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Abstract. We analyze local search heuristics for the metric k-median and facility location
problems. We define the locality gap of a local search procedure for a minimization problem as
the maximum ratio of a locally optimum solution (obtained using this procedure) to the global
optimum. For k-median, we show that local search with swaps has a locality gap of 5. Furthermore,
if we permit up to p facilities to be swapped simultaneously, then the locality gap is 3 + 2/p. This
is the first analysis of a local search for k-median that provides a bounded performance guarantee
with only k& medians. This also improves the previous known 4 approximation for this problem.
For uncapacitated facility location, we show that local search, which permits adding, dropping, and
swapping a facility, has a locality gap of 3. This improves the bound of 5 given by M. Korupolu,
C. Plaxton, and R. Rajaraman [Analysis of a Local Search Heuristic for Facility Location Problems,
Technical Report 98-30, DIMACS, 1998]. We also consider a capacitated facility location problem
where each facility has a capacity and we are allowed to open multiple copies of a facility. For this
problem we introduce a new local search operation which opens one or more copies of a facility and
drops zero or more facilities. We prove that this local search has a locality gap between 3 and 4.
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1. Introduction. The problem of locating facilities in a manner so that they
can effectively serve a set of clients has been the subject of much research. While one
could consider fairly general measures of effectiveness of a set of locations in serving
the clients, one measure that is typically used is the distance between the client and
the facility that is serving it. Since by opening a lot of facilities, we can be near
every client, it also makes sense to take into account the number of facilities opened
in judging the quality of a solution. These two measures, typically referred to as the
service cost and the facility cost, can be combined in many ways to obtain interesting
variants to the general facility location problem. For instance, in k-median we require
that at most k facilities be opened and the total service cost, measured as the sum of
the distance of each client to the nearest open facility, be minimum. Instead of setting
a limit on the total number of facilities that could be opened, we sometimes associate
with every facility a cost of opening that facility. The facility cost of a solution is
then the sum of the costs of the facilities that are opened, and the quality of the
solution is measured by the sum of the facility and service costs. This, in fact, is the
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classical facility location problem. Note that in this setting the facility costs need not
be the same and would, in general, depend on the location at which the facility is
being opened. A generalization of the classical facility location problem arises when
we associate a capacity with each facility, which measures the maximum number of
clients that the facility can serve. Further variants of this capacitated facility location
(CFL) problem arise when we bound the number of facilities that can be opened at a
certain location. Thus in k-CFL, we can open at most k facilities at any location.

Local search techniques have been very popular as heuristics for hard combina-
torial optimization problems. The l-exchange heuristic by Lin and Kernighan [15]
for the metric-TSP remains the method of choice for practitioners. However, most
of these heuristics have poor worst-case guarantees, and very few approximation al-
gorithms that rely on local search are known. Koénemann and Ravi [13] used local
search algorithms for degree-bounded minimum spanning trees. Chandra, Karloff,
and Tovey [3] show an approximation factor of 4,/n for the 2-exchange local search
heuristic for the Euclidean traveling salesman problem. Khuller, Bhatia, and Pless
[12] give a local search approximation algorithm for finding a feedback edge-set inci-
dent upon the minimum number of vertices. Local search has also been used for set
packing problems by Arkin and Hassin [2]. Here, we provide worst-case analysis of
local search algorithms for facility location problems.

For an instance I of a minimization problem, let global(]) denote the cost of the
global optimum and local([l) be the cost of a locally optimum solution provided by a
certain local search heuristic. We call the supremum of the ratio local(I)/global(])
the locality gap of this local search procedure. For 1-CFL with uniform capacities,
Korupolu, Plaxton, and Rajaraman [14] argued that any procedure that permits
adding, dropping, or swapping a facility has a locality gap of at most 8. Their analysis
was subsequently refined and tightened by Chudak and Williamson [8] to yield a
locality gap of at most 6. P4l, Tardos, and Wexler [19] present a local search algorithm
for 1-CFL with nonuniform capacities which has a locality gap of 9. Mahdian and
P4l [16] considered the universal facility location problem where the cost of opening a
facility is any arbitrary but monotone function of the demand that the facility serves;
note that this problem generalizes k-CFL. Mahdian and P4l extended the algorithm
of [19] to obtain a local search algorithm with a locality gap of 8. For uncapacitated
facility location (UFL), Korupolu, Plaxton, and Rajaraman [14] provided a bound of 5
on the locality gap when the only operations permitted are those of adding, dropping,
or swapping a facility. Charikar and Guha [4] introduced an operation which permits
adding a facility and dropping many and showed that this local search procedure has a
locality gap of exactly 3. For k-median, Korupolu, Plaxton, and Rajaraman [14] gave
a local search procedure which permitted adding, deleting, and swapping facilities
and gave a solution with k(1 + €) facilities having a service cost at most 3+ 5/¢ times
the optimum k-median solution.

