p) εd−∆ . (4.2.27) 4,27

The first term of the expansion of the supergravity action in correlation functions is

Sp[ϕ̄] =

∫
dp~p dd~q (2π)d δd(~p+ ~q)ϕ(ε, ~p) ∂0ϕ(ε, ~q) , (4.2.28)

This yields the following two point functions for the dual CFT operators:

〈O∆(~p)O∆(~q)〉ε =
δ2Sp[ϕ̄]

δϕ̄(~p) δϕ̄(~q)
= − (2π)d δd(~p+ ~q)

ε2∆−d−1

d

dε
ln
(
εd/2Kν(ε~p)

)
(4.2.29)
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The Bessel index ν is a positive integer whenever the associated CFT operator O∆ with ∆ =

ν + d/2 is a chiral primary. Bessel functions have an asymptotic u → 0 expansion of the

schematic form

Kν(u) → u−ν (a0 + a1 u
2 + a2 u

4 + ...) + uν lnu (b0 + b1 u
2 + b2 u

4 + ...) , (4.2.30) 4,30

this translates as follows to the level of two point functions:

〈O∆(~p)O∆(~q)〉ε =
(2π)d δd(~p+ ~q)

ε2∆−d

(
− d

2
+ ν (1 + c2 + ε2 p2 + c4 ε

4 p4 + ...)

− 2 ν b0

a0

ε2ν p2ν ln(εp) (1 + a2 ε
2 p2 + ...)

)
(4.2.31) 4,31

Explicitly, we have 2νb0
a0

= (−1)ν+1

22(ν−1)Γ(ν)2 and ε2ν = ε2∆−d such that

〈O∆(~p)O∆(−~p)〉ε =
β0 + β1 ε

2 p2 + ... + βν (εp)2(ν−1)

ε2∆−d − 2 ν b0

a0

p2ν ln(εp) + O(ε2) .

(4.2.32) 4,32

The field theory of the first terms is governed by scheme dependent contact terms ∼ �mδd(~x−~y)

and the second term gives the correct non-local result

〈O∆(~p)O∆(−~p)〉 = − 2 ν b0

a0

p2ν ln(εp) (4.2.33) 4,33

independent on ε. Transforming back to position space yields

〈O∆(~p)O∆(−~p)〉 =
Γ(∆)

Γ(∆− d/2)

2∆ − d

πd/2 |x− y|2∆
. (4.2.34) 4,34
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Chapter 5

Tests of the correspondence

5.1 Three point function of 1/2 BPS operators

An impressive test of the AdS/CFT correspondence is the agreement of the three point functions

of 1/2 BPS operators in N = 4 SYM at large N with the corresponding fields in supergravity.

To demonstrate this result, we will proceed as follows:

• look at two point functions to fix the normalization

• calculate three point function in SYM to zeroth order in the coupling

• check that this is not normalized at higher orders, i.e. prove a non-renormalization

theorem to show independence of the correlator on the coupling

• calculate the correlation function on the gravity side (spacetime dependence from the

Green function and couplings from KK reduction)

5.1.1 Correlation functions of 1/2 BPS operators

For the purpose of this section, it is convenient to modify the notation: An 1/2 BPS operator

of N = 4 SYM will be denoted by

OIk = CI
i1...ik

Tr
{
X i1 ... X ik

}
(5.1.1) 5,1

where k ≡ ∆ and the CI are totally symmetric traceless rank k tensors of SO(6).

The SYM action is normalized such that g2
YM = 4πgs, and the normalization Tr{T aT b} =

δab/2 of the SU(N) generators T a allows to recast it into the form

S = − 1

2 g2
YM

∫
d4x Tr

{
Fµν F

µν
}

+ SUSY completion

45
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= − 1

4 g2
YM

∫
d4x F a

µν F
aµν + SUSY completion (5.1.2) 5,2

this gives rise to the following scalar propagators:

〈X ia(x)Xjb(y)〉 =
g2

YM δij δab

(2π)2 |x− y|2
(5.1.3) 5,3

The two point function on the field theory side to lowest order in perturbation theory is therefore

given by

〈OIk(x)OJk (y)〉 = CI
i1...ik

CJ
j1...jk

〈Tr
{
X i1(x) ... X ik(x)

}
Tr
{
Xj1(y) ... Xjk(y)

}
〉

= CI
i1...ik

CJ
j1...jk

Nk g2k
YM

(
δi1j1 δi2j2 ... δikjk + cyclic permutations

)
(2π)2k |x− y|2k

=
k λk δIJ

(2π)2k |x− y|2k
(5.1.4) 5,4

line notation diagram

The last equality only holds to leading order in N .

By an appropriate generalization, one can obtain a nice result for the three point function to

lowest order in perturbation theory and in the limit of large N :

〈OIk1
(x)OJk2

(y)OKk3
(z)〉 =

λΣ/2 k1 k2 k3 〈CI CJ CK〉
N (2π)Σ |x− y|2α3 |y − z|2α1 |x− z|2α2

(5.1.5) 5,5

Note that the spacetime dependence is completely determined by conformal invariance. We

have used shorthands

Σ = k1 + k2 + k3 , αi =
Σ

2
− ki (5.1.6) 5,6

(such that e.g. α1 = k2+k3−k1

2
) and 〈CICJCK〉 denotes a uniquely defined SO(6) tensor con-

traction of indices determined by the Feynman graph.

anotherlinepicture

The notation can be streamlined by defining normalized operators ÕI := (2π)k

λk/2
√
k
OI . Their two

point function is normalized to one,

〈ÕIk(x) ÕJk (y)〉 =
δIJ

|x− y|2k
, (5.1.7) 5,7

and the three point function reads

〈ÕIk(x) ÕJk (y) ÕKk (z)〉 =

√
k1 k2 k3 〈CI CJ CK〉

N |x− y|2α3 |y − z|2α1 |x− z|2α2
. (5.1.8) 5,8

This holds for large values of N , otherwise non-planar corrections of order 1
N2 arise.
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5.1.2 The non-renormalization theorem

Next we demonstrate the absence of O(λ) terms both in 〈OO〉 and in 〈OOO〉. The argument

will hold for any N [9].

Define complex scalar fields Zi := X i + iX i+3 making use of the embedding SU(3) ⊂ SU(4).

The Euclidean version of the N = 4, SU(N) SYM Lagrangian then reads

L = Tr

{
1

4
Fµν F

µν +
1

2
λ̄ /Dλ + DµZ

iDµZ̄i +
1

2
ψ̄i /Dψi

+ i
√

2 g fabc
(
λ̄a Z̄

i
b Lψ

i
c − ψ̄iaRZ

i
b λc
)
− g√

2
fabc εijk

(
ψ̄iaLZ

j
a ψ

k
c + ψ̄iaR Z̄

i
b ψ

k
c

)
− g

2

2
fabc Z̄i

b Z
i
c fade Z̄

jd Zje +
g2

2
fabc fade εijk εilm Z

i
b Z

k
c Z̄

l
d Z̄

m
e

}
(5.1.9) 5,9

where L,R denote the left- and right handed chirality projectors.

Due to supersymmetry, it is sufficient to consider

〈Tr
{

(Z1)k(x)
}

Tr
{

(Z̄1)k(y)
}
〉 =

Pk,k,0(N)(
4π2 |x− y|

)k (5.1.10) 5,10

with the following polynomial in N

Pk,k,0(N) =
∑
σ∈Sk

Tr
{
T a1 T a2 ... T ak

}
Tr
{
T aσ(1) T aσ(2) ... T aσ(k)

}
= k

(
N

2

)k
+ lower order in N . (5.1.11) 5,11

There are various effects to consider at leading order in the coupling:

• self energy corrections

a−−blob−−a′ = δaa
′
N A(x, y)G(x, y) (5.1.12) 5,12

with A(x, y) = a0 + a1 ln
(
µ2(x− y)2

)
and the scalar propagator G(x, y) = 1

4π2|x−y|2

• two particle exchange interactions

(a to b) and (a′ to b′) + quartic vertex =
(
fpab fpa

′b′ + fpab
′
fpa

′b
)
B(x, y)G(x, y)2

(5.1.13) 5,13

B(x, y) = b0 + b1 ln
(
µ2(x− y)2

)
The possible corrections to the rainbow graph at order g2

YM schematically look like

sum up graphs

and it turns out that these three graphs cancel each other for all N and for all k. The proof

goes as follows:
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• use a trace identity valid for any matrices N and Mi:

n∑
i=1

Tr
{
M1 ...Mi−1

[
Mi , N

]
Mi+1 ...Mn

}
(5.1.14) 5,14

• combinatorics for color indices

• insert (5.1.12) between all pairs of adjacent lines using [T a, T b] = ifabcT c

• result for all exchange graphs (with Sk permutation σ):

1

4
(−2B) Tr

{
T a1 ... T ak

} k∑
i 6=j=1

Tr
{
T aσ(1) ...

[
T aσ(i) , T p

]
...
[
T aσ(j) , T p

]
... T aσ(k)

}

• apply (5.1.14) to one of the two commutators to find

B

2
Tr
{
T a1 ... T ak

} k∑
i=1

Tr
{
T aσ(1) ...

[[
T aσ(i) , T p

]
, T p

]
... T aσ(k)

}
=

N B

2
Tr
{
T a1 ... T ak

} k∑
i=1

Tr
{
T aσ(1) ... T aσ(i) ... T aσ(k)

}
(5.1.15) 5,16

The last step follows from the fact that
[
[·, T p], T p

]
is the Casimir operator of the adjoint

representation of SU(N) such that
[
[T a, T p]T p

]
= NT a and the sum over i yields k

identical terms. In the self energy corrections, one also gets a factor of k by similar

argument such that the overall contribution is

k N (B + 2A)

2

∑
σ∈Sk

Tr
{
T a1 ... T ak

}
Tr
{
T aσ(1) ... T aσ(k)

}
=

k N (B + 2A)Pk,k,0(N)

2
.

