
•1

Slide 1 Lecture 20
Copyright

�
Amitabh Varshney

Model ing Overview
• Goal: Represent 3D objects efficiently

allowing for their easy design and
modification

• Modeling versus rendering primitives

• Implicit, parametric, procedural modeling

Slide 2 Lecture 20
Copyright

�
Amitabh Varshney

Getting Models
• By hand

• By program

• From the world

•2

Slide 3 Lecture 20
Copyright

�
Amitabh Varshney

3D Sensing with Laser
• Project laser on

object
• Triangulate

– Can be done
with known
laser position .

– Or two
cameras.

• Project stripe
and triangulate
on all at once.

Slide 4 Lecture 20
Copyright

�
Amitabh Varshney

•Triangulation: Given a known direction of light, there is a line
in the world where the light might strike the object. This line
projects to a line in the image. Location of the point in the
image tells us where along this line the light struck.

•Epipolar constraint: Line and focal point form a plane. If we
move the light up, we can get a different plane which doesn’t
intersect this, so the new light direction doesn’t interfere.

•3

Slide 5 Lecture 20
Copyright

�
Amitabh Varshney

Digital M ichaelangelo

Slide 6 Lecture 20
Copyright

�
Amitabh Varshney

Many Other 3D Sensors
• Time of flight sensors

• Stereo

• Medical imaging (eg., MRI, sonar)

• Mechanical

•4

Slide 7 Lecture 20
Copyright

�
Amitabh Varshney

3D Representations: Triangles
• Excellent rendering primitive:

– Edges are straight (linear)

– Interior is flat: incremental scan-conversion of a
few adds per pixel

– Triangle visibility is constant (no self-
occlusions)

– Normals can be used to convey flat or curved
shading

Slide 8 Lecture 20
Copyright

�
Amitabh Varshney

Triangles
• Poor Modeling primitive:

– Curved geometries require lots of triangles

– Continuity/smoothness/blending is difficult

– Shape design is hard since influence is
completely local

– Inside/outside tests are difficult for non-convex
objects

•5

Slide 9 Lecture 20
Copyright

�
Amitabh Varshney

Implicit Model ing Primitives
• Expressed by equations of the form

f(x, y, z) = 0
• Divide the space into inside/outside based on

whether f(x, y, z) < 0 or > 0
• Given an object, it is difficult to derive its implicit

representation (there has been some recent
progress in this direction though)

• The class of known implicit functions is large
enough to serve as a useful modeling primitive

Slide 10 Lecture 20
Copyright

�
Amitabh Varshney

Quadrics
• x2 + y2 + z2 – 1 = 0 Sphere/Ellipsoid

• x2 + y2 – z2 – 1 = 0 Hyperboloid of one sheet

• x2 – y2 – z2 – 1 = 0 Hyperboloid of two sheets

• x2 + y2 – z2 = 0 Elliptic Cone

• x2 + y2 – z = 0 Elliptic paraboloid

• – x2 + y2 – z = 0 Hyperbolic paraboloid

•6

Slide 11 Lecture 20
Copyright

�
Amitabh Varshney

Quadrics

(x/a)2 + (y/b)2 + (z/c)2 = 1 (x/a)2 + (y/b)2 – (z/c)2 = 1 –(x/a)2 – (y/b)2 + (z/c)2 = 1

(x/a)2 + (y/b)2 – (z/c)2 = 0 (x/a)2 + (y/b)2 – (z/c) = 0 (x/a)2 – (y/b)2 – (z/c)2 = 0

Ellipsoid Hyperboloid Hyperboloid

Elliptic Cone Elliptic Paraboloid Hyperbolic Paraboloid

Images courtesy, Ching-Kuang Shene, Michigan Technological University

Slide 12 Lecture 20
Copyright

�
Amitabh Varshney

Superquadrics

Image Courtesy Montiel, Aguado, Zaluska, University of Surrey, UK

•7

Slide 13 Lecture 20
Copyright

�
Amitabh Varshney

Superquadrics
(Superel l ipsoids)