A different approach to facility location was employed by Shmoys, Tardos, and
Aardal [20] and Charikar et al. [5]. They formulated the problems as linear programs
and rounded the optimum fractional solution to obtain a 3 approximation for the
UFL problem and a 6% approximation for k-median. Jain and Vazirani [11] gave an
alternate 3 approximation algorithm for UFL using the primal-dual schema. They
also observed that UFL can be viewed as a Lagrange-relaxation of k-median and
utilized this to give a 6 approximation algorithm for k-median. Later, Charikar and
Guha [4] improved this to a 4 approximation. Recently, Archer, Rajagopalan, and
Shmoys [1] showed that the algorithm due to Jain and Vazirani can be made to satisfy
the “continuity” property and established an integrality gap of at most 3 for the most
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natural LP relaxation for the k-median problem. However, their proof gives only an
exponential time algorithm. Guha and Khuller [9] employed randomization to improve
the approximation guarantee of UFL to 2.408. This was further improved to (1+2/e)
by Chudak [6] and finally to 1.728 by Charikar and Guha [4]. Similar ideas were used
by Chudak and Shmoys [7] to obtain a 3 approximation algorithm for co-CFL when
the capacities are uniform. Jain et al. [10] used the method of dual fitting and factor
revealing LP to design two greedy algorithms for the UFL problem with approximation
guarantees of 1.861, 1.61 and running times of O(mlogm), O(n?), respectively, where
n is the number of vertices and m is the number of edges in the underlying graph.
Mahdian, Ye, and Zhang [17] combined the ideas in [10] with the idea of cost scaling
to obtain an approximation factor of 1.52 for UFL, which is also the best known.
Jain and Vazirani [11] obtained a 4 approximation algorithm for co-CFL when the
capacities were nonuniform by solving a related UFL problem using their primal-dual
algorithm. Recently, Mahdian, Ye, and Zhang [18] gave a 2 approximation for the
0o-CFL with nonuniform capacities by reducing it to a linear-cost facility location
problem.

Our results. In this paper, we analyze local search heuristics for three problems.

1. For metric k-median, we show that the local search with single swaps has a
locality gap of 5. This is the first analysis of a local search for k-median that
provides a bounded performance guarantee with only k& medians. We also
show that doing multiple swaps, that is, dropping at most p facilities and
opening the same number of new facilities, yields a locality gap of 3 4+ 2/p.
This improves on the 4 approximation algorithm for k-median by Charikar
and Guha [4]. Our analysis of the locality gap is tight; that is, for an infinite
family of instances there is a locally optimum solution whose service cost is
nearly (3 4+ 2/p) times that of the global optimum.

2. For metric UFL, we show that local search, which permits adding, dropping,
and swapping a facility, has a locality gap of 3. This improves the bound of 5
given by Korupolu, Plaxton, and Rajaraman [14]. Again, our analysis of the
algorithm is tight. We show how our algorithm can be improved to achieve a
1 ++/2+ € ~ 2.414 + € approximation using ideas from [4].

3. For metric co-CFL, we consider the setting when the capacities may be
nonuniform and argue that local search, where the only operation permit-
ted is to add multiple copies of a facility and drop zero or more facilities, has
a locality gap of at most 4. We give a polynomial time algorithm that uses
Knapsack as a subroutine to search for a lower cost solution in the neigh-
borhood. We also show that there is a locally optimum solution with cost 3
times the optimum. We show how our algorithm can be improved to achieve
a 143+ e~ 3.732 + ¢ approximation using ideas from [4].

The paper is organized as follows. Section 2 introduces some notation and defines
the problems addressed in this paper formally. In section 3, we first prove a locality
gap of 5 for the k-median problem when only single swaps are permitted and then
extend the analysis to argue a locality gap of 3 + 2/p when up to p facilities can
be swapped simultaneously. Sections 4 and 5 discuss the algorithms for UFL and
00-CFL, respectively. Section 6 concludes with some open problems.

2. Notation and preliminaries. In the k-median and facility location prob-
lems, we are given two sets: F', the set of facilities, and C, the set of clients. Let
cij > 0 denote the cost of serving client i € C' by a facility j € F; we will think of
this as the distance between client ¢ and facility j. The goal in these problems is to
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identify a subset of facilities S C F' and to serve all clients by facilities in S such that
some objective function is minimized. The facilities in S are said to be open. The
metric versions of these problems assume that distances c;; are symmetric and satisfy
the triangle inequality. The problems considered in this paper are defined as follows.

1. The metric k-median problem. Given integer k, identify a set S C F of at
most k facilities to open such that the total cost of serving all clients by open
facilities is minimized.

2. The metric UFL problem. For each facility i € F', we are given a cost f; > 0
of opening the facility i. The goal is to identify a set of facilities S C F' such
that the total cost of opening the facilities in .S and serving all the clients by
open facilities is minimized.

3. The metric co-CFL problem. For each facility ¢« € F, we are given a cost
fi > 0 of opening a copy of facility ¢ and an integer capacity u; > 0, which is
the maximum number of clients that a single copy of the facility i can serve.
The output is a set of facilities S C F and the number of copies of each
facility in S to be opened. The goal is to serve each client by a copy of a
facility in S such that the number of clients served by a copy of a facility is
at most its capacity. The objective is to minimize the total facility cost and
the cost of serving all the clients.

Thus for all the problems we consider, a solution can be specified by giving the
set of open facilities together with their multiplicities. In the rest of this paper we
will think of a solution as a multiset of facilities.

Algorithm Local Search.

1. S <« an arbitrary feasible solution in S.
While 3.5 € B(S) such that cost(S’") < cost(S),
do S« 5"
3. return S.

Fic. 1. A generic local search algorithm.

A generic local search algorithm (Figure 1) can be described by a set S of all
feasible solutions, a cost function cost : S — R, a neighborhood structure B : S — 2,
and an oracle that, given any solution S, finds (if possible) a solution S’ € B(S) such
that cost(S’) < cost(S). A solution S € S is called locally optimum if cost(S) <
cost(S") for all §" € B(S); the algorithm in Figure 1 always returns one such solution.
The cost function and the neighborhood structure B will be different for different
problems and algorithms.

If S is a locally optimum solution, then for all " € B(S),

cost(S") — cost(S) > 0.