(5.1.16) 5,17

It follows from the non-renormalization theorem that B + 2A = 0. The reason for that

is the following: The two point function Tr{X2} falls into the same SUSY multiplet as

the energy momentum tensor Tµν . It can be shown that the latter is not renormalized (in

agreement with momentum conservation), so by supersymmetry, Tr{X2} is protected as

well.

On the other hand, it suffices to consider k = 2, i.e. to check explicitly that there are no

quantum corrections to 〈Ok(x)Ok(y)〉 at order O(g2
YM) = O(λ).

5.1.3 The three point function on the gravity side

Having obtained an exact result for the three point function of 1/2 BPS operators on the

field theory side, we are ready to compare with a gravity counterpart. Let us consider three
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point functions of scalar fields in AdS spacetimes. Their Feynman diagram has the structure

of a Mercedes star. It is specified by three edge points ~x, ~y, ~z, by three bulk-to-boundary

propagators and a coupling in the center determined by Kaluza-Klein reduction of S5.

Recall from section 4.2.3 that the bulk-to-boundary Green functions in AdSd+1 is given by

K∆(z0, ~z, ~x) =
Γ(∆)

πd/2 Γ(∆− 2)

(
z0

z2
0 + (~z − ~x)2

)∆

(5.1.17)

Because of its defining property limz0→0

[
z∆−d

0 K∆(z0, ~z, ~x)
]

= δd(~x − ~z) we can express a bulk

field φ in terms of its values at the boundary

φ(z0, ~z) =
Γ(∆)

πd/2 Γ(∆− 2)

∫
dd~x

(
z0

z2
0 + (~z − ~x)2

)∆

φ0(~x) . (5.1.18)

Now the Mercedes diagram of the gravity three point functions is evaluated as

A(~x, ~y, ~z) :=

∫
dw0 dd ~w

1

wd+1
0

(
w0

(w − ~x)2

)∆1
(

w0

(w − ~y)2

)∆2
(

w0

(w − ~z)2

)∆3

(5.1.19) 5,20

Here, we use the notation (w − ~x)2 := w2
0 + (~w − ~x)2.

The number of functions in denominator can be reduced using the trick of inversion: Reex-

press integration variable as wµ =
w′µ

(w′)2 and similarly set ~x = ~x′

|~x′|2 , ~y = ~y′

|~y′|2 and ~z = ~z′

|~z′|2 .

Consequently, the propagators are affected as

K∆(w, ~x) = |~x′|2∆K∆(w′, ~x′) . (5.1.20)

The factor |~x′|2∆ is a first parallel to field theory since |~x′|2∆ = 1
|~x|2∆ . Note that inversion is an

isometry of AdS, so its volume element is invariant dd+1w

wd+1
0

= dd+1w′

(w′0)d+1 . This causes the Mercedes

integral to transform as

A(~x, ~y, ~z) = |~x′|2∆1 |~y′|2∆2 |~z′|2∆3 A(~x′, ~y′, ~z′) . (5.1.21)

To reduce the number of functions in the denominator of (5.1.19) from three to two, proceed

as follows:

• set one argument to zero ~z → 0 using translation invariance,

A(~x, ~y, ~z) = A(~x− ~z, ~y − ~z, 0) =: A(~u,~v, 0) (5.1.22)

This brings the third terms into the nice form
(

w0

(w−~z)2

)∆3 =
(
w0

w2

)∆3 = (w′0)∆3 .

• apply an inversion to find

A(~u,~v, 0) =
1

|~u|2∆1|~v|2∆2

∫
dd+1w′

(w′0)d+1

(
w′0

(w′ − ~u′)2

)∆1
(

w′0
(w′ − ~v′)2

)∆2

(w′0)
∆3 (5.1.23) 5,21
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By translation invariance of the ~w integration variable, the integral can only depend on the

difference ~u′ − ~v′, and dimensional analysis fixes the power to be |~u′ − ~v′|∆3−∆1−∆2 . Hence, we

have already found the spacetime dependence:

A(~u,~v, 0) ∼ |~u′ − ~v′|∆3−∆1−∆2

|~u|2∆1|~v|2∆2

=
1

|~x− ~y|∆1+∆2−∆3 |~y − ~z|∆2+∆3−∆1 |~z − ~x|∆3+∆1−∆2

=: f(~x, ~y, ~z) (5.1.24) Af1

(Note that good care has to be taken to restore the old variables before the inversion transfor-

mation. A useful formula is: (~u′ − ~v′)2 = (~x−~y)2

(~x−~z)2(~y−~z)2 .)

An exact calculation of A(~u,~v, 0) can be done using Feynman parameter methods [4], the

prefactor in A(~x, ~y, ~z) = a · f(~x, ~y, ~z) is found to be

a = −
Γ[1

2
(∆1 + ∆2 −∆3)] Γ[1

2
(∆2 + ∆3 −∆1)] Γ[1

2
(∆3 + ∆1 −∆2)] Γ[1

2
(
∑

i ∆i − d)]

2πd Γ[∆1 − d
2
] Γ[∆2 − d

2
] Γ[∆3 − d

2
]

.

(5.1.25) Af2

The Gamma functions due to the Feynman parameter method have a number of poles.

Now need to consider coupling with which the Mercedes integral (5.1.19) enters the three point

function: 〈
OI(~x)OJ(~y)OK(~z)

〉
= λIJK A(~x, ~y, ~z) (5.1.26)

The A part was just calculated, we will next treat the cubic coupling λIJK coming from KK

reduction in supergravity [12].

Recall from section 3.4.2 that type IIB supergravity contains a self dual five form field F . It

enters the equations of motion for the graviton via

Rmn =
1

3!
Fmijkl Fn

ijkl . (5.1.27)

In the flat AdS5×S5 background solution, the five form takes particularly simple values. Denote

the AdS5 indices by µi, i = 1, 2, ..., 5 and the S5 indices by αi, i = 1, 2, ..., 5, then the solution

reads

ds2 =
1

z2
0

(
d~z2 + dz2

0 + dΩ2
5

)
=: gmn dxm dxn

F̄µ1...µ5 = εµ1...µ5 , F̄α1...α5 = εα1...α5 (5.1.28)

Note that the curvatures of the AdS5 and S5 factors cancel:

AdS5 : Rµλνσ = − (gµν gλσ − gµσ gλν) , Rµν = − 4 gµν , RAdS5 = − 20
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S5 : Rαγβδ = + (gαβ gγδ − gαδ gγβ) , Rαβ = + 4 gαβ , RS5 = + 20

(5.1.29)

Observe that R = RAdS5 +RS5 = 0.

Next we need to look at fluctuations φ0 about this background which couple to operators O in

the dual field theory via interaction terms Sint =
∫

ddxφ0(x)O(x). It was investigated in [13]

how to decompose the supergravity equations of motion and how to decouple them from the

fluctuations.

Starting point is the ansatz

Gmn = gmn + hmn , F = F̄ + δF (5.1.30)

where the fluctiations h, δF are organized as

hαβ = h(αβ) +
h2

5
gαβ , gαβ h(αβ) = 0

hµν = h′(µν) +
h′

5
gµν −

h2

3
gµν , gµν h′(µν) = 0 (5.1.31)

δFijklm = 5∇[i ajklm] (5.1.32)

It is convenient to work in de-Donder gauge (with respect to S5) where

∇αhαβ = ∇αhµα = ∇αaαµ1µ2µ3 = 0 . (5.1.33)

The KK programme requires to expand this ansatz in spherical harmonics Y I on S5:

h′µν =
∑
I

Y I (h′µν)
I , h2 =

∑
I

Y I hI2

aα1...α4 =
∑
I

∇α Y I εαα1α2α3α4 b
I (5.1.34)

aµ1...µ4 =
∑
I

Y I aIµ1...µ4

Inserting this ansatz into the ten dimensional equations of motion leads to diagonalization and

decoupling. The modes which couple to the field theory 1/2 BPS operators OI are given by

SI =
1

20 (k + 2)

(
hI2 − 10 (k + 4) bI

)
. (5.1.35)

Note that k = ∆ in the different notations of the original papers. These S5 modes satisfy a

five dimensional equation of motion in AdS space

(
∇µ∇µ − k (k − 4)

)
SI = λIJK SJ SK (5.1.36)
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where λIJK is given by

λIJK = a(k1, k2, k3)
128 Σ

(
(Σ/2)2 − 1

) (
(Σ/2)2 − 4

)
α1α2α3

〈
CICJCK

〉
(k1 + 1)(k2 + 1)(k3 + 1)

. (5.1.37)

We are using the usual shorthands Σ = k1 + k2 + k3 and α1 = k2+k3−k1

2
(as well as cyclic

variations thereof) and the numbers a(k1, k2, k3) relate S5 integrals of spherical harmonics with

the SO(6) tensors
〈
CICJCK

〉
of (5.1.5),∫

S5

dΩ Y I(Ω)Y J(Ω)Y K(Ω) = a(k1, k2, k3)
〈
CI CJ CK

〉
a(k1, k2, k3) =

π3

(Σ/2)! 2d/2(Σ−2)

k1! k2! k3!

