CMSC 427: Global Illumination Models (Guest Lecturer: Dave Mount)

Reading: Sect. 10.12-10.14 in Hearn \& Baker.

Overview:

- Global Illumination Models
- Rendering Equation
- Radiosity
- Photon Mapping

Summary of Illumination Models

You have seen:
Local illumination model: Phong

- Ambient
- Diffuse
- Specular
- Point light sources
- No: shadows, inter-object light reflection.
"More global" illumination model: Ray Tracing
- Shadows
- Area light sources (via distributed ray tracing)
- No: inter-object light reflection

Tradeoffs:

- Improvements in fidelity come at the expense of computational complexity.

Ray Tracing

Ray tracing: More accurate than Phong, but not without its own limitations.
Strengths:

- Easy to implement.
- General and extensible.
- Better handling of global issues (shadows, reflection, etc.).

Shortcomings:

Optimizing not easy: Involves non-trivial data structures.
Not truly global: Relies on the Phong illumination model to compute illumination at each point. Ignores inter-object light reflection.
Too "Specular": Ray-traced images are best for highly specular objects (glass and metalic balls), but specular reflection is no \dagger common in typical real-world scenes.

Global Illumination and Light Transport

Global Illumination and Light Transport:
Describe the flow of light energy in a scene, including inter-object reflections.
The Rendering Equation:
The theoretical basis for light energy transport.
Conservation of Energy:

- Global conservation:
- Assumes a closed environment.
- Energy input = energy output.
- Rest is converted to heat.
- Local conservation:
- Incident energy must be either reflected or absorbed

Image source: University of Illinois

The Rendering Equation

Rendering Equation: (Kajiya 86)

- Describes the flow of light energy throughout a scene, assuming that all objects of a scene (not just light sources) may reflect light.
- It relates the light energy $L_{0}(x, w)$ that is reflected outwards from a point x in direction w as a function of:
- emitted light energy $L_{e}(x, w)$ (if this object is a light source), and
- the total light energy $L_{i}\left(x, w^{\prime}\right)$ received at x from all other directions w^{\prime} which is then reflected outwards in direction \mathbf{w}.
- There are a number of variants, depending on the assumptions made.
- Radiance form of the rendering equation:

$$
L_{0}(\boldsymbol{x}, \mathbf{w})=L_{e}(\boldsymbol{x}, \mathbf{w})+\int_{\Omega} f_{r}\left(\boldsymbol{x}, \boldsymbol{w}^{\prime}, \mathbf{w}\right) L_{1}\left(\boldsymbol{x}, \mathbf{w}^{\prime}\right)\left(\boldsymbol{w}^{\prime} \cdot \boldsymbol{n}\right) \mathrm{d} \boldsymbol{w}^{\prime}
$$

We will explain this next.

The Rendering Equation

Rendering Equation: What's what.

$$
L_{0}(x, w)=L_{e}(x, w)+\int_{\Omega} f_{r}\left(x, w^{\prime}, \mathbf{w}\right) L_{1}\left(x, w^{\prime}\right)\left(w^{\prime} \cdot \boldsymbol{n}\right) d w^{\prime}
$$

- \boldsymbol{x} is a surface point. \boldsymbol{n} is the normal. \mathbf{w} is a unit vector (direction).
- $L_{0}(x, w)$ is the light energy reflected outwards from point x in direction w.
- $L_{e}(\boldsymbol{x}, \mathbf{w})$ is the light energy emitted at \boldsymbol{x} in direction \mathbf{w}.
- Ω denotes the hemisphere above the surface patch at x. The integral is taken over all differential directional elements dw' on Ω.
- $L_{i}(x, w)$ is the incoming light energy incident on x arriving from direction w^{\prime}.
- $f_{r}\left(\boldsymbol{x}, \boldsymbol{w}^{\prime}, \boldsymbol{w}\right)$ is the fraction of light energy arriving at \boldsymbol{x} from direction \mathbf{w}, that is reflected to direction \mathbf{w}. (In general this depends on \mathbf{w} and \mathbf{w}^{\prime}.)
- The ($\boldsymbol{w}^{\prime} \cdot \mathbf{n}$) term captures the attenuation of arriving light, similar to Lambert's law. (The bigger the angle, the less the energy per unit area.)

