
Marvell. Moving Forward Faster

Doc. No. MV-S301208-00, Rev. -

November 2010

PUBLIC RELEASE

Cover

Marvell® ARMADA 16x
Applications Processor
Family
Version 3.2.x Boot ROM Reference
Manual

Document Conventions

Note: Provides related information or information of special importance.

Caution: Indicates potential damage to hardware or software, or loss of data.

Warning: Indicates a risk of personal injury.

Document Status
 Draft For internal use. This document has not passed a complete technical review cycle and ECN signoff

process.

Preliminary
Tapeout
(Advance)

This document contains design specifications for a product in its initial stage of design and development.
A revision of this document or supplementary information may be published at a later date.
Marvell may make changes to these specifications at any time without notice.
Contact Marvell Field Application Engineers for more information.

Preliminary
Information

This document contains preliminary specifications.
A revision of this document or supplementary information may be published at a later date.
Marvell may make changes to these specifications at any time without notice. .
Contact Marvell Field Application Engineers for more information.

Complete
Information

This document contains specifications for a product in its final qualification stages.
Marvell may make changes to these specifications at any time without notice.
Contact Marvell Field Application Engineers for more information.

Doc Status: PUBLIC RELEASE Technical Publication: 3.00

X . Y ZMilestone Indicator:
Draft = 0.xx
Advance = 1.xx
Preliminary = 2.xx
Complete = 3.xx

Various Revisions Indicator

Work in Progress Indicator
Zero means document is released.

For more information, visit our website at: www.marvell.com

Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.
Copyright © . Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas, Link
Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell. Ants,
AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of Marvell. All other
trademarks are the property of their respective owners.

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 2 November 2010 PUBLIC RELEASE

http://www.marvell.com
http://www.marvell.com

Table of Contents

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010, PUBLIC RELEASE Page 3

Table of Contents

1 Boot ROM Functional Overview...11

1.1 General Description ..11

1.2 Changes from Previous Stepping ...11

1.3 Purpose Of This Document ...12

1.4 ROM Location, Size, and Mapping ...13

1.5 Marvell Boot ROM Features..13

2 Marvell® ARMADA 16x Applications Processor Family Boot Feature Overview17

2.1 Boot Memory...17

2.2 Autoboot on an Uninitialized System ..18

2.3 Download Capabilities...18

3 Image Modules...19

3.1 Image Module Format ...20

3.2 Version Information ...22
3.2.1 Flash Information ..22
3.2.2 Image Module Sizing Information ...23
3.2.3 Image Information Array ...23
3.2.4 OEM Reserved Area[SizeOfReserved] ..24

3.3 Reserved Area Format ..24
3.3.1 Reserved Area Header ...24
3.3.2 Reserved Area Packages ...24

3.4 Predefined Packages ..25
3.4.1 GPIO Package..25
3.4.2 UART/USB Protocol Packages...25
3.4.3 DDR Packages ...26

3.4.3.1 Configure Memory Controller Control (CMCC Package)..26
3.4.3.2 DDRC (Custom) Package ..26

3.4.4 USB Vendor Request Package ..28
3.4.5 Resume From Hibernate Package ...29
3.4.6 Summary of Predefined Package IDs...30

4 Boot ROM DRAM Initialization Details...33

4.1 Default Operation ..33

4.2 Configuring DDR ...33

5 Non-Trusted Image Module ..35

6 Marvell® ARMADA 16x Applications Processor Boot ROM Operation Details37

6.1 General Operation...37

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 4 November 2010 PUBLIC RELEASE

6.2 Flash Types Supported: NAND Flash ...38
6.2.1 Boot ROM NAND Device Recognition..39
6.2.2 XIP Flash Support...41

6.2.2.1 NOR Flash on Chip Select 0 ..42
6.2.2.2 Managed NAND on Chip Select 0..42
6.2.2.3 Samsung OneNAND and FlexOneNAND ..42

6.2.3 SD/MMC Devices ...43
6.2.4 SPI Flash Devices ..43

6.2.4.1 SPI Command Sets..44
6.2.4.2 SPI Device Detection ...44

6.3 Preprogrammed Flash Requirements ...44

6.4 Download Capability ...44
6.4.1 USB Port ...44
6.4.2 Error Reporting Capability ..44

6.5 Resume From Hibernate...45

6.6 Flash Management ...46
6.6.1 Legacy Bad-Block Management...46

6.6.1.1 Bad-Block Table (BBT) Location ..47
6.6.1.2 Bad Block Table Definition ...47
6.6.1.3 Bad Block Relocation Area...48

6.6.2 Marvell Flash Management with Partitioning Support...49
6.6.2.1 Important Structures...51
6.6.2.2 Operation..55
6.6.2.3 Boot Partition and Boot Process ..59
6.6.2.4 Requirements for Flash Burning Utilities ..63

7 Marvell® ARMADA 16x Applications Processor Family Implementation65

7.1 ARMADA 16x Applications Processor Register Settings ..65

8 Methods for Platform Provisioning..69

8.1 Non-Trusted Provisioning..69
8.1.1 Provisioning a Non-Trusted Boot Platform Using the Download Method ...70

8.1.1.1 Device Keying Binary Requirements for an Unprogrammed Non-Trusted System............70
8.1.2 Provisioning a Non-Trusted Boot Platform Using the Pre-Programming Method.............................71