Our proof of the locality gap proceeds by considering a suitable, polynomially large
(in the input size) subset Q C B(S) of neighboring solutions and arguing that

Z (cost(S") — cost(S)) < a - cost(O) — cost(S),

S'€Q

where O is an optimum solution and « > 1 a suitable constant. This implies that
cost(S) < a - cost(O), which gives a bound of a on the locality gap.
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To translate the proof of the locality gap into an approximation algorithm with
polynomial running time, we modify step 2 of the algorithm as follows.
2. While 35’ € B(S) such that cost(S’) < (1 —€/Q) cost(S),
do S« §".
Here € > 0 is a constant and @@ = |Q|. Thus, in each local step, the cost of the current
solution decreases by a factor of at least ¢/Q. If O denotes an optimum solution
and Sy denotes the initial solution, then the number of steps in the algorithm is
at most log(cost(Sy)/cost(0))/ log % As Q,log(cost(Sy)), and log(cost(0O)) are
polynomial in the input size, the algorithm terminates after polynomially many local
search steps.

To analyze the quality of this locally optimum solution S, we note that for all
S € Q, cost(S’) > (1 —¢/Q)cost(S). Hence

a - cost(0) — cost(S) > Z (cost(S") — cost(S)) > —e - cost(9),
S'eQ

which implies that cost(S) < ﬁcost(O). Thus our proof that a certain local search
procedure has a locality gap of at most « translates into an /(1 — €) approximation
algorithm with a running time that is polynomial in the input size and 1/e.

We use the following notation. Given a solution A, let A; denote the service cost
of client 7, which is the distance between j and the facility in A which serves it. For
every facility a € A, we use N4(a) to denote the set of clients that a serves (Figure 2).
For a subset of facilities, T' C A, let No(T) = U,er Na(a).

af
° [ ° F : set of facilities
@: open facilities
4
, C : set of clients
J
) Na(ar)

Fic. 2. Illustration of neighborhood and service costs.

al

Na(ar

3. The k-median problem. The k-median problem is to open a subset S C F
of at most k facilities so that the total service cost is minimized. Thus, if a client j is
served by a facility o(j) € S, then we wish to minimize cost(S) = >, ¢jo(j)- For a
fixed S, serving each client by the nearest facility in S minimizes this cost.

3.1. Local search with single swaps. In this section, we consider a local
search using single swaps. A swap is effected by closing a facility s € S and opening
a facility ' ¢ S and is denoted by (s, s’); hence B(S) = {S — {s} + {s'} | s € S}.
We start with an arbitrary set of k facilities and keep improving our solution with
such swaps until we reach a locally optimum solution. The algorithm is described in
Figure 1. We use S — s + s’ to denote S — {s} + {s'}.

3.2. The analysis. We now show that this local search procedure has a locality
gap of 5. Let S be the solution returned by the local search procedure and let O be
an optimum solution. From the local optimality of S, we know that

(1) cost(S — s +o0) > cost(S) forall se S,0e0.
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N, = Ns(s4) N No(o)

NZ. = Ns(s3) N No(o)

]\/vso1 :Ns(sl)ﬂNo(O) Ng2 =Ns(82)ﬂNo(O)

F1a. 3. Partitioning No (o).

Note that even if SNO # (), the above inequalities hold. We combine these inequalities
to show that cost(S) < 5 - cost(O).

Consider a facility o € O. We partition Np (o) into subsets N2 = Np(0) N Ng(s)
as shown in Figure 3.

DEFINITION 3.1. We say that a facility s € S captures a facility o € O if s serves
more than half the clients served by o, that is, |[N?| > Z|No(o)|.

It is easy to see that a facility o € O is captured by at most one facility in .S. We
call a facility s € S bad, if it captures some facility o € O, and good otherwise. Fix a
facility o € O and consider a 1-1 and onto function 7 : No(0) — No(0) satisfying the
following property (Figure 4).

PROPERTY 3.1. If s does not capture o, that is, |N2| < $|No(0), then m(N2) N
Ne =0.

No (o)

N ' N

s' # s

s does not capture o
7 is a 1-1 and onto mapping

Fi1G. 4. The mapping ® on No(o).

We outline how to obtain one such mapping m. Let D = |No(0)|. Order the
clients in Np(o) as co,...,cp—1 such that for every s € S with a nonempty N2, the
clients in N2 are consecutive; that is, there exists p,q, 0 < p < ¢ < D — 1, such that
N2 = {cp,...,cq}. Now, define m(c;) = ¢;, where j = (¢ + [D/2]) modulo D. For
contradiction assume that both ¢;, 7(¢;) = ¢; € N2 for some s, where |[N?| < D/2. If
j=i+|D/2], then |[IN?| > j—i+1=|D/2|+1>D/2. If j =i+ |D/2] — D, then
IN°| >i—j+1=D—|D/2]+1> D/2. In both cases we have a contradiction, and
hence function 7 satisfies property 3.1.

The notion of capture can be used to construct a bipartite graph H = (5,0, E)
(Figure 5). For each facility in S we have a vertex on the S-side, and for each facility
in O we have a vertex on the O-side. We add an edge between s € S and o € O if s
captures o. It is easy to see that each vertex on the O-side has degree at most one,
while vertices on the S-side can have degree up to k. We call H the capture graph.