The Rendering Equation

Is this the Holy Grail?

- A perfect implementation of this rule would result in accurate lighting.
- Virtually all illumination models only provide an approximation.

Can we solve the rendering equation? Not practical for real-world scenes:

- Need to model the bidirectional reflectance term, $f_{r}\left(\mathbf{x}, \mathbf{w}^{\prime}, \mathbf{w}\right)$. Not hard for pure diffuse and specular reflectors, but harder for real-world materials. (BRDFs)
- The incoming light term $L_{i}(x, w)$ requires that we determine what is visible from x in direction \mathbf{w}, which would involve hidden surface removal, from every point in the scene.
- This is not just one equation. The outgoing light from each point affects the incoming light to all other points. This is a huge system of integral equations, one variable for each point and each direction about that point.
Computational Approaches:
Path Tracing: Attempts to trace all light rays in a scene.
Photon Mapping: Deposits light energy on surfaces for later collection.
Radiosity: Simulation of light transport under a steady-state assumption, assuming diffuse reflection.

Radiosity

Radiosity: A method for implementing a global illumination model.

- Simulates lighting due to inter-object reflections.
- Principally for diffuse surfaces (that is, Lambertian reflectors).
- Models view-independent illumination.
- Can generate diffuse/soft shadows, color bleeding.

Color bleeding on walls from floor.

Image source: Lightscape Inc.

Radiosity: Basic Elements

Basic Elements of Radiosity:

- Based on conservation of light energy.
- Assumes area light sources.

Radiosity: Basic Elements

Definition: Radiosity is the rate at which energy leaves a surface either through:

- Emission or
- Reflection

Computational Approach:

- Model the scene as a set of small surface patches, each assumed to have constant (but unknown) radiosity.
- Set up a linear system (based on a straightforward approximation to the rendering equation) that relates the radiosity of each patch to some function of its surrounding patches.
- Solve this linear system (by standard numerical methods) to determine the radiosity of each surface patch.
- Render the scene, using these radiosity values.

The Radiosity Equation

Radiosity Equation:

- Expresses the radiosity of each differential patch of a surface patch i in terms of the radiosity's of surrounding patches:
- where:

- $d A_{i}$: a differential area element on patch i.
- E_{i} : rate of emission of patch i (for light sources).
- ρ_{i} : reflectivity (fraction of incoming light that is reflected) for patch i.
- $F_{i j}$: a dimensionless term, called the form factor, which indicates the fraction of energy leaving patch j that arrives directly at patch i. (More about this later.)
- Diffuseness assumption: reflectivity does not depend on direction.
- This represents three equations, one for red, green, and blue, but we will just assume monochromatic light for now.

Form Factor

Form Factor: F_{ji} is the fraction of energy leaving patch j that arrives (directly) at patch i.
It accounts for:

- Distance between surfaces (and attenuation due to this).
- Relative sizes of the patches.
- Relative orientations of the patches.
- Visibility of the patches (that is, the lack of occluding objects).
- We will discuss this in greater detail later.

Global Knowledge: Computing form factors requires complete knowledge of the scene geometry.

Discretization

Discretization:

- To avoid dealing with integral equations, we discretize the scene into small patch elements of constant radiosity. Replace $d A_{i} \rightarrow A_{i}$.

$$
\begin{equation*}
\mathrm{B}_{1} \mathrm{~d} A_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \mathrm{~d} A_{i}+\rho_{\mathrm{i}} \int_{\mathrm{j}} \mathrm{~B}_{\mathrm{j}} \mathrm{~F}_{\mathrm{j}} \mathrm{~d} A_{\mathrm{j}} \rightarrow \mathrm{~B}_{1} A_{i}=\mathrm{E}_{i} A_{i}+\rho_{i} \sum_{\mathrm{j}} \mathrm{~B}_{\mathrm{j}} \mathrm{~F}_{\mathrm{j} i} A_{\mathrm{j}} \tag{1}
\end{equation*}
$$