8.1.2.1 Pre-Programming Requirements for an Unprogrammed Non-Trusted System..................71

9 Communication Protocol ..73

9.1 Preamble...75

9.2 Structure for Host Commands...75

9.3 List of Commands ...76

9.4 Structure of Status Responses ...76

9.5 Responses ..77

9.6 Messages..78

9.7 Disconnect ..78

9.8 Status Codes...78

A Return Code Definitions ...79

B Acronyms and Abbreviations...83

C Revision History ..85

List of Figures

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010, PUBLIC RELEASE Page 7

List of Figures

1 Boot ROM Functional Overview ... 11
Figure 1: Example of Marvell Boot ROM Version Located at 0x0000_0024..14

2 Marvell® ARMADA 16x Applications Processor Family Boot Feature Overview....................... 17

3 Image Modules... 19
Figure 2: Sample Structures for C Code NTIM Implementation...21

4 Boot ROM DRAM Initialization Details... 33

5 Non-Trusted Image Module .. 35
Figure 3: Example of a Minimum Version 3.1.xx NTIM Header in Binary Format..35

6 Marvell® ARMADA 16x Applications Processor Boot ROM Operation Details 37
Figure 4: Non-Trusted Boot State Diagram ...38

Figure 5: Block 0 Layout on a Micron MT29F2G08* with 128 KB Block Sizes and 2 KB Pages47

Figure 6: Example of Bad Block Table NAND Flash Mapping in Use —
Small Block NAND Flash Type: Samsung K9K1216Q0C* (Device ID = 0x46)48

Figure 7: Layout Change ...50

Figure 8: Flow for Relocating a Block Found Bad During Runtime..57

Figure 9: Erase Operation Flow ...57

Figure 10: Program Operation Flow...58

Figure 11: Read Operation Flow..58

Figure 12: Refresh Operation for Blocks with Read Disturb ..59

Figure 13: Boot Partition Layout ..60

Figure 14: Boot Flow for an Initialized Platform ...61

Figure 15: Boot Flow for an Uninitialized Platform...62

7 Marvell® ARMADA 16x Applications Processor Family Implementation 65

8 Methods for Platform Provisioning.. 69

9 Communication Protocol .. 73
Figure 16: Download Flow Diagram...74

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 8 November 2010 PUBLIC RELEASE

List of Tables

1 Boot ROM Functional Overview ..11
Table 1: ARMADA 16x A0 to B0 Differences..11

Table 2: Marvell Boot ROM Physical Characteristics ...13

2 Marvell® ARMADA 16x Applications Processor Family Boot Feature Overview........................17
Table 3: Internal Memory Used by Boot ROM..17

Table 4: Boot Memory Layout by Version...17

3 Image Modules..19
Table 5: Non-Trusted Image Module Structures...20

Table 6: Boot Flash Sign Definitions..23

Table 7: UART/USB Package Identifiers ..25

Table 8: CMCC KeyId / Value pairs ..26

Table 9: DDRC (Custom) Package Register / KeyID..27

Table 10: Pre-defined Package IDs..30

4 Boot ROM DRAM Initialization Details..33

5 Non-Trusted Image Module ...35

6 Marvell® ARMADA 16x Applications Processor Boot ROM Operation Details37
Table 11: Description of States that the Boot ROM traverses ..37

Table 12: OEM Boot Module Sizes Without Marvell Bad Block Management..39

Table 13: Small Block Devices ...40

Table 14: NAND Flash Controller Initial Register Settings..41

Table 15: NAND Command Set..41

Table 16: Flash Commands Supported by the Boot ROM ...41

Table 17: Supported SPI Devices...43

Table 18: SPI Command Sets ..44

Table 19: Boot ROM Status Structure (BRSS) ...45

7 Marvell® ARMADA 16x Applications Processor Family Implementation65
Table 20: ARMADA 16x Applications Processor Pin Mux Settings ..65

Table 21: ARMADA 16x Applications Processor SMC register configuration for CS0 NOR and OneNand.....67

8 Methods for Platform Provisioning...69

9 Communication Protocol ...73
Table 22: Preamble ..75

Table 23: Host Commands ...76

Table 24: Target Responses ..77

Table 25: Status Codes ..78

List of Tables

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 9

Appendix B..83
Table B-1: Acronyms and Abbreviations ..83

Appendix C..85
Table C-1: Revision History ..85

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 10 November 2010 PUBLIC RELEASE

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

1 Boot ROM Functional Overview

1.1 General Description
The ARMADA 16x Applications Processor Boot ROM software is preloaded into the processor
internal ROM. No changes can be made to the Boot ROM because it resides in ROM.

1.2 Changes from Previous Stepping

Table 1: ARMADA 16x A0 to B0 Differences

ARMADA 16x A0 Boot ROM ARMADA 16x B0 Boot ROM

Boot ROM cannot resume from Hibernate mode directly to
the operating system; it loads OBM, which resumes to OS.
The resume package ID “0x52736D32” is NOT defined in
ARMADA 16x Boot ROM.

Boot ROM resumes to OS directly without having to load
OBM. The resume package ID “0x52736D32” is defined in
ARMADA 16x B0 stepping.

For NAND/ONENAND only, Boot ROM searches for a
valid Non-Trusted Image Module (NTIM) in the first 10
blocks. NTIM must be aligned to the start of each block.

