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Model ing  Overview
• Goal: Represent 3D objects efficiently 

allowing for their easy design and 
modification

• Modeling versus rendering primitives

• Implicit, parametric, procedural modeling
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Getting  Models
• By hand

• By program

• From the world
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3D Sensing  with  Laser
• Project laser on 

object
• Triangulate

– Can be done 
with known 
laser position .

– Or two 
cameras.

• Project stripe 
and triangulate 
on all at once.
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•Triangulation: Given a known direction of light, there is a line
in the world where the light might strike the object.  This line
projects to a line in the image.  Location of the point in the 
image tells us where along this line the light struck.

•Epipolar constraint: Line and focal point form a plane.  If we 
move the light up, we can get a different plane which doesn’t 
intersect this, so the new light direction doesn’t interfere.
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Digital  M ichaelangelo
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Many Other 3D Sensors
• Time of flight sensors

• Stereo

• Medical imaging (eg., MRI, sonar)

• Mechanical
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3D Representations:  Triangles
• Excellent rendering primitive:

– Edges are straight (linear)

– Interior is flat: incremental scan-conversion of a 
few adds per pixel

– Triangle visibility is constant (no self-
occlusions)

– Normals can be used to convey flat or curved 
shading
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Triangles
• Poor Modeling primitive:

– Curved geometries require lots of triangles

– Continuity/smoothness/blending is difficult

– Shape design is hard since influence is 
completely local

– Inside/outside tests are difficult for non-convex 
objects
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Implicit Model ing  Primitives
• Expressed by equations of the form 

f(x, y, z)  = 0
• Divide the space into inside/outside based on 

whether f(x, y, z) < 0 or > 0
• Given an object, it is difficult to derive its implicit 

representation (there has been some recent 
progress in this direction though)

• The class of known implicit functions is large 
enough to serve as a useful modeling primitive 

Slide  10 Lecture 20
Copyright 

�
Amitabh Varshney

Quadrics
• x2 + y2 + z2 – 1 = 0   Sphere/Ellipsoid

• x2 + y2 – z2 – 1 = 0    Hyperboloid  of one sheet

• x2 – y2 – z2 – 1 = 0     Hyperboloid of two sheets

• x2 + y2 – z2 = 0           Elliptic Cone

• x2 + y2 – z = 0   Elliptic paraboloid

• – x2 + y2 – z = 0   Hyperbolic paraboloid
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Quadrics

(x/a)2 + (y/b)2 + (z/c)2 = 1              (x/a)2 + (y/b)2 – (z/c)2 = 1 –(x/a)2 – (y/b)2 + (z/c)2 = 1

(x/a)2 + (y/b)2 – (z/c)2 = 0              (x/a)2 + (y/b)2 – (z/c) = 0 (x/a)2 – (y/b)2 – (z/c)2 = 0

Ellipsoid Hyperboloid Hyperboloid

Elliptic Cone Elliptic Paraboloid Hyperbolic Paraboloid

Images courtesy, Ching-Kuang Shene, Michigan Technological University
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Superquadrics

Image Courtesy Montiel, Aguado, Zaluska, University of Surrey, UK
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Superquadrics
(Superel l ipsoids)

• Provide a lot of parameterized flexibility for 
modeling different kinds of objects

( (x/a)2/s + (y/b)2/s)s/t + (z/c)2/t = 1

For an ellipsoid,   s = t = 1 

• Similarly one can define superhyperboloids etc…
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Metabal ls
• Also known asblobby models
• Useful for modeling soft contours: typically muscles 

for humans, animals
• Have equations of the form:

g(x, y, z)  = 
�

k bk f(r – rk) – T = 0
wheref(r) is the density function, rk is the kth center 
(xk, yk, zk)

• Surfaces are then generated for a given density T
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Metabal ls
• Density functions can be exponential:

f ( r ) = e– ar

or quadratic: 
b ( 1 – 3 r2/d2),   0 � r � d/3

f ( r )   =      3/2 b (1 – r/d)2 , d/3 � r � d

0, r > d

2
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Example
• Suppose we have a single, circularly symmetric Gaussian.  
What happens as we vary the threshold?  We just get a circle, 
with varying radius.

• Next, suppose we take the sum of two such Gaussians.  What 
happens if we vary the threshold.  Do we get 2 circles?  Well, 
at first, when the threshold is high.  But as we lower it, the 
circles join together smoothly.  Think of the Gaussians as two 
hills.  As we go from one hill to another, the ground stays 
higher than when we just leave the hill in another direction.