Reciprocity relationship of form factors:

- By symmetry we have: $F_{i j} A_{i}=F_{j i} A_{j}$, and therefore $F_{i j}=F_{j i} A_{j} / A_{i}$.
- Dividing Eq.(1) by A_{i}, we have:

$$
B_{i}=E_{i}+\rho_{i} \sum_{j} B_{j} F_{i j}
$$

- Rearranging terms yields (for all surface patches i):

$$
\mathrm{B}_{\mathrm{i}}-\rho_{\mathrm{i}} \sum_{\mathrm{j}} \mathrm{~B}_{\mathrm{j}}^{\mathrm{F}} \mathrm{~F}=\mathrm{E}_{\mathrm{i}} \quad \forall \mathrm{i}
$$

- We assume we are given E_{i} and ρ_{i} and can compute $F_{i j}$. What remains is a system of linear equations in the variables B_{i}. (Next slide.)

Radiosity System of Equations

Final Radiosity System:

- In summary, we have:

$$
B_{i}-\rho_{i} \sum_{j} B_{j} \mathrm{~F}_{\mathrm{ij}}=\mathrm{E}_{\mathrm{i}} \quad \forall \mathrm{i}
$$

- We know everything but the $B_{i}^{\prime} s$, the radiosity values.

Matrix form:

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & \cdots & -\rho_{2} F_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_{n} F_{n 1} & -\rho_{n} F_{n 2} & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

Solving the System: This is a very large system.

- Solving directly (e.g., by Gauss elimination) is expensive ($O\left(n^{3}\right)$ time).
- In practice we take advantage of the structure of the matrix (strictly diagonally dominant) to approximate the solution by iterative methods (e.g., Gauss-Seidel).

Final Rendering

Drawing the Final Scene:

View Independence: Radiosities are view independent. Although this computation is expensive, we may do it only once (assuming lights do not change).
Radiosity as color: No need for additional lighting computations (unless you need specularity). Simply color each patch with its radiosity, after multiplying by the object's surface color.
Smoothing: Simply rendering the patches this way produces "tiled" appearance. Instead
 interpolate the radiosity values at each vertex and smooth using Gourad shading.

Computing Form Factors

How to compute the Form Factor F_{ij} ?

Computing Form Factors

How to compute Form Factor F_{ij} ?

- Recall that $F_{i j}$ is the fraction of energy leaving patch i that arrives directly at patch j.
- Consider two patches A_{i} and A_{j}, and let $d A_{i}$ and $d A_{j}$ be differential elements on these patches.
- Let r be the distance between the patches.
- The fraction of energy falls off as $1 / r^{2}$.
- Let θ_{i} and θ_{j} be the angles between the line joining the centers of $\mathrm{d} A_{i}$ and $\mathrm{d} A_{j}$ and the respective surface normals.
- The energy is highest if the surfaces face each other directly, and otherwise falls off as $\left(\cos \theta_{i} \cdot \cos \theta_{j}\right)$ (by Lambert's law).
- Let $H_{i j}$ be visibility flag: $H_{i j}=1$ if $d A_{i}$ and $d A_{j}$ are visible and 0 otherwise.
- Bottom line: $\quad F_{i j} \leftarrow \frac{1}{A_{i}} \int_{A} \int_{A_{j}} \frac{\cos \theta_{i} \cos \theta_{j}}{\pi r^{2}} H_{j \mathrm{j}} \mathrm{d} A_{i} \mathrm{~d} A_{\mathrm{j}}$

Computing Form Factors

We can interpret the form factor $F_{i j}$ geometrically by:

- project the patch A_{j} onto a unit hemisphere centered about $d A_{i}$, to account for the $\left(\cos \theta_{j}\right) / r^{2}$ term, and
- project onto the plane, to account for the $\cos \theta_{i}$ term.
- The resulting area is proportional to F_{ij}.
- Unfortunately, this is still not easy to compute, but it suggests..
(next slide)

Hemicube Approach for Form Factors

Hemicube Approximation:

- We can use graphics hardware to speed up the integration.
- Render the entire scene onto the 5 sides of a hemicube centered at $\mathrm{d} \mathrm{A}_{\mathrm{i}}$.
- Sum the contributions from each pixel to get the form factors.
- Some further processing is needed to capture the $\left(\cos \theta_{i} \cdot \cos \theta_{j}\right)$ and
 $1 / r^{2}$ terms.

