
SEPTEMBER 2012

WHITE PAPER

Using User Access Control Lists (ACLs) to manage file
permissions with a StorCenter™ NAS
(applies to EMC LifeLine 3.x)
A Detailed Review

Executive Summary 2
Introduction 2
Scope 3
Audience 3
Terminology 3
Windows Concepts 4
CIFS user ID resolution 4
Security on file system objects 5
UNIX security model 5
Windows security model 6
Determining the GID for file system objects 6
User access control of file system objects 6
File naming 7
File locking 7
Distributed File System (DFS) 8
Symbolic links 8
Overview of enabling technologies
 in LifeLine 9
Samba 9
POSIX ACL 9

Share-level user access control 10
Access control using Iomega
StorCenter Manager 10
UNIX user squashing 12
Default security settings 12
Modification of Windows permissions 13
Application of the most restrictive settings 15
Directory-level user access control 16
Windows ACL 16
Modification of a Windows ACL 16
Multiprotocol access control 18
Iomega access-checking policy 18
Inheritance rules 18
Mappings between Windows ACL and
UNIX rights 19
Translating a Windows ACL into UNIX rights 19
Translating UNIX rights into a Windows ACL 20
Conclusion 20

White Paper 2

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

EXECUTIVE SUMMARY
In a UNIX or Linux environment, the Network File System (NFS) protocol is used to access file systems. In a Windows
environment, the Common Internet File System (CIFS) protocol is used to access file systems. The StorCenter device
supports a mixed NFS and CIFS environment by providing multiprotocol access capabilities to enable UNIX and
Windows users to share the same file systems.

The StorCenter device is powered by enterprise-class EMC® LifeLine™ software to offer easy-to-use, powerful, and
affordable network storage for any small business or remote office. In LifeLine version 3.x, Windows user access
control is enforced at two levels: share level and directory level. Share-level access control is configured in the
Iomega StorCenter Manager software on individual folders that are shared via CIFS. Directory-level access control is
typically done using native Windows® tools and interfaces to configure more granular access control on directories
and files inside a share. Whenever there are conflicts between share-level and directory-level access control on the
same file system object, the most restrictive permission settings win.

This paper provides in-depth review of the Windows user access control capabilities supported on the StorCenter,
the enabling technologies, as well as the known limitations. The goal is to help administrators define and execute a
desired level of security in the Windows environment.

INTRODUCTION
This white paper includes the following sections:

 t Relevant Windows concepts
 t Overview of enabling technologies in LifeLine
 t Share-level user access control
 t Directory-level user access control
 t Multiprotocol access control

To better understand Windows user access control, you may need to understand some relevant Windows concepts.
These concepts are introduced first to help readers gain background knowledge.

EMC LifeLine software is a Linux-based operating system specialized for storage management. LifeLine relies on
the underlying file system structure and an open source software package together to implement Windows user
access control. These enabling technologies are described next to give readers an overview of the mechanism and
components of the implementation.

A combination of share-level and directory-level user access control is provided by LifeLine. Whenever there are
conflicts between share-level and directory-level access control on the same file system object, the most restrictive
permission settings win. The share-level control is configured in the Iomega StorCenter Manager software. The
directory-level control is typically configured using native Windows utilities, such as Windows Explorer and the
Computer Management Microsoft Management Console (MMC). Capabilities as well as limitations are detailed
in these sections. Lastly, in a multiprotocol environment where both NFS users and CIFS users access the same
share, security settings on a file system object can be enforced and modified via either protocol. This presents the
challenge of synchronizing security settings for both worlds. The policy that determines the behaviors in such an
environment is described, including the mappings between UNIX permissions and Windows ACLs.

White Paper 3

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

White Paper 3

SCOPE
Most content in this white paper applies to the following conditions only:

 t The StorCenter device is running LifeLine software release 3.x.
 t Windows ACL on a share is enabled by checking the Allow users to change file level security checkbox in Iomega

StorCenter Manager, as shown in Figure 1.

Figure 1. Enable Windows ACL support on a share

If a share is not secured, or it is secured but does not have Allow users to change the file level security enabled, the
share can still be accessed from a Windows host. However, the share, and every directory and file inside the share
do not have Windows ACL associated. Windows user access control is only enforced according to what is configured
on the share using Iomega StorCenter Manager. Hereafter, any mentioning of a secured share is set in the context
that the share is already enabled to support Windows ACL unless being called out otherwise as it appears in the
paper.