• Blobby models are good for smoothly joining shapes.
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Metabal ls

Images courtesy Matt Ward.
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Metabal ls

Image courtesy Spencer Arts

Muscular structure is created using Metareyes plug-in and involved creating hundreds of metaballs.
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Parametric Model ing
• Uses equations of the form: 

x(u,v)  =  …

y(u,v)  =  …

• Useful for modeling surfaces where continuity  is 
important

• Allows for trade-off of local versus global influence 
for editing

• Various representations:
Bezier, B-splines, NURBS (Non-Uniform Rational B-
Splines), trimmed NURBS
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2D Example
• Use control pointsto specify a curve.

– Intuitive interface

• Curve should be smooth.

(Dave Mount)
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Interpolation  vs.  
Approximation

• Smooth curves (eg., polynomials) can be fit 
to control points.

• But resulting curve can be unpredictable.

(Dave Mount)
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Bezier Curves
• Approximate curves

• Two points:

(Dave Mount)
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• Three points.  Interpolate between pairs.

• Then interpolate between them: 

(Dave Mount)
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Properties of Bezier Curves
• Can extend to more 

points
• Each pt on curve is a 

convex combination of 
control points.

• Curve starts at first 
point and ends at last.

• Tangent at 1st (last) 
point is direction to 2nd

(to last).
(Dave Mount)
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Parametric Model ing

www.rhino3d.com
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Parametric Model ing

Softimage Modeling System
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Constructive Sol id  Geometry
• Uses primitive objects such as slabs, cylinders, 

spheres, and cones
• Performs operations of set union, intersection, 

and difference to build more complex 3D 
objects from primitives

• Graphics use requires conversion to boundary 
representation (B-rep) after design

• Very powerful paradigm for design but 
conversion to B-rep can be challenging
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Constructive Sol id  Geometry



•15

Slide  29 Lecture 20
Copyright 

�
Amitabh Varshney

• Determine if a point is inside an object.  We do this 
recursively.  Find out whether the point is inside the two parts
of the object.  Then for union, check if it belongs to either 
part, for intersection both, for difference one but not other.

• Intersection of object and ray.  Recursively determine the 
range of intersection of the ray and each part.  Again, 
combining is pretty easy.
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Procedural  Model ing
• Uses procedural rules to evolve/grow objects

• Iterative application of rules is typical

• Possibilities include:
– Procedural grammars where rules may be applied 

deterministically or stochastically

– Modeling of physical laws of motion and forces, 
such as attraction/repulsion between particles

– Iterative evaluation of mathematical functions such 
as fractals
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Procedural  Model ing  
(L-Systems)

Images courtesy, Przemyslaw Prusinkiewicz, University of Calgary, Canada
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Procedural  Model ing  

Images courtesy, Przemyslaw Prusinkiewicz, University of Calgary, Canada
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Fractals
• Shape is self-similar across scales.

• Zooming in, the shape (statistically) looks 
the same.

• Example: Mountain.  
– Zoom in and boulders look like mountain.

• Many real objects have fractal appearance.
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Make Fractal
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Fractals by iteration
• Complex multiplication: (a + bi)(c + di) = 

(ac ! bd) + (ad + bc)i

• z -> z*z  Converges in set, diverges outside 
set.  This produces a disk.

• Set of points that converge: Julia Set
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z ">  z*z +  c
c =  !0 .62 ! 0.44i
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Mandelbrot Set 
• Set of points, c, for which Julia Set is connected.
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•http://www.effectware.com/download/images/efx_mountain2.jpg
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Level  of Detai l  for 
Polygonal  Models

• Level of detailor LOD methods provide a powerful 
means for managing scene complexity 

• Now a standard tool in graphics to balance rendering 
speed with visual fidelity

Following slides are from a SIGGRAPH course by Cohen, Huebner, 
Luebke, Reddy, Varshney, Watson

Motivation
Interactive rendering of large-scale geometric 

datasets is important
– Scientific and medical visualization

– Architectural and industrial CAD

– Training (military and otherwise)

– Entertainment
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Motivation:
Big  Models

• The problem:
– Polygonal models are often too complex to 

render at interactive rates

• Even worse:
– Incredibly, models are getting bigger at least as 

fast as hardware …
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Motivation
High complexity: arbitrary topology