• Provide a lot of parameterized flexibility for
modeling different kinds of objects

((x/a)2/s + (y/b)2/s)s/t + (z/c)2/t = 1

For an ellipsoid, s = t = 1

• Similarly one can define superhyperboloids etc…

Slide 14 Lecture 20
Copyright

�
Amitabh Varshney

Metabal ls
• Also known asblobby models
• Useful for modeling soft contours: typically muscles

for humans, animals
• Have equations of the form:

g(x, y, z) =
�

k bk f(r – rk) – T = 0
wheref(r) is the density function, rk is the kth center
(xk, yk, zk)

• Surfaces are then generated for a given density T

•8

Slide 15 Lecture 20
Copyright

�
Amitabh Varshney

Metabal ls
• Density functions can be exponential:

f (r) = e– ar

or quadratic:
b (1 – 3 r2/d2), 0 � r � d/3

f (r) = 3/2 b (1 – r/d)2 , d/3 � r � d

0, r > d

2

Slide 16 Lecture 20
Copyright

�
Amitabh Varshney

Example
• Suppose we have a single, circularly symmetric Gaussian.
What happens as we vary the threshold? We just get a circle,
with varying radius.

• Next, suppose we take the sum of two such Gaussians. What
happens if we vary the threshold. Do we get 2 circles? Well,
at first, when the threshold is high. But as we lower it, the
circles join together smoothly. Think of the Gaussians as two
hills. As we go from one hill to another, the ground stays
higher than when we just leave the hill in another direction.

• Blobby models are good for smoothly joining shapes.

•9

Slide 17 Lecture 20
Copyright

�
Amitabh Varshney

Metabal ls

Images courtesy Matt Ward.

Slide 18 Lecture 20
Copyright

�
Amitabh Varshney

Metabal ls

Image courtesy Spencer Arts

Muscular structure is created using Metareyes plug-in and involved creating hundreds of metaballs.

•10

Slide 19 Lecture 20
Copyright

�
Amitabh Varshney

Parametric Model ing
• Uses equations of the form:

x(u,v) = …

y(u,v) = …

• Useful for modeling surfaces where continuity is
important

• Allows for trade-off of local versus global influence
for editing

• Various representations:
Bezier, B-splines, NURBS (Non-Uniform Rational B-
Splines), trimmed NURBS

Slide 20 Lecture 20
Copyright

�
Amitabh Varshney

2D Example
• Use control pointsto specify a curve.

– Intuitive interface

• Curve should be smooth.

(Dave Mount)

•11

Slide 21 Lecture 20
Copyright

�
Amitabh Varshney

Interpolation vs.
Approximation

• Smooth curves (eg., polynomials) can be fit
to control points.

• But resulting curve can be unpredictable.

(Dave Mount)

Slide 22 Lecture 20
Copyright

�
Amitabh Varshney

Bezier Curves
• Approximate curves

• Two points:

(Dave Mount)

•12

Slide 23 Lecture 20
Copyright

�
Amitabh Varshney

• Three points. Interpolate between pairs.

• Then interpolate between them:

(Dave Mount)

Slide 24 Lecture 20
Copyright

�
Amitabh Varshney

Properties of Bezier Curves
• Can extend to more

points
• Each pt on curve is a

convex combination of
control points.

• Curve starts at first
point and ends at last.

• Tangent at 1st (last)
point is direction to 2nd

(to last).
(Dave Mount)

•13

Slide 25 Lecture 20
Copyright

�
Amitabh Varshney

Parametric Model ing

www.rhino3d.com

Slide 26 Lecture 20
Copyright

�
Amitabh Varshney

Parametric Model ing

Softimage Modeling System

•14

Slide 27 Lecture 20
Copyright

�
Amitabh Varshney

Constructive Sol id Geometry
• Uses primitive objects such as slabs, cylinders,

spheres, and cones
• Performs operations of set union, intersection,

and difference to build more complex 3D
objects from primitives

• Graphics use requires conversion to boundary
representation (B-rep) after design

• Very powerful paradigm for design but
conversion to B-rep can be challenging

Slide 28 Lecture 20
Copyright

�
Amitabh Varshney

Constructive Sol id Geometry

•15

Slide 29 Lecture 20
Copyright

�
Amitabh Varshney

• Determine if a point is inside an object. We do this
recursively. Find out whether the point is inside the two parts
of the object. Then for union, check if it belongs to either
part, for intersection both, for difference one but not other.