We now consider k swaps, one for each facility in O. If some bad facility s € S
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>1/2

01 O3
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Fi1G. 5. Capture graph H = (S,0, E).

> 1/2 good facilities

F1G. 6. k swaps considered in the analysis.

captures exactly one facility o € O, then we consider the swap (s,0). Suppose [
facilities in S (and hence [ facilities in O) are not considered in such swaps. Each
facility out of these [ facilities in S is either good or captures at least two facilities in
O. Hence there are at least {/2 good facilities in S. Now, consider | swaps in which
the remaining [ facilities in O get swapped with the good facilities in S such that
each good facility is considered in at most two swaps (Figure 6). The bad facilities
which capture at least two facilities in O are not considered in any swaps. The swaps
considered above satisfy the following properties.

1. Each o € O is considered in exactly one swap.

2. A facility s € S which captures more than one facility in O is not considered

in any swap.
3. Each good facility s € S is considered in at most two swaps.
4. If swap (s, 0) is considered, then facility s does not capture any facility o’ # o.
We now analyze these swaps one by one. Consider a swap (s,0). We place an

upper bound on the increase in the cost due to this swap by reassigning the clients in
Ns(s)UNo(0) to the facilities in S — s+ o as follows (Figure 7). The clients j € N (o)
are now assigned to o. Consider a client j' € N for o’ # 0. As s does not capture
o', by Property 3.1 of © we have that 7(j') & Ns(s). Let w(j’) € Ns(s’). Note that
the distance that the client j’ travels to the nearest facility in S — s + o is at most
cjrsr. From triangle inequality, cjrs < ¢jror + Cr(jryor + Cr(jrysr = Ojr + Ox(jry + Sx(jr-
The clients which do not belong to Ng(s) U Np(0) continue to be served by the same
facility. From inequality (1) we have

cost(S — s + 0) — cost(S) > 0.
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F1G. 7. Reassigning the clients in Ng(s) U No (o).

Therefore,
® Y. (05=8)+ Y (05+0x) + 5x) = 85) 2 0.
JENoO(0) JENg(s),
igNo (o)

As each facility o € O is considered in exactly one swap, the first term of inequal-
ity (2) added over all k swaps gives exactly cost(O) — cost(S). For the second term,
we will use the fact that each s € S is considered in at most two swaps. Since S
is the shortest distance from client j to a facility in S, using triangle inequality we
get O + Or(jy + Sx(j) = S;. Thus the second term of inequality (2) added over all &
swaps is no greater than 2% .. ~(O; + Ox(j) + Sz(;) — S;). But since 7 is a 1-1 and
onto mapping, ;.- Oj = > icc Onyy = cost(O) and 3, (Sr(;) — ;) = 0. Thus,
23 5cc(0j + Oxgjy + Sx(jy — Sj) = 4+ cost(O). Combining the two terms, we get
cost(0) — cost(S) 4+ 4 - cost(O) > 0. Thus we have the following theorem.

THEOREM 3.2. A local search procedure for the metric k-median problem with
the local neighborhood structure defined by B(S) = {S — {s} + {s'} | s € S} has a
locality gap of at most 5.

The above algorithm and analysis extend very simply to the case when the clients
j € C have arbitrary demands d; > 0 to be served.

3.3. Local search with multiswaps. In this section, we generalize the algo-
rithm in section 3 to consider multiswaps in which up to p > 1 facilities could be
swapped simultaneously. The neighborhood structure is now defined by

(3) B(S)={(S\A)UB|ACS, BCF, and |A| =|B| < p}.

The neighborhood captures the set of solutions obtainable by deleting a set of at most
p facilities A and adding a set of facilities B where | B| = | Al; this swap will be denoted
by (A, B). We prove that the locality gap of the k-median problem with respect to
this operation is exactly (3 + 2/p).

3.4. Analysis. We extend the notion of capture as follows. For a subset A C S,
we define

capture(A) = {o € O | INs(A) N No(o)| > |No(o)|/2}.

It is easy to observe that if X, Y C S are disjoint, then capture(X) and capture(Y)
are disjoint and if X C Y, then capture(X) C capture(Y’). We now partition S into
sets Aq,..., A, and O into sets By, ..., B, such that
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procedure Partition;
i=0
while 3 a bad facility in S do
l.i=i+1 {iteration i}
2. A; — {b} where b € S is any bad facility
3. B; < capture(4;)
4. while |4;| # |B;| do
4.1. A; «— A; U{g} where g € S\ A; is any good facility
4.2. B; « capture(4;)
5. S — S \ AZ

end.

F1a. 8. A procedure to define the partitions.

1. for 1 <i <r —1, we have |A;| = |B;| and B; = capture(A;); since |S| = 0|,
it follows that |A,| = |B.[;
2. for 1 <i <r —1, the set A; has exactly one bad facility;
3. the set A, contains only good facilities.
A procedure to obtain such a partition is given in Figure 8.

CramM 3.1. The procedure defined in Figure 8 terminates with partitions of S
and O, satisfying the properties listed above.

Proof. The condition in the while loop in step 4 and the assignment in step 5 of
the procedure maintain the invariant that |S| = |O|. Steps 3 and 4.2 of the procedure
ensure that for 1 <1 <r — 1, we have B; = capture(4;), and steps 2 and 4.1 ensure
that each for 1 < ¢ < r — 1, the set A; has exactly one bad facility. Now before
each execution of step 4.1, we have |A;| < |B;|. This together with the invariant
that |S| = |O] implies that in step 4.1, we can always find a good facility in S\ A;.
Since with each execution of the while loop in step 4 the size of A; increases, the loop
terminates. The condition in step 4 then ensures that for 1 < ¢ < r — 1, we have
|A;| = |B;|. Since there are no bad facilities left when the procedure comes out of the
outer while loop, we have that the set A, contains only good facilities. O

We now use this partition of S and O to define the swaps we would consider for
our analysis. We also associate a positive real weight with each such swap.

