
1

Perspective to Orthographic

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

02/100

12/300

002/10

0002/1

This matrix maps all points that project to a
point with perspective onto a line that projects
to that point with orthographic.

Recap on Projection in OpenGL

��
�
�
�

�

	

�

�

02/100

12/300

002/10

0002/1

��
�
�
�

�

�

��
�
�
�

�

�

0/100

0100

0010

0001

f

(VUP � VPN) 0

(VUP) 0

(VPN) 0

0 0 0 1

1 0 0 -VRPx
0 1 0 -VRPy
0 0 1 -VRPz
0 0 0 1

x

y

z

1

��
��
��
�

�

�

��
��
��
�

�

�

��

��

��

��
��
��
��

�

�

��
��
��
��

�

�

�
�

�

1000
2

100

2
010

2
001

1000

0
2

00

00
2

0

000
2

minmax

minmax

minmax

minmax

minmax

minmax

zz

yy

xx

zz

yy

xx
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

2

Intersections and Containment

• How to tell if two objects intersect, or
one is inside another.

• Applications:
– Culling (if object isn’t in visible region, don’t

render it).
– Ray tracing (intersect a ray of light with

objects).
– Collision detection (do things intersect?)

Intersections and Containment
• 2D

– Line and line
– Line segments (1D containment)
– Line and Circle
– Line and other quadratic curves.
– Point inside convex polygon (sidedness).
– Point inside circle/ellipse
– Point inside axial rectangle
– Point inside non-convex polygon.

• Divide into convex regions
• Crossing algorith

– Polygon intersection is just line intersection or point containment
• 3D

– Line and Plane
– Line and Triangle (point inside triangle).
– Line and sphere (or other polynomial surfaces).
– Point inside convex polyhedron

• Strategies for Speeding up
– Enclose with simpler shape (sphere or rectanguloid
– Multiscale

• Application: Culling

3

Intersection of line and line

• Solve two equations
– y = mx + b, y = nx+c

Intersection of line and line
segment

• Convert line segment to line
– Endpoints: (x1,y1) (x2,y2)
Tangent of line is: (x2-x1, y2-y1).
Normal is: (y1-y2, x2-x1).
x(y1-y2) + y(x2-x1) = (y1-y2)x1+(x2-x1)y1.

• Find Intersection point of lines
• Check if this is inside line segment:

4

n = (x2-x1, y2-y1). <n, (x3-x1,y3-y1)> > 0?

<-n, (x3-x2, y3-y2)> > 0?

(x1,y1)

(x2,y2)

(x3,y3)

Intersection of line and circle

• Solution to two equations:
– y = mx + b
– (x-p)*(x-p) + (y-q)*(y-q) = r*r

• Produces one quadratic equation, which
has zero, one or two real solutions.

• Line and other quadratics are just the
same.

5

Point inside convex polygon
• A convex polygon is the
intersection of half-planes.

• Point must be on correct
side of each line derived
from sides.

Eg., ax + by > c

• How do we know if it’s > or
<?

If n is the normal to a side, p is a point inside the polygon, and q is a point we
are testing, then sign(<n,p>) != sign(<n,q>) means q is not in the polygon.

How can we find p? One way is to average any three vertices.

Point inside Circle

• For circle, point is inside if distance to
center is less than radius.

6

Point inside axial rectangle

• Axial rectangle has sides aligned with x and y
axis.

• Described by minx, maxx, miny, maxy.
• (x,y) inside if minx <= x <= maxx,
miny <= y <= maxy.
• Notice that this is the same method used to

see if a point is inside a convex polygon. It’s
simple because the normals to the sides of
the rectangle are (1,0) and (0,1).

Point inside non-convex polygon

Divide into convex
polygons, and see if
point is inside any of
these.

We can always divide
into triangles by taking
every three consecutive
vertices.

(This may not be the
most efficient way,
adding the fewest
sides).

7

Point inside non-convex polygon

• Crossing number test

Even: Outside

Odd: Inside

2D Intersections

• Sides intersect
• Or one inside other

8

3D Line and Plane

• A line is defined by 2 linear eqns, a
plane by 1. Solve 3 eqns w/ 3
unknowns.