• Intersection of object and ray. Recursively determine the
range of intersection of the ray and each part. Again,
combining is pretty easy.

Slide 30 Lecture 20
Copyright

�
Amitabh Varshney

Procedural Model ing
• Uses procedural rules to evolve/grow objects

• Iterative application of rules is typical

• Possibilities include:
– Procedural grammars where rules may be applied

deterministically or stochastically

– Modeling of physical laws of motion and forces,
such as attraction/repulsion between particles

– Iterative evaluation of mathematical functions such
as fractals

•16

Slide 31 Lecture 20
Copyright

�
Amitabh Varshney

Procedural Model ing
(L-Systems)

Images courtesy, Przemyslaw Prusinkiewicz, University of Calgary, Canada

Slide 32 Lecture 20
Copyright

�
Amitabh Varshney

Procedural Model ing

Images courtesy, Przemyslaw Prusinkiewicz, University of Calgary, Canada

•17

Slide 33 Lecture 20
Copyright

�
Amitabh Varshney

Fractals
• Shape is self-similar across scales.

• Zooming in, the shape (statistically) looks
the same.

• Example: Mountain.
– Zoom in and boulders look like mountain.

• Many real objects have fractal appearance.

Slide 34 Lecture 20
Copyright

�
Amitabh Varshney

Make Fractal

•18

Slide 35 Lecture 20
Copyright

�
Amitabh Varshney

Fractals by iteration
• Complex multiplication: (a + bi)(c + di) =

(ac ! bd) + (ad + bc)i

• z -> z*z Converges in set, diverges outside
set. This produces a disk.

• Set of points that converge: Julia Set

Slide 36 Lecture 20
Copyright

�
Amitabh Varshney

z "> z*z + c
c = !0 .62 ! 0.44i

•19

Slide 37 Lecture 20
Copyright

�
Amitabh Varshney

Mandelbrot Set
• Set of points, c, for which Julia Set is connected.

Slide 38 Lecture 20
Copyright

�
Amitabh Varshney

•http://www.effectware.com/download/images/efx_mountain2.jpg

•20

Level of Detai l for
Polygonal Models

• Level of detailor LOD methods provide a powerful
means for managing scene complexity

• Now a standard tool in graphics to balance rendering
speed with visual fidelity

Following slides are from a SIGGRAPH course by Cohen, Huebner,
Luebke, Reddy, Varshney, Watson

Motivation
Interactive rendering of large-scale geometric

datasets is important
– Scientific and medical visualization

– Architectural and industrial CAD

– Training (military and otherwise)

– Entertainment

•21

Motivation:
Big Models

• The problem:
– Polygonal models are often too complex to

render at interactive rates

• Even worse:
– Incredibly, models are getting bigger at least as

fast as hardware …

Slide 42 Lecture 20
Copyright

�
Amitabh Varshney

Motivation
High complexity: arbitrary topology

Large size: ~ hundreds of millions

Ste. Pierre CathedralSt. Matthews
Statue

PietaHappy
Buddha

BunnyModel

1.9 GB762 MB43 MB3 MB200 KBSize

220 million127 Million7.2 million543,64234,947#
Points

20022000199819961994Year

•22

Level of Detai l :
The Basic Idea

One solution:
– Simplify the polygonal geometry of small or

distant objects

– Known as Level of Detail or LOD
• A.k.a. polygonal simplification, geometric

simplification, mesh reduction, multiresolution
modeling, …

Courtesy Stanford 3D Scanning Repository

Create levels of detail(LODs) of objects:

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detai l :
Traditional Approach

•23

Level of Detai l :
Traditional Approach

Distant objects use coarser LODs:

Traditional Approach:
Static Level of Detai l

• Traditional LOD in a nutshell:
– Create LODs for each object separately

in a preprocess

– At run-time, pick each object’s LOD according
to the object’s distance (or
similar criterion)

• Since LODs are created offline at fixed
resolutions, we refer to this as Static LOD

•24

Advantages of Static LOD
Simplest programming model; decouples
simplification and rendering
– LOD creation need not address real-time

rendering constraints

– Run-time rendering need only pick LODs

Advantages of Static
LOD

Fits modern graphics hardware well
– Easy to compile each LOD into triangle

strips, display lists, vertex arrays, …

– These render muchfaster than
unorganized polygons on today’s
hardware (3-5 x)

•25

Disadvantages of Static
LOD

• So why use anything but static LOD?
• Answer: sometimes static LOD not

suited for drastic simplification
• Some problem cases:

– Terrain flyovers
– Volumetric isosurfaces
– Super-detailed range scans
– Massive CAD models

Drastic Simpl ification:
The Problem With Large Objects

Courtesy IBM and ACOG

•26

Drastic Simpl ification:
The Problem With Smal l Objects

Courtesy Electric Boat

Drastic Simpl ification
• For drastic simplification:

– Large objects must be subdivided

– Small objects must be combined

• Difficult or impossible with static LOD

• So what can we do?

•27

Dynamic Level of Detai l
A departure from the traditional static
approach:
– Static LOD: create individual LODs in a

preprocess

– Dynamic LOD: create data structure from
which a desired level of detail can be extracted
at run time.

Dynamic LOD:
Advantages

Better granularity means better fidelity
– LOD is specified exactly, not chosen from a

few pre-created options

– Thus objects use no more polygons than
necessary, which frees up polygons for other
objects

– Net result: better resource utilization, leading to
better overall fidelity/polygon

•28

Dynamic LOD:
Advantages

Better granularity means smoother transitions
– Switching between traditional LODs can

introduce visual “popping” effect

– Dynamic LOD can adjust detail gradually and
incrementally, reducing visual pops

• Can even geomorphthe fine-grained simplification
operations over several frames to eliminate “pops”

Dynamic LOD:
Advantages

• Supports progressive transmission

• Supports view-dependent LOD
– Use current view parameters to select best

representation for the current view

– Single objects may thus span several levels of
detail

•29

View-Dependent LOD:
Examples

Show nearby portions of object at higher
resolution than distant portions

View from eyepoint Birds-eye view

View-Dependent LOD:
Examples

Show silhouette regions of object at higher
resolution than interior regions

•30

View-Dependent LOD:
Examples

Show more detail where the user is
looking than in their peripheral vision:

34,321 triangles

View-Dependent LOD:
Examples

Show more detail where the user is
looking than in their peripheral vision:

11,726 triangles

•31

View-Dependent LOD:
Advantages

• Even better granularity
– Allocates polygons where they are most

needed, within as well as among objects
– Enables even better overall fidelity

• Enables drastic simplification of
very large objects
– Example: stadium model
– Example: terrain flyover

View-Dependent LOD:
Algorithms

• Many good published algorithms:
– Merge Treesby Xia & Varshney [Visualization 96]

– Progressive Meshesby Hoppe
[SIGGRAPH 96, SIGGRAPH 97, …]

– Hierarchical Dynamic Simplificationby
Luebke & Erikson[SIGGRAPH 97]

– Multitriangulationby DeFloriani et al

– Others…

•32

Overview
Overview of the algorithm:

– A preprocess builds the vertex tree,
a hierarchical clustering of vertices

– At run time, clusters appear to grow and shrink
as the viewpoint moves

– Clusters that become too small are collapsed,
filtering out some triangles