α1!α2!α3!
(5.1.38)

This gives rise to the following dimensionally reduced supergravity action for the SI modes:

S =
4N2

(2π)5

∫
d5x
√
g

[
AI
2

(−∇SI)2 − k (k − 4) (SI)
2 +

1

3
λIJK S

I SJ SK
]

(5.1.39)

We can identify the lower dimensional gravitation coupling and the AdS radius as

1

2κ2
=

4N2

(2π)5
, LAdS = 1 , (5.1.40)

and the constant AI is determined from IIB 10d SUGRA action to be

AI = 32
k (k − 1) (k − 2)

k + 1
Z(k) ,

∫
S5

dΩ Y I(Ω)Y J(Ω) =: Z(k) δIJ . (5.1.41)

Let us now use the action S as given above to calculate the the two point function,〈
SI(x)SJ(y)

〉
=

4N2

(2π)5

π

2k−7

k (k − 1)2 (k − 2)2

(k + 1)2

δIJ

(x− y)2k
(5.1.42)

then define normalized operators ÕI(x) ∼ SI(x) such that
〈
ÕI(x)ÕJ(y)

〉
= δIJ

(x−y)2k . The three

point function is computed on the basis λIJK , the operators’ normalization as given above and

the result (5.1.24), (5.1.25) for A(x, y, z):〈
ÕI(x)ÕJ(y)ÕK(z)

〉
=

1

N

√
k1 k2 k3

〈
CI CJ CK

〉
|x− y|2α3 |y − z|2α1 |z − x|2α2

(5.1.43)

Remarkably, this gravitational correlator coincides with the field theory result!

5.2 The conformal anomaly

As a second example of astonishing agreement between computations in AdS gravity andN = 4

SYM, we will now compute the conformal anomaly using both approaches. The conformal

anomaly parametrizes the failure of the energy momentum tensor to remain traceless under
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quantum corrections in a clasically conformal field theory. Recall that the energy momentum

tensor’s expectation value can be derived from the effective action via

〈Tµν(x)〉 = − 2
√
g

δW

δgµν(x)
. (5.2.1) eq:

In this definition, we can regard gµν as a classical background field, it does not propagate, but

is a source for Tµν .

5.2.1 The conformal anomaly on the field theory side

Let us consider a classical field theory with conformal symmetry with action functional for the

matter fields φ

Smat =

∫
d4x
√
g Lmat (5.2.2) eq:1

Under variation of the metric gµν → gµν + δgµν the chain rule implies

δSmat = − 1

2

∫
d4x
√
g T µν δgµν (5.2.3) eq:2

by definition of the energy momentum tensor. In Poincaré invariant theories, it is symmetric

T µν = T νµ and satisfies the conservation law ∇µT
µν = 0. In conformal theories, it is also

traceless Tµ
µ = 0. This can be seen from a Weyl transformation δgµν = −2σgµν in (5.2.3).

Next we proceed to the quantized theory. Matter fields φ will be promoted to quantum fields

whereas the metric is still regarded as an external, classical field. The generating functional is

given by

Z[g] = e−W [g] =

∫
Dφ exp

{
−
∫

d4x
√
gLmat

}
. (5.2.4) eq:

Then the Weyl transformation gives rise to the following variation in the effective action:

δσW [g] = −1

2

∫
d4x
√
g 〈T µν〉 δσgµν =

∫
d4x
√
g 〈Tµµ〉σ (5.2.5)

Generically, one has 〈Tµµ〉 6= 0 at the quantum level since counterterms needed for regularization

give finite contribution to 〈Tµµ〉. This phenomenon is referred to as conformal anomaly.

Generically in a d = 4 QFT, the conformal anomaly is of the form:

〈Tµµ(x)〉 =
c

16π2
Cµσρν Cµσρν −

a

16π2
εαβγδ εµνσρR

αβµν Rγδσρ (5.2.6) anomaly

Here, C is the Weyl tensor, obtained from the Riemann tensor by subtracting the traces such

that Cµ
σρµ = 0. The second contribution εαβγδεµνσρR

αβµνRγδσρ is called the Euler density and

gives a topological term (Gauss-Bonnet-term)
∫

d4x
√
g εεRR = 4πχ proportional to the Euler

characteristic χ of the manifold. The coefficients c and a are model-dependent.
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Note that in two dimensions, the conformal anomaly is of purely topological nature, 〈Tµµ(x)〉 =

c
24π
R. The prefactor c is the Virasoro central charge. This affects the energy momentum tensor’s

two point functions with a trace involved: Taking δ
δgσρ(y)

gives 〈Tµµ(x)Tσρ(y)〉 = c
24π
∂σ∂ρδ

(2)(x−
y) in d = 2 two dimensions. In d = 4, however, taking first gµν derivatives of (5.2.6) we get

zero in flat space (one curvature term remains in the derivative of the quadratic expression).

Nonzero results arise from second derivatives, i.e. the d = 4 conformal anomaly manifests itself

in the three point function 〈Tµµ(x)Tσρ(y)Tαβ(z)〉.
We are particularly interested in the case of N = 4 SYM. Many explicit calculations methods

(for instance heat-kernel) have been developed prior to AdS/CFT. To lowest order in λ one

finds that c and a depend on the number of degrees of freedom (vectors, fermions, scalars) but

not on λ:

c = a =
1

4
(N2 − 1)

N→∞→ 1

4
N2 (5.2.7)

In total, the agreement of c and a yields the following conformal anomaly in N = 4:

〈T µµ (x)〉 =
c

8π2

(
Rµν Rµν −

1

3
R2

)
N→∞→ N2

32π2

(
Rµν Rµν −

1

3
R2

)
(5.2.8) YManomaly

5.2.2 The conformal anomaly on the gravity side

The gravity counterpart, i.e. the conformal anomaly from AdS space, was computed in [14] for

the first time. Starting point is the action of d = 5 AdS gravity,

S = − 1

16π G

∫
d5z
√
g

(
R +

12

L2

)
. (5.2.9) AdSaction

Recall that the metric for AdS5 is given by ds2 = L2
[

dρ2

4ρ2 + 1
ρ
δµνdx

µdxν
]

as long as the ρ = 0

boundary remains flat. If we allow for curvature terms at the boundary, this generalizes to

ds2 = L2

[
dρ2

4 ρ2
+

1

ρ
gµν(x, ρ) dxµ dxν

]
, lim

ρ→0
gµν(x, ρ) = gµν(x) . (5.2.10) eq:EquationStar

Fluctuations about the flat case are parametrized as gµν(x) = δµν +hµν(x), the energy momen-

tum is then obtained by 〈Tµν(x)〉 = − 2√
g
δW
δhµν

.

The metric’s coordinate singularty at ρ→ 0 can be avoided by means of a cutoff at ρ = ε. The

integration region in the action is then restricted to ρ ≥ ε. The induced metric at ρ = ε will be

denoted by

γµν(x) :=
gµν(x, ρ = ε)

ε
. (5.2.11)

As usual, Weyl transformation of the metric gives the trace of the energy-momentum tensor.

Therefore, we need to translate a Weyl transformation in the boundary theory into a trans-

formation in the bulk, i.e. in d = 5 AdS. The task is to find a d = 5 diffeomorphism which
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reduces to a Weyl transformation on the boundary. The desired diffeomorphism is known as

the Penrose-Brown-Henneaux transformation:

ρ = ρ′
(
1 − 2σ(x′)

)
, xµ = (x′)µ + aµ(x′, ρ′) (5.2.12)

One has to make sure that the form of the d = 5 metric (5.2.10) is covariant under this

transformation, i.e. that g′55 = g55 and g′5µ = g5µ (where 5 denotes the ρ index). This imposes

the constraints

∂5a
µ =

L2

2
gµν ∂νσ (5.2.13) diff

on the functions aµ and σ of (5.2.13). It follows that

aµ(x, ρ) =
L2

2

ρ∫
0

dρ̂ gµν(x, ρ̂) ∂νσ(x) . (5.2.14) diff1

Under this diffeomorphism, the d = 4 part gµν(x, ρ) of the metric transforms as

gµν 7→ gµν + 2σ

(
1 − ρ

∂

∂ρ

)
gµν + ∇µaν + ∇νaµ (5.2.15)

such that at the boundary (where ρ → 0) we have aµ → 0 and ρ ∂
∂ρ
gµν → 0 and therefore

δgµν(x) = 2σ(x)gµν(x)

Inserting all that into action (5.2.9) yields

δW =

∫
d4x 〈T µν〉 δgµν , δgµν = 2σ gµν . (5.2.16)

The divergence of S at the boundary is regularized by introducing the cutoff ρ ≥ ε, subtracting

counterterms make Sren = S − Sct finite. To get the explicit form of Sct, we need some more

information about the form of gµν(x, ρ). This is provided by the Fefferman-Graham theorem:

If a metric of the form (5.2.10) satisfies the Einstein equations, then gµν(x, ρ) may be expanded

as:

gµν(x, ρ) = gµν(x) + ρ g(2)
µν (x) + ρ2 g(4)

µν (x) + ρ2 ln(ρ)h(4)
µν + ... (5.2.17)

The coefficients g
(n)
µν are built out of the curvature for the boundary metric gµν(x). They are

calculated by inserting the expansion into the vacuum Einstein equation
(
Rµν − 1

2
gµνR

)
= Λgµν .

For example, the linear coefficient is found to be g
(2)
µν (x) = 1

2

(
Rµν − 1

6
Rgµν

)
. The lowest order

divergent terms in S then lead to

Sct =
1

4π G

∫
d4x
√
γ

(
3

2L
− LR

8
− L3 ln ε

32

(
Rµν Rµν −

R2

3

))
(5.2.18)

in the minimal subtraction renormalization scheme. The action S we started with is diffeomor-

phism invariant, but the introduction of the counterterms spoils this symmetry. More precisely,
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the Penrose-Brown-Henneaux transformation of S − Sct is given by

δ(S − Sct) = −2 ε
∂

∂ε
Sct =

L3

64πG

(
Rµν Rµν −

R2

3

)
. (5.2.19)

The Weyl variation at the boundary gives rise to the energy momentum trace

gµν 〈Tµν〉 =
L3

8πG

(
Rµν Rµν

8
− R2

24

)
=

N2

32π2

(
Rµν Rµν −

R2

3

)
(5.2.20)

with d = 5 Newton constant G = G10

vol(S5)
= πL3

2N2 . Again, the gravity result conincides with the

N →∞ limit of the field theory pendant (5.2.8).



