Transformations, continued

3D Rotation

$\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}\left(r_{11}, r_{12}, r_{13}\right) \bullet(x, y, z) \\ \left(r_{21}, r_{22}, r_{23}\right) \bullet(x, y, z) \\ \left(r_{31}, r_{32}, r_{33}\right) \bullet(x, y, z)\end{array}\right)$

So if the rows of R are orthogonal unit vectors (orthonormal), they are the axes of a new coordinate system, and matrix multiplication rewrites (x, y, z) in that coordinate system.
This also means that $R R^{T}=I$
This means that R^{T} is a rotation matrix that undoes R.

Alternately, ...

$\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}r_{11} \\ r_{21} \\ r_{31}\end{array}\right)$

So R takes the x axis to be a vector equivalent to the first column of R.

Similarly, the y and z axes are transformed to be the second and third columns of R.
If R is a rotation, then the transformed axes should still be orthogonal unit vectors. So the columns of R should be orthonormal.

Simple 3D Rotation

$\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{llllll}x_{1} & x_{2} & \cdot & \cdot & \cdot & x_{n} \\ y_{1} & y_{2} & & & y_{n} \\ z_{1} & z_{2} & & & & z_{n}\end{array}\right)$

Rotation about z axis.
Rotates x, y coordinates. Leaves z coordinates fixed.

Full 3D Rotation

$R=\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right)$

- Any rotation can be expressed as combination of three rotations about three axes.
$R R^{\tau}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
- Rows (and columns) of R are orthonormal vectors.
- R has determinant 1 (not -1).
- Intuitively, it makes sense that 3D rotations can be expressed as 3 separate rotations about fixed axes.
Rotations have 3 degrees of freedom; two describe an axis of rotation, and one the amount.
- Rotations preserve the length of a vector, and the angle between two vectors. Therefore, ($1,0,0$), ($0,1,0$), $(0,0,1)$ must be orthonormal after rotation. After rotation, they are the three columns of R. So these columns must be orthonormal vectors for R to be a rotation. Similarly, if they are orthonormal vectors (with determinant 1) R will have the effect of rotating $(1,0,0),(0,1,0),(0,0,1)$. Same reasoning as 2D tells us all other points rotate too.
- Note if R has determinant -1 , then R is a rotation plus a reflection.

3D Rotation + Translation

- Just like 2D case
$\left(\begin{array}{cccc}r_{11} & r_{12} & r_{13} & t_{x} \\ r_{21} & r_{22} & r_{23} & t_{y} \\ r_{31} & r_{32} & r_{33} & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right)$

Rotation about a known axis

- Suppose we want to rotate about u.
- Find R so that u will be the new z axis.
$-u$ is third row of R.
- Second row is anything orthogonal to u.
- Third row is cross-product of first two.
- Make sure matrix has determinant 1.
- Then rotate about (new) z axis.
- Then apply inverse of first rotation.

Let's look at an example of this. Suppose we want to rotate about the direction $(1,1,1)$. A unit vector in this direction is:

Let's call that matrix R1. We apply R1, then apply a matrix that rotates about the z axis. Then the inverse of R1, to go back. This could look like:

$$
\left(\begin{array}{ccc}
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)
$$

This should rotate everything by 45 degrees about the axis in the direction ($1,1,1$). To verify this, check what happens when we apply this matrix to $(2,2,2)$. It stays fixed. How else can we check this does the right thing?

Transformation of lines/normals

- 2D. Line is set of points (x, y) for which (a,b,c). $(x, y, 1)^{\top}=0$. Suppose we rotate points by R. Notice that:
$(a, b, c) R^{\top} R(x, y, 1)^{\top}=0$
So, $(a, b, c) R^{\top}$ is the rotation of the line (a, b, c).
Surface normals are similar, except they are defined by (a,b,c). $(x, y, z)^{\top}=0$

OpenGL

- Basically, OpenGL let's you multiply all objects by a matrix as they are drawn.
- Routines allow you to manage multiple matrices (pushing and popping).
- Routines allow you to combine many matrices (multiplied together in postfix order).
- Routines create matrices for you (translation, rotation about an axis, viewing).

Hierarchical Transformations in OpenGL

- Stacks for Modelview and Projection matrices
- glPushMatrix()
- push-down all the matrices in the active stack one level
- the top-most matrix is copied (the top and the second-from-top matrices are initially the same).
- gIPopMatrix()
- pop-off and discard the top matrix in the active stack
- Stacks used during recursive traversal of the hierarchy.
- Typical depths of matrix stacks:
- Modelview stack = 32 (aggregating several transformations)
- Projection Stack = 2 (eg: 3D graphics and 2D helpmenu)

OpenGL Transformation Support

- Three matrices
- GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE
- glMatrixMode(mode) specifies the active matrix
- gILoadldentity()
- Set the active matrix to identity
- glLoadMatrix\{fd\}(TYPE *m)
- Set the 16 values of the current
matrix to those specified by \boldsymbol{m}
- glMultMatrix\{fd\}(TYPE *m)
$\boldsymbol{m}=\left(\begin{array}{llll}m_{1} & m_{5} & m_{9} & m_{13} \\ m_{2} & m_{6} & m_{10} & m_{14} \\ m_{3} & m_{7} & m_{11} & m_{15} \\ m_{4} & m_{8} & m_{12} & m_{16}\end{array}\right)$

Transformation Example

```
glMatrixMode(GL_MODELVIEW);
g|LoadIdentity( ); // matrix = I
glMultMatrix(N); // matrix = N
gIMultmatrix(M); // matrix = NM
glMultMatrix(L); // matrix = NML
gIBegin(GL_POINTS);
g/Vertex3f(v); // v will be transformed:
    NMLv
glEnd( );
```


