
1

Discretization: Geometric
Primitives

• Line Segment
• Triangle – These are key primitives
• General polygon.

Line Segments

• I want to try to discuss this as a simple
example of linear interpolation (more
later).

• y = mx + b
• Given (x0,y0) to (x1,y1)

– m = (y1-y0)/(x1-x0)
– b = y0 – mx0

• Set of points: (x’, y0 + m(x’-x0))

2

(x0,y0)

(x0+1,y0)

m

(x0+1, y0+m)

(x0+k, y0+km)

x’ = x0+k

(x’-x0) = k

So we can think of a line as what we get when y is a function
of x, and we linearly interpolate y between a starting value,
y0, at x0, and an ending value of y1, and x1.

Another way to think of this is that we compute a y’
to go with an x’ by taking a weighted average of x0
and x1 to get x’, and then taking the same weighted
average of y0 and y1 to get y’.

x’ = ax1 + (1-a)x0. a = (x’-x0)/(x1-x0)

Then find y’ by taking:

y’ = ay1 + (1-a)y0.

Note: y’ = (y1-y0)(x’-x0)/(x1-x0) + y0

= m (x’-x0) + y0

This is what we got before. This way of looking at it,
though, can be generalized to interpolating between
three points in the plane.

3

Line with slope 0<= m <= 1

For each x value, find y and round off.

y(x0) = y0.

y(x0+1) = y0 + m

y(x0+k) = y(x0+k-1) + m

Fill in (xi, round(y(xi)))

Other Slopes

• For 1 <= m just reverse role of x and y.
– y = mx + b => x = (1/m)y – b/m

• For -1 <= m <= 0 we can do the same
thing as 0 <= m <= 1

• m <= -1 same as m >= 1, except we
reduce y.

• Other cases are similar.

4

Triangles

b

c

a

(x0,y0)
y = mx + b

x = (1/m)y – b/m

(x0-1/m, y0-1)

(x0 – 1/m’, y0-1)

Fill in from

(Round(x0-1/m), y0-1)

To (round(x0-1/m’), y0-1)

When you reach a vertex, this
is the starting point for that
scan line, then continue with a
new line.

5

General Polygon

• Break up into triangles
• Test each pixel – crossing number test

Even: Outside

Odd: Inside

Flood Fill / Seed Fill
flood_fill (x, y)

{ if (read_pixel(x, y) != ORANGE)

{ write_pixel(x, y) = ORANGE;

flood_fill (x - 1, y);

flood_fill (x +1, y);

flood_fill (x, y - 1);

flood_fill (x, y +1);

}

}

6

Flood Fill / Seed Fill
flood_fill (x, y)

{ if (read_pixel(x, y) != ORANGE)

{ write_pixel(x, y) = ORANGE;

flood_fill (x - 1, y);

flood_fill (x+1, y);

flood_fill (x, y - 1);

flood_fill (x, y +1);

}

}

Flood Fill / Seed Fill
flood_fill (x, y)

{ if (read_pixel(x, y) != ORANGE)

{ write_pixel(x, y) = ORANGE;

flood_fill (x - 1, y);

flood_fill (x+1, y);

flood_fill (x, y - 1);

flood_fill (x, y +1);

}

}

7

Flood Fill / Seed Fill
flood_fill (x, y)

{ if (read_pixel(x, y) != ORANGE)

{ write_pixel(x, y) = ORANGE;

flood_fill (x - 1, y);

flood_fill (x+1, y);

flood_fill (x, y - 1);

flood_fill (x, y +1);

}

}

Flood Fill / Seed Fill
flood_fill (x, y)

{ if (read_pixel(x, y) != ORANGE)

{ write_pixel(x, y) = ORANGE;

flood_fill (x - 1, y);

flood_fill (x+1, y);

flood_fill (x, y - 1);

flood_fill (x, y +1);

}

}

8

Flood Fill / Seed Fill
flood_fill (x, y)

{ if (read_pixel(x, y) != ORANGE)

{ write_pixel(x, y) = ORANGE;

flood_fill (x - 1, y);

flood_fill (x+1, y);

flood_fill (x, y - 1);

flood_fill (x, y +1);

}

}

Z-Buffer Algorithm

• Image precision, object order

• Scan-convert each object

• Maintain the depth (in Z-buffer) and color (in
color buffer) of the closest object at each pixel

• Display the final color buffer

• Simple; easy to implement in hardware

9

Z-Buffer Algorithm
for(each pixel(i, j)) // clear Z-buffer and frame buffer
{

z_buffer[i][j] � far_plane_z;
color_buffer[i][j] � background_color;

}

for(each face A)
for(each pixel(i, j) in the projection of A)
{

Compute depth z and color c of A at (i,j);
if(z > z_buffer[i][j])
{

z_buffer[i][j] = z;
color_buffer[i][j] � c;

}
}

Efficient Z-Buffer

• Just like line discretization in one more dim.

• Polygon satisfies plane equation

• Z can be solved as

• Take advantage of coherence
– within scan line:

– next scan line:

0���� DCzByAx

C
ByAxD

z
���

�

x
C
A

z
�

���

y
C
B

z
�

���

10

Z Value Interpolation

21

1
211)(

yy

yy
zzzz s

a �

�

���

31

1
311)(

yy

yy
zzzz s

b �

�

���

ab

pb
abbp xx

xx
zzzz

�

�

���)(

y1

ys

y2

y3

z1

z3

z2

zbza
zp

Z-Buffer: Analysis

• Advantages
– Simple

– Easy hardware implementation

– Objects can be non-polygons

• Disadvantages
– Separate buffer for depth

– No transparency

– No antialiasing: one item visible per pixel