Chapter 6

Generalizations of AdS/CFT

6.1 Holographic renormalization group flows

In the context of the AdS/CFT correspondence, the term holography represents the fact that the

number of bulk degrees of freedom equals the number of boundary degrees of freedom. So far, we

have checked this phenomenon for N = 4 SYM theory with gauge group SU(N) and symmetry

group SO(4, 2)×SO(6) ⊂ SU(2, 2|4) and its gravity dual. However, this correspondence is far

away from reality because of the following points:

• correspondence valid in the N →∞ limit

• conformal symmetry and supersymmetry

• fields in the adjoint representation of the gauge group

On the other hand, with QCD, we have the well-established theory of strong interactions which

differs from N = 4 SYM in several points:

• gauge group SU(3), i.e. small finite N

• no supersymmetry

• confinement incompatible with conformal symmetry

• quarks in the fundamental representation of the gauge group

Adapting the gauge group SU(N)→ SU(3) in the AdS/CFT correspondence will probably not

be achieved in the near future. But looking at large N QCD and performing a 1/N expansion

is still a useful approximation.

57
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As to the other features in the list: We may break conformal symmetry and supersymmetry in

a controlled way, and we may add quark degrees of freedom. To find a modest beginning, let

us first of all break some of supersymmetry (N = 4 to N = 1) as well as conformal invariance.

On the field theory side, this is done by adding relevant operators to the Lagrangian:

L = LN=4 +
mij

2
Tr
{
X iXj

}
+

Mab

2
Tr
{
ψa ψb

}
+ bijk Tr

{
X iXj Xk

}
(6.1.1) 6,1

This modification triggers renormalization group flows. In general QFTs, renormalization group

equations express the invariance of physics under difference choices of the renormalization scale

µ. Let Γ denote some vertex function (depending on couplings gi), then the RG equation

assumes the form

0 = µ
dΓ[µ, gi]

dµ
= µ

∂Γ[µ, gi]

∂µ
+ βi(g) ∂iΓ[µ, gi] , βi(g) = µ

dgi(µ)

dµ
. (6.1.2) 6,2

6.1.1 Renormalization group flow in supergravity

To find an AdS analogue of field theory RG equations we now look for a toy model of a

supergravity RG flow. The idea is to obtain equations like (6.1.2) as equations of motion in

extra dimensions. For that purpose, consider five dimensional gravity with a single scalar field:

S =
1

4π G

∫
d5x

√
|g|
(
− R

4
+

1

2
∂µϕ∂

µϕ + V (ϕ)

)
(6.1.3) 6,3

For simplicity set 4πG = 1 and split spacetime as d5x = d4x dr, then ϕ is dimensionless.

Moreover, choose the potential V (ϕ) such that is has one or more critical points with V ′(ϕ) = 0.

The equations of motion for ϕ and gµν read

1√
|g|

∂µ
(√
|g| gµν ∂νϕ

)
− V ′(ϕ) = 0 (6.1.4) 6,4

as well as

Rµν −
R

2
gµν = 2 ∂µϕ∂νϕ − gµν ∂λϕ∂

λϕ + 2V (ϕ) =: 2Tµν (6.1.5) 6,5

At the critical points ϕi, there is a trivial solution of the scalar equation of motion ϕ(r) = ϕi.

Here, the Einstein equation reduces to Rµν − R
2
gµν = −2gµνV (ϕi). This is identical to the

Einstein equation of AdS space Gµν −Λgµν = 0 if we identify Λi = 2V (ϕi) = −d(d−1)

L2
i

. In other

words, constant scalar fields with AdSd+1 geometry of scale Li are critical solutions.

A more general ansatz for solving the equations of motion to (6.1.3) involves a metric with

so-called warp factor A(r):

ds2 = e2A(r) ηµν dxµ dxν + dr2 (6.1.6) 6,6
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This is known as the domain wall ansatz for the metric, it reduces to another form of the AdS

metric if we make the linear choice A(r) = r/L. The idea is to identify the radial coordinate

with the RG scale r = 1
µ
.

The components of the Riemann tensor due to (6.1.6) read

Rij
kl = −A′(r)2

(
δik δ

j
l − δil δ

j
k

)
Ri5

j5 = −
(
A′′(r) + A′(r)2

)
δij (6.1.7) 6,7

Rij
k5 = 0

(where i, j, k, l ∈ {0, 1, 2, 3} and r ≡ 5) and the resulting Ricci tensor is given by

Rij = − e2A(r)
(
A′′(r) + dA′(r)2

)
δij

R55 = − d
(
A′′(r) + A′(r)

)2
(6.1.8) 6,8

Ri5 = 0 .

This gives rise to Einstein equations

Gi
j = (d− 1) δij

(
A′′ +

d

2
(A′)2

)
= 2T ij

G5
5 =

d (d− 1)

2
(A′)2 = 2T 5

5 . (6.1.9) 6,8a

By carefully considering the difference Gi
i−G5

5 (without sum over i), one can extract a bound

on the second derivative of the warp factor from (6.1.9):

A′′ =
2

d− 1

(
T ii − T 5

5

)
= − 2

d− 1

(
ϕ′
)2 ⇒ A′′ < 0 (6.1.10) 6,10

This is consistent with the weak energy condition saying that every Poincaré invariant matter

distribution satisfies T ii − T 5
5 < 0.

The d = 4 equations of motion in terms of A read

ϕ′′ + 4A′ ϕ′ =
dV (ϕ)

dϕ

(ϕ′)2 − 2V (ϕ) = 6 (A′)2 . (6.1.11) 6,11

Note that A(r) = r
Li

at critical points.

Our goal is to find a general solution of (6.1.11) which interpolates between two critical points.

In AdS5×S5 language, we are looking for a domain wall solution interpolating between AdS of

radius L1 for r → +∞ and AdS of radius L2 for r → −∞. This is dual to an RG flow between

two fixed points.
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6.1.2 Leigh Strassler flow

A very nice example is the Leigh Strassler flow which can be best described in superfield

language. It establishes a field operator map in particular for the relevant operators added

to LN=4. We can describe the N = 4 theory in N = 1 notation by reorganizing the N = 4

supermultiplet (one vector Aµ, four fermions λa and six real scalars X i) as follows

• one N = 1 vector multiplet (Aµ, λa=4)

• three N = 1 chiral multiplets (λa, ϕa = X2a−1 + iX2a) with a = 1, 2, 3

Superspace is an 8 dimensional space spanned by four standard spacetime coordinates xµ, µ =

0, 1, 2, 3 and two Weyl spinorial Grassmann variables θα, θ̄β̇ (where α, β̇ = 1, 2). Scalars and

three fermions of N = 4 SYM are aligned into N = 1 chiral superfields with theta expansion

Φi = ϕi + θα λiα + higher order in θ . (6.1.12) 6,12

Chiral superfields are annihilated by half the supercharges Q̄α̇Φ = 0. Clearly, the expansion

terminates after a θθ θ̄θ̄ term.

In addition, a vector superfield V captures the N = 4 vector Aµ and the fourth fermion. One

can bring the theta expansion into the form

V = θ σµ θ̄ Aµ + (θ θ) θ̄α̇ λ̄
α̇
4 + (θ̄ θ̄) θα λα,4 (6.1.13) 6,12a

Let us write down the Lagrangian of the N = 4 theory in N = 1 superspace language:

LN=4 =
3∑
i=1

∫
d2θ d2θ̄ Tr

{
e−gV Φ̄i egV Φi

}
+

(
g

∫
d2θ Tr

{
Φ3
[
Φ1 , Φ2

]}
+

1

g2

∫
d2θ Tr

{
WαWα

}
+ h.c.

)
(6.1.14) 6,13

In this formulation, LN=4 exhibits manifest N = 1 supersymmetry with R symmetry group

SU(3) × U(1). The first d2θ integrand ∼ gΦ3
[
Φ1 , Φ2

]
is referred to as a superpotential. The

gauge kinetic term involves superfields Wα which contain the non-abelian field strength Fµν

derived from Aµ.

The general relevant deformation which preserves N = 1 supersymmetry is obtained by adding

an additional superpotential contribution

U = hTr
{

Φ3
[
Φ1 , Φ2

]}
+

MAB

2
Tr
{

ΦA ΦB
}
. (6.1.15) 6,14

What is left to show is the fact that this theory flows to a non-trivial fixed point in the IR.
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The Leigh Strassler flow is triggered by the deformation

ULS := hTr
{

Φ3
[
Φ1 , Φ2

]}
+

m

2
Tr
{

(Φ3)2
}
. (6.1.16) 6,15

Because of the scaling dimensions [h] = 0 and [m] = 1, the former term is referred to as

marginal, the mass term as relevant.

The deformation (6.1.16) leads to a reduced R symmetry SU(2)× U(1), the former acting on

the Φ1,2 fields. The U(1) charges of the chiral superfields Φ1,2,3 are (1/2, 1/2,−1).

A necessary condition for an IR fixed point is βi = 0, and luckily the beta function for the

gauge coupling β(g) is well-known for N = 1 theories to all orders in perturbation theory. It is

given by the NSVZ beta function (named after Novikov, Shifman, Vainstein and Zakharov)

β(g) = − g
3 T (RA)

8π2

3T (G) −
∑

A T (RA) (1 − 2 γA)

1 − g2 T (G)/(8π2)
(6.1.17) 6,16

Here, γA denotes the anomalous dimension of the superfield ΦA and the Dynkin index T (RA)

of the representation RA is defined by the normalizaton of the two-trace,

TrA
{
T a T b

}
= T (RA) δab . (6.1.18) 6,17

Here we are dealing with G = SU(N) and all the fields transform in the adjoint representation.