For NAND, ONENAND, and SD_MMC only, Boot ROM
searches for a valid NTIM in the first 10 blocks. NTIM has to
be aligned to the start of each block. For SD/MMC, block
size is hard-coded to be 512 bytes/block, which supports
having the FAT partition table in address 0x0 of Partition 0 of
an SD device while having the NTIM at a higher address.

Does not contain these return codes: 0xB, 0xC, 0x38, E5.
See Appendix A for details.

Added these return codes: 0xB, 0xC, 0x38, E5. See
Appendix A for details.

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 12 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

1.3 Purpose Of This Document
This document covers the functional and operational details of the Marvell Boot ROM. Information in
this document is required to understand the proper configuration, software requirements, and
system requirements to deploy a platform. This document covers only the ARMADA 16x
Applications Processor.

This document covers many important features, configurations, concepts, and requirements for
proper operation with the Marvell Boot ROM. Topics covered include:

Methods of booting the platform

DDR configuration is not optimized. OBM should perform
the DDR configuration. The CMCC package in the NTIM
should read as follows:
CMCC_CONFIG_ENA_ID: 0x00000000
CMCC_MEMTEST_ENA_ID: 0x00000000
CMCC_CONSUMER_ID: 0x4F424D49

ARMADA 16x B0 stepping supports resuming to OS code
without having to load the OBM. This feature is called
“QuickBoot.” Aspen A0 does not support QuickBoot. For
QuickBoot to work, the Boot ROM must be able to read from
the DDR device (that is, to read the ResumeFlag); the Boot
ROM must reconfigure the ARMADA 16x DDR Controller
before reading from the DDR device. Thus, the CMCC
package in the NTIM needs to be as follows for QuickBoot to
work in ARMADA 16x B0:

CMCC_CONFIG_ENA_ID: 0x00000001
CMCC_MEMTEST_ENA_ID: 0x00000000
CMCC_CONSUMER_ID: 0x54425249

If the CMCC_CONSUMER_ID is not 0x54425249 or if the
CMCC_CONFIG_ENA_ID is not 1, then the Boot ROM will
not be able to read from the DDR device. In that case, for
ARMADA 16x B0, the NTIM needs to include a GPIO
package which instructs the Boot ROM to take the DDR
device out of Self-Refresh mode. This GPIO package is not
necessary for ARMADA 16x A0 Boot ROM because it does
not contain the QuickBoot feature. Since the Boot ROM
cannot read from the DDR device in this case, it will not be
able to resume to OS code; instead, it will load the OBM.
The OBM will inspect the NTIM for a Resume package and
resumes to OS code. The GPIO package looks as follows:

0x4750494F; GPIO Package
0x00000014; number of bytes in this package.
0x00000001; number of pairs: 1
0xB0000120; ddr command register address
0x00000001; initialize ddr command

Supports ONFI NAND MLC devices only. Supports ONFI NAND MCL devices, Samsung non-ONFI
MCL devices only. Tested with the following NAND MLC
devices: Samsung device ID = 0xD5, 0xD7, and Hynix
Device ID = 0xD5.

The Boot ROM does not boot from 4-bit SD/eSD
cards/devices. See Errata DPF-641 in the Spec Update.

Fixed in ARMADA 16x B0 stepping.

The Boot ROM has a 4-second delay between each
MMC/SD port if there is no card/device present. This
affects SPI NOR devices. See Errata DPF-639 in the Spec
Update.

Fixed in ARMADA 16x B0 stepping.

Table 1: ARMADA 16x A0 to B0 Differences

ARMADA 16x A0 Boot ROM ARMADA 16x B0 Boot ROM

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Memory options for system boot
Requirements for non-trusted operation

Marvell Boot ROM versions and feature sets
Requirements for handling low-power modes
Host tools required to generate boot information and collateral

Methods for provisioning (initializing) a platform

1.4 ROM Location, Size, and Mapping
Table 2 describes the physical ROM size, physical ROM memory address, initial vector table
mapping, and Marvel Boot ROM runtime address.

1.5 Marvell Boot ROM Features
The ARMADA 16x Applications Processor Boot ROM version is identified by reading the memory
location. The version includes four words (32 bits each) of data including the Boot ROM version,
date, and two words to identify the processor stepping. Figure 1 provides an example of the version
encoding for the ARMADA 16x Applications Processor. The version is decoded as follows:

First word (32 bits) – ASCII encoded hex 0x33323434 = 3.2.44. All 3.2.x versions of the Marvell
boot ROM have the Major.Minor.Build format, such as 0x33323132 = 3.2.12
Second word (32 bits) – Unencoded date, where 0x02192009 = 2/19/2009.
Third word (32 bits) – Processor family. These bytes are ASCII encoded hex for the processor
family, where 0x4153504E = ASPN
Fourth word (32 bits) – Processor stepping. In the example 0x00005330 = S0

Table 2: Marvell Boot ROM Physical Characteristics

Processor ROM Size ROM Memory
Address

ROM Runtime
Address

Vector Table
Mapping

ARMADA 16x
Applications
Processor

128KB 0xFFE0_0000 -
0xFFE2_0000

0xFFE0_0000 -
0xFFE2_0000

0xFFFF_0000

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 14 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 1: Example of Marvell Boot ROM Version Located at 0x0000_0024

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 16 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

2 Marvell® ARMADA 16x Applications

Processor Family Boot Feature Overview
Features are user-specified in the Non-Trusted Image Module (NTIM) header or defined by the
processor.