OpenGL Transformations

- gITranslate\{fd\}(TYPE x, TYPE y, TYPE z)
- Multiply the current matrix by the translation matrix
- glRotate\{fd\}(TYPE angle, TYPE x, TYPE y, TYPE z)
- Multiply the current matrix by the rotation matrix that rotates an object about the axis from $(0,0,0)$ to (x, y, z)
- gIScale\{fd\}(TYPE x, TYPE y, TYPE z)
- Multiply the current matrix by the scale matrix

Examples

```
    glMatrixMode(GL_MODELVIEW);
    glRecti(50,100,200,150);
    glTranslatef(-200.0,-50.0, 0.0);
    g|Recti(50,100,200,150);
    glLoadIdentity();
    glRotatef(90.0, 0.0, 0.0, 1.0);
    gIRecti(50,100,200,150);
    g|Loadldentity();
    glscalef(-.5, 1.0, 1.0)
    gIRecti(50,100,200,150);
```


Viewing in 3D

- World (3D) \rightarrow Screen (2D)
- Orienting Eye coordinate system in World coordinate system
- View Orientation Matrix
- Specifying viewing volume and projection parameters for $\mathfrak{R}^{\boldsymbol{n}} \rightarrow \mathfrak{R}^{\mathrm{d}}$ (d < n)
- View Mapping Matrix

World to Eye Coordinates

- We need to transform from the world coordinates to the eye coordinates
- The eye coordinate system is specified by:
- View reference point (VRP)
- VRP $_{x}$, VRP $_{y}$, VRP $_{z}$)
- Direction of the axes: eye coordinate system
- $\mathbf{U}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)$
- $\mathbf{V}=\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)$
- $\mathrm{N}=\left(\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}\right)$

World to Eye Coordinates

- There are two steps in the transformation (in order)
- Translation
- Rotation

World to Eye Coordinates

- Translate World Origin to VRP

$$
\left(\begin{array}{c}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & -\operatorname{VRP}_{\mathrm{x}} \\
0 & 1 & 0 & -\operatorname{VRP}_{\mathrm{y}} \\
0 & 0 & 1 & -\operatorname{VRP}_{\mathrm{z}} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z} \\
1
\end{array}\right)
$$

World to Eye Coordinates

- Rotate World X, Y, Z to the Eye coordinate system u, v, n, also known as the View Reference Coordinate system

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
n_{x} & n_{y} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
1
\end{array}\right)
$$

Let's take an example. Suppose we have a bird's eye view of the world. We are looking from above down on the world. What is a possible view reference point? How about $(0,50,0)$. What is a possible viewing direction (n) ? $(0,-1,0)$. What would be a reasonable up vector (v)? How about $(0,0,1)$? How does our image change as we pick a different one? So what is the translation matrix we get:

1000
010-50
0010
0001

And what is our rotation matrix:
1000
0010
0-1 00
0001
Does this make sense? What are the coordinates of a point on the ground. For example, the point (00 $0)$? Multiply the translation matrix and we get ($0-5001$). Multiply this by rotation matrix and we get: (00501). This point seems to have a distance of 50 in front of us, and to otherwise be at the origin.

What about a point at (0010)? Where should this appear? Since $(0,0,1)$ is the up vector, this should appear to be distant, and above. Translating we get (0-50 10 1). Rotating we get: (0 10501). 50 units in front of us, and up by 10 .

Camera Analogy

Specifying 3D View (Camera Analogy)

- Center of camera (x, y, z) : 3 parameters
- Direction of pointing $(\theta, \varphi): 2$ parameters
- Camera tilt (ω) : 1 parameter
- Area of film (w, h) : 2 parameters
- Focus (f) : 1 parameter

Specifying 3D View

- Center of camera (x, y, z) : View Reference Point (VRP)
- Direction of pointing (θ, φ) : View Plane Normal (VPN)
- Camera tilt (ω : View Up (VUP)
- Area of film (w, h) : Aspect Ratio (w/h),

Field of view (fov)

- Focus (f) : Will consider later

Eye Coordinate System
 VUP

- View Reference Point (VRP)
- View Plane Normal (VPN)
- View Up (VUP)

World to Eye Coordinates

- Translate World Origin to VRP
- Rotate World X, Y, Z to the Eye coordinate system, also known as the View Reference Coordinate system, \quad VRC $=($ VUP \times VPN, VUP, VPN $)$, respectively:

Eye Coordinate System (OpenGL/GLU library)

- gluLookAt (eye x_{x}, eye $_{y}$, eye $_{z}$, lookat t_{x}, lookat t_{y}, lookat $\left., u p_{x}, u p_{y}, u p_{z}\right)$;
- In our terminology:
eye $=$ VRP
lookat $=$ VRP + VPN

$$
u p=V U P
$$

- gluLookAt also works even if:
- lookat is any point along the VPN
- VUP is not perpendicular to VPN

gluLookAt()

Image from: Interactive Computer Graphics by Ed Angel

Eye Coordinate System (OpenGL/GLU library)

- This how the gluLookAt parameters are used to generate the eye coordinate system parameters:

$$
\begin{aligned}
& \mathrm{VRP}=\text { eye } \\
& \mathrm{VPN}=(\text { lookat }- \text { eye }) / \|(\text { lookat }- \text { eye }) \|_{2} \\
& \mathrm{VUP}=\mathrm{VPN} \times(\text { up } \times \mathrm{VPN})
\end{aligned}
$$

- The eye coordinate system parameters are then used in translation T(VRP) and rotation R(XYZ $\rightarrow \mathrm{VRC}$) to get the view-orientation matrix