Therefore, T (RA) = T (G) = N and

β(g) ∼ 2N (γ1 + γ2 + γ3) . (6.1.19) 6,18

The β functions for matter fields are simple due to non-renormalization theorems in SUSY

theories. Hence, the running of the parameters h,m in (6.1.16) is governed by

βh = γ1 + γ2 + γ3 , βm = 1 − 2 γ3 . (6.1.20) 6,19

The condition β(g) = βh = βm has a unique SU(2) invariant solution

γ1 = γ2 = − γ3

2
= − 1

4
. (6.1.21) 6,20

The IR fixed point theory with given values of the anomalous dimensions has N = 1 super-

conformal symmetry under SU(2, 2|1). The engineering dimensions of the superfields are given

by ∆A = 1 + γA. According to the field operator map, conformal primary operators O are

constructed from gauge invariant combinations of Φ1, Φ2 and the field strength superfield Wα

(which contains Fµν).

O Tr
{

Φi Φj
}

Tr
{
Wα Φi

}
Tr
{
WαWα

}
Tr
{

Φ̄†i (T a)ij Φj
}

Tr
{
Wα W̄β̇

}
∆ 3/2 9/4 3 2 3

The Φi=1,2 form an SU(2) doublet, and T a denote the associated SU(2) generators.
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6.1.3 Holographic flows in supergravity

The next goal is to construct a gravity dual to the Leigh Strassler flow. For that purpose, let

us start with some general remarks about holographic flows in supergravity. Consider a metric

of domain wall type

ds2 = e2A(r) ηµν dxµ dxν + dr2 (6.1.22) 6,21

with boundary at r → ∞. Recall that it reduces to an AdS spacetime if A(r) = r
L

, i.e. these

cases are dual to conformal field theories. An RG flow between two CFTs can be mapped to

an A(r) solution which interpolates between two linear regimes of different slope.

As a simplest case, we put a single scalar field into the spacetime (6.1.22), the equations of

motion for this system have been given in (6.1.11). They can be simplified by introducing an

auxiliary function W (ϕ),

V (ϕ) =
1

2

(
dW

dr

)2

− 4

3
W 2 , (6.1.23) 6,22

namely they become a first order gradient flow (after using A′ = −2
3
W )

dϕ

dr
=

dW

dϕ
. (6.1.24) 6,23

We look for solutions of the equations of motions which interpolate between two conformal

fixed points on the field theory side:

lim
r→∞

A(r) =
r

L1

, lim
r→−∞

A(r) =
r

L2

(6.1.25) 6,24

The two AdS radii Li lead to different central charges for the CFTs, say L1 ↔ cUV and L2 ↔ cIR.

Recall that in d = 4 SYM, the central charge is the prefactor relating T µµ with RµνRµν − R2

3
.

In quadratic approximation, the gravity potential V (ϕ) in the neighbourhood of the UV critical

point ϕi is given by

V (ϕ) = V (ϕi) +
m2
i

2L2
i

h2 + O(h3) . (6.1.26) 6,25

in terms of h := ϕ− ϕi with masses m2
i = L2

iV
′′(ϕi). The value at ϕi itself is the cosmological

constant,

V (ϕi) = − d (d− 1)

4L2
i

. (6.1.27) 6,26

The fluctuation h(r, ~x) can be viewed as the gravity dual to some operator O∆(~x) where m2
i =

∆(∆− 4).

The marginal operator 1
g2 Tr{FµνF µν} for instance has dimension ∆ = 4, so it must couple to

some massless field. A careful analysis of the d = 10 DBI action identifies the dilaton with

that scalar coupling to Tr{F 2}. The dilaton being constant then leads to the vanishing of the

β function.
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The asymptotic behaviour of h(r, ~x) at the boundary of (d + 1) dimensional AdS space is

governed by

h(r, ~x)
r→∞→ e(∆−d)r

(
ϕi + h̄(~x)

)
, (6.1.28) 6,27

cf. the earlier interpretation ϕ(r) ∼ ϕ0e
(∆−d)r + 〈O〉 e−∆r.

As a generalization of the AdS/CFT generating functional, consider〈
exp

(
−SCFT +

∫
ddx O∆(~x)

(
ϕi + h̄(~x)

))〉
= e−Sgrav[h̄] . (6.1.29) 6,28

The new piece ∆S :=
∫

ddxO∆(ϕi + h̄) belongs to a non-conformal action S = SCFT + ∆S, i.e.

∆S is an operator deformation of the CFT.

Correlation functions on the field theory side can be obtained from the gravitational action

〈O∆(~x1) ...O∆(~xn)〉 =
(−1)n−1 δn

δh̄(~x1) ... δh̄(~xn)
Sgrav[ϕi + h̄]

∣∣∣
h̄=0

. (6.1.30) 6,29

Negative mass squares occur if the critical point is a local maximum. If 0 > m2 > −d2

4
, then

d > ∆ > D
2

and O∆ is a relevant deformation driving the field theory away from the fixed

point.

If V has a local minimum at the fixed point then m2 > 0 and O∆ has conformal dimension

∆ > d. This is an example for an irrelevant operator which drives the flow into an IR fixed

point. We look at interpolating flows, i.e. at solutions of the combined equations of motion (of

Einstein- and scalar type) for which the scalar field ϕ(r) corresponds to a maximum of V (ϕ)

in the UV (r →∞) and to a minimum in the IR (r → −∞).

Let us revisit the expansion around the critical point, this time in the form

ϕ(r) = ϕi + h(r) , A′ =
1

Li
+ a′(r) (6.1.31) 6,30

where a′ = O(h2). The linearized equation of motion for the scalar fluctuation reads

h′′ +
d

Li
h′ − m2

i

L2
i

h = 0 (6.1.32) 6,31

with general solution

h(r) = B e(∆i−d)r/Li + C e−∆ir/Li , m2
i = ∆i (∆i − 4) . (6.1.33) 6,32

In the limit r → ±∞ we have

ϕ(r → +∞) = ϕ1 + B1 e
(∆1−d)r/L1 + C1 e

−∆1r/L1

ϕ(r → −∞) = ϕ2 + B2 e
(∆2−d)r/L2 + C2 e

−∆2r/L2 . (6.1.34) 6,33

One gets the impression that the domain wall flow sees the IR fixed point only in the deep

interior r → −∞. To establish the field operator map for CFT at the IR fixed point, we have

to extend the IR geometry to a complete AdS space with radius L = LIR. Note that the bound

A′′ < 0 implies LUV > LIR.
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6.2 The holographic c theorem

TO BE FILLED BY JOHANNA

6.3 Last lecture of 2009

Domain wall flow ds2 = e2A(r)ηijdx
idxj + dr2. Case A(r) = r

L
corresponds to AdS.

Other possibility: Confinement

Plots: - A(r) with pole at finite negative value of r, and linear for r → ∞ - Coupling in

QCD

Characterise confinement by calculating Wilson loop (area law)

What we also want to do: So far: N=4, all fields in adjoint rep of gauge group φ→ e−iΛφeiΛ

Need for QCD: Quarks are in fundamental rep. φ→ eiΛφ

Also on gravity side, need more degrees of freedom. One possibility: Embedding of probe

D7 branes → flavour (global symmetry)

In the Maldacena limit, the gauge coupling on the D7 brane goes to zero→ global symmetry.

In the probe limit (N D3-branes, N →∞, 1 or 2 D7-branes) we may ignore the backreaction of

the D7-branes on the D3-branes. Separation of D3, D7 in 8,9 directions corresponds to quark

mass.

New duality: 1) Standard AdS/CFT 2) N=2 SUSY hypermultiplet in fundamental rep of

gauge group⇔ fluctuations of D7 in AdS5xS5 as described by the Dirac-Born-Infeld action for

the D7.

SUSY embeddings

D3 x x x x 0 0 0 0 0 0

D3 x x 0 0 x x 0 0 0 0 AdS3 × S1

D5 x x x 0 x x x 0 0 0 AdS4 × S2

D7 x x x x x x x x 0 0 AdS5 × S3

Black Hole in AdS5 ¡-¿ Field theory at finite temperature Hawking Temperature ¡-¿ temperature

in QFT

6.4 Applications 1: Field Theories at finite temperature

Switching on a temperature breaks all of the supersymmetry (still we keep the degrees of

freedom of N = 4, with possibly different masses, and the N → ∞ planar limit!). Simplest
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case: t→ −iτ , eiHt → e−βH , β = 1
kBT

, field theory in thermal equilibrium.

2nd step: consider black hole in Minkowski signature AdS space → dynamical processes

(transport, relaxation) near-equilibrium.

Quark-Gluon plasma: The to date most successful application of generalized AdS/CFT is to

descriptions of the QGP. This is a state of (QCD) matter at finite temperature and/or density.

Phase diagram of QCD: See plot

Perturbative QCD is not suited for describing the strongly coupled quark-gluon-plasma.

Lattice gauge theory is difficult at finite temperature and density, and not suited for describing

dynamical processes such as scattering.

AdS/CFT at finite temperature is well-suited for describing strongly coupled N = 4 theory

in the planar limit, in particular dynamical processes. In some important examples, comparison

to QCD is possible.

Most famous example: (Shear viscosity / entropy density) ratio.

η =
1

ω

∫
d4p eiωt 〈Txy(~p)Txy(−~p)〉 (6.4.1)

(Kubo formula)

AdS/CFT: η
s

= 1
4π

very small value, almost ideal fluid!

Perturbative QCD result: factor 10 larger

AdS/CFT result is in agreement with measurements at RHIC (Large experimental error,

however).