AUDIENCE
This white paper is intended for system administrators responsible for implementing the StorCenter device in their
Windows, or multiprotocol mixed Windows and UNIX environment. Readers should be familiar with the concepts of
both Windows and UNIX user access control. Windows system administration experience is expected.

TERMINOLOGY
 t Folder: on a StorCenter network storage device, a folder is a file system object and shared storage type that is

created to be accessed by hosts using file sharing protocols, including NFS and CIFS. A secured folder requires
authorized users to authenticate prior to access, while a public folder can be accessed by any user without
authentication.

 t Share: in this white paper, a folder is also referred to as a share. The terms are equivalent and interchangeable.
 t Directory: in this white paper, a directory refers to a sub-level directory that is created within a share.
 t Common Internet File System (CIFS): a distributed file system providing transparent access to remote file systems.
 t Windows File Sharing: the practice of distributing or providing access to files using the CIFS protocol.

White Paper 4

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

 t Security Identifier (SID): an alphanumeric string that is assigned by an authority, such as a Windows domain
controller, to identify a Windows object, such as a user.

 t Access Control List (ACL): an ACL is a list of permissions attached to an object. An ACL specifies which users or
system processes are granted access to an object, including operations which are allowed on the given object.
Each entry in an ACL list is called Access Control Entry (ACE).

 t POSIX ACL: the ACL implementation on Unix-like systems resulting from the POSIX 1003.1e/1003.2c working
group.

 t UNIX permissions: a UNIX-like system manages file-system permissions in three distinct classes known as user,
group, and others. In effect, UNIX permissions are a simplified form of ACL.

 t Samba: a free software re-implementation of the SMB/CIFS networking protocol. It runs mostly on UNIX and
Unix-like operating systems, such as Linux, to provide file and print services for Microsoft Windows clients and can
integrate with Active Directory as part of a domain.

 t Network File System (NFS): a distributed file system providing transparent access to remote file systems. NFS
allows all network systems to share a single copy of a directory.

 t User Identifier (UID): an integer value that is used in UNIX-like operating systems to identify a user within the
kernel.

 t Group Identifier (GID): an integer value that is used in UNIX-like operating systems to identify a user group within
the kernel.

 t Active Directory (AD): a technology created by Microsoft to provide a variety of network services including LDAP
directory access, Kerberos authentication, DNS-based naming and network information, information security for
user access to networked resources, among others. Active Directory also allows administrators to assign policies,
deploy software, and apply critical updates in Windows environments.

 t Domain: a logical group of computers that share a central directory database that contains the user accounts and
security information for the resources in the domain.

 t Workgroup: a workgroup is Microsoft’s terminology for a peer-to-peer Windows computer network. Microsoft
operating systems in the same workgroup may allow each other access to their files, printers, or Internet
connection.

WINDOWS CONCEPTS

CIFS USER ID RESOLUTION
Every user of the StorCenter network storage, who is running either Windows or a UNIX-like operating system, must
be identified by a unique user identifier (UID). Windows, however, does not use numeric IDs to identify users but
instead uses strings called security identifiers (SIDs).

In a multiprotocol environment, a method of mapping Windows SIDs to UIDs is typically needed to synchronize user
access. When a StorCenter device is configured to be in the Windows Workgroup mode, only users that are created
on the NAS can access secured shares via CIFS. Each user is automatically assigned a UID during creation, and
the UID can be modified. UNIX users that have matching UIDs as those assigned on the device can access secured
shares with their access permissions being checked against their UIDs. Therefore, in the Windows Workgroup mode,
a simple internal user mapping mechanism is applied.

When a StorCenter device is joined into a Windows Active Directory (AD) domain mode, users are imported from the
AD to the storage device. No UIDs will be created for the imported users, and no user mapping is provided. All UNIX

White Paper 5

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

users accessing via NFS are treated as anonymous users, typically the nobody user, and can access secured shares
with their access permissions being checked only against the anonymous user UID.

SECURITY ON FILE SYSTEM OBJECTS
In a multiprotocol environment, the StorCenter device uses its security policies to manage the access control of
its file systems. The administrator can set user access to secured shares using the Iomega StorCenter Manager as
shown in Figure 2.

Figure 2. Set user access to a secured folder UNIX security model

unix security model
UNIX access rights are referred to as the mode bits of a file system object. They are represented by a bit string in
which each bit represents an access mode or privilege granted to the user owning the file, the group associated
with the file system object, and all other users. UNIX mode bits are represented as three sets of concatenated rwx
(read, write, execute) triplets for each category of users (user, or group, or other), as shown in Figure 3.