1. If |A;| = |B;| < p for some 1 < i < r, then we consider the swap (A;, B;) with
weight 1. From the local optimality of S we have

cost((S\ A;) U B;) — cost(S) > 0.

Note that even if A; N B; # () or SN B; # (), the above inequality continues
to hold.

2. If |A;] = |Bi| = g > p, we consider all possible swaps (s, 0) where s € A; is
a good facility and o € B;. Note that if ¢ # r, there are exactly ¢ — 1 good
facilities in A;, and for i = r we select any ¢ — 1 out of the ¢ good facilities
in A,. We associate a weight of 1/(¢ — 1) with each of these g(q — 1) swaps.
For each such swap (s, 0), we have

cost(S — s + 0) — cost(S) > 0.
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Note that any good facility in A; is considered in swaps of total weight at most
q/(g—1) < (p+1)/p. The swaps we have considered and the weights we assigned to
them satisfy the following properties:

1. For every facility o € O, the sum of weights of the swaps (A, B) with o € B
is exactly one.

2. For every facility s € S, the sum of weights of the swaps (A4, B) with s € A
is at most (p+ 1)/p.

3. If a swap (A, B) is considered, then capture(A) C B.

For each facility o € O, we partition Np(0) as follows:

L. For [A;] <p,1 <i<r, let N§ = Ns(A;) N No(o) be a set in the partition.
2. For |4;| > p,1 <i<r,and all s € 4;, let N2 = Ng(s) N No(o) be a set in
the partition.
As before, for each facility o € O, we consider a 1-1 and onto mapping © : Np(0o) —
No (o) with the following property.

PROPERTY 3.2. For all sets P, in the partition of No(o) for which |P| <
1|No(0)|, we have #(P) N P = §.  Such a mapping 7 can be defined in a man-
ner identical to the one described in section 3.2. The analysis is similar to the one
presented for the single-swap heuristic. For each of the swaps defined above, we
upper-bound the increase in the cost by reassigning the clients. Property 3.2 en-
sures that the function 7 can be used to do the reassignment as described in sec-
tion 3.2. We take a weighted sum of the inequalities corresponding to each of the
swaps considered above. Recall that in the single-swap analysis, we used the fact
that each facility in S was considered in at most two swaps and upper-bounded
the second term of (2) by 23 ..(0; + Oxgj) + Sx(jy — Sj) = 4 - cost(0). Simi-
larly, we can now make use of the fact that each facility in S is considered in swaps
with total weight at most (p + 1)/p and upper-bound the second term by (p+1)/p-
> icc 05+ Oxiy + Sx(jy — Sj) = 2(p+1)/p - cost(O). This gives us a locality gap of
1+2(p+1)/p=3+2/p.

3.5. Tight example. In Figure 9, we show an instance of the k-median problem
in which a solution that is locally optimum for the 2-swap heuristic (p = 2) has cost
at least 4 — o(1) times the cost of the global optimum. Since 3+ 2/p=3+2/2 =4
is also the locality gap proved, it shows that the analysis of the 2-swap heuristic is
tight. This tight example can be generalized for p-swaps for any p > 1. In Figure 9,
the black squares are the facilities {01, 09, ..., 0%} opened by a solution O, the gray
squares are the facilities {s1, s2,..., s} opened by a locally optimum solution S, and
the circles are the clients. In the graph in Figure 9 each edge has a label which is
its length. The cost of serving a client j by a facility ¢ is length of the shortest path
between client j and facility ¢ in the graph; the cost is infinite if there is no path.

Note that cost(S) = 2210 cost(0) = 2552 and hence the ratio cost(S)/cost(O)
approaches 4 as k approaches co. We now show that S is a locally optimum solution;
that is, if we swap {o;, 0, } for {s;, s;}, then the cost does not decrease. To show this
we consider various cases:

1. 4,5 <r. Then o, 0,, will have to lie in the connected components containing
84,5j. But in this case the cost would increase by 4.

2. i <r < j. At least one of 0, 0,,, would have to lie in the connected component
containing s;; let this be o;. If 0,, also lies in this component, then the cost
remains unchanged. If o,, is in a different component and m < k — 2, then
the cost increases by 2. If m > k — 2, then the cost of the solution increases
by 3.
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01 02 03

O
0 0 0 0 0 0 0 0
C
2\ 2| 2 2\ 2| 2, 2\ 2
. S
S1 S2 Sr Sr4+1  Sr42 Sk

r=(k—2)/3

Fic. 9. Tight example for 2-swap. The same example can be generalized to p-swap.

3. 4,5 > r. If both [, m are at most k — 2, then the cost of the solution remains
unchanged. The cost remains unchanged even if | < k — 2 < m. If both
l,m are larger than k — 2, then, once again, the cost of the solution remains
unchanged.

4. Uncapacitated facility location. In facility location problems, we can open
any number of facilities, but each facility ¢ € F' has a cost f; > 0 of opening it. The
UFL problem is to identify a subset S C F and to serve the clients in C' by the
facilities in S such that the sum of facility costs and service costs is minimized. That
is, if a client j € C is assigned to a facility o(j) € S, then we want to minimize
cost(S) = X ies fi + 2o jec Co(j)j- Note that for a fixed S, serving each client by the
nearest facility in S minimizes the service cost.