Review of Black Holes:

1) Flat space

Schwarzschild Metric

ds2 = −
(

1− 2GM

r

)
dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2 (6.4.2)

r = 0 is a singularity (true curvature singularity), RµνσρRµνσρ = 48G2M2

r6 .

r = 2GM Schwarzschild radius

At the Schwarzschild radius, the curvature is finite. It corresponds to the event horizon of

the black hole. For an external observer, the light cone closes up as r → 2GM .

Other coordinates (Eddington-Finkelstein): Light cones tilt over

Hawking Temperature: Perform a Bogolubov transformation between states in coordinate

systems at and far away from the black hole.

2) Calculate number density → thermal spectrum. nΩ = 1
exp( E

κTH
)−1

, TH = kappa
2π

= 1
8πGM

. κ

surface gravity: acceleration needed to keep an object at the horizon (Schwarzschild radius).
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6.5 Gauge gravity duality at finite temperature and den-

sity

At finite density and temperature: Let ϕ∗ be a saddle point of some Euclidean action SE[ϕ],

then we can approximate the generating functional semiclassically as

Z =

∫
Dϕ e−SE[ϕ] ≈ e−SE[ϕ∗] . (6.5.1) 8,1

According to the weak form of the AdS/CFT correspondence, the partition function of the

classical bulk theory with asymptotically AdS boundary conditions is equivalent to the partition

function of the large N QFT. The metric g then takes the role of the ϕ field above:

Zgrav = e−SE[g∗] (6.5.2) 8,2

The gravitational action contains a Gibbons Hawking boundary term required for finiteness,

SE[g] = − 1

2κ2

∫
dd+1x

√
g

(
R +

d (d− 1)

L2

)
+

1

2κ2

∫
r→0

ddx
√
g

(
− 2K +

2 (d− 1)

L2

)
.

(6.5.3) 8,3

Here, K denotes the trace of the extrinsic curvature,

K = γµν ∇µ nν , (6.5.4) 8,4

where γµν is the induced metric on the boundary at r → 0 and nµ an outward pointing unit

normal vector on the boundary.

A saddle point, i.e. a solution to the equations of motion, is obtained by analytic continuation

of the AdS Schwarzschild metric

ds2 =
L2

r2

(
f(r) dτ 2 +

dr2

f(r)
+ dxi dxi

)
, f(r) = 1 − r4

r4
H

. (6.5.5) 8,5

The periodicity requirement for regularity fixes the temperature to

T =
d

4π rH

. (6.5.6) 8,6

We obtain further thermodynamic quantities by evaluating the partition function at the saddle

point e−SE[g∗]. The action as given in (6.5.3), evaluated at the Euclidean Schwarzschild metric,

is found to be

SE = − Ld−1

2κ2 rdH

Vd−1

T
= − (4π)d Ld−1 Vd−1 T

d−1

2κ2 dd
(6.5.7) 8,7

where Vd−1 is the spatial volume of the associated QFT.

In order to be in the classical gravity regime, we need that the spacetime is weakly curved in

Planck units, i.e. that Ld−1

κ2 � 1. The dual field theory analogue of Ld−1

κ2 � 1 is N →∞, recall

that L4 = 4πgsNα
′2.
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From the action given by (6.5.7) we obtain the free energy and entropy as

F = −T lnZ = T SE[g∗] = − (4π)d Ld−1 Vd−1 T
d

2κ2 dd
(6.5.8)

S = − ∂F

∂T
=

(4π)d Ld−1 Vd−1 T
d−1

2κ2 dd−1
. (6.5.9)

The expression for the entropy is equal to the area of the event horizon divided by 4GN = κ2

2π
.

This area entropy relation is universally expected to be true for event horizons.

6.5.1 Finite density

Consider gravitational theories which are dual to a QFT with an additional global U(1) sym-

metry. What is the gravity dual of this symmetry? Generically, in gauge gravity duality, the

correspondence is

global symmetry of field

theory in d dimensions

 ⇔

 local symmetry of gravity

in d+ 1 dimensions
(6.5.10)

The current Jµ of global U(1) symmetry in field theory is dual to a gauge field AM in the d+ 1

dimensional gravity theory, more precisely to its pull back Aµ to the boundary.

To give another example of the global-local dictionary: A global SO(d− 1) rotation symmetry

in the spatial directions of a QFT becomes part of the diffeomorphisms of general relativity.

Gauge symmetries include subgroups of “large” gauge transformations which act non-trivially

as global symmetries on the boundary of spacetime. In the AdS/CFT correspondence, this is

precisely the global symmetry at the boundary.

To describe the physics of the global U(1) symmetry, we therefore have to add a Maxwell field to

the bulk spacetime. This leads to Einstein Maxwell theory (which for instance arises naturally

from the graviphoton in supersymmetric theories). In Minkowski signature, its action reads

S[g, A] = − 1

2κ2

∫
dd+1x

√
g

(
R +

d (d− 1)

L2

)
− 1

4 g2

∫
dd+1x

√
g Fµν F

µν . (6.5.11) 8,8

If the Einstein Maxwell action is derived from a supersymmetric theory, then the couplings

κ and g are related. Moreover, the supercurrent of the four dimensional supergravity theory

contains both the R symmetry current Rµ and the energy momentum tensor in its θ expansion:

Jµ = Rµ + θαQαµ + θ̄α̇ Q̄
α̇
µ + θα σν

αβ̇
θ̄β̇ Tµν (6.5.12) 8,8a

6.5.2 Chemical potential in quantum field theory

Consider a QFT containing a scalar, fermion and a gauge field with Lagrangian

L = (Dµϕ)∗Dµϕ + i ψ̄ /Dψ +
1

g2
Fµν F

µν . (6.5.13) 8,9



68 CHAPTER 6. GENERALIZATIONS OF ADS/CFT

The U(1) gauge field Aµ enters the covariant derivative via Dµ = ∂µ + iAµ. Let us give its time

component a non-vanishing VEV of the form 〈A0〉 = µ such that

A0 = 〈A0〉 + δA0 . (6.5.14) 8,10

then a potential is generated of the form

V = −µ2 ϕ∗ − µψ† ψ . (6.5.15) 8,11

This is an upside down mass term for the scalar causing instability, and the extra term for

the fermion can be interpreted as a density operator Nψ = ψ†ψ. The coefficient of the overall

potential −µN is interpreted as the chemical potential.

The corresponding thermodynamical potential of the grand canonical ensemble is the Gibbs

free energy

Ω = E − T S − µN . (6.5.16) 8,12

A similar structure is present in the gravity dual. For this, we have to find a solution to the

equation of motion of Einstein Maxwell theory with A = At(r)dt. The background Maxwell

potential of the field theory is read off from the boundary values of the bulk Maxwell field

Aµ(r) = A
(0)
µ + ... as r → 0. The Einstein equations of motion involve the energy momentum

tensor of the field strength Fµν

Rµν −
R
2
gµν −

d (d− 1)

2L2
gµν =

κ2

g2

(
Fµλ Fν

λ − 1

4
gµν Fλρ F

λρ

)
(6.5.17) 8,13

whereas the Maxwell equations remain in their standard form ∇µF
µν = 0.

A particular solution of the Maxwell field of the form A = At(r)dt is the Reissner Nordström

AdS black hole

ds2 =
L2

r2

(
− f(r) dt2 +

dr2

f(r)
+ dxi dxi

)
f(r) = 1 −

(
1 +

r2
H µ

2

γ2

) (
r

rH

)d
+

r2
H µ

2

γ2

(
r

rH

)2(d−1)

(6.5.18) 8,14

γ =
(d− 1)L2 g2

(d− 2)κ2

This satisfies the boundary condition that At(r) has to vanish at the horizon since ∂t is not

well-defined as a Killing vector there. Moreover we have

At(r) = µ

[
1 −

(
r

rH

)d−2
]
. (6.5.19) 8,15
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This identifies the µ parameter in the solution (6.5.18) with the chemical potential. The

temperature is again fixed by analytic continuation to the Euclidean regime and is given by

T =
1

4π rH

(
d − (d− 2) r2

H µ
2

γ2

)
. (6.5.20) 8,16

In the grand canonical ensemble, by evaluating the Euclidean action on the solution, we find

the following Gibbs free energy

Ω = −T lnZ = − Ld−1

2κ2 rdH

(
1 +

r2
H µ

2

γ2

)
Vd−1 = F

(
T

µ

)
Vd−1 T

d . (6.5.21) 8,17

From this, we may obtain the charge density (wlog in d = 3 dimensions)

ρ = − 1

V2

∂Ω

∂µ
=

2L2 µ

κ2 rH γ2
. (6.5.22) 8,18

6.6 Dissipative dynamics close to equilibrium

So far, we have considered time independent homogeneous backgrounds. A natural next step

is to include small space- and timedependent perturbations about equilibrium. The idea of

linear response theory will be implemented in the context of the AdS/CFT correspondence in

the following. This is particularly useful for describing experimentally relevant processes such

as transport coefficients and spectroscopy.

The basic object in the linear response theory is the so-call retarded Green function relating

linear sources to corresponding expectation values. The theory allows to relate two point

correlation functions to transport coefficients.

