
1

Transformations, continued

3D Rotation
� � � �
� � � �
� � � � �

�
�

�

�

�
�
�

�

�

�
�
�

	
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

zyxrrr

zyxrrr

zyxrrr

z

y

x

rrr

rrr

rrr

,,,,

,,,,

,,,,

333231

232221

131211

333231

232221

131211

So if the rows of R are orthogonal unit vectors
(orthonormal), they are the axes of a new coordinate
system, and matrix multiplication rewrites (x,y,z) in that
coordinate system.

This also means that RRT = I

This means that RT is a rotation matrix that undoes R.

2

Alternately, …

��
�
�

�
��
�
�

�
���
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�

31

21

11

333231

232221

131211

0

0

1

r

r

r

rrr

rrr

rrr So R takes the x axis to
be a vector equivalent to
the first column of R.

Similarly, the y and z axes are transformed to be the second
and third columns of R.

If R is a rotation, then the transformed axes should still be
orthogonal unit vectors. So the columns of R should be
orthonormal.

Simple 3D Rotation

��
�

�

	

�

�

��
�

�

	

�

�

n

n

n

zzz

yyy

xxx

21

21

21
...

100

0cossin

0sincos ��
��

Rotation about z axis.

Rotates x,y coordinates. Leaves z coordinates fixed.

3

Full 3D Rotation

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

��
��
��

		

		

cossin0

sincos0

001

cos0sin

010

sin0cos

100

0cossin

0sincos

R

• Any rotation can be expressed as combination of three
rotations about three axes.

�
�
�

�

�
�
�

�

�

�

100

010

001
TRR

• Rows (and columns) of R are
orthonormal vectors.

• R has determinant 1 (not -1).

• Intuitively, it makes sense that 3D rotations can be
expressed as 3 separate rotations about fixed axes.
Rotations have 3 degrees of freedom; two describe an
axis of rotation, and one the amount.

• Rotations preserve the length of a vector, and the angle
between two vectors. Therefore, (1,0,0), (0,1,0), (0,0,1)
must be orthonormal after rotation. After rotation, they
are the three columns of R. So these columns must be
orthonormal vectors for R to be a rotation. Similarly, if
they are orthonormal vectors (with determinant 1) R will
have the effect of rotating (1,0,0), (0,1,0), (0,0,1). Same
reasoning as 2D tells us all other points rotate too.

• Note if R has determinant -1, then R is a rotation
plus a reflection.

4

3D Rotation + Translation

• Just like 2D case

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1000
333231

232221

131211

z

y

x

trrr

trrr

trrr

Rotation about a known axis

• Suppose we want to rotate about u.
• Find R so that u will be the new z axis.

– u is third row of R.
– Second row is anything orthogonal to u.
– Third row is cross-product of first two.
– Make sure matrix has determinant 1.

• Then rotate about (new) z axis.
• Then apply inverse of first rotation.

5

Let’s look at an example of this. Suppose we want to rotate
about the direction (1,1,1). A unit vector in this direction is:

� �

��
�
�
�
�
�

�

�

��
�
�
�
�
�

�

�

�

��

��
�
�
�
�
�

�

�

��
�
�
�
�
�

�

�

�

�
�

�
�
�

�
�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

3

1

3

1

3

1

0
2

1

2

1
6

2

6

1

6

1

 :row final get the we

 product,-cross theTaking .

3

1

3

1

3

1

0
2

1

2

1
 :us gives This verify.easy to sit'but

guessing,by got this I .0,
2

1
,

2

1
 usecan We this. toorthogonalr unit vecto a be to

columnfirst theneed weNext, .

3

1

3

1

3

1
 :likematrix a create weSo .