2.1 Boot Memory
All processors use 128KB of internal memory for boot purposes. The memory is used for the Boot
ROM data and stack, and also to load the first-level boot loader from flash memory. The location of
the internal memory varies with processor implementation. The ARMADA 16x Applications
Processor Boot ROM configures the L2 cache for use as a memory and is located at 0xD102_0000.
Table 3 shows the available internal memory for each processor.

When the L2 cache is used, the Boot ROM disables, invalidates, and cleans L2 cache, then enables
it as static RAM. Higher levels of software must re-enable L2 cache for use as a cache after the Boot
ROM has been run on the system. If the L2 cache memory cannot be used, the ARMADA 16x
Applications Processor tries a boot to CS0 by jumping to the base address of SMC_CS0 at
0x8000_0000.

Table 4 shows how the Boot ROM uses the memory as part of the boot process. The NTIM header is
dynamically sized. See Chapter 3, “Image Modules” for details on sizing. The Bootloader can be
loaded immediately following the NTIM header in the internal memory.

Table 3: Internal Memory Used by Boot ROM

Processor Memory use by Boot
ROM

Address Range

ARMADA 16x
Applications Processor

L2 cache 128KB 0xD102_0000 -
0xD103_FFFF

Table 4: Boot Memory Layout by Version

Memory Usage Start Address
(ISRAM/L2)

Size

Vector Table for use by
loadable image

Base Address (BA) from Table 4 64 bytes

Boot ROM Status
Structure

BA + 0x40 192 bytes

Boot ROM Data and
Stack

BA + 0x100 0x9F00 (39.75 KB)

NTIM Defined by NTIM. Address must be
BA + 0xA000 or higher.

Limited by Internal memory size
described in Table 3 where NTIM +
OBM must be less than Memory
Size - 0xA000.

OEM Boot Module
(OBM)

Defined by NTIM. Address must be
BA + 0xA000 or higher.

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 18 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

2.2 Autoboot on an Uninitialized System
The Boot ROM is directed to probe a pre-determined address for each flash type that is supported
for a valid NTIM header. If no header is found, the Boot ROM waits for a download from the USB
port, if enabled (see the Download Capabilities section of the “Boot Operations” chapter.) The Boot
ROM probes flash devices in the following order:

XIP on SMEMC CS0
x16 NAND on NFC CS0

x8 NAND on NFC CS0
OneNAND and Flex OneNAND on SMEMC CS0
eSD or eMMC devices on MMC3

Alternative eSD or eMMC devices on MMC3
eSD or eMMC devices on MMC1
SPI Flash

The current implementation of the ARMADA 16x Applications Processor probes the boot partition
(Partition 1) of the eSD or eMMC device at offset 0x0 for the NTIM header. If the device does not
support a physical boot partition, then the NTIM may be placed in the user partition and the probe
process will find it.

The autoboot mechanism ends with the Boot ROM waiting for a download; if not, then the NTIM
header is found for booting the system. Boot times can vary from one flash type to another because
of the fixed-probe order.

2.3 Download Capabilities
The Boot ROM has the built-in capability to download and run an image over the USB OTG port.
This mechanism uses the communication protocol defined in Chapter 9, “Communication Protocol”.
The purpose of downloading is for manufacturing use on systems in the uninitialized platform boot
state where the flash is not programmed, or for a boot failure. The intent is to allow an OEM to
download software to program or debug the platform boot images.

The download mechanism is much slower than a boot from flash and is not intended as a normal
boot option. The USB device driver in the Boot ROM can operate only as a device and must be
attached to a Host PC running a utility that implements the communication protocol. The embedded
device drivers cannot run in Host mode, which prevents plugging in USB mass storage devices such
as a USB flash device.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

3 Image Modules
An Image Module is a non-executable data header that contains a set of data structures that define
flash information, binary image information, and OEM reserved data for non-trusted platforms. A
Non-Trusted Image Module (NTIM) is used on non-trusted platforms and contains no security
information. The details of the data structures for NTIM are presented in this chapter.

The Image Module format is described in Section 3.1, Image Module Format. The overall size of the
Image Module is dynamic because it is a packed set of data structures of variable size, based on the
information contained in all data structures.

The data structures that compose the Image Module are common between versions of the Image
Module to allow for easy overlay and re-use of structures in software. Fields that are not used for
non-trusted operation are considered reserved in the NTIM and should be set as specified in the
sections that follow. All values in the Image Modules are 32 bits in size. The structures of the Image
Module are shown in Section 3.1, Image Module Format and can be used as examples of
software-based structures for creating an Image Module. The definition of each field is described in
more detail in:

Section 3.2, Version Information
Section 3.2.1, Flash Information

Section 3.2.2, Image Module Sizing Information
Section 3.2.3, Image Information Array
Section 3.2.4, OEM Reserved Area[SizeOfReserved]

The Image Module can be created by using the Marvell® Wireless Trusted Platform Tool Package or
a custom tool created by the OEM. This section describes the structure and content of the binary
header as it is programmed onto a flash device. These sections do not cover how to create the
binary from user input—only how the Boot ROM interprets the data.