6.6.1 Retarded Green functions in QFT

Consider the response of a system to the presence of weak external fields ϕi (with possible

Lorentz indices suppressed) coupled to a set of operators Oi(x). The Hamiltonian is the mod-

ified by a term of the form

δH = −
∫

ddx ϕi(t, ~x)Oi(t, ~x) . (6.6.1) 8,19

From time dependent perturbation theory, we know that these external fields will produce a

change in the expectation values of the operators,

δ〈Oi〉 =

∫
dd+1y Gij

R(x, y)ϕj(y) + O(ϕ2) (6.6.2) 8,20a

Gij
R(x, y) = iΘ(tx − ty) 〈

[
Oi(x) , Oj(y)

]
〉 , (6.6.3) 8,20
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where Gij
R(x, y) is the retarded Green function. It is nonvanishing only in the forward light cone

and therefore provides a causality structure. In Fourier space we have

δ〈Oi(k)〉 = Gij
R(k)ϕj(k) + O(ϕ2) , Gij

R(k) =

∫
dd+1x e−ik·xGij

R(x, 0) . (6.6.4) 8,21

To explain the relation between Green functions and transport coefficients, it is convenient

to start with the instructive example of Ohm’s law. It relates an electric source field Ej

representing a linear perturbation to the (electric) response current J i via conductivity matrix

σ:

J i(ω) = σij(ω)Ej(ω) (6.6.5) 8,22

To make contact with the general notation, let us identify ϕi with the external vector potential

Aµ and the operator Oi with the conserved current Jµ. Choosing temporal gauge with At = 0,

the electric field becomes Ei = −∂tAi. In Fourier space, using Ai ∼ e−iωt, we have Ei = iωAi.

Comparing Ohm’s law with (6.6.4) we see that the conductivity and the current-current Green’s

function as defined by (6.6.3) are proportional:

σij(ω) =
Gij

R(ω)

iω
(6.6.6) 8,23

6.6.2 The gravity side of Green functions

The AdS/CFT correspondence conjectures that the current-current correlation can be com-

puted from a higher dimensional gravity theory by varying its action with respect to boundary

values A
(0)
µ of a source field, i.e.

〈Jµ(x)Jν(y)〉 ∼ δ2

δA
(0)
µ (x)δA

(0)
ν (y)

eiSgrav . (6.6.7) 8,24

In general on the gravity side, taking operator mixing into account we have

δ〈OA(ω, k)〉 = GOAOBR (ω, k) δϕ
(0)
B (ω, k) . (6.6.8) 8,25

The source is now the boundary value ϕ(0) of a field in curved space. Consider fluctuations of

the bulk fields of the form ϕA(r)→ ϕA(r) + δϕA(r)e−iωt+ik·x where ϕA solves the equations of

motion in gravity dual space.

The equation of motion for δϕA is obtained by substituting the perturbed solution into the

equations of motion and by then linearizing. Take boundary conditions at the AdS boundary

r = 0

δϕA(r) = rd−∆ δϕ
(0)
A + ... : r → 0 . (6.6.9) 8,26
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Since we are interested in the field theory’s behaviour at finite temperature, we assume the

gravity dual to possess an AdS black hole background. The second boundary condition sup-

plementing (6.6.9) has to be imposed at the black hole’s horizon. As one can read off from the

conformal diagram below, there are two possibilities leading to retarded and advanced Green

functions:

conf diagram

Fluctuations of the time slice ending on the future event horizon are associated with the retarded

Green function. The future horizon at r = rH (where gtt = 0) is a null surface beyond which

events cannot causally propagate to the asymptotically AdS region (the boundary region) any

more. On a future horizon, regularity requires that modes are ingoing (they can propagate into

the black hole but cannot escape from it). For the horizon at r = rH with nonzero temperature,

this implies

δϕA(r) = (r − rH) e−4πiω/T
[
const + ...

]
: r → rH . (6.6.10) 8,27

In all of the subsequent, we impose the given boundary conditions (6.6.9) and (6.6.10).

Given a mode δϕA satisfying the required boundary conditions and linearized equations of

motion, we obtain from (6.6.8) that

GOAOBR (ω, k) =
δ〈OA〉
δϕ

(0)
B

∣∣∣
δϕ=0

= lim
r→0

δΠA

δϕ
(0)
B

∣∣∣
δϕ=0

(6.6.11) 8,28

where ΠA is obtained in the following way:

〈OA〉 = −i δZbulk[ϕ(0)]

δϕ
(0)
A

N→∞
= −i δSgrav[ϕ(0)]

δϕ
(0)
A

(6.6.12) 8,29

Taking regularization at the boundary into account, we have

δSgrav[ϕ(0)]

δϕ
(0)
A

= lim
r→0

[
− δSgrav[ϕ(0)]

δ(∂rϕ
(0)
A )

+
δSbdy[ϕ(0)]

δϕ
(0)
A

]
= lim

r→0
ΠA[ϕ(0)] . (6.6.13) 8,30

The boundary version of the action contains appropriate counterterms necessary to make Sgrav

finite when evaluated at the boundary. The underlying procedure is known as holographic

renormalization. For a scalar field, the boundary term is

Sbdy = −
∫
r→0

ddx
√
γ

(
ϕnµ∇µϕ +

∆

2L
ϕ2

)
. (6.6.14) 8,31

Inserting the near boundary value of the scalar field ...

HERE THE LAST LINES FROM LAST LECTURE ARE MISSING
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6.6.3 Example: Holographic computation of Ohm’s law

Consider the gravity dual for a strongly interacting 2+1 dimensional field theory, N = 8, d =

3, SU(N) SYM theory in 2+1 dimensions. The coupling g2
YM has dimensions of mass in d = 3,

so it has to appear in the dimensionless ration
g2
YM

E
with E denoting the energy scale considered.

We expect the field theory to be strongly coupled at low energies and to have an IR fixed point.

This field theory is conjectured to be dual to M theory on AdS4 × S7. A certain sector of the

dual gravity theory is described by the four dimensional effective action

S =
1

2κ2

∫
d4x

√
|g|
(
R − 2 Λ

)
− 1

4 g2

∫
d4x

√
|g|FAB FAB (6.6.15) 8,32

with negative cosmological constant Λ = −3/L2.

Take Aµ to be the dual field to the current Jµ of a U(1) subgroup of the global SO(8) R

symmetry. The classical gravitational description is valid at large N where 1
κ2 ∼ N3/2. The

couplings κ and g in the Einstein Maxwell action (6.6.15) are related by supersymmetry κ2 =

2g2L2.

An important solution to the equations of motion for the action S is the dyonic black hole

(which is only possible in d = 4 on the gravity side), i.e. a black hole with both electric and

magnetic charge (q, h):

ds2

L2
=

1

r2

(
− f(r) dt2 + dx2 + dy2

)
+

1

r2

dr2

f(r)

A =
hx

rH

dy − q

(
1 − r

rH

)
dt (6.6.16) 8,33

f(r) = 1 + α (h2 + q2)
r4

r4
H

−
(
1 + α (h2 + q2)

) r3

r3
H

We have defined α :=
κ2r2

H

2g2L2 . This solution is dual to the 2+1 dimensional field theory at finite

T , B and electric charge density n:

T =
3 − (h2 + q2)α

4π rH

, B =
h

rH

, n = 〈J t〉 (6.6.17) 8,34

Now let us compute the current. Near the boundary, we may expand Aµ = aµ + rbµ + .... On

shell, the Maxwell part of the action reduces to a boundary term of the form

δSmax =
1

g2

∫
d3x ηµν δAµ ∂rAν

∣∣∣
r=0

=
1

g2

∫
d3x ηµν δaµ bν . (6.6.18) 8,35

We use the radial gauge Ar = 0. Then, the current takes the expectation value

〈Jµ〉 =
δSmax

δaµ
=

bµ

g2
. (6.6.19) 8,36
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For the dyonic black hole, bt = q
rH

and at = −q =: µ such that

〈J t〉 = 〈n〉 = − q

g2 rH

=
µ

g2 rH

. (6.6.20) 8,37

On the way towards Ohm’s law, we define J± = Jx ± iJy and E± = Ex ± iEy. The previous

calculation gave

〈J±〉 =
1

g2
lim
r→0

∂rA± . (6.6.21) 8,38

We can think of ±i∂rA± as a bulk magnetic field B± and of E± as the boundary limit of a bulk

electric field E±. From the gravity point of view, Ohm’s law may be written as

σ± =
± i 〈J±〉
E±

= lim
r→0

B±(r)

g2 E±(r)
. (6.6.22) 8,39

In the Maxwell part of the action (6.6.15), either FAB or its dual F̃AB = 1
2
εABCDF

CD could

be the fundamental field strength. The action is classically invariant under switching the

electric and magnetic field. Note that this electric magnetic duality is a special feature of four

dimensional spacetime.

For the dyonic black hole, the duality transformation is

B± 7→ −E± , E± 7→ B± , (q, h) 7→ (h,−q) . (6.6.23) 8,40

For the numerical computation of σ±, see Hartnoll, Herzog. The result satisfies the constraints

from electric magnetic duality

σ±(q, h) = lim
r→0

B±(q, h)

g2 E±(q, h)
= − lim

r→0

E±(h,−q)
g2 B±(h,−q)

= − 1

g4 σ±(h,−q)
. (6.6.24) 8,41

6.7 Hydrodynamics and shear viscosity in AdS/CFT

6.7.1 Relativistic hydrodynamics

According to the work of Son and Starinets, we will work with a metric of signature ηµν =

(−,+,+,+). In hydrodynamics, one considers a system in equilibrium subject to small per-

turbations. This is a perfect framework for an effective theory describing dynamics at large

distances and time scales. It describes dissipation in thermal media.

