Theoretical analysis of Link Analysis Ranking

Panayiotis Tsaparas University of Helsinki HIIT-BRU

Link Analysis Ranking

- Link Analysis Ranking (LAR) algorithm:
 - Given a (directed) graph G, determine the importance of the nodes in the graph using the information of the edges (links) between the nodes.
- Inuition:
 - A link from node p to node q denotes endorsement. Node p considers node q an authority on a subject
 - mine the graph of recommendations, assign an authority value to every page
- Applications:
 - Assess the importance of Web pages using link information.
 - Recommendation systems

Why theoretical analysis of Link Analysis Ranking?

- Plethora of LAR algorithms: we need a formal way to compare and analyze them
- Need to define properties that are useful
 - stability of the algorithm
- Axiomatic characterization of LAR algorithms
 - extension of social choice theory to recommendation systems

Link Analysis Ranking algorithm

 A LAR algorithm is a function that maps a graph to a real vector

$$A:G_n \to \mathbb{R}^n$$

- G_n: class of graphs of size n
- LAR vector w: the output A(G) of an algorithm A on a graph G
 - w_i: the authority weight of node i

Popular LAR algorithms

- InDegree algorithm
 - w_i = in-degree(i)
- PageRank algorithm [BP98]
 - perform a random walk on G with random resets (with probability 1-a)
 - w = stationary distribution of the random walk
- HITS algorithm [K98]
 - compute the left (hub) and right (authority) singular vectors of the adjacency matrix W
 - w = right singular vector

Properties of Interest

- Stability
 - small changes in the graph should cause small changes in the output of the algorithm
- Similarity
 - the output of two algorithms are close

Under what conditions (for which classes of graphs) is an algorithm stable, or are two algorithms similar?

Axiomatic characterizations

Distance between LAR vectors

• Geometric distance: how close are the numerical weights of vectors w₁, w₂?

$$d_2(w_1, w_2) = \sqrt{\sum |w_1[i] - w_2[i]|^2}$$

- Assumption: Weights are normalized under norm L₂
 - normalization makes a difference

Distance between LAR vectors

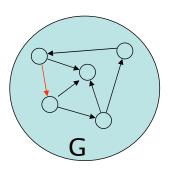
- Rank distance: how close are the ordinal rankings induced by the vectors w₁, w₂?
 - Kendal's τ distance

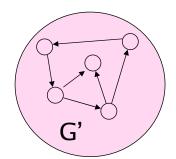
$$d_r(w_1, w_2) = \frac{pairs \ ranked \ in \ a \ different \ order}{total \ number \ of \ distinct \ pairs}$$

Stability: graph distance

 Definition: Link distance between graphs G=(P,E) and G'=(P,E')

$$d_{\ell}(G,G') = |E \cup E'| - |E \cap E'|$$





$$d_{\ell}(G,G')=2$$

Stability

- $C_k(G)$: set of graphs G' such that $d_{\ell}(G,G') \leq k$
- Definition: Algorithm A is stable if for any fixed k $\max_{G \in G_n} \max_{G \in C_k(G)} d_2(A(G), A(G')) = o(1)$
- Definition: Algorithm A is rank stable if for any fixed k

$$\max_{G} \max_{G' \in C_k(G)} d_r(A(G), A(G')) = o(1)$$

Stability: Results

- InDegree is (rank) stable on G_n [BRRT05]
- HITS, PageRank, are (rank) unstable on G_n

Perturbations of PageRank

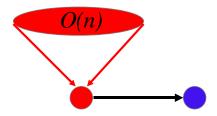
 Perturbations to unimportant nodes have small effect on the PageRank values [NZJ01][BGS03]

$$d_1(A(G),A(G')) \leq \frac{2\alpha}{1-2\alpha} \sum_{i \in P} A(G)[i]$$

- Lee and Borodin 2003: PageRank is stable
 - HITS remains unstable

Instability of PageRank

PageRank is unstable



- PageRank is rank unstable [Lempel Moran 2003]
- Open question: Can we derive conditions for the stability of PageRank in the general case?

