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CMSC 427: Global Illumination ModelsCMSC 427: Global Illumination Models
(Guest Lecturer: Dave Mount)(Guest Lecturer: Dave Mount)

Reading: Sect. 10.12-10.14 in Hearn & Baker.
Overview:

– Global Illumination Models
– Rendering Equation
– Radiosity
– Photon Mapping
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Summary of Illumination ModelsSummary of Illumination Models

You have seen:
Local illumination model: Phong

• Ambient
• Diffuse
• Specular
• Point light sources
• No: shadows, inter-object light reflection.

“More global” illumination model: Ray Tracing
• Shadows
• Area light sources (via distributed ray tracing)
• No: inter-object light reflection

Tradeoffs:
– Improvements in fidelity come at the expense of computational 

complexity.
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Ray TracingRay Tracing

Ray tracing: More accurate than Phong, but not without its own 
limitations.

Strengths: 
– Easy to implement.
– General and extensible.
– Better handling of global issues (shadows, reflection, etc.).

Shortcomings:
Optimizing not easy: Involves non-trivial data structures.
Not truly global: Relies on the Phong illumination model to compute 

illumination at each point. Ignores inter-object light reflection.
Too “Specular”: Ray-traced images are best for highly specular

objects (glass and metalic balls), but specular reflection is not 
common in typical real-world scenes.
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Global Illumination and Light TransportGlobal Illumination and Light Transport

Global Illumination and Light Transport: 
Describe the flow of light energy in a scene, including 

inter-object reflections.
The Rendering Equation:

The theoretical basis for 
light energy transport.

Conservation of Energy:
– Global conservation:

• Assumes a closed environment.
• Energy input = energy output.
• Rest is converted to heat.

– Local conservation:
• Incident energy must be either

reflected or absorbed

Image source: University of Illinois
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The Rendering EquationThe Rendering Equation

Rendering Equation: (Kajiya 86)
– Describes the flow of light energy throughout a scene, assuming 

that all objects of a scene (not just light sources) may reflect light.
– It relates the light energy Lo(x, w) that is reflected outwards from 

a point x in direction w as a function of:
• emitted light energy Le(x, w) (if this object is a light source), and 
• the total light energy Li(x, w’) received at x from all other directions w’

which is then reflected outwards in direction w.
– There are a number of variants, depending on the assumptions 

made. 
– Radiance form of the rendering equation:

We will explain this next.

( ) ( ) ( ) ( )( )o e r iΩ
L , L , f , ',  L , ' ' d '= + ⋅∫x w x w x w w x w w n w
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The Rendering EquationThe Rendering Equation

Rendering Equation: What’s what.

– x is a surface point. n is the normal. w is a unit vector (direction).
– Lo(x, w) is the light energy reflected outwards from point x in direction w.
– Le(x, w) is the light energy emitted at x in direction w.
– Ω denotes the hemisphere above the surface patch at x. The integral is 

taken over all differential directional elements dw’ on Ω.
– Li(x, w) is the incoming light energy incident on x arriving from direction w’.
– fr(x, w’, w) is the fraction of light energy

arriving at x from direction w’ , that is
reflected to direction w. (In general this 
depends on w and w’.)

– The (w’ ⋅ n) term captures the 
attenuation of arriving light, similar 
to Lambert’s law. (The bigger the angle, 
the less the energy per unit area.)

( ) ( ) ( ) ( )( )o e r iL , L , f , ',  L , ' ' d '= + ⋅∫Ωx w x w x w w x w w n w

Ω

dw’n

x

w
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The Rendering EquationThe Rendering Equation

Is this the Holy Grail?
– A perfect implementation of this rule would result in accurate lighting.
– Virtually all illumination models only provide an approximation.

Can we solve the rendering equation? Not practical for real-world scenes:
– Need to model the bidirectional reflectance term, fr(x, w’, w). Not hard for pure 

diffuse and specular reflectors, but harder for real-world materials. (BRDFs)
– The incoming light term Li(x, w) requires that we determine what is visible from x in 

direction w, which would involve hidden surface removal, from every point in the scene.
– This is not just one equation. The outgoing light from each point affects the incoming 

light to all other points. This is a huge system of integral equations, one variable for 
each point and each direction about that point.

Computational Approaches:
Path Tracing: Attempts to trace all light rays in a scene.
Photon Mapping: Deposits light energy on surfaces for later collection.
Radiosity: Simulation of light transport under a steady-state assumption, 

assuming diffuse reflection.
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RadiosityRadiosity

Radiosity: A method for implementing a global illumination model.
– Simulates lighting due to inter-object reflections.
– Principally for diffuse surfaces (that is, Lambertian reflectors).
– Models view-independent illumination.
– Can generate diffuse/soft shadows, color bleeding.

Image source: Lightscape Inc.

Color bleeding on
walls from floor.
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RadiosityRadiosity: Basic Elements: Basic Elements

Basic Elements of Radiosity:
– Based on conservation of light energy.
– Assumes area light sources.