4.1. A local search procedure. We present a local search procedure for the
metric UFL problem with a locality gap of 3. The operations allowed in a local
search step are adding a facility, deleting a facility, and swapping facilities. Hence the
neighborhood B is defined by

(4) B(S)={S+{s}}U{S—{s}|seSIU{S—{st+{s'}|se S}

As the number of neighbors to be checked at each local search step is polynomial, the
algorithm can be run in polynomial time as described earlier.

Charikar and Guha [4] proved a locality gap of 3 for a local search procedure
where the operation was of adding a facility and dropping zero or more facilities.
Korupolu, Plaxton, and Rajaraman [14] considered the operations of adding, deleting,
and swapping a facility but could only prove a locality gap of at most 5.

4.2. The analysis. For any set of facilities 5" C F, let costy(S') = > ;o fi
denote the facility cost of the solution S’. Also, let costs(S’) be the total cost of
serving the clients in C' by the nearest facilities in S”. The total cost of a solution S’
is denoted by cost(S’). We use S to denote a locally optimum solution. The following
bound on the service cost of S has earlier been proved by Korupolu, Plaxton, and
Rajaraman [14].

LEMMA 4.1 (service cost).

costs(S) < cost;(O) + costs(O).

Proof. Consider an operation in which a facility o € O is added. Assign all the
clients No(0) to o. From the local optimality of S we get foJijeNo(o) (0;—5;) > 0.
Note that even if o € S, this inequality continues to hold. If we add such inequalities
for every o € O, we get the desired inequality. 0
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F1G. 10. Bounding the facility cost of a good facility s.

The following lemma gives a bound on the facility cost of S.
LEMMA 4.2 (facility cost).

cost(S) < costy(O) + 2 - costs(0).

Proof. As before, we assume that for a fixed o € O, the mapping 7 : Np(0) —
No(0) is 1-1 and onto and satisfies Property 3.1. In addition, we assume that if
IN?| > 1|No(0)|, then for all j € N? for which 7(j) € N?, we have that 7(j) = j.
Here we give an outline of how to define such a function 7. Let [N2| > 1[N (0)|. We
pick any |N?| — |[No(0) \ N?2| clients j from N2 and set 7(j) = j. On the remaining
clients in Np(o), the function 7 is defined in the same manner as in section 3.2.

Recall that a facility s € S'is good if it does not capture any o, that is, for all o € O,
|N?| < 2|No(0)|. The facility cost of good facilities can be bounded easily as follows
(see Figure 10). Consider an operation in which a good facility s € S is dropped. Let
j € Ng(s) and 7(j) € Ng(s'). As s does not capture any facility o € O, we have that
s’ # s. If we assign j to s’, then we have _fS+Zj€NS(s)(Oj +Ox ;) +Sr(;) —S;) > 0.
Since for all j € Ng(s),m(j) # j, the term ) jeng (s O; is trivially zero and hence we
can rewrite the above inequality as =

(5) ~fot Y (054 Ony + Seijy = S5) +2 > 0;>0.
J'E(I\TSS;EL?) JE(NSS‘,(D)

For bounding the facility cost of a bad facility s € S we proceed as follows. Fix a
bad facility s € S. Suppose s captures the facilities P C O. Let o € P be the facility
nearest to s. We consider the swap (s,0). The clients j € Ng(s) are now assigned to
the facilities in S — s + o as follows:

1. Suppose 7(j) € Ng(s') for s’ # s. Then j is assigned to s’. Let j € No(0').
We have, ¢jo < Cjor + Cr(jyor + Cr(j)sr = Of + Ox(jy + Sr(jy (Figure 11).

2. Suppose 7(j) = j € Ns(s) and j € Npo(0). Then j is assigned to o.

3. Suppose w(j) = j € Ng(s) and j € Np(0') for o' # o. By Property 3.1 of
the mapping m, facility s captures facility o’ and hence o’ € P. The client j
is now assigned to facility o. From triangle inequality, c;, < ¢js + cs0. Since
o € P is the closest facility to s, we have cso < csor < ¢js + ¢jor. Therefore,
Cjo < Cjs + Cjs + ¢jor = S5 + 55 + O; (Figure 11).
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O;

: j such that
- m(j) € Ns(s)
P 9j

s

o' is added

Fic. 11. Bounding the facility cost of a bad facility s. The figures on the left and in the middle
show reassignment when s is dropped, and the figure on the right shows reassignment when o' is
added.

Thus for the swap (s, 0) we get the following inequality:

fo=fst Y (054 Oniy + Sy — S5)

JENg(s)
(6) w(J)#]
+ Z (Oj—Sj)+ Z (Sj-l-Sj—FOj—Sj)ZO.
JENQ (o), J€Np (o),
T(j)=jENg(s) w(j)=jENg(s)

Now consider an operation in which a facility o’ € P — o is added (Figure 11). The
clients j € No(o') for which 7(j) = j € Ng(s) are now assigned to the facility o/, and
this yields the following inequality.

(7) for + Z (0;—8;)>0 for each o' € P — o.
jENo(u’)

w(§)=jE€Ng(s)

Adding inequality (6) to inequalities (7) we get, for a bad facility s € S,

(8) Z for = fs + Z (Oj-f—O,,r(j)—l-Sw(j)—Sj)—l-Q Z 0; > 0.
o'eP JENg(s), JENg(s),
()5 ()=
The last term on the left is an upper bound on the sum of the last two terms on the
left of inequality (6) and the last term on the left of the inequality (7) added for all
o eP—o.
Now we add inequalities (5) for all good facilities s € S, inequalities (8) for all
bad facilities s € S, and inequalities f, > 0 for all 0 € O, which are not captured by
any s € S, to obtain

Zfo—Zfs+ Z (Oj+0ﬂ(j)+sﬂ(j)—5j)+2 Z 0; > 0.

