Discretization: Geometric
Primitives
* Line Segment
» Triangle — These are key primitives
» General polygon.

Line Segments

| want to try to discuss this as a simple
example of linear interpolation (more
later).
y=mx+Db

Given (x0,y0) to (x1,y1)

—m = (y1-y0)/(x1-x0)

—b =y0 — mx0

Set of points: (X', yO + m(x’-x0))

(xO+k, yO+km)

(x0+1, yO+m
X' = X0+k
(x’-x0) = k

(x0+1,y0)

So we can think of a line as what we get when y is a function
of X, and we linearly interpolate y between a starting value,
y0, at X0, and an ending value of y1, and x1.

Another way to think of this is that we compute a y’
to go with an x’ by taking a weighted average of x0
and x1 to get x’, and then taking the same weighted
average of y0 and y1 to get y'.

X' = ax1l + (1-a)x0. a = (x’-x0)/(x1-x0)
Then find y’ by taking:

y' =ayl + (1-a)y0.

Note: y’' = (y1-y0)(x’-x0)/(x1-x0) + y0
=m (X’-x0) +y0

This is what we got before. This way of looking at it,
though, can be generalized to interpolating between
three points in the plane.

Line with slope O<=m <=1

For each x value, find y and round off.
y(x0) = yO.

y(x0+1) =y0 + m

y(x0+k) = y(x0+k-1) + m

Fill in (xi, round(y(xi)))

Other Slopes

For 1 <= m just reverse role of x and y.
—y=mx+b=>x=(1/m)y-b/m

For -1 <= m <=0 we can do the same
thingas0<=m<=1

m <= -1 same as m >= 1, except we
reducey.

Other cases are similar.

Triangles

y=mx+Db
X = (1/m)y — b/m
(X0 — 1/m’, y0-1)

Fill in from
(Round(x0-1/m), y0-1)

(x0-1/m, yO-1) To (round(x0-1/m’), y0-1)

When you reach a vertex, this
is the starting point for that
scan line, then continue with a
new line.

General Polygon

» Break up into triangles
» Test each pixel — crossing number test

A M 4

Even: Outside
Odd: Inside

Flood Fill / Seed Fill

xy)
(x, y) = ORANGE)

(x, y) = ORANGE;
x-1y);
(x+1,y);
(x,y-1);
(X y+1);

r—_—_—
=ﬁ--= =

Flood Fill / Seed Fill

xy)
EEEEEEEEEEEEEEEE

{if ((%, y) '= ORANGE)
{ (x, y) = ORANGE;
(X - 1! y)a
(x+1,y);

EEE BN EEEN xy-1);
EEE 2 EEEEN %y +1)

Flood Fill / Seed Fill

x.y)
T i (x,) I= ORANGE)

(x, y) = ORANGE;
x-1y);
(x+1,y);
(x,y-1);
(X y+1);

Flood Fill / Seed Fill

xy)
(X, y) '= ORANGE)
(x, y) = ORANGE;
(X - 1! y)a
(x+1,y);
(X’ y- 1):
(x, y +1);

]
L]
N
—
[[]

Flood Fill / Seed Fill

xy)
(x, y) = ORANGE)

(x, y) = ORANGE;
(x-1,y);
(x+1,y);
(X y-1)
(X, y+1);

Flood Fill / Seed Fill

xy)
(%, y) '= ORANGE)

(x, y) = ORANGE;
(X - 1! y)a
(x+1,y);
(X’ y- 1):
(% y+1);

Z-Buffer Algorithm

Image precision, object order
Scan-convert each object

Maintain the depth (in Z-buffer) and color (in
color buffer) of the closest object at each pixel

Display the final color buffer

Simple; easy to implement in hardware

Z-Buffer Algorithm

for(each pixel(, j)) I clear Z-buffer and frame buffer
{

z_buffer[i][j] = far_plane_z;
color_buffer]i][j] = background_color;
}

for(each face A)
for(each pixel(i, j) in the projection of A)
{
Compute depth z and color ¢ of A at (i,j);
if(z > z_buffer[i][j])
{

z_buffer]i][j] = z;
color_buffer[i][j] = c;

Efficient Z-Buffer

Just like line discretization in one more dim.

Polygon satisfies plane equation
Ax+By+Cz+D=0

Z can be solved as

,_—D—Ax-By
C

Take advantage of coherence

— within scan line: Az:—éAx
— next scan line: AZ:‘gAV

Z Value Interpolation

yl ys
-7 _ (_) 2L 7S
Ze\ Zl Zi 22 yl y2

— 7 _ _ Yi—¥s
z,=2-(z ZS)yl—ys

Z-Buffer: Analysis

» Advantages
— Simple
— Easy hardware implementation
— Objects can be non-polygons

» Disadvantages
— Separate buffer for depth
— No transparency
— No antialiasing: one item visible per pixel

10