Most light comes
from baffles in
the ceiling.

Image source: Cornell University
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RadiosityRadiosity: Basic Elements: Basic Elements

Definition: Radiosity is the rate at which energy leaves a surface 
either through:
– Emission or
– Reflection

Computational Approach:
– Model the scene as a set of small surface patches, each assumed 

to have constant (but unknown) radiosity.
– Set up a linear system (based on a straightforward approximation 

to the rendering equation) that relates the radiosity of each patch 
to some function of its surrounding patches.

– Solve this linear system (by standard numerical methods) to 
determine the radiosity of each surface patch.

– Render the scene, using these radiosity values.



6

Chapter 14, Slide  11
Copyright © A. Varshney and D. M. Mount

The The RadiosityRadiosity EquationEquation

Radiosity Equation: 
– Expresses the radiosity of each differential patch of a surface 

patch i in terms of the radiosity’s of surrounding patches:

– where:
• Bi: the radiosity for patch i. 
• dAi: a differential area element on patch i. 
• Ei: rate of emission of patch i (for light sources).
• ρi: reflectivity (fraction of incoming light that is reflected) for patch i.
• Fij: a dimensionless term, called the form factor, which indicates the 

fraction of energy leaving patch j that arrives directly at patch i. 
(More about this later.)

– Diffuseness assumption: reflectivity does not depend on direction.
– This represents three equations, one for red, green, and blue, but 

we will just assume monochromatic light for now.

i i i i i j ji jj
BdA EdA ρ BF dA= + ∫

Total energy incoming
to patch i.

Energy emitted by 
patch i.
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Form FactorForm Factor

Form Factor: Fji is the fraction of energy leaving patch j that 
arrives (directly) at patch i.

It accounts for:
– Distance between surfaces (and attenuation due to this).
– Relative sizes of the patches.
– Relative orientations of the patches.
– Visibility of the patches (that is, the lack of occluding objects).
– We will discuss this in greater detail later.

Global Knowledge: Computing form factors requires complete 
knowledge of the scene geometry.
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DiscretizationDiscretization

Discretization:
– To avoid dealing with integral equations, we discretize the scene 

into small patch elements of constant radiosity. Replace dAi → Ai.

Reciprocity relationship of form factors:
– By symmetry we have:  FijAi = FjiAj, and therefore Fij = FjiAj/Ai.
– Dividing Eq.(1) by Ai, we have:

– Rearranging terms yields (for all surface patches i):

– We assume we are given Ei and ρi and can compute Fij. What remains 
is a system of linear equations in the variables Bi. (Next slide.)

i i i i i j ji j i i i i i j ji jjj
BdA EdA ρ BF dA     BA EA ρ BF A                   (1)= + → = + ∑∫

i i i j ijj
B E ρ BF           i= + ∀∑

i i j ij ij
B ρ BF E          i− = ∀∑
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RadiosityRadiosity System of EquationsSystem of Equations

Final Radiosity System: 
– In summary, we have:

– We know everything but the Bi’s, the radiosity values.
Matrix form:

Solving the System: This is a very large system.
– Solving directly (e.g., by Gauss elimination) is expensive (O(n3) time).
– In practice we take advantage of the structure of the matrix 

(strictly diagonally dominant) to approximate the solution by 
iterative methods (e.g., Gauss-Seidel).

1 11 1 12 1 1n 1 1

2 21 2 22 2 2n 2 2

n n1 n n2 n nn n n

1 ρF ρF ρF B E
ρ F 1 ρ F ρ F B E

ρ F ρ F 1 ρ F B E

− − − ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − ⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i i j ij ij
B ρ BF E          i− = ∀∑
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Final RenderingFinal Rendering

Drawing the Final Scene:
View Independence: Radiosities are view independent. Although this 

computation is expensive, we may do it only once (assuming lights 
do not change).

Radiosity as color: No need for 
additional lighting computa-
tions (unless you need specu-
larity). Simply color each
patch with its radiosity, 
after multiplying by the 
object’s surface color.

Smoothing: Simply rendering the 
patches this way produces 
“tiled” appearance. Instead 
interpolate the radiosity values at each vertex and smooth using 
Gourad shading.

Image source: Hokkaido University 
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Computing Form FactorsComputing Form Factors

How to compute the Form Factor Fij?

Image courtesy, Foley, van Dam, Feiner, Hughes
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Computing Form FactorsComputing Form Factors

How to compute Form Factor Fij?
– Recall that Fij is the fraction of energy leaving patch i that arrives 

directly at patch j.
– Consider two patches Ai and Aj, and let dAi and dAj be differential 

elements on these patches.
– Let r be the distance between the patches.

