Discretization: Geometric Primitives

- Line Segment
- Triangle - These are key primitives
- General polygon.

Line Segments

- I want to try to discuss this as a simple example of linear interpolation (more later).
- $y=m x+b$
- Given (x0,y0) to (x1,y1)
$-m=(y 1-y 0) /(x 1-x 0)$
$-\mathrm{b}=\mathrm{y} 0-\mathrm{mx} 0$
- Set of points: $\left(x^{\prime}, y 0+m\left(x^{\prime}-x 0\right)\right)$

So we can think of a line as what we get when y is a function of x, and we linearly interpolate y between a starting value, y 0 , at x 0 , and an ending value of y 1 , and x 1 .

Another way to think of this is that we compute a y^{\prime} to go with an x ' by taking a weighted average of $x 0$ and x 1 to get x ', and then taking the same weighted average of y 0 and y 1 to get y^{\prime}.
$x^{\prime}=a x 1+(1-a) x 0 . \quad a=\left(x^{\prime}-x 0\right) /(x 1-x 0)$
Then find y^{\prime} by taking:
$y^{\prime}=a y 1+(1-a) y 0$.
Note: $y^{\prime}=(y 1-y 0)\left(x^{\prime}-x 0\right) /(x 1-x 0)+y 0$
$=m\left(x^{\prime}-x 0\right)+y 0$
This is what we got before. This way of looking at it, though, can be generalized to interpolating between three points in the plane.

Line with slope $0<=\mathrm{m}<=1$

For each x value, find y and round off.
$y(x 0)=y 0$.
$y(x 0+1)=y 0+m$
$y(x 0+k)=y(x 0+k-1)+m$
Fill in (xi, round(y(xi)))

Other Slopes

- For $1<=m$ just reverse role of x and y.
$-y=m x+b=>x=(1 / m) y-b / m$
- For $-1<=m<=0$ we can do the same thing as $0<=m<=1$
- $m<=-1$ same as $m>=1$, except we reduce y.
- Other cases are similar.

Triangles

General Polygon

- Break up into triangles
- Test each pixel - crossing number test

Even: Outside
Odd: Inside

Flood Fill / Seed Fill


```
flood_fill (x,y)
{ if (read_pixel (x,y) != ORANGE)
    { write_pixel (x,y)= ORANGE;
        flood_fill (x-1, y);
        flood_fill (x+1,y);
        flood_fill (x,y-1);
        flood_fill (x,y+1);
    }
}
```


Flood Fill / Seed Fill

flood_fill (x, y)

$\{$ if (read_pixel $(x, y)!=$ ORANGE)
$\{$ write_pixel $(x, y)=$ ORANGE; flood_fill $(x-1, y)$; flood_fill $(x+1, y)$; flood_fill $(x, y-1)$; flood_fill $(x, y+1)$;
\}
\}

Flood Fill / Seed Fill


```
flood_fill (x,y)
{ if (read_pixel (x,y) != ORANGE)
    { write_pixel (x,y)= ORANGE;
        flood_fill (x - 1, y);
        flood_fill (x+1, y);
        flood_fill (x,y-1);
        flood_fill (x,y+1);
    }
}
```


Flood Fill / Seed Fill

flood_fill (x, y)

$\{$ if (read_pixel $(x, y)!=$ ORANGE)
$\{$ write_pixel $(x, y)=$ ORANGE; flood_fill $(x-1, y)$; flood_fill $(x+1, y)$; flood_fill $(x, y-1)$; flood_fill $(x, y+1)$;
\}
\}

Flood Fill / Seed Fill


```
flood_fill (x,y)
{ if (read_pixel (x,y) != ORANGE)
    { write_pixel (x,y)= ORANGE;
        flood_fill (x - 1, y);
        flood_fill (x+1, y);
        flood_fill (x,y-1);
        flood_fill (x,y+1);
    }
}
```


Flood Fill / Seed Fill

Z-Buffer Algorithm

- Image precision, object order
- Scan-convert each object
- Maintain the depth (in Z-buffer) and color (in color buffer) of the closest object at each pixel
- Display the final color buffer
- Simple; easy to implement in hardware

Z-Buffer Algorithm

```
for( each pixel(i, j) ) // clear Z-buffer and frame buffer
{
    z_buffer[i][j] = far_plane_z;
    color_buffer[[][]] = background_color;
}
for( each face A)
    for( each pixel(i, j) in the projection of A)
    {
        Compute depth z and color c of A at (i,j);
        if( z > z_buffer[i][]] )
            z_buffer[i][]] = z;
            color_buffer[i][j] = c;
        }
    }
```


Efficient Z-Buffer

- Just like line discretization in one more dim.
- Polygon satisfies plane equation

$$
A x+B y+C z+D=0
$$

- Z can be solved as

$$
z=\frac{-D-A x-B y}{C}
$$

- Take advantage of coherence
- within scan line:
- next scan line:
$\Delta z=-\frac{A}{C} \Delta x$
$\Delta z=-\frac{B}{C} \Delta y$

Z Value Interpolation

$$
\begin{aligned}
& z_{a}=z_{1}-\left(z_{1}-z_{2}\right) \frac{y_{1}-y_{s}}{y_{1}-y_{2}} \\
& z_{b}=z_{1}-\left(z_{1}-z_{3}\right) \frac{y_{1}-y_{s}}{y_{1}-y_{3}} \\
& z_{p}=z_{b}-\left(z_{b}-z_{a}\right) \frac{x_{b}-x_{p}}{x_{b}-x_{a}}
\end{aligned}
$$

Z-Buffer: Analysis

- Advantages
- Simple
- Easy hardware implementation
- Objects can be non-polygons
- Disadvantages
- Separate buffer for depth
- No transparency
- No antialiasing: one item visible per pixel