Figure 3. UNIX security model

The example illustrates the following:
 t The first character of each line indicates the file type: d for a directory, l for a symbolic link, or dash (-) for a regular

file.
 t The next nine characters of each line are the read/write/execute permission sets for user or group or other.
 t kcb is the user and eng is the group.
 t xyz.doc is a symbolic link that anyone can traverse to retrieve the xyz.html file.
 t abc.html is a regular file that anyone can read but only the user kcb can write to it.
 t Schedule is a directory that anyone can search and read, but only user kcb can insert files into it and delete files

White Paper 6

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

from it.
UNIX also uses umask (UNIX shorthand for “user file-creation mode mask”), a four-digit octal number, to determine
the file permission for newly created files. Every process has its own umask. The umask specifies the permissions
you do not want given by default to newly created files and directories by doing a bitwise AND with the bitwise
complement of the umask.

Windows security model
The Windows security model is based primarily on per-object rights, which involve the use of a security
descriptor (SD) and an access control list (ACL). Access to a file system object is based on whether permissions have
been set to Allow or Deny through the use of an SD. The SD describes the owner of the object and group SIDs for
the object along with its ACLs. An ACL is part of SD for each object. Each ACL contains access control entries (ACEs).
Each ACE in turn contains a single SID that identifies a user, group, or computer, and a list of rights that are denied
or allowed for that SID. You can learn more about the Windows security model at http://www.microsoft.com/whdc/
driver/security/drvsecure.mspx. The StorCenter device supports Windows ACLs at the share, directory, and file
level. Share-level user permissions can be configured using the Iomega StorCenter Manager and a Windows host.
Directory and file level ACLs can only be configured on a Windows host.

DETERMINING THE GID FOR FILE SYSTEM OBJECTS
In a file system, every object (such as a file, directory, link, and shortcut) has an associated owner and owner
group that are identified by a UID and GID. NFS uses the UID and GID to control access to the file system
object. Since a user can be a member of many groups, the StorCenter device needs a way to determine the group
that should be associated with a newly created object. The user primary group setting determines which GID gets
assigned to the file system object. NFS and CIFS have the concept of a primary group for a user. In NFS, the primary
group is required; however, the primary group is optional on Windows platforms and defaults to the Domain Users
group. Table 1 describes how the primary group mapping is determined for file system objects on the StorCenter
device.

Protocol Description

NFS When a file system object (FSO) is created from a UNIX client, the GID can be determined in these ways:

• In Domain mode, the FSO GID is automatically assigned to be the primary group of user “nobody”, which is
group users.

• In Workgroup mode, the FSO GID is taken from the GID supplied by the UNIX client based on the primary group
of the creator.

CIFS When an FSO is created from a Windows client, the GID can be determined in these ways:

• In Domain mode, the FSO GID is taken from the GID associated with the primary group of the creator as defined
in the AD.

• In Workgroup mode, the FSO GID is taken from the UNIX primary group of the user as defined in the passwd file
on the Iomega storage device.

Table 1. Determining the file system object GID

USER ACCESS CONTROL OF FILE SYSTEM OBJECTS
A windows user credential is built and cached when a user first connects to a StorCenter device through CIFS
protocol. The credential contains the user SID and all the SIDs of the groups in which the user is a member. When
using regular NFS authentication (AUTH_SYS), a UNIX user credential is sent along with the Remote Procedure

White Paper 7

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

Calling (RPC) protocol request and consists of a UID and up to 16 GIDs to which the user belongs. When a user
requests access to a file system object, the StorCenter device compares the user credentials with the permissions
on that file system object.

FILE NAMING
NFS and CIFS use different file naming conventions. Table 2 explains these differences

NFS file names CIFS file names

Case-sensitive. Not case-sensitive, but they are case-preserving.

Allows a directory to hold files that have the same names, but
differ in case.

Does not allow a directory to have two files with the same
name and different cases, and identifies these names as
duplicate names.

Table 2. NFS and CIFS file naming conventions

FILE LOCKING
File locking ensures file integrity when multiple users attempt to access the same file concurrently. File locks
manage attempts to read, write, or lock a file that is in use by another user. Table 3 describes the different ways the
NFS and CIFS protocols implement file locking.