• The fraction of energy falls off as 1/r2.
– Let θi and θj be the angles between the line joining the centers of 

dAi and dAj and the respective surface normals.
• The energy is highest if the surfaces face each other directly, and 

otherwise falls off as (cos θi ⋅ cos θj) (by Lambert’s law).
– Let Hij be visibility flag: Hij = 1 if dAi and dAj are visible and 0 

otherwise.
– Bottom line:

i j

i j
ij ij i j2

i A A

cosθ cosθ1F  H  dAdA
A πr

← ∫ ∫
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Computing Form FactorsComputing Form Factors

We can interpret the form factor Fij geometrically by:
– project the patch Aj onto 

a unit hemisphere centered 
about dAi, to account for 
the (cos θj)/r2 term, and

– project onto the plane, to 
account for the cos θi
term.

– The resulting area is 
proportional to Fij.

– Unfortunately, this is still
not easy to compute,
but it suggests…
(next slide)

Image courtesy, Foley, van Dam, Feiner, Hughes
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HemicubeHemicube Approach for Form FactorsApproach for Form Factors

Hemicube Approximation:
– We can use graphics

hardware to speed up
the integration.

– Render the entire scene
onto the 5 sides of a
hemicube centered at
dAi.

– Sum the contributions
from each pixel to get
the form factors.

– Some further process-
ing is needed to capture
the (cos θi ⋅ cos θj) and
1/r2 terms. Image courtesy, Foley, van Dam, Feiner, Hughes
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Progressive Refinement Progressive Refinement RadiosityRadiosity

Progressive Refinement Radiosity: 
– Solving the radiosity system takes a long time. This approach 

computes an approximate solution of the system of linear equations 
A ⋅ b = e. 

Basic Idea:
– Identify the brightest patch in the environment and “shoot” (i.e., 

distribute) its energy to the other patches that can see it. 
– This is equivalent to computing only those rows of the form-factor 

matrix A that correspond to the brightest patches.
– Repeat on the next brightest, and so on. (Note that the brightness 

of patches changes with each shoot.)
Performance: 

– In practice, this approach results in a fast convergence to the 
solution without computing all the rows of A.
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Progressive Refinement Progressive Refinement RadiosityRadiosity

For each patch i, let 
– Let Bi be its (current) radiosity. 
– Let ΔBi be its increase in radiosity. 

Algorithm: Let ε be a small constant > 0.
for (all i) { Bi ← ΔBi ← Ei } // initial radiosity is the emission value
while ( max ( ΔBi ) > ε ) { // stop when values converge

select patch i with maximum un-shot energy ΔBi
for each patch j do { // shoot energy from patch i to j
ΔR ← ρj ΔBiFijAi/Aj // energy contribution from patch i to j
ΔBj ← ΔBj + ΔR // increase unshot energy for patch j
Bj ← Bj + ΔR // accumulated energy at patch j

}
ΔBi ← 0 // patch i is now “shot-out”

}
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PhotonPhoton--MappingMapping

Photon mapping: another approach to global illumination.
Note: Specular highlights,
which were not easy to
generate using radiosity.

Note: Handles reflection
and transparency.
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Standard Photon MapStandard Photon Map

Photon Mapping: A number of advantages over radiosity.
– Can deal with non-diffuse reflective surfaces (specular).
– Can deal with light transmission through reflective and transparent 

objects (and caustics).
– Can deal with curved object geometries.

Basic Algorithm: Two-pass approach:
– Photon trace: Simulate propagation

of photons from light source onto
surfaces.

– Rendering: Draw the objects using 
illumination information from the 
photon trace.
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Photon TracePhoton Trace

• For 100 photons emitted from 100W source, each photon 
initially carries 1W. 

• Propagate this radiant flux through scene using Monte-Carlo 
(randomized sampling) methods.

Transparent ball
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Estimating incident fluxEstimating incident flux

Photon Representation: Each photon stores:
Location (x, y, z): where the photon finally hits.
Power (color and brightness)
Incident direction (ϕ, θ): for determining specular reflection.

Incident Flux: The amount of energy passing through a region in 
some direction.
– At any patch of surface and for any direction, we can estimate the 

incident flux by averaging the contributions of all the photons that 
hit the patch.

(x,y,z)

(ϕ, θ)
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Photon Storage and RenderingPhoton Storage and Rendering

Photon Storage:
– Store photon information in a 3-d point kd-tree, called the photon map.
– Photon storage is decoupled from object geometry. They just float in space.

Render: (e.g., by ray tracing)
– Estimate flux incident at a surface point based on nearby photons.

viewer

image plane
The more photons near
the ray’s contact point, the
brighter the illumination.

ray
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Radiance EstimateRadiance Estimate

Radiance Estimate : At a surface point (x, y, z).
Grow ball: about (x, y, z) until it contains a reasonable number of 

photons.
Estimate surface area: Compute intersection of the ball with the 

surface with plane to estimate area of surface patch.
Radiance: The total contribution of the photons in the ball divided by

the patch surface area gives the final radiance (brightness).
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SummarySummary

Summary:
– Global Illumination Models
– Rendering Equation
– Radiosity
– Photon mapping


