
•1

Slide 1 Lecture 18
Copyright

�
Amitabh Varshney

Shadows

(Georges de la Tour)

Slide 2 Lecture 18
Copyright

�
Amitabh Varshney

•Shadows give us important visual
cues about 3D object placement
and motion

•Movies are from:

• http://vision.psych.umn.edu
/users/kersten/kersten-
lab/demos/shadows.html

Why Shadows?

•2

Slide 3 Lecture 18
Copyright

�
Amitabh Varshney

Why Shadows ?
Also, realism …

Image courtesy, Codemasters

Game: Blade of Darkness

Slide 4 Lecture 18
Copyright

�
Amitabh Varshney

Shadows just look cool

•3

Slide 5 Lecture 18
Copyright

�
Amitabh Varshney

Attached Shadows

Cast Shadows • Attached shadows are
easy to render

• Because they are
local.

• We already have
discussed this.

• Cast shadows require us
to determine whether the
surface is visible to the
light.

Slide 6 Lecture 18
Copyright

�
Amitabh Varshney

Hard and Soft Shadows
point source

umbra

area source

umbrapenumbra
Images courtesy, Eric Haines and Tomas Moeller

•4

Slide 7 Lecture 18
Copyright

�
Amitabh Varshney

Real-time Shadows
• Assumptions: hard shadows from point light sources onto

planar surfaces
• Let the light source be at infinity in the direction L(xl, yl, zl),

and we want to compute the shadow S(xw, yw, zw) of the
point P(xp, yp, zp), on the plane z = 0

• It is easy to see that S lies on the line defined by P and L or
S = P – � L

• Since the shadow is on the plane z = 0,
zw= 0 � �=zp/zl, and
xw = xp - (zp / zl) xl

yw = yp - (zp / zl) yl

Slide 8 Lecture 18
Copyright

�
Amitabh Varshney

Real-time Shadows
Restating the equations from previous slide in a matrix form:

Shadows on arbitrary planes can be performed by prefixing the above
matrix by a suitable transformation that transforms that plane to z = 0

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

	
�
�
�
�

�

�

�
�
�
�

�

�

11000

0000

010

001

1

0 p

p

p

ll

ll

w

w

z

y

x

zy

zx

y

x

•5

Slide 9 Lecture 18
Copyright

�
Amitabh Varshney

Real-time Shadows
• Remember to set the right shadow color before drawing the

shadow
• Z-conflicts can ruin shadows, so remember to slightly offset

the shadows to lie above the surface:
glEnable(GL_POLYGON_OFFSET_FILL)
glPolygonOffset(GLfloat factor, GLfloat units)
// display the polygon here
glDisable(GL_POLYGON_OFFSET_FILL)

• Alternatively if the scene geometry is well understood the
following might be possible and simpler:

Render the plane, turn off the depth test, render the shadows, turn the
depth test back on, and render the rest of the scene.

Slide 10 Lecture 18
Copyright

�
Amitabh Varshney

Real-time Shadows
We assumed light source at infinity.

If the light source is local at L(xl, yl, zl), we can use the

following matrix [Blinn 88]:

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

�

	
�
�
�
�

�

�

�
�
�
�

�

�

1100

0000

00

00

1

0 p

p

p

l

ll

ll

w

w

z

y

x

z

yz

xz

y

x

•6

Slide 11 Lecture 18
Copyright

�
Amitabh Varshney

Why is this the right matrix? Let’s just work through the x coordinate. To project the point onto the z = 0
plane as a shadow, we need to move it in the direction from the light to the point, and to move it far enough so
that it’s on the z = 0 plane. That means we need to add a scaled version of (xp-xl,yp-yl,zp-zl) to the point
(xp,yp,zp). Our projected point will be (xp,yp,zp) + a(xp-xl,yp-yl,zp-zl) where we choose a so that the
resulting z coordinate will be 0. That is, zp + a(zp-zl) = 0, or a = zp(zl-zp).

The x coordinate that we wind up with, then will be xp + zp(xp-xl)/(zl-zp). We can rewrite this as:

(xp(zl-zp) + zp(xp-xl))/(zl-zp) = (xp*zl – zp*xl)/(zl-zp).

Notice that if we apply our matrix to (xp,yp,zp,1), we get (xp*zl – zp*xl, ?, 0, zl-zp), where we haven’t
calculated the y coordinate yet. This is in homogenous coordinates, but if we divide by the fourth coordinate,
we get the correct x coordinate that we have just calculated. We can check the y coordinate in the same way.

Slide 12 Lecture 18
Copyright

�
Amitabh Varshney

Light Maps
• Idea is to store the view-independent lighting of a

scene as a 2D texture map

• Light maps are reasonably effective even when
used at low resolutions (since they usually don’t
have high frequency detail)

• Efficiency involves clustering similarly lighted
polygonal patches (Zhukov et al. 1998)

•7

Slide 13 Lecture 18
Copyright

�
Amitabh Varshney

Texture-Mapped Scene

Images courtesy, 3D Games by Watt and Policarpo

Slide 14 Lecture 18
Copyright

�
Amitabh Varshney

Light Mapped Scene

Images courtesy, 3D Games by Watt and Policarpo

No filtering of
the light map

•8

Slide 15 Lecture 18
Copyright

�
Amitabh Varshney

Light-Mapped Scene

Images courtesy, 3D Games by Watt and Policarpo

Light map with linear
filtering

Slide 16 Lecture 18
Copyright

�
Amitabh Varshney

Texture & Light Mapped Scene

Images courtesy, 3D Games by Watt and Policarpo

Texture mapped *

Filtered Light Mapped

•9

Slide 17 Lecture 18
Copyright

�
Amitabh Varshney

Light Maps

Images courtesy, 3D Games by Watt and Policarpo

Texture + Filtered Light MappedTexture mapped

Slide 18 Lecture 18
Copyright

�
Amitabh Varshney

Shadow Augmented Light Maps
• If light sources and scene objects are static then the shadows

will be static.
• Precompute the shadows as a part of the light map and apply

as a texture
“(The world) saw shadows black until Monet discovered they

were coloured,…”
Maugham, Of Human Bondage

Images from 3D Games by Watt and Policarpo

•10

Slide 19 Lecture 18
Copyright

�
Amitabh Varshney

Shadow Z-Buffer
• Proposed by Williams 1978

• Render the scene from the light’s point of view and
store the result in a shadow z-buffer

• Then render the scene from the user’s view point and
for each pixel that overwrites a previously written pixel:
– Transform the pixel’s screen space coordinates into the light

source’s coordinate frame

– Index into the shadow z-buffer to see whether the rendered
point’s depth is greater than the depth for the corresponding
pixel in the shadow z-buffer

– If the depth is greater � point is in shadow and use the shadow
color, otherwise render normally

Slide 20 Lecture 18
Copyright

�
Amitabh Varshney

Shadow Z-buffer

Images from 3D Computer Graphics by Watt

Low resolution shadow map Higher resolution shadow map

•11

Slide 21 Lecture 18
Copyright

�
Amitabh Varshney

Shadow Z-buffer
Images from 3D Computer Graphics by Watt

Depth map from User’s View Point

Shadow Environment Z-buffer from

Light’s View Point