NFSv2 or NFSv3 environment CIFS or NFSv4 environment

Uses read locks and exclusive (write) locks CIFS uses opportunistic locks (oplocks) and deny modes. The NFSv4
equivalent of oplocks are called delegations.

NFS locks are advisory but not mandatory.
An advisory lock is not an enforced lock and
therefore does not affect read and write
access to the file. However, it advises other
clients that the file is already in use.

The CIFS and NFSv4 protocols enforce strict file locking, as well as unlocked
access to files. The CIFS and NFSv4 locks are mandatory. When a CIFS or NFSv4
process locks a file, other users are denied certain types of access to the file,
depending on the type of lock imposed. A CIFS or NFSv4 client can lock a file
by using:

• A deny read/write access on the whole file.

• A lock range on a portion of the file.

Table 3. File locking in multiprotocol environment

The StorCenter device only supports NFSv3. In a multiprotocol environment, a file might have locks set by CIFS
and NFS users. Because NFSv3 locks and CIFS deny modes and oplocks are not directly equivalent, the StorCenter
device must provide some control over the interaction of CIFS and NFS file locking:

 t CIFS share modes, oplocks, and level 2 oplocks are supported.
 t CIFS blocking lock is supported so that a CIFS client can choose to receive notification from the Iomega StorCenter

device when a currently locked file becomes available for the client to obtain a lock.
 t If a CIFS or NFSv3 client locks a file, no other client can lock that file.
 t NFSv3 exclusive locks are enforced for CIFS client access — CIFS clients can only open a file read-only if an NFSv3

client has an exclusive lock on it.
 t CIFS write locks are enforced for NFSv3 client access — NFSv3 clients can only open a file read-only if a CIFS client

White Paper 8

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

has a write lock on it.
 t NFSv3 clients can delete files locked by CIFS. Additionally, CIFS clients can delete files locked by NFSv3.

Note: The StorCenter device enforces file locks only when the client application is using locks. Some simple
applications, such as Windows Notepad or WordPad, UNIX more, and Linux VI do not use file locking. Files created
with these applications are not locked; they can concurrently be opened and edited by another application.

DISTRIBUTED FILE SYSTEM (DFS)
Microsoft Distributed File System (DFS) allows you to group shares located on different servers into a logical DFS
namespace. A DFS namespace is a virtual view of these shares shown in a directory tree structure. By using DFS, you
can group shares into a logical namespace and make shares that are distributed across multiple servers appear to
users as if they reside in one place on the network. Users can navigate through the namespace without needing to
know server names or the actual shares hosting the data.

Each DFS tree structure has a root target, which is the host server running the DFS service and hosting the name
space. A DFS root contains DFS links that point to the shares on the network. The shares are referred to as DFS
targets. Microsoft offers standalone and domain-based DFS root servers: the domain DFS root server and the
standalone DFS root server. The domain-based DFS server stores the DFS hierarchy in the Active Directory. The
standalone DFS root server stores the DFS hierarchy locally. The StorCenter device provides the same functionality
as a Windows Server standalone DFS root server.

SYMBOLIC LINKS
Symbolic links are special nodes created by NFS clients that point to another node (a file or directory called the
target node). A symbolic link is, in some respects, similar to a shortcut in the Windows environment. NFS symbolic
links usually have no meaning to Windows clients, because the client must resolve the symbolic link to its target.
However, the StorCenter device resolves symbolic links for Windows clients so that these clients can access the
same files and directories as NFS clients through a symbolic link.By using symbolic links, CIFS clients can access
multiple shares on a StorCenter device from a single share. This gives the appearance of one large namespace when
it actually consists of individual shares linked together with symbolic links. If the Iomega NAS is able to access the
target on behalf of CIFS users, the users see the target of the symbolic link rather than the link itself, and do not
know that they have followed a symbolic link. If the target is not accessible, the user sees the symbolic link as a file,
but cannot access that file.

The StorCenter device has the following rules regarding symbolic links:
 t Both soft symbolic links and hard symbolic links are supported (hard symbolic links cannot be created for

directories).
 t When the target of a symbolic link resides in the same share, or in another share, the symbolic link is listed by

Windows clients and can be followed to its target.
 t When the target of a symbolic link does not reside in the same share or any other share on the Iomega storage

device, the symbolic link cannot be seen by Windows clients.
 t If a symbolic link refers to a target that does not actually exist, the symbolic link cannot be seen by Windows

clients.
 t If a symbolic link refers to a directory and a Windows client attempts to delete the symbolic link, only the link itself

White Paper 9

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

is deleted. The contents of the directory referenced by the link remain intact.