Large size: ~ hundreds of millions

Ste. Pierre CathedralSt. Matthews 
Statue

PietaHappy 
Buddha

BunnyModel

1.9 GB762 MB43 MB3 MB200 KBSize

220 million127 Million7.2 million543,64234,947# 
Points

20022000199819961994Year
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Level  of Detai l :  
The Basic Idea

One solution:
– Simplify the polygonal geometry of small or 

distant objects

– Known as Level of Detail or LOD
• A.k.a. polygonal simplification, geometric 

simplification, mesh reduction, multiresolution 
modeling, …

Courtesy Stanford 3D Scanning Repository

Create levels of detail(LODs) of objects:

69,451 polys 2,502 polys 251 polys 76 polys

Level  of Detai l :
Traditional  Approach
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Level  of Detai l :
Traditional  Approach

Distant objects use coarser LODs:

Traditional  Approach:  
Static Level  of Detai l

• Traditional LOD in a nutshell:
– Create LODs for each object separately 

in a preprocess

– At run-time, pick each object’s LOD according 
to the object’s distance (or 
similar criterion)

• Since LODs are created offline at fixed 
resolutions, we refer to this as Static LOD
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Advantages of Static LOD
Simplest programming model; decouples 
simplification and rendering
– LOD creation need not address real-time 

rendering constraints

– Run-time rendering need only pick LODs

Advantages of Static 
LOD

Fits modern graphics hardware well
– Easy to compile each LOD into triangle 

strips, display lists, vertex arrays, …

– These render muchfaster than 
unorganized polygons on today’s 
hardware (3-5 x)
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Disadvantages of Static 
LOD

• So why use anything but static LOD?
• Answer: sometimes static LOD not 

suited for drastic simplification
• Some problem cases:

– Terrain flyovers
– Volumetric isosurfaces
– Super-detailed range scans
– Massive CAD models

Drastic Simpl ification:  
The Problem With  Large Objects

Courtesy IBM and ACOG
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Drastic Simpl ification:  
The Problem With  Smal l  Objects

Courtesy Electric Boat

Drastic Simpl ification
• For drastic simplification:

– Large objects must be subdivided

– Small objects must be combined

• Difficult or impossible with static LOD

• So what can we do?
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Dynamic Level  of Detai l
A departure from the traditional static 
approach:
– Static LOD: create individual LODs in a 

preprocess

– Dynamic LOD: create data structure from 
which a desired level of detail can be extracted 
at run time.

Dynamic LOD:
Advantages

Better granularity means better fidelity
– LOD is specified exactly, not chosen from a 

few pre-created options

– Thus objects use no more polygons than 
necessary, which frees up polygons for other 
objects 

– Net result: better resource utilization, leading to 
better overall fidelity/polygon
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Dynamic LOD:
Advantages

Better granularity means smoother transitions
– Switching between traditional LODs can 

introduce visual “popping” effect

– Dynamic LOD can adjust detail gradually and 
incrementally, reducing visual pops

• Can even geomorphthe fine-grained simplification 
operations over several frames to eliminate “pops”

Dynamic LOD:
Advantages

• Supports progressive transmission

• Supports view-dependent LOD
– Use current view parameters to select best 

representation for the current view

– Single objects may thus span several levels of 
detail
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View-Dependent LOD:  
Examples

Show nearby portions of object at higher 
resolution than distant portions

View from eyepoint Birds-eye view

View-Dependent LOD:  
Examples

Show silhouette regions of object at higher 
resolution than interior regions
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View-Dependent LOD:
Examples

Show more detail where the user is 
looking than in their peripheral vision:

34,321 triangles

View-Dependent LOD:
Examples

Show more detail where the user is 
looking than in their peripheral vision:

11,726 triangles
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View-Dependent LOD:
Advantages

• Even better granularity
– Allocates polygons where they are most 

needed, within as well as among objects
– Enables even better overall fidelity

• Enables drastic simplification of 
very large objects
– Example: stadium model
– Example: terrain flyover

View-Dependent LOD:  
Algorithms

• Many good published algorithms:
– Merge Treesby Xia & Varshney [Visualization 96]

– Progressive Meshesby Hoppe 
[SIGGRAPH 96, SIGGRAPH 97, …]

– Hierarchical Dynamic Simplificationby 
Luebke & Erikson[SIGGRAPH 97]

– Multitriangulationby DeFloriani et al 

– Others…
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Overview
Overview of the algorithm:

– A preprocess builds the vertex tree, 
a hierarchical clustering of vertices

– At run time, clusters appear to grow and shrink 
as the viewpoint moves

– Clusters that become too small are collapsed, 
filtering out some triangles