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 20 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

3.1 Image Module Format
The Image Module format for the boot operation consists of the structures described in this section.
Table 5 provides information on required fields and optional fields for NTIM headers. The constant
part of the Image Module (CTIM struct) is defined below. This structure is used to calculate
dynamically the size of the NTIM. The structures IMAGE_INFO (or IMAGE_INFO_3_1_0 for NTIM
v3.1), and KEY_MOD are stored as arrays of structures. The size of the array is specified by the
NumImages and NumKeys variables, respectively, in the constant part of the NTIM. The
SizeOfReserved variable is used to specify the number of reserved bytes stored in the NTIM header
for optional parameters.

typedef struct{

{ VERSION_I VersionBind;
FLASH_I FlashInfo;
unsigned int NumImages;
unsigned int NumKeys;
unsigned int SizeOfReserved;

}CTIM, *pCTIM;
 }CTIM, *pCTIM;

Based on the information in the CTIM structure, the NTIM can be sized using the following
calculation:

Size of NTIM = sizeof(CTIM) + (NumImages * sizeof(IMAGE_INFO)) + (NumKeys *
sizeof(KEY_MOD)) + SizeOfReserved

Optionally, a master structure such as the NTIM structure below could be used to set pointers to the
start of each section of the NTIM. The SetTIMPointers() below show C code examples. The
SetTIMPointers() check the version of the NTIM to determine which Image information structure to
use. Two versions of the NTIM header are currently supported: version 3.1.x (0x00030100) and
version 3.2.x (0x00030200). The version identifier determines features supported in the header.

typedef struct
{
 pCTIM pConsTIM; // Constant part
 pIMAGE_INFO pImg; // Pointer to Images

Table 5: Non-Trusted Image Module Structures

Structure Field NTIM

VERSION INFORMATION Version
Identifier
Trusted
IssueDate
OEMUniqueID

Y
Y
Y
Y
O

FLASH INFORMATION Reserved[5]
BootFlashSign

R
Y

IMAGE MODULE SIZING INFORMATION NumImages
SizeOfReserved

Y
O

IMAGE INFORMATION ARRAY IMAGE[NumImages] ImageID
NextImage
FlashEntryAddr
LoadAddr
ImageSize
Partition Number

Y
Y
Y
Y
Y
Y

OEM RESERVED AREA[SizeOfReserved] O

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 pKEY_MOD pKey; // Pointer to Keys
unsigned int *pReserved; // Pointer to Reserved Area
 pPLAT_DS pTBTIM_DS; // Pointer to Digital Signature
} TIM, *pTIM;

void SetTIMPointers(UINT8_T * StartAddr, TIM *pTIM_h)
{

pTIM_h->pConsTIM = (pCTIM) StartAddr;// Overlap Contant Part of TIM with
actual TIM...

pTIM_h->pImg = (pIMAGE_INFO) (StartAddr + sizeof (CTIM));
if (pTIM_h->pConsTIM->VersionBind.Version >= TIM_3_2_00)

pTIM_h->pKey = (pKEY_MOD) ((UINT_T)pTIM_h->pImg + \

((pTIM_h->pConsTIM->NumImages) * sizeof (IMAGE_INFO)));
else

pTIM_h->pKey = (pKEY_MOD) ((UINT_T)pTIM_h->pImg + \

((pTIM_h->pConsTIM->NumImages) * sizeof (IMAGE_INFO_3_1_0)));
pTIM_h->pReserved = (PUINT) ((UINT_T)pTIM_h->pKey + \

((pTIM_h->pConsTIM->NumKeys) * sizeof (KEY_MOD)));
return;

}

Figure 2: Sample Structures for C Code NTIM Implementation

There are two versions of the Image Information structure based on the version of the NTIM being
created.

typedef struct
 unsigned int Version;
 unsigned int Identifier;
 unsigned int Trusted;
 unsigned int IssueDate;
 unsigned int OEMUniqueID;
} VERSION_I, *pVERSION_I;

typedef struct{
 unsigned int Reserved[5];
unsigned int BootFlashSign;
} FLASH_I, *pFLASH_I;

typedef struct{
 unsigned intKeyID;
 unsigned int HashAlgorithmID;
 unsigned int ModulusSize;
 unsigned int PublicKeySize;
 unsigned int RSAPublicExponent[64];
 unsigned int RSAModulus[64];
 unsigned int KeyHash[8];
} KEY_MOD, *pKEY_MOD;

typedef struct{
 unsigned int ImageID;
 unsigned int NextImageID;
 unsigned int FlashEntryAddr;
 unsigned int LoadAddr;

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 22 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 unsigned int ImageSize;
 unsigned int ImageSizeToHash;
 unsigned int HashAlgorithmID;
 unsigned int Hash[8];
 unsigned int PartitionNumber;
} IMAGE_INFO, *pIMAGE_INFO;

typedef struct{
 unsigned int ImageID;
 unsigned int NextImageID;
 unsigned int FlashEntryAddr;
 unsigned int LoadAddr;
 unsigned int ImageSize;
 unsigned int ImageSizeToHash;
 unsigned int HashAlgorithmID;
 unsigned int Hash[8];
} IMAGE_INFO_3_1_0, *pIMAGE_INFO_3_1_0;

These structures are further described in Table 5 and chapter sections. In Table 5, all field values are
32-bit unsigned integers. The NTIM columns indicate the fields that are required (Y), reserved
default value (R), or optional (O) for the specific Image Module type. Some of the fields depend on
the Version field, and some fields depend on the values of other fields. The specific details about
each field follow Table 5.