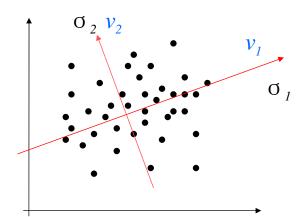
Singular Value Decomposition

$$A = U \quad \Sigma \quad V^{\mathsf{T}} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \end{bmatrix} \quad \begin{matrix} \sigma_1 \\ & & \\ & & \ddots \\ & & & & \\ & & & \\ &$$

- r: rank of matrix A
- $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r$: singular values (square roots of eig-vals AA^T , A^TA)
- u_1, u_2, \dots, u_r : left singular vectors (eig-vectors of AA^T)
- V_1, V_2, \dots, V_r : right singular vectors (eig-vectors of A^TA) $A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\mathsf{T} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^\mathsf{T} + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^\mathsf{T}$

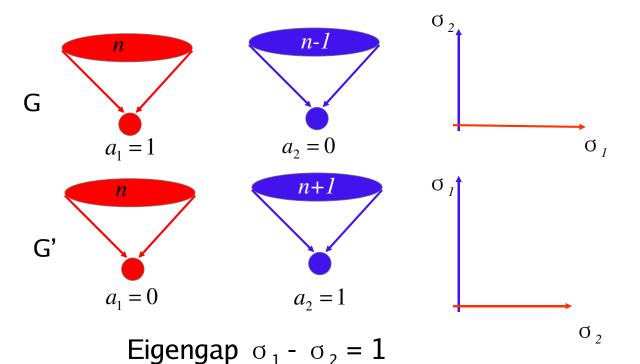
Singular Value Decomposition

- Linear trend v in matrix A:
 - the tendency of the row vectors of A to align with vector v
 - strength of the linear trend: Av
- SVD discovers the linear trends in the data
- u_iv_i^T: the i-th strongest linear trend
- o_i: the strength of the i-th strongest linear trend



• HITS ranks according to the strongest linear trend \mathbf{v}_i in the authority space

Instability of HITS



Stability of HITS

- Theorem: HITS is stable if $\sigma_1(W) \sigma_2(W) = \omega(1)$
 - The two strongest linear trends are well separated
- [Ng, Zheng, Jordan 2001]: HITS is stable if

$$o_1^2 - o_2^2 = \omega \left(\sqrt{\mathbf{d}_{\text{out}}} \right)$$

Similarity

- Definition: Two algorithms A_1 , A_2 are similar if $\max_{G \in G_n} d_2(A_1(G), A_2(G)) = o(1)$
- Definition: Two algorithms A_1 , A_2 are rank similar if $\max_{G \in G_n} d_r(A_1(G), A_2(G)) = o(1)$
- Definition: Two algorithms A_1 , A_2 are rank equivalent if $\max_{G \in G_n} d_r(A_1(G), A_2(G)) = 0$

Similarity: Results

- No pairwise combination of InDegree, HITS, PageRank algorithms is similar, or rank similar on the class of all possible graphs G_n
- Can we get better results if we restrict ourselves to smaller classes of graphs?
 - We focus on simialrity of HITS and InDeggree algorithms [DLT05]

Product Graphs

- Latent authority and hub vectors a, h
 - h = probability of node i being a good hub
 - a_i = probability of node j being a good authority
- Generate a link i \rightarrow j with probability a_j $W[i,j] = \begin{cases} 1 & \text{with probability } h_i a_j \\ 0 & \text{with probability } 1 h_i a_j \end{cases}$
 - Azar, Fiat, Karlin, McSherry, Saia 2001, Michail, Papadimitriou 2002, Chung, Lu, Vu 2002
- The class of product graphs G_n^p
 - (a.k.a. "graphs with given expected degree sequences")