3

1,1,1

6

Let’s call that matrix R1. We apply R1, then apply a matrix that
rotates about the z axis. Then the inverse of R1, to go back.
This could look like:

��
�
�
�
�
�

�

�

��
�
�
�
�
�

�

�

�

��

��
�
�
�
�
�

�

�

��
�
�
�
�
�

�

�
�

��
�
�
�
�
�

�

�

��
�
�
�
�
�

�

�

��

�

3

1

3

1

3

1

0
2

1

2

1
6

2

6

1

6

1

100

0
2

1

2

1

0
2

1

2

1

3

1
0

6

2
3

1

2

1

6

1
3

1

2

1

6

1

This should rotate everything by 45 degrees about the axis in
the direction (1,1,1). To verify this, check what happens when
we apply this matrix to (2,2,2). It stays fixed. How else can we
check this does the right thing?

Transformation of lines/normals

• 2D. Line is set of points (x,y) for which
(a,b,c).(x,y,1)T=0. Suppose we rotate points
by R. Notice that:

(a,b,c)RT R(x,y,1)T=0

So, (a,b,c)RT is the rotation of the line (a,b,c).
Surface normals are similar, except they are

defined by (a,b,c).(x,y,z)T = 0

7

OpenGL

• Basically, OpenGL let’s you multiply all
objects by a matrix as they are drawn.

• Routines allow you to manage multiple
matrices (pushing and popping).

• Routines allow you to combine many
matrices (multiplied together in postfix order).

• Routines create matrices for you (translation,
rotation about an axis, viewing).

Hierarchical Transformations in
OpenGL

• Stacks for Modelview and Projection matrices
• glPushMatrix()

– push-down all the matrices in the active stack one level
– the top-most matrix is copied (the top and the second-

from-top matrices are initially the same).

• glPopMatrix()
– pop-off and discard the top matrix in the active stack

• Stacks used during recursive traversal of the
hierarchy.

• Typical depths of matrix stacks:
– Modelview stack = 32 (aggregating several

transformations)
– Projection Stack = 2 (eg: 3D graphics and 2D help-

menu)

8

OpenGL Transformation Support
• Three matrices

– GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE
– glMatrixMode(mode) specifies the active matrix

• glLoadIdentity()
– Set the active matrix to identity

• glLoadMatrix{fd}(TYPE *m)
– Set the 16 values of the current

matrix to those specified by m

• glMultMatrix{fd}(TYPE *m)
– Multiplies the current active matrix by m

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

m =

Transformation Example

glMatrixMode(GL_MODELVIEW);
glLoadIdentity(); // matrix = I
glMultMatrix(N); // matrix = N
glMultmatrix(M); // matrix = NM
glMultMatrix(L); // matrix = NML
glBegin(GL_POINTS);
glVertex3f(v); // v will be transformed:

NMLv
glEnd();

9

OpenGL Transformations

• glTranslate{fd}(TYPE x, TYPE y, TYPE z)
– Multiply the current matrix by the translation matrix

• glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z)
– Multiply the current matrix by the rotation matrix that

rotates an object about the axis from (0,0,0) to (x, y, z)

• glScale{fd}(TYPE x, TYPE y, TYPE z)
– Multiply the current matrix by the scale matrix

Examples
����������	
 �� �
�������� � ��
���
��� ���� �������������
������ ���
!�"��� #�� "�� #�� � #�� �

glRecti(50,100,200,150);
�����	�	
����$�� �
�������
!�%� #�� � #�� � #�� � #�� �

glRecti(50,100,200,150);

glLoadIdentity();
�� ���
!�" #�� � #�� � #��

glRecti(50,100,200,150);

10

Viewing in 3D

• World (3D) � Screen (2D)
• Orienting Eye coordinate system in

World coordinate system
– View Orientation Matrix

• Specifying viewing volume and
projection parameters for

�n�
�d (d <

n)
– View Mapping Matrix

World to Eye Coordinates

y

x

z

U N
V

World

Coordinates

Eye Coordinates

11

World to Eye Coordinates

• We need to transform from the world
coordinates to the eye coordinates

• The eye coordinate system is specified
by:
– View reference point (VRP)

• (VRPx, VRPy, VRPz)