3.2 Version Information
The Version Information structure provides information about the Image Module and platform.

Version – Current version of the Image Module. Boot ROM currently supports two versions:

• Version 3.1.x (0x0003010x)

• Version 3.2.x (0x0003020x)

Identifier – ASCII encoded hexadecimal value 0x54494d48 (“TIMH”) identifier used to locate the
Image Module.
Trusted – Identifier to distinguish between trusted and non-trusted platforms. A value of 0
indicates a Non-Trusted Image Module.
IssueDate – Date this module was created in hexidecmal form (MMDDYYYY), that is,
0x08042008 represents a date of August 4, 2008.
OEMUniqueID – OEM-specific identifier. OEM can assign any preferred coding to the value of
this field.

3.2.1 Flash Information
The Flash Information substructure identifies boot flash properties a reserved field has a value of
0xFFFFFFFF.

Reserved[5]

BootFlashSign – Signature that determines from which flash the platform boots. The upper
three bytes contains an ASCII-encoded hexadecimal value of XIP for XIP or NAN for NAND,
OneNAND, and SanDisk flash. The lower byte contains the platform fuse encoding that
determines the flash device being used. The BootFlashSign values are noted in Table 6.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

3.2.2 Image Module Sizing Information
NumImages – Number of “IMAGE INFORMATION” substructures in the Image Module.

NumKeys – Number of “KEY INFORMATION” substructures in the Image Module.
SizeOfReserved – Total Size of the OEM Reserved Area; values can range from 0 to 4 KB
minus (size of other Image Module information). The value must be equal to the size of the
header and all packages (which includes the termination package). See the details in
Section 3.2.4, OEM Reserved Area[SizeOfReserved]

3.2.3 Image Information Array
The Image Information Array is a substructure that contains information about each image loaded
into the boot flash. The number of substructures is determined by the NumImages field above.

ImageID – A unique identifier for the image. Several predefined ASCII hexadecimal values are
defined by the Boot ROM. The "OBMI" identifier (0x4F424D49) must be present in the array for
the Boot ROM to correctly boot the platform. Other identifiers can be determined by the OEM,
but are limited to 32 bits in size.
NextImageID – ASCII hexadecimal value or OEM defined value for the next image that should
be loaded from flash memory. If there is no next image, then NextImageID has a value of
0xFFFFFFFF.
FlashEntryAddr – Offset from the start of the boot flash pointed to by the BootFlashSign
field.
LoadAddr – Absolute address for the image, which can be a DDR memory, internal SRAM, or
XIP flash address.
ImageSize – Size of the image in bytes.
ImageSizeToHash – Number of bytes of the image that are included in the hash below. For
NTIM, the ImageSizeToHash field has a reserved value of 0x0.
HashAlgorithmID – Hashing algorithm that is used; values are:

• 160 for SHA-1

Table 6: Boot Flash Sign Definitions

Platform Boot Device Encoded HEX Value* BootFlashSign Value
in the NTIM*

XIP on SMEMC CS0 XIP’03 0x5849_5003

x16 NAND on NFC CS0 NAN’04 0x4E41_4E04

x8 NAND on NFC CS0 NAN’06 0x4E41_4E06

OneNAND and Flex
OneNAND on SMEMC CS0

NAN’02 0x4E41_4E02

eSD or eMMC devices on
MMC3

MMC’08 0x4D4D_4308

eSD or eMMC devices on
MMC3 (alternate
configuration)

MMC’09 0x4D4D_4309

eSD or eMMC devices on
MMC1

MMC’0B 0x4DAD_430B

SPI Flash SPI’0A 0x5350_490A

Note: the Boot ROM uses the least significant byte of the BootFlashSign to determine the
boot device. The most significant three bytes in the BootFlashSign are for readability only.

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 24 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

• 256 for SHA-2

• For NTIM, the HashAlgorithmID field has a reserved value of 0x0.

Hash[8] – Array that holds the hash of the image. For NTIM, the Hash array has a reserved
value of all 0x0.

PartitionNumber – Valid for NTIM version V3.2.x only. Specifies the physical or logical
device partition where the image is located.

3.2.4 OEM Reserved Area[SizeOfReserved]
OEM Reserved Area[SizeOfReserved] – Array of integers to be used by the OEM for
value-added features. See section Section 3.3, Reserved Area Format for specific format
details.

3.3 Reserved Area Format
The Reserved Area is a dedicated space in the NTIM that allows an OEM to add data that is
targeted for specific use without altering the predefined layout of the Image Module. The reserved
area is of variable size, which is tabulated in the SizeOfReserved field under the
“FlashInformation” structure.

The content of the Reserved Area can be formatted as the OEM chooses, but to be compatible with
the Wireless Trusted Platform Tool Package set of tools requires a predefined format, which consists
of the Reserved Area Header and the Reserved Area Packages, as described in the following
sections.

3.3.1 Reserved Area Header
The Reserved Area Header component spans eight bytes. Its primary purpose is to indicate to the
interpreter of the NTIM that this portion of the reserved area complies with the format defined by the
Wireless Trusted Platform Tool Package. It also indicates the number of packages to follow. The
structure for the Reserved Area Header is as follows:

WTP_RESERVED_AREA:
unsigned int WTPTP_Reserved_Area_ID;
unsigned int NumReservedPackages;

WTPTP_Reserved_Area_ID – indicates to the interpreting software that the reserved area
complies with the format defined by the Wireless Trusted Platform Tool Package. This value
should be the ASCII-encoded hexadecimal value 0x4F505448, which represents OPTH in
ASCII.
NumReservedPackages – The number of packages to follow.This number should account for
the termination package. For example, if there are two user packages, this number should be 3;
two for the user packages and one for the termination package.