Product Graphs

$$W = M + R$$

• M: rank-1 matrix ha^T

$$\mathbf{M} = \mathbf{h} \mathbf{a}^{\mathsf{T}} = \begin{bmatrix} \mathbf{h}_{1} \\ \mathbf{h}_{2} \\ \vdots \\ \mathbf{h}_{n} \end{bmatrix} [\mathbf{a}_{1} \quad \mathbf{a}_{2} \quad \cdots \quad \mathbf{a}_{n}] = \begin{bmatrix} \mathbf{h}_{1} \mathbf{a}_{1} & \mathbf{h}_{1} \mathbf{a}_{2} & \cdots & \mathbf{h}_{1} \mathbf{a}_{n} \\ \mathbf{h}_{2} \mathbf{a}_{1} & \mathbf{h}_{2} \mathbf{a}_{2} & \cdots & \mathbf{h}_{2} \mathbf{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{h}_{n} \mathbf{a}_{1} & \mathbf{h}_{n} \mathbf{a}_{2} & \cdots & \mathbf{h}_{n} \mathbf{a}_{n} \end{bmatrix}$$

• R: rounding $h_i a_j$ with probability $h_i a_j$ with probability $1 - h_i a_j$ with probability $1 - h_i a_j$

Product Graphs

- Idea[AFK+01]: View the product graph W=M+R as a pertubation of the rank-1 matrix M by the matrix R
- HITS and InDegree are identical on rank-1 matrix M
- How do the outputs change after perturbing M by R?

HITS and InDegree on Product Graphs

 Theorem: HITS and InDegree are similar with high probability on the class of product graphs,
G_n^p subject to some assumptions

Assumption 1:
$$\sigma_1(\mathbf{M}) = \|\mathbf{h}\|_2 \|\mathbf{a}\|_2 = \omega(\sqrt{\mathbf{n}})$$

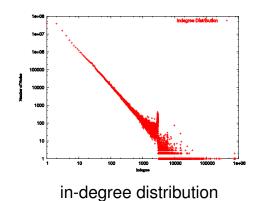
Assumption 2: Let $H = \sum hi$ then $H \|a\|_2 = \omega (\sqrt{n \log n})$

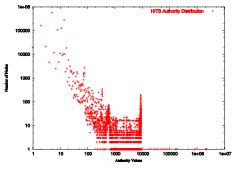
• Assumptions 1 and 2 are general enough to include graphs with (expected) degrees that follow power law distribution with $\alpha > 3$

Experiments with real web graphs

Dataset: The Stanford WebBase project

 Correlation coefficient between authority and in-degree vector: 0.93





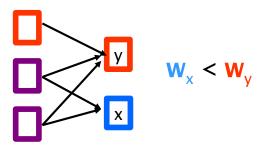
HITS authority values distribution

 Correlation coefficient between hub and out-degree vectors: 0.05

Monotonicity

 Monotonicity: Algorithm A is strictly monotone if for any nodes x and y

$$B_N(x) \subset B_N(y) \Leftrightarrow A(G)[x] < A(G)[y]$$

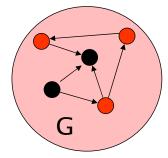


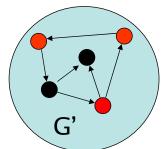
Locality

■ Locality: An algorithm A is strictly rank local if, for every pair of graphs G=(P,E) and G'=(P,E'), and for every pair of nodes x and y, if $B_G(x)=B_{G'}(x)$ and $B_G(y)=B_{G'}(y)$ then

$$A(G)[x] < A(G)[y] \Leftrightarrow A(G')[x] < A(G')[y]$$

 the relative order of the nodes remains the same if their back links are not affected





The InDegree algorithm is strictly rank local

Label Independence

- Label Independence: An algorithm is label independent if a permutation of the labels of the nodes yields the same permutation of the weights
 - the weights assigned by the algorithm do not depend on the labels of the nodes

Axiomatic characterization of the InDegree algorithm

- Theorem: Any algorithm that is strictly rank local, strictly monotone and label independent is rank equivalent to the InDegree algorithm
- All three properties are needed

- An axiomatic characterization of PageRank algorithm
 - "Ranking Systems: The PageRank axioms" Alon Altman, Moshe Tenneholtz, ACM Conference on Electronic Commerce, 2005

Open questions

- What is the necessary condition for the stability of the HITS algorithm?
 - can the results of [NZJ01] be proven for 0/1 matrices?
- Can we say anything about other LAR algorithms on product graphs?
 - e.g. PageRank
- Can we prove anything when we consider rank distance?
- Can we define other properties?
 - e.g., is spam sensitivity different from stability?

Thank you!