Note: Do not use Microsoft Office applications on files represented by symbolic links. When a file is updated,
Microsoft Office creates the updated file in the directory containing the symbolic link, instead of the symbolic link
target directory. Therefore, the symbolic link is removed and a file with the same name replaces it unless the file is
saved with a different name.

OVERVIEW OF ENABLING TECHNOLOGIES IN LIFELINE
SAMBA
The LifeLine software relies on Samba to work in a Windows environment. Samba is a free application, licensed
under the GNU General Public License. Samba implements some of the services essential to the Windows domain
and Active Directory interoperability so that UNIX and UNIX-like computer systems can participate in a Windows
environment to share data and information. The primary component is a reimplementation (via reverse engineering)
of the CIFS network protocol for file and printer sharing, authentication and authorization, name resolution, and
service announcement.

Samba sets up network shares for chosen UNIX directories, including all contained subdirectories. These appear to
Windows users as normal Windows shares accessible on the network. The same directories can also be accessed
by NFS users concurrently in a multiprotocol environment. Samba services are implemented as two daemons: the
smbd that provides the file and printer sharing services, and the nmbd which provides the Windows NetBIOS to IP
address name service.

POSIX ACL
The LifeLine software is Linux-based and uses the XFS file system that supports POSIX ACLs, which are utilized by
LifeLine to map to Windows ACLs for user access control.

A POSIX ACL consists of a set of entries. The permissions of each file system object have an ACL with each of the
owner/group/other class of users represented by an ACL entry. These are called minimal ACLs. Permissions for
additional users or groups occupy additional ACL entries.

The type of ACLs that define the current access permissions of file system objects is called access ACL. A second
type called default ACL is also defined. The default ACLs define the permissions a file system object inherits from its
parent directory at the time of its creation. Only directories can be associated with default ACLs. Default ACLs play
no direct role in access checks.

When a directory is created inside a directory that has a default ACL, the new directory inherits the parent
directory’s default ACL both as its access ACL and default ACL. Objects that are not directories inherit the default
ACL of the parent directory as their access ACL only.

The permissions of inherited access ACLs are further modified by the mode parameter that each system call creating
file system object has. The mode parameter contains nine permission bits that stand for the permissions of the
owner, group, and other class permissions. The effective permissions of each class are set to the intersection of the
permissions defined for this class in the ACL and specified in the mode parameter. If the parent directory has no
default ACL, the permissions of the new file are determined as defined in POSIX.1. The effective permissions are set

White Paper 10

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

to the permissions defined in the mode parameter, minus the permissions set in the current umask. The umask has
no effect if a default ACL exists.

SHARE-LEVEL USER ACCESS CONTROL
When a share is created on the StorCenter device, it can either be secured or public. A public share requires no user
access control; every user can access it and gain full control using both CIFS and NFS. On the other hand, a secured
share allows Windows user access control to be configured by checking the Allow users to change file level security
option as shown in Figure 5.

If a share is public, or if the share is secured but does not have the Allow users to change file level security option
enabled, the share can still be accessed by a Windows host. However, the share, and every directory and file inside
the share, do not have the Security tab in their Properties. Therefore, there is no Windows ACL associated with each
object, and Windows permissions cannot be created or modified.

Access control using Iomega StorCenter Manager
This is a three-step process using Iomega StorCenter Manager to secure a folder and configure access control.
1. Enable security on the folder.

Figure 4 Secure a share

2. Enable Windows user access control on files and directories within the share, and configure user access at the
share level.

Figure 5 Enable Windows user access control

White Paper 11

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

By checking the Allow users to change file level security option, the following Samba parameters are set:
nt acl support = yes
dos filemode = yes

The nt acl support parameter controls whether the smbd daemon will attempt to map UNIX permissions into
Windows ACLs. The dos filemode parameter determines if a user having write access to a file can modify the
Windows permissions.

Additionally, the configured user access rights are saved in and enforced by Samba.

If the Allow unsecured read access option is selected, the share can be accessed by any user without
authentication. However, all those users are authorized to only read the folder.

3. Enable NFS secured access to the share and configure host access.
Figure 6 Allow secured NFS access

White Paper 12

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

NFS access to secured shares is normally determined by host access rights. NFS controls who can mount an
exported file system based on the host making the mount request, not the user that actually uses the file
system. Hosts must be given explicit rights to mount the exported file system. Access control is not possible for
users, other than through file and directory permissions.