3.3.2 Reserved Area Packages
The Reserved Area Packages are the building blocks of the reserved area. Each package consists
of a package header to identify the content, size, and payload data.

WTP_RESERVED_AREA_HEADER:
unsigned int Identifier;
unsigned int Size;

Identifier – The identifier that defines the type of the package.

Size – The total size of the package: four bytes for the identifier, four bytes for the size, plus the
number of bytes of information in the payload that follows.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

An unlimited number of Reserved Area Packages may be present as long as the size of the NTIM
does not exceed 4 KB. The final Reserved Area Package should be the Termination Package with
the Identifier value of 0x5465726D, which is ASCII-encoded hexadecimal for “Term”.

3.4 Predefined Packages
A number of packages are defined for use with the Wireless Trusted Platform Tool Package tools.
These predefined packages and their associated predefined header identifiers are described in the
following sections.

Refer to the Wireless Trusted Platform documentation for more details on available packages.

3.4.1 GPIO Package
The GPIO package lets users set any memory space or address space to a preferred value, thereby
allowing GPIOs to be configured by the Boot ROM.The header ID for this package is ASCII-encoded
hexadecimal value 0x4750494F, which represents GPIO in ASCII. The number of pairs to set is
defined by NumGpios, as shown in the following code. The number of GPIO_DEF structs defined is
consistent with NumGpios.
OPT_GPIO_SET:

WTP_RESERVED_AREA_HEADER WRAH;
unsigned int NumGpios;
pGPIO_DEF GPIO;

GPIO_DEF:
volatile int *Addr;
unsigned int Value;

3.4.2 UART/USB Protocol Packages
The UART/USB Protocol Packages allow overriding default USB and UART connection settings.
The identifier for this package is 0x55415254 (for UART) or 0x00555342 (for USB). The port may
also select (as appropriate) one of the following IDs:

OPT_PROTOCOL_SET:
WTP_RESERVED_AREA_HEADER WRAH;
unsigned int Port;
unsigned int Enabled;

Table 7: UART/USB Package Identifiers

Package Ident i f ier Hex Value

FFIDENTIFIER: 0x00004646

ALTIDENTIFIER: 0x00414C54

DIFFIDENTIFIER: 0x44696666

SEIDENTIFIER: 0x00005345

U2DIDENTIFIER: 0x55534232

CI2IDENTIFIER 0x00434932

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 26 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

3.4.3 DDR Packages
The following optional DDR packages queue the Boot ROM to set up DDR based on the supplied
parameters or register values.

3.4.3.1 Configure Memory Controller Control (CMCC Package)
The Package ID (PID) for this package is ASCII-encoded hexadecimal value 0x434d4343, which
represents CMCC in ASCII.The number of bytes in the package is next which is 8, plus 8 bytes for
each KeyID/value pair (see Table 8). Reference the following code.

CMCCSpecList_T:

unsigned long PID;

int NumBytes;

CMCCSpec_T CMCCSpecs[1];

CMCCSpec_T:

unsigned long KeyId;

unsigned long KeyValue;

3.4.3.2 DDRC (Custom) Package
The DDR Custom package allows setting of selected MCU registers directly.

The Package ID (PID) for this package is ASCII-encoded hexadecimal value 0x44445243, which
represents DDRC in ASCII.The number of bytes in the package is next which is 8, plus 8 bytes for
each KeyID/value pair. Reference the following code.

DDRCSpecList_T:

unsigned long PID;

int NumBytes;

DDRCSpec_T DDRCSpecs[1];

DDRCSpec_T:

unsigned long KeyId;

unsigned long KeyValue;

Memory Controller registers that are supported in this Boot ROM are listed in Table 9 and show a
Register ID in the right-hand column as used in the Marvell Boot Utility to select a register. The offset

Table 8: CMCC KeyId / Value pairs

KeyId Value

CMCC_CONFIG_ENA_ID 0 = Do Not Initialize DDR
1 = Initialize DDR

CMCC_MEMTEST_ENA_ID 0 = Do Not Test Memory
1 = Test Memory

CMCC_CONSUMER_ID This is the Consumer ID.
It must equal 0x54425249 “TBRI” to indicate that the Boot ROM is
to look for and use any of the various DDR packages that may be
present in the NTIM.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

column contains the register offset from the MCU base address. All 32 bits of the KeyValue are
written to the specified register.

There are two pseudo-register IDs in the last two entries of the table that are commands used to
implement a delay (in μsec) and a specified register read. Refer to Section 7 on Boot ROM DRAM
Initialization Details for more information on these commands.

Table 9: DDRC (Custom) Package Register / KeyID

ARMADA 16x Register Name Offset Register ID Numerical Value ID

Refer to Figure 3: Example DDR Package within the NTIM Binary File in the ARMADA 16x Memory Controller
Configuration and Tuning Application Note for detailed information.