Progressive Refinement Radiosity

Progressive Refinement Radiosity:

- Solving the radiosity system takes a long time. This approach computes an approximate solution of the system of linear equations $\boldsymbol{A} \cdot \mathbf{b}=\boldsymbol{e}$.

Basic Idea:

- Identify the brightest patch in the environment and "shoot" (i.e., distribute) its energy to the other patches that can see it.
- This is equivalent to computing only those rows of the form-factor matrix A that correspond to the brightest patches.
- Repeat on the next brightest, and so on. (Note that the brightness of patches changes with each shoot.)
Performance:
- In practice, this approach results in a fast convergence to the solution without computing all the rows of \boldsymbol{A}.

Progressive Refinement Radiosity

For each patch i, let

- Let B_{i} be its (current) radiosity.
- Let ΔB_{i} be its increase in radiosity.

Algorithm: Let ε be a small constant >0.

```
for (all i) { }\mp@subsup{B}{i}{}\leftarrow\Delta\mp@subsup{B}{i}{}\leftarrow\mp@subsup{E}{i}{}}\quad// initial radiosity is the emission value
while ( max ( }\Delta\mp@subsup{B}{i}{})>\varepsilon){ // stop when values converge
select patch i with maximum un-shot energy }\Delta\mp@subsup{B}{i}{
for each patch j do { // shoot energy from patch i to j
\DeltaR\leftarrow\rho\rho
\Delta\mp@subsup{B}{j}{}\leftarrow\Delta\mp@subsup{B}{j}{}+\DeltaR // increase unshot energy for patch j
Bj}\leftarrow\mp@subsup{B}{j}{}+\DeltaR\quad// accumulated energy at patch 
}
\Delta\mp@subsup{B}{i}{}\leftarrow0 // patch i is now "shot-out"
}
```


Photon-Mapping

Photon mapping: another approach to global illumination.

Standard Photon Map

Photon Mapping: A number of advantages over radiosity.

- Can deal with non-diffuse reflective surfaces (specular).
- Can deal with light transmission through reflective and transparent objects (and caustics).
- Can deal with curved object geometries.

Basic Algorithm: Two-pass approach:

- Photon trace: Simulate propagation of photons from light source onto surfaces.
- Rendering: Draw the objects using illumination information from the photon trace.

- For 100 photons emitted from 100W source, each photon initially carries 1 W .
- Propagate this radiant flux through scene using Monte-Carlo (randomized sampling) methods.

Estimating incident flux

Photon Representation: Each photon stores:
Location (x, y, z): where the photon finally hits.

$\chi^{(\varphi, \theta)}$
Power (color and brightness)
Incident direction (φ, θ): for determining specular reflection.
Incident Flux: The amount of energy passing through a region in some direction.

- At any patch of surface and for any direction, we can estimate the incident flux by averaging the contributions of all the photons that

Photon Storage and Rendering

Photon Storage:

- Store photon information in a 3-d point kd-tree, called the photon map.
- Photon storage is decoupled from object geometry. They just float in space.

Render: (e.g., by ray tracing)

- Estimate flux incident at a surface point based on nearby photons.

Radiance Estimate

Radiance Estimate : At a surface point (x, y, z).
Grow ball: about (x, y, z) until it contains a reasonable number of photons.
Estimate surface area: Compute intersection of the ball with the surface with plane to estimate area of surface patch.
Radiance: The total contribution of the photons in the ball divided by the patch surface area gives the final radiance (brightness).

Summary

Summary:

- Global Illumination Models
- Rendering Equation
- Radiosity
- Photon mapping