UNIX USER SQUASHING
When an exported file system is mounted on a host via NFS, any user on the host can access the shared data. To
limit the potential security risks, UNIX administrators often allow read-only access, or squash user permissions to a
common user and group ID. There are two squashing options when exporting a file system:

 t all_squash: this option allows the NFS server to treat all client users as anonymous users by mapping all user and
group IDs to the anonymous user and group ID.

 t root_squash: this option allows the NFS server to treat the root user as the anonymous user by mapping its user
and group ID to the anonymous user and group ID.

The UNIX anonymous user is typically the nobody user in the nobody group. By mapping a super user root or other
users into the anonymous user, the NFS server restricts access and operations.

The StorCenter device supports both these user squashing options when the NFS service is enabled on the NAS, as
shown in Figure 7.

 t Allow all client users full access: no user squashing.
 t Allow full access for client users other than root: root_squash.
 t Treat client users as guest: all_squash.

Note: NFS settings cannot be modified when the NAS is joined to a domain
Figure 7 Set NFS user squashing

DEFAULT SECURITY SETTINGS
The StorCenter device assigns a default user and group to each share during share creation. The default user is
nobody with UID 99, and the default group is users with GID 100. The default permission bits on the share are 0777.
When the share is connected on a Windows client, the Windows security settings can be seen in the Security tab of

White Paper 13

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

the share’s Properties on a Windows client. The Windows security settings include:

Everyone – Special permissions
nobody (Unix User\nobody) – Special permissions
users (Unix Group\users) – Special permissions

Windows special permissions are customizable sets of permissions. By default, all Windows permissions are
allowed for every user on the share.

MODIFICATION OF WINDOWS PERMISSIONS
The values of modifying the Windows ACL settings on the share are:

 t Customization of Windows permissions that can be automatically inherited by directories and files inside the
share.

 t Control of more Windows specific permissions that cannot be configured in Iomega StorCenter Manager.

To modify Windows permissions, use the following procedure in Windows Explorer.
1. After the share is connected on the Windows client, right-click the share and open Properties.
2. In the Security tab, click Edit to change permissions.
3. Select desired permissions to allow or deny for a user. Alternatively, to add new permissions, click Add.

Figure 8 Modify Windows permissions

4. Enter the user name for whom the new permissions are created.
Figure 9 Enter user name

White Paper 14

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

6. Assign appropriate Windows permissions to the user. In this example, the admin user is given Read & execute, List
folder contents, and Read permissions only.

Figure 11 Assign Windows permissions for the user

7. Click OK to save the settings. The new set of Windows permissions will be listed. Additionally, if this is the first

5. Click Check Names to optionally verify the existence of the user in the workgroup or domain.
Figure 10 Verify user

White Paper 15

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

time Windows ACL is modified on the share, two new objects named CREATOR OWNER and CREATOR GROUP with
their own Windows permission settings are automatically created. These two new objects are explained in the
Modification of a Windows ACL section.

Figure 12 Newly added Windows permissions

APPLICATION OF THE MOST RESTRICTIVE SETTINGS
 The default share-level Windows security settings match the default UNIX permissions; both suggest that every

CIFS and NFS user has full access to the share. However, these settings alone are not effective. Windows user access
is also checked against the access control settings in Iomega StorCenter Manager as shown in Figure 5, which is
enforced by Samba rather than Windows ACL. The most restrictive settings apply.
For instances, consider the following scenarios:

 t The admin user is given read-only access to Share1 in Iomega StorCenter Manager. When you map the share on a
Windows client using the admin user credential, you will not be able to create or modify files in the share, although
the Windows security settings on the share suggest that everyone should have full access.

 t The admin user is given read-write access to Share1 in Iomega StorCenter Manager. After you map the share on
a Windows client using the admin user credential, you modify the Windows ACL on the share to grant restrictive
permissions to user admin as illustrated in Figure 11. As a result, you can browse the folder and read files, but will
not be able to create, write or delete files in the share.

Note: Application of the most restrictive settings is the guiding principle in determining a user’s effective access
rights throughout the entire share. You can grant a user full control over a directory in a share using Windows
Explorer, but the user will only have read-only access to the directory if the user is allowed read-only access to the
share in Iomega StorCenter Manager. Therefore, if you need to control user access at a more granular level than is
possible with Iomega StorCenter Manager, a best practice is to allow read-write access to the share by all users, and
then configure more restrictive Windows permissions on a Windows host.