• Or: ax + by + cz = d, &
(x0,y0,z0)+t(u,v,w) = (x,y,z)
Substitute for x,y,z in 1st equation and get

linear equation in t.

3D Line and Triangle

• Find equation for plane of triangle, (p1,
p2, p3).
– Normal is n=(p2-p1)x(p3-p1)
– <n,(x,y,z)> = <n,p1>

• Intersect line and plane.
• Intersection point is inside triangle iff it

is after orthographic projection to 2d.

9

3D Line and Polynomial

• Just the same as in 2D.
• Two equations for line, one for

polynomial.
• Solve three equations with three

unknowns.
• Wind up with a polynomial of one

variable, which may have 0, 1 or
multiple solutions.

Point inside convex polyhedron

• Same as 2D. Is point on right side of
each side of polyhedron?
– Inner product with the normal to that side

should have the right sign.

10

Collision Strategy

• Brute force test. Fine if few shapes.
• Test by bounding with simpler shape.

– Only do brute force if necessary.

• Use hierarchy of simpler shapes.
– Faster for complex scenes.

Circles easier

• Testing whether two circles intersect is much
easier.

• So put a circle around each shape (How?)

(x1,y1)
r1

r2

(x2,y2)

(x2-x1)2 + (y2-y1)2 > (r1+r2)2

11

Circles

• Pros: Very fast.
– If scene is fixed, circles for scene can be

computed once.
– If object moves, circle can move with it

easily.

• Cons: Circle can exaggerate shape.

Axial Rectangles

• A rectangle with sides aligned with the x
and y axes.
– Easy to generate. Just take min and max x

and y values.
– Easy to check for intersection.

• Don’t intersect if one max value less than
other’s min value.

12

Hierarchical

• Keep subdividing space into axial rectangles:
quadtrees.
– Bound everything with axial rectangles.
– Divide space into four squares. Does object share

a square with the scene?
– If yes, recurse.
– At some point just check.

• Many related, more complicated strategies
possible.

13

Cullings

• View Frustum Culling (VFC)

• Backface Culling

• Visibility-based Culling

(Slides adapted from Prof. Varshney)

View-Frustum Culling

• Remove objects that are entirely outside the
view frustum

• Culling proceeds by checking against the six
planes of the parallel (cuboidal view frustum)
or perspective (pyramidal view frustum) view
volume

14

View-Frustum Culling

View-Frustum Culling

• Buddha is within the frustum
� no culling

• Castle is out of the frustum
� completely culled

• Bunny is partly inside frustum � partly culled

• How can we determine? Test each polygon
with the viewing volume?

15

View-Frustum Culling

• Build a bounding volume
for each object
– Bounding sphere
– Bounding box
– Convex hull

• Simply test the bounding volume with the
view volume

• Castle is done! How about the bunny?

View-Frustum Culling

• Build a bounding volume
hierarchy for each object

• Test starts at root level

• If outside, Reject!
Otherwise, recurse to lower level of the
hierarchy

16

Backface Culling

• Don’t rasterize polygons that are facing
away from the viewer

• Assumes solid objects (no shells with holes)

• Check the sign of N�V
where N is the triangle normal and V is the view

vector

Backface Culling

17

Backface Culling

In normalized device coordinates (canonical view

volume), v is z, backfacing iff 0�zn

Backface Culling in OpenGL

• Turn-on backface culling
glCullFace(GL_BACK); (also possible: GL_FRONT,

GL_FRONT_AND_BACK)

glEnable(GL_CULL_FACE);

• Turn-off
glDisable(GL_CULL_FACE);

18

Visibility-based Culling

• Cull objects that can not be seen in the current
frame

• Static Visibility Culling
– Determine the visibility of objects and viewing volume

statically. Example: in AVW Bldg you cannot see a
third-floor office from the second floor if all windows
are closed

• Dynamic Visibility Culling
– Use near (and large) objects to cull away far objects

incrementally and from frame to frame