Revision n/a ASPEN_SDRREVREG_ID 0

Address Decode n/a ASPEN_SDRADCREG_ID 1

SDRAM_CONFIG_0 0x020 ASPEN_SDRCFGREG0_ID 2

SDRAM_CONFIG_1 0x030 ASPEN_SDRCFGREG1_ID 3

SDRAM_TIMING_1 0x050 ASPEN_SDRTMGREG1_ID 4

SDRAM_TIMING_2 0x060 ASPEN_SDRTMGREG2_ID 5

SDRAM_TIMING_3 0x190 ASPEN_SDRTMGREG3_ID 6

SDRAM_TIMING_4 0x1c0 ASPEN_SDRTMGREG4_ID 7

SDRAM_TIMING_5 0x650 ASPEN_SDRTMGREG5_ID 8

SDRAM_CNTRL_1 0x080 ASPEN_SDRCTLREG1_ID 9

SDRAM_CNTRL_2 0x090 ASPEN_SDRCTLREG2_ID A

SDRAM_CNTRL_3 0x0F0 ASPEN_SDRCTLREG3_ID B

SDRAM_CNTRL_4 0x1A0 ASPEN_SDRCTLREG4_ID C

SDRAM_CNTRL_5 0x280 ASPEN_SDRCTLREG5_ID D

SDRAM_CNTRL_6 0x760 ASPEN_SDRCTLREG6_ID E

SDRAM_CNTRL_7 0x770 ASPEN_SDRCTLREG7_ID F

SDRAM_CNTRL_13 0x7D0 ASPEN_SDRCTLREG13_ID 10

SDRAM_CNTRL_14 0x7E0 ASPEN_SDRCTLREG14_ID 11

MMAP0_0 0x100 ASPEN_ADRMAPREG0_ID 13

MMAP0_1 0x110 ASPEN_ADRMAPREG1_ID 14

USER_INITIATED_COMMAND0 0x120 ASPEN_USRCMDREG0_ID 15

DRAM_STATUS 0x01B0 ASPEN_SDRSTAREG_ID 16

PHY_CNTRL_3 0x140 ASPEN_PHYCTLREG3_ID 17

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 28 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

3.4.4 USB Vendor Request Package
The USB Vendor Request package is included in the reserved data when a special package
requested by the vendor is required. This structure is the first word of any trailing data. There is no
restriction that the data has to be 32-bit aligned.

The ID for this package is 0X56524551, which represents VREQ in ASCII.

USB_VENDOR_REQ:
WTP_RESERVED_AREA_HEADER WRAH;

PHY_CNTRL_7 0x1d0 ASPEN_PHYCTLREG7_ID 18

PHY_CNTRL_8 0x1e0 ASPEN_PHYCTLREG8_ID 19

PHY_CNTRL_9 0x1f0 ASPEN_PHYCTLREG9_ID 1A

PHY_CNTRL_10 0x200 ASPEN_PHYCTLREG10_ID 1B

PHY_CNTRL_11 0x210 ASPEN_PHYCTLREG11_ID 1C

PHY_CNTRL_12 0x220 ASPEN_PHYCTLREG12_ID 1D

PHY_CNTRL_13 0x230 ASPEN_PHYCTLREG13_ID 1E

PHY_CNTRL_14 0x240 ASPEN_PHYCTLREG14_ID 1F

PHY_DLL_CTRL_1 0xE10 ASPEN_DLLCTLREG1_ID 20

TEST_MODE0 0x4C0 ASPEN_TSTMODREG0_ID 21

TEST_MODE1 0x4D0 ASPEN_TSTMODREG1_ID 22

MCB_CNTRL_1 (MCB_ARB_WT1) 0x510 ASPEN_MCBCTLREG1_ID 23

MCB_CNTRL_2 (MCB_ARB_WT2) 0x520 ASPEN_MCBCTLREG2_ID 24

MCB_CNTRL_3 (MCB_ARB_WT3) 0x530 ASPEN_MCBCTLREG3_ID 25

MCB_CNTRL_4 0x540 ASPEN_MCBCTLREG4_ID 26

PERF_COUNT_CNTRL_0 0x0F00 ASPEN_PRFCTLREG0_ID 27

PERF_COUNT_CNTRL_1 0x0F10 ASPEN_PRFCTLREG1_ID 28

PERF_COUNT_STAT 0x0F20 ASPEN_PRFSTAREG_ID 29

PERF_COUNT_SEL 0x0F40 ASPEN_PRFSELREG_ID 2A

PERF_COUNTER_SEL 0xF50 ASPEN_PRFCNTREG_ID 2B

SDRAM_TIMING 0x0660 ASPEN_SDRTMGREG6_ID 2C

PHY_CNTRL_TEST 0xE80 ASPEN_PHYCTLREGTEST 2D

OPERATION_DELAY n/a ASPEN_OPDELAY_ID 2F

OPERATION_READ n/a ASPEN_OPREAD_ID 30

Table 9: DDRC (Custom) Package Register / KeyID (Continued)

ARMADA 16x Register Name Offset Register ID Numerical Value ID

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

unsigned int bmRequestType;
unsigned int bRequest;
unsigned int wValue;
unsigned int wIndex;
unsigned int wLength;
unsigned int wData; // First word of the proceeding Data.

// Note, there may be more trailing data

3.4.5 Resume From Hibernate Package
The Resume Package ID is used to indicate to the Boot ROM or OEM Boot Module that the boot
cycle may be quickened by skipping certain operations that would normally be done