DIRECTORY-LEVEL USER ACCESS CONTROL

White Paper 16

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

You can gain a more granular level of Windows user access control by using native Windows utilities to configure
Windows ACLs on individual file system objects within a share. The file system POSIX ACLs on StorCenter device are
leveraged to map to Windows ACLs. Again, this is allowed only if the share is secured and has the Allow users to
change file level security option enabled.

Windows ACL
When a file system object (a directory or a file) is first created inside a share, the object always has the following
Windows permissions by default unless the Windows permissions have been previously modified on the share and
inheritance is allowed.
Everyone – Special permissions
Administrator User (RTPSOHO8\admin) – Special permissions
users (Unix Group\users) – Special permissions

This set of Windows ACL is very similar to that of the share itself. The only difference is that the UNIX nobody user is
replaced by the user whose user credentials are used to connect to the share, in this example user admin. When a
file system object is first created under a subdirectory inside the share, the object will receive Windows ACL from its
parent directory according to rules explained in the Inheritance rules section later in this paper. The Windows ACL
for each file system object is automatically translated into POSIX ACL and stored with the object in the file system.
On the other hand, if a file system object is created or modified using NFS, the UNIX permissions are set first in
POSIX ACL, which is then translated into Windows ACL on the fly when the share is accessed using CIFS. In other
words, user permissions are always stored in the file system POSIX ACLs; there is no such entity as Windows ACL
in the file system. Translation rules between POSIX ACL and Windows ACL are described in the Mappings between
Windows ACL and UNIX rights section.

MODIFICATION OF A WINDOWS ACL
Windows ACL can be viewed and modified using native Windows utilities, such as Windows Explorer. The simple
procedure described in the Modification of Windows permissions section can be used. Additionally, you can perform
more advanced configurations using the same utility.

1. In the Security tab of the object Properties, click Advanced to configure advanced security settings for the object.
Figure 13 Advanced security settings for a file system object

2. Click Change Permissions, and change the permissions of the selected user.

White Paper 17

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

Figure 14 Change permission entries

Notice that the current Windows ACL for the directory does not contain any permission entries inherited from
its parent directory. Nor is the ACL inherited by its child objects. These behaviors can be changed by checking
Include inheritable permissions from this object’s parent and Replace all child object permissions with inheritable
permissions from this object respectively. The file system will go through all affected objects to update their
security entries accordingly, which could be an expensive operation that impacts performance.

3. Customize permission entries by allowing or denying certain rights. You can also determine if inheritance is
allowed on the directory and how those permission entries should be inherited.

Figure 15 Change user permission settings

4. Save the modifications. When a directory’s Windows ACL is modified and inheritance is enabled for the first time
(any option other than This folder only in Figure 15), new Windows permission entries are automatically created for
the directory. These entries are CREATOR OWNER and CREATOR GROUP.

CREATOR OWNER is a generic Windows object. It is a placeholder in an inheritable access control entry (ACE). When

White Paper 18

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

the ACE is inherited, the system replaces this object’s SID with the SID for the object’s creator.

CREATOR GROUP is another generic object that is a placeholder in an inheritable ACE. When the ACE is inherited,
the system replaces this object’s SID with the SID for the primary group of the object’s creator. The primary group is
used only by the POSIX subsystem.

The CREATOR OWNER and CREATOR GROUP entries are translated into the POSIX default ACLs that control
inheritance in the file system. When an object is created inside the directory using NFS, the new object inherits
permissions from the default ACLs.

Figure 16 Windows objects for inheritance

MULTIPROTOCOL ACCESS CONTROL
IOMEGA ACCESS-CHECKING POLICY
In a multiprotocol environment, the StorCenter device must determine which set of permission attributes on a file
or directory to use to grant a user access to a file system object. This process is called user authorization and is
controlled through the file system access-checking policy.

When a StorCenter device is in Workgroup mode, access through NFS or CIFS is determined by the protocol which
most recently set or modified the permissions on the file system object. Windows ACLs and UNIX permissions
are always automatically synchronized. However, the Windows ACLs on the file system object are also compared
against the share-level security settings, and the most restrictive settings apply.The same access checking policy
applies when the NAS is joined in a Windows domain. However, because in the domain mode every UNIX user is
treated as the anonymous user, typically the nobody user, UNIX permissions are checked against the nobody user
and set based on the nobody user. (See section CIFS user ID resolution for more details)

INHERITANCE RULES
When a file system object is created in a secured share using CIFS, the object inherits ACLs from its parent directory
if the parent directory allows inheritances. The UNIX permission bits are then translated from the ACLs.