0€e0 seS 7(§)#] w(j)=j

Note that ij(j);ej 0; = Zj:fr(j);éj On(j) and Zj:w(j);ﬁj Sj = Zj:w(j);ﬁj Sr(s)-
Therefore we have 3. 1, (O; + Ox(j) + Spg) — 8j) = 22255y Oj and hence
costy(O) — costy(S) + 2 - costs(O) > 0. This proves the desired lemma.

Combining Lemmas 4.1 and 4.2, we get the following result.
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THEOREM 4.3. The local search procedure for the metric UFL problem with the
neighborhood structure B given by B(S) = {S+{s'}}U{S—{s}|se S}U{S—{s}+
{s'} | s € S} has a locality gap of at most 3.

The algorithm described above extends very simply to the case when the clients
j € C have arbitrary demands d; > 0 to be served. We now show how to use a
technique from [4] to obtain 1 4 v/2 + € ~ 2.414 + ¢ approximation to the UFL. The
main idea is to exploit the asymmetry in the service and facility cost guarantees.

Note that Lemmas 4.1 and 4.2 hold for any solution O and not just the optimal
solution. We multiply the facility costs by a suitable factor & > 0 and solve the new
instance using local search.

THEOREM 4.4. The metric UFL problem can be approzimated to factor 14++/2+¢
using a local search procedure.

Proof. As before, we denote the facility cost and the service cost of an optimum
solution O by cost;(O) and costs(0), respectively. Let cost’,(A) and cost|(A) denote
the facility and service costs of a solution A in the scaled instance and let S be a
locally optimum solution. Then

(S
costy(5) + cost,(9)

cost’s(O) + 2cost,(O)

«

= (1 + a)cost(0) + (1 + z> costs(O).

cost(S) + costs(S)

+ cost'’s(O) + cost(0)

The inequality follows from Lemmas 4.1 and 4.2. Now, by setting o = v/2, we get
cost(S) < (1 + v/2)cost(O). Thus local search can be used to obtain a 1+ /2 + ¢
approximation. 0

cost = 0
cost = 0 cost = 0 cost = 0
(o] 01 02 OL
O
C
S

s
cost = 2k

F1G. 12. Tight example for the locality gap of UFL.

4.3. Tight example. In Figure 12, we show an instance where a local optimum
has cost at least 3 — o(1) times the cost of the global optimum. The locally optimum
solution S consists of a single facility s while the optimum solution O consists of
facilities {o0g, 01, ..., ox}. All edges shown have unit lengths, and the cost of serving
client j by facility f is the length of the shortest path between client j and facility f in
the graph. The cost of opening facility s is 2k, while that of opening any other facility
is zero. To argue that the solution S is locally optimum, note that we cannot delete
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facility s. It is also easy to verify that we cannot decrease the cost of our solution by
either the addition of any facility from O or by any swap which involves bringing in a
facility from O and deleting s. Thus S is locally optimum and has cost 3k + 1, while
the cost of O is k + 1. Since the ratio cost(S)/cost(O) tends to 3 as k tends to oo,
our analysis of the local search algorithm is tight.

5. The capacitated facility location problem. In the CFL problem, along
with the facility costs f; > 0, we are given integer capacities u; > 0 for each i € F.
We can open multiple copies of a facility . Each copy incurs a cost f; and is capable
of serving at most u; clients. Note that the capacities u; may be different for different
facilities 4. The problem is to identify a multiset S of facilities and to serve the clients
in C by the facilities in S such that the capacity constraints are satisfied and the
sum of the facility costs and the service costs is minimized. Since the clients have
unit demands and the facilities have integer capacities, every client will get assigned
to a single facility. If a client j € C' is assigned to a facility o(j) € S, then we want
to minimize cost(S) = 375 fi + D icc Cjo(j)- Given an S, the service cost can be
minimized by solving a min-cost assignment problem.

In the remainder of this section we let S and O be the multisets of the facilities
opened in the locally optimum solution and an optimum solution, respectively.

5.1. A local search algorithm. In this section, we prove a locality gap of at
most 4 on a local search procedure for the CFL problem. The operations allowed at
each local search step are adding a single copy of a facility s’ € F or adding [ > 1
copies of a facility s’ € F' and dropping a subset of the open facilities, T C S. For
the second operation ! should be sufficiently large so that the clients j € Ng(T) can
be served by these new copies of ', that is, [ - ugy > |Ng(T)|. So the neighborhood
structure B is defined by

9 B(S)={S+s|secFYU{S—T+1-{s}|s € F,TCS81 uy>|Ns(D)|}

where [ - {s'} represents [ new copies of s’. If we service all clients in Ng(T') by the
new copies of facility s’, the cost of the new solution is at most

cost(S) +1- fo + Z —fs+ Z (cjsr = ¢js)

seT JENs(s)

Given a facility s’ € F, we use the procedure T-hunt described in Figure 13 to
find a subset, T' C S, of facilities to close. Here m = |C] is an upper bound on the
number of new copies of s’ that we need to open. Closing a facility s € S gives an
extra |Ng(s)| clients to be served by the new facility s’. A client j € Ng(s) now
travels an extra distance of at most (cs/; —¢s;). Thus, closing facility s gives a savings
of fs — ZjENs(s) (csj — csj). Due to capacity constraints, a copy of s’ can serve at
most uy clients. This motivates us to define the following Knapsack problem. For a
facility s € 5, define weight(s) = |[Ng(s)| and profit(s) = fs — > cny(s) (€55 — Csj)-
The oracle Knapsack(W) returns a multiset 7' C S such that ) _, weight(s) < W
and profit(T) = > ., profit(s) is maximized.