– Direction of the axes: eye coordinate system
• U = (ux, uy, uz)

• V = (vx, vy, vz)

• N = (nx, ny, nz)

World to Eye Coordinates

• There are two steps in the
transformation (in order)
– Translation
– Rotation

12

World to Eye Coordinates

• Translate World Origin to VRP

1 0 0 -VRPx
0 1 0 -VRPy
0 0 1 -VRPz
0 0 0 1

x

y

z

1

a

b

c

1

=

World to Eye Coordinates

• Rotate World X, Y, Z to the Eye
coordinate system u, v, n, also known as
the View Reference Coordinate system

a

b

c

1

x’

y’

z’

1

=

ux uy uz 0

vx vy vz 0

nx ny nz 0

0 0 0 1

13

Let’s take an example. Suppose we have a bird’s eye view of the world. We are looking from above
down on the world. What is a possible view reference point? How about (0,50,0). What is a possible
viewing direction (n)? (0, -1, 0). What would be a reasonable up vector (v)? How about (0,0,1)? How
does our image change as we pick a different one? So what is the translation matrix we get:

1 0 0 0

0 1 0 -50

0 0 1 0

0 0 0 1

And what is our rotation matrix:

1 0 0 0

0 0 1 0

0 -1 0 0

0 0 0 1

Does this make sense? What are the coordinates of a point on the ground. For example, the point (0 0
0)? Multiply the translation matrix and we get (0 -50 0 1). Multiply this by rotation matrix and we get:

(0 0 50 1). This point seems to have a distance of 50 in front of us, and to otherwise be at the origin.

What about a point at (0 0 10)? Where should this appear? Since (0,0,1) is the up vector, this should
appear to be distant, and above. Translating we get (0 -50 10 1). Rotating we get: (0 10 50 1). 50 units
in front of us, and up by 10.

Camera Analogy

14

Specifying 3D View
(Camera Analogy)

• Center of camera (x, y, z) : 3 parameters

• Direction of pointing (�,�) : 2 parameters
• Camera tilt (�) : 1 parameter
• Area of film (w, h) : 2 parameters
• Focus (f) : 1 parameter

Specifying 3D View

• Center of camera (x, y, z) : View Reference Point
(VRP)

• Direction of pointing (�,�) : View Plane Normal
(VPN)

• Camera tilt (�) : View Up (VUP)
• Area of film (w, h) : Aspect Ratio (w/h),

Field of view (fov)
• Focus (f) : Will consider later

15

Eye Coordinate System

• View Reference Point (VRP)
• View Plane Normal (VPN)
• View Up (VUP)

VRP

(origin)

VUP

(Y-axis)

VPN

(Z-axis)

Viewing Plane

VUP � VPN

(X-axis)

World to Eye Coordinates

• Translate World Origin to VRP
• Rotate World X, Y, Z to the Eye coordinate system,

also known as the View Reference Coordinate
system, VRC = (VUP � VPN, VUP, VPN),
respectively:

(VUP � VPN) 0

(VUP) 0

(VPN) 0

0 0 0 1

16

Eye Coordinate System
(OpenGL/GLU library)

• gluLookAt (eyex , eyey , eyez , lookatx , lookaty ,
lookatz , upx , upy , upz);

• In our terminology:

eye = VRP
lookat = VRP + VPN
up = VUP

• gluLookAt also works even if:

– lookat is any point along the VPN
– VUP is not perpendicular to VPN

gluLookAt()

Image from: Interactive Computer Graphics by Ed Angel

17

Eye Coordinate System
(OpenGL/GLU library)

• This how the gluLookAt parameters are used to
generate the eye coordinate system parameters:

VRP = eye

VPN = (lookat - eye) /
� � �

lookat - eye)
� � �

VUP = VPN � (up � VPN)
• The eye coordinate system parameters are then

used in translation T(VRP) and rotation R(XYZ
�VRC) to get the view-orientation matrix