White Paper 19

Using User Access control lists (Acls) to mAnAge file permissions with A storcenter™ nAs

When a file system object is created in a secured share using NFS, the object’s UNIX permission bits are determined
by the set for the user if the parent directory has no Default ACL. Otherwise, they are determined by the parent
directory’s Default ACL. The Windows ACLs are then translated from the UNIX permission bits.

MAPPINGS BETWEEN WINDOWS ACL AND UNIX RIGHTS
 There is no perfect mapping between Windows ACL and POSIX ACL. In certain cases, permission translation will

be compromised; hence, some security settings will be lost and/or overwritten during the process. For instance,
giving a user only the Windows Read attributes permission will result in the UNIX r permission bit being set, which
immediately translates back with not only Windows Read attributes, but also List folder/read data, Read extended
attributes, and Read permissions settings on the Windows host. You won’t be able to assign only the Read
attributes permission for an object. While the intended operation may seem like a failure, it is expected behavior
due to the fact that security settings are really stored in POSIX ACL and a translation is needed.

Translating a Windows ACL into UNIX rights
When a file system object has its permissions modified using CIFS, the permission entries in the Windows ACL are
translated into UNIX permissions as shown in the mappings in Table 4.

File permissions Directory permissions

R W X R W X

Traverse Folder/Execute File • •

List Folders •

Read Data •

Read Attributes • •

Read Extended Attributes • •

Create Files •

Write Data •

Create Folders •

Append Data •

Write Attributes •

Write Extended Attributes •

Delete Subfolder and Files •

Delete

Read Permissions

Change Permissions

Take Ownership

Table 4. Translating a Windows ACL into UNIX rights

Note: there are two special cases with the StorCenter in which a Windows ACL won’t translate into UNIX permissions
bits. The first case deals with modifying the Windows permissions of the owner of a directory. The modification is

©2012 Iomega Corporation. All rights reserved. Iomega, StorCenter, and the stylized “i” logo are either registered trademarks or trademarks of Iomega Corporation in the United States and/or other countries. EMC and EMC LifeLine are registered
trademarks of EMC Corporation in the U.S. and/or other countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Certain other product names, brand names
and company names may be trademarks or designations or their respective owners. Iomega’s specific customer support policies (including fees for services) and procedures change as technology and market conditions dictate. Product in photos may vary
slightly from product in package. Product capacities are specified in gigabytes (GB), where 1GB = 1,000,000,000 Bytes. To obtain information about Iomega’s current policies please visit Iomega at www.iomega.com. ACLWP-0912-04

always discarded with the UNIX permission bits intact. On the other hand, modification of the UNIX permission bits
of the owner of the directory will be effective, and translated accordingly into Windows ACL. The second case deals
with modifying the read permission of the owner of a file; the modification is also always discarded.

Translating UNIX rights into a Windows ACL
When a file system object has its permissions modified using NFS, the UNIX permission bits are translated into
Windows permissions as shown in the mappings in Table 5.

R W X

Traverse Folder/Execute File •

List Folders •

Read Data •

Read Attributes • •

Read Extended Attributes •

Create Files / Write Data •

Create Folders / Append Data •

Write Attributes •

Write Extended Attributes •

Delete Subfolder and Files •

Delete

Read Permissions • • •

Change Permissions •

Take Ownership •

Table 5. Translating UNIX rights into a Windows ACL

CONCLUSION
The Iomega StorCenter device is a high-performance, easy-to-use, and highly reliable storage device. It is
specifically designed to meet the daily storage challenges faced by small- and medium-sized businesses. It is
designed to run in a multiprotocol environment so that data can be shared between different platforms and file
sharing protocols, including the most popular CIFS and NFS protocols.

A multiprotocol environment presents many challenges to file sharing, the most complicated being user access
control. The StorCenter device allows access control in two different ways: share-level access control using Iomega
StorCenter Manager, and directory-level access control using native Windows utilities. Windows ACLs and UNIX
permissions are synchronized automatically to provide a consistent view of file system object security settings.
The combination provides administrators with a simple, flexible, yet protocol-compliant solution for defining and
executing the desired level of data security.

Iomega ISCSI Setup guIde