It is interesting to note that since we permit any subset of facilities T from our
current solution S to be dropped, the number of operations is exponential in |S|.
However, by counting the change in cost due to each such operation in a specific way,
we are able to give a polynomial time procedure (the procedure T-hunt) to identify a
local operation which improves the cost. It might be the case that T-hunt is not able
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Procedure T-Hunt.

1. Forl=1tomdo,
T < Knapsack(l - ug ).
3. If cost(S)+1- fs —profit(T) < cost(S),
then return 7.
4. return “could not find a solution that reduces the cost.”

o

Fic. 13. A procedure to find a subset T' C S of facilities.

to identify a local operation which improves the cost even though such operations
exist. However, our analysis will work only with the assumption that T-hunt could
not find a solution which improves the cost.

5.2. The analysis. As the output S is locally optimum with respect to addi-
tions, Lemma 4.1 continues to bound the service cost of S. We restate Lemma 4.1
here.

LEMMA 5.1 (service cost).

costs(S) < costs(O) + costs(O).

LEMMA 5.2. For any U C S and any s’ € F, we have

HNS(U)‘/U«S’] “fer + Z |NS(5)| “Csst = Zfs

seU seU

Proof. The algorithm terminated with the output S. Hence for the solution .S and
for the facility s’, the procedure T-hunt must have returned “could not find a solution
that reduces the cost.” Consider the run of the for-loop for | = [|Ng(U)|/us]. Since
> scy weight(s) = Ng(U) < I-uy, the solution T returned by the knapsack oracle
has profit at least as large as profit(U). Hence,

0 <1-fo—profit(T) <I-fo—profit(U) =1-fu—> |fi= D (cjo —cjs)

seU JENs(U)

However, by triangle inequality we have c;j» — ¢js < cs5. Therefore we have proved
the lemma. 0

We are now ready to bound the facility cost of S.

LEMMA 5.3 (facility cost).

costy(S) < 3-cost;(O) +2- costs(O).

To prove the above lemma, we consider a directed graph G = (V, E) with lengths
on edges, where

V={vs|s€ StU{w, | o€ O} U{sink},

E = {(vs,w,) | s € S,0€ O} U {(w,, sink) | o € O}.

The lengths of (vs,w,) and (w,, sink) are ¢y, and f,/u,, respectively (see Figure 14).
The cost of routing unit flow along any edge is equal to the length of that edge. We
want to simultaneously route | Ng(s)| units of flow from each v, to the sink.
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Fic. 14. The flow graph.

LEMMA 5.4. We can simultaneously route |[Ng(s)| units of flow from each vs to
the sink such that the total routing cost is at most costs(S) + costs(O) + costy(O).

Proof. Consider a client j € C. If j € N2, then route one unit of flow along the
path vy — w, — sink. Triangle inequality implies c,, < S; + O;. If for each client we
route a unit flow in this manner, then the edge (w,, sink) carries No(0) units of flow
at cost [No(0)| - fo/uo < [[No(0)|/uo] - fo, which is the contribution of o to cost;(O).
Thus, the routing cost of this flow is at most costs(S) + costs(O) + cost¢(O). d

Since there are no capacities on the edges of graph G, any minimum cost flow
must route all Ng(s) units of flow from v, to the sink along the shortest path. This
would be a path (vs, w,, sink), where o is such that ¢s, + f,/u, is minimized with ties
broken arbitrarily. For each o € O, let T,, C S denote the set of facilities s that route
their flow via w, in this minimum cost flow. From Lemma 5.4, we have

(10) costo(S) + costo(0) + cost;(0) = > Y~ [Ns(s)|(cao + fo/to)-
0€0 s€Ty,
Now, applying Lemma 5.2 to T, and o, we get
[INs(To)|/uol - fo+ Z INs(s)] - cso = Z [s-
seT, seT,
Hence,
fo + INST) o fo+ S INs($)] - 00 > S o
s€T, s€T,
Adding these inequalities for all 0 € O, we get
(11) D fo DD INs(9)(Coo+ fofuo) = Y Y fo = costy(S).
0€0 0€0 seT, 0€0 seT,
The inequalities (10) and (11) together imply
costy(S) < 2-costr(O) + costs(0) + costs(S).

This inequality, together with Lemma 5.1, gives Lemma 5.3. Combining Lemmas 5.1
and 5.3, we obtain the following result.

THEOREM 5.5. A local search procedure for the metric CFL problem where in
each step we can either add a facility or delete a subset of facilities and add multiple
copies of a facility has a locality gap of at most 4.
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Using an argument similar to the one in Theorem 4.4 with o = /3 — 1 we obtain
a 2+ V3 + e ~ 3.732 + € approximation. The tight example given in section 4.3 for
the UFL problem shows that a locally optimum solution for this problem can have
cost three times the cost of the global optimum.

6. Conclusions and open problems. In this paper, we provided tighter anal-
ysis of local search procedures for the k-median and UFL problems. Our sharper
analysis leads to a 3 4+ 2/p + € approximation algorithm for the k-median in which
there are polynomially many local search steps, each of which can be performed in
time n®® . For CFL, when multiple copies of a facility can be opened, we introduce
a new operation and show how a weaker version of this operation can be performed
in polynomial time. This leads to a local search procedure with a locality gap of at
most 4. We leave open the problem of obtaining tight bounds on the locality gap of
this procedure. It would be interesting to identify such operations for other variants
of facility location problems.
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