In the simplest case, the hydrodynamic equations are just the laws of energy momentum conser-

vation ∂µT
µν = 0. The number of independent components of T µν is reduced by the assumption

of local thermal equilibrium: If perturbations have long wavelengths or small frequencies, then

the state of the system considered at a given time is determined by the temperature as a func-

tion of the coordinates, T (x), and the local fluid four velocities uµ(x). Because uµu
µ = −1,

only three components are actually independent.
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The number of variables is thus four (e.g. u1, u2, u3, T ), equal to the number of independent

equations ∂µT
µν = 0. To express T µν(x) in terms of T (x), uµ(x), it is convenient to expand in

powers of spatial derivatives. To zeroth order, we have an ideal fluid (without dissipation) for

which

T µν = (ε + P )uµ uν + P gµν + O(∂) , (6.7.1) 8,42

ε and P denote the energy density and the pressure. From thermodynamic laws dε = TdS,

dP = sdT and ε+P = Ts (with entropy density s), one can deduce conservation of the entropy

current

∂µ (s uµ) = 0 . (6.7.2) 8,43

To describe dissipation or entropy production, we have to proceed to the next order in the

derivative expansion,

T µν = (ε + P )uµ uν + P gµν − σµν + O(∂2) . (6.7.3) 8,44

For simplification, we go to a local rest frame in which ui(x) = 0. In this frame, σ00 = σ0i =

0 equivalent to T 00 = ε and T 0i = 0. The only nonzero entries of the dissipative energy

momentum contribution are

σij = η

(
∂iuj + ∂jui −

2

3
δij ∂ku

k

)
+ ζ δij ∂ku

k , (6.7.4) 8,45

parametrized by shear viscosity η and bulk viscosity ζ. In a general frame, this leads to

σµν = P µα P νβ

[
η

(
∂αuβ + ∂βuα −

2

3
δαβ ∂λu

λ

)
+ ζ δαβ ∂λu

λ

]
(6.7.5) 8,46

where P µν := gµν + uµuν is the projector onto directions perpendicular to uµ.

Charged fluids have an additional conserved U(1) current ∂µJ
µ = 0 given by

jµ = ρ uµ − DP µν ∂να . WHAT IS α ??? (6.7.6) 8,47

In the fluid’s rest frame, we rediscover Fick’s law of diffusion ~j = −D~∇ρ.

6.7.2 Kubo formula from linear response theory

Let us now concentrate on the particular case when metric perturbatiions are time dependent

but homogeneous in space, i.e.

gij(t, ~x) = δij + hij(t) , hii = 0 (6.7.7) 8,48

g00(t, ~x) = − 1 , g0i(t, ~x) = 0 . (6.7.8) 8,49
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The velocity vector hence depends on time only, ui = ui(t). Consider the case where the fluid

remains at rest at all times, uµ = (1, 0, 0, 0).

In curved spacetime, equation (6.7.5) for the O(∂) contributions to T µν generalizes to

σµν = P µα P νβ

[
η
(
∇αuβ + ∇βuα

)
+

(
ζ − 2 η

3

)
gαβ∇λu

λ

]
. (6.7.9) 8,50

In the situation considered above, this simplifies to

σxy = 2 η Γ0
xy = η ∂0hxy . (6.7.10) 8,51

By comparison with linear response theory, we find the zero spatial momentum, low frequency

limit of the retarded Green function of Txy:

GR
xy,xy(ω,~0) =

∫
dt d3x eiωt Θ(t) 〈

[
Txy(t, ~x) , Txy(0,~0)

]
〉 = − iη ω + O(ω2) (6.7.11) 8,52

The associated Kubo formula is

η = − lim
ω→0

1

ω
Im
{
GR
xy,xy(ω,~0)

}
. (6.7.12) 8,53

Let us now explain the notion of hydrodynamic modes, determined by the poles of the retarded

Green function. They also give for instance the poles in the spectral function. Poles of cor-

relators are obtained from solutions of the linearized hydrodynamic equations, i.e. from plane

wave solutions e−iωt+i
~k·~x. Dissipation is described by complex ω with negative imaginary part.

figure spectral function and ω poles

Charge diffusion is governed by the following dispersion relation,

(
∂t − D ~∇2

)
ρ = 0 ⇒ ω = iD~k2 , (6.7.13) 8,54

which determines a pole in the current-current Green function 〈Jµ(p)Jν(−p)〉.

6.7.3 Shear modes and sound modes

Shear modes correspond to fluctuations of pairs of components T 0a and T 3a where a = 1, 2.

T 3a = − η ∂3u
a = − η

ε+ P
∂3T

0a

∂0T
0a = − η

ε+ P
∂2

3T
aa = 0 (6.7.14) 8,55

For plane waves h ∼ e−iωt+i
~k·~x, we find ω = − iη ~k2

ε+P
.



76 CHAPTER 6. GENERALIZATIONS OF ADS/CFT

Sound waves, on the other hand, are longitudinal fluctuations of T 00, T 03, T 33 with speed

cS =
√

dP
dε

and frequency

ω = cS k −
i

2

(
4 η

3
+ ζ

) ~k2

ε+ P
. (6.7.15) 8,56

In weakly coupled theories, the viscosity is governed by the mean free path `mfp ∼ (nσv)−1

where n denotes the density, σ the cross section for interactions and v a typical velocity. In

λϕ4 theory at finite temperature, one can derive perturbatively that n ∼ T 3 and σ ∼
(
λ
T

)2
.

The viscosity is then obtained by multiplying with the energy density ε (for which a Stefan

Boltzmann law ε ∼ T 4 is assumed):

η ∼ ε `mfp ∼ T 3

λ2
(6.7.16) 8,57

The entropy density scales in the same way with temperature, s ∼ T 3, so the quotient

η

s
∼ 1

λ2
(6.7.17) 8,58

depends on λ only and becomes large at weak coupling λ� 1.

6.7.4 AdS/CFT calculation of the shear viscosity

In order to compute 〈TxyTxy〉 in the field theory, we have to examine the propagation of the dual

graviton hxy in AdS spacetime. For this purpose, let us start from the Einstein Hilbert action

in five dimensions. Consider a scalar metric fluctuation hxy, denote it by ϕ in the following.

The quadratic part of the Einstein Hilbert action in ϕ is given by

Squad[ϕ] =
N2

8π2 L3

∫
d4x dr

√
−g

(
− 1

2
gµν ∂µϕ∂νϕ

)
(6.7.18) 8,59

and gives rise to the linearized equation of motion ∂µ(
√
−ggµν∂νϕ) = 0. Perform a Fourier

transformation of the boundary coordinates, then a boundary condition of type ϕ(p, r = 0) =

ϕ0(p) can be imposed. It is convenient to factorize

ϕ(p, r) = fp(r)ϕ0(p) (6.7.19) 8,60

where fp is called zero mode function and satisfies(
f ′p
r3

)′
− p2

r3
fp = 0 , fp(0) = 1. (6.7.20) 8,61

An exact solution in terms of a Bessel function K2 exists,

fp(r) =
(pr)2

2
K2(pr) = 1 − (pr)2

4
− (pr)4

16
ln(pr) + O

(
(pr)4

)
. (6.7.21) 8,62
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The other solution (pr)2I2(pr) is ruled out since it blows up for r → ∞. The on shell action

for fp reads

Squad[ϕ] =
N2

16π2

∫
d4x

1

r3
ϕ(x, r)ϕ′(x, r)

∣∣∣
r=0

=

∫
d4p

(2π)4
ϕ0(−p)F(p, r)ϕ0(p)

∣∣∣
r=0

(6.7.22) 8,59

F(p, r) =
N2

16π2 r3
f−p(r) ∂rfp(r) . (6.7.23) 8,60

It then follows that

〈Txy(p)Txy(−p)〉 = − 2 lim
r→0
F(p, r) =

N2

64π2
p4 ln p2 . (6.7.24) 8,61

At nonzero temperature, the metric

ds2 =
r2

L2

(
− f dt2 + d~x2

)
+

L2

r2 f
dr2 + L2 dΩ2

5 (6.7.25) 8,62

gives rise to the Hawking temperature TH = rH
πL2 . The entropy is given by the Bekenstein

Hawking formula S = A
4π

with A the area of the black hole horizon. For the density, one finds

s =
S

V
=

π2

2
N2 T 3 . (6.7.26) 8,62a

This is 3/4 of the entropy density in N = 4 SYM theory at vanishing t’Hooft coupling. Define

a new coordinate u =
r2
H

r2 , then the boundary is situated at u = 0, the horizon at u = 1. In

terms of u, the metric is

ds2 =
(πTL)2

u2

(
− f(u) dt2 + d~x2

)
+

L2

4u2 f(u)
du2 + L2 dΩ2

5 . (6.7.27) 8,62b

In real time AdS/CFT, consider again the factorization (6.7.23), then the ϕ equation of motion

implies (HIER IST ETWAS UNGUENSTIG, DASS f DOPPELT VERGEBEN IST...)

f ′′p −
1 + u2

u f(u)
f ′p +

W 2

u f 2(u)
fp −

q2

u f(u)
fp = 0 (6.7.28) 8,63

with shorthands W = ω
2πT

and q = k
2πT

. Near u = 0, the two solutions behave as f1 ∼ 1 and

f2 ∼ u2. In Minkowski space, there are two finite solutions near the horizon fp ∼ (1− u)−iW/2

and f ∗p ∼ (1− u)iW/2. Any linear combination is possible, the solution is not unique! This is a

problem in defining the Green function.

A thorough analysis of the real time formalism in AdS/CFT leads to the result that the retarded

Green function is related to F by the same formula that was found at zero temperature:

GR(p) = − 2 lim
u→0
F(p, u) (6.7.29) 8,64
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This has no contribution from the horizon, but to obtain fp, we need infalling boundary con-

ditions of course. The correlator 〈Txy(p)Txy(−p)〉 comes from hxy = ϕ with

ϕ′′p −
1 + u2

u f
ϕ′p +

W 2 − q2 f

u f 2
ϕp = 0 (6.7.30) 8,65

giving rise to the incoming wave solution fp(r) ∼ (1 − u2)−iW/2 + O(W 2, q2). Using (6.7.29),

the resulting Green function is

GR(ω,~k) = − π
2N2 T 4

4
iω . (6.7.31) 8,66

This is the famous Kuba formula for the viscosity

η =
π

8
N2 T 3 ,

η

s
=

1

4π
. (6.7.32) 8,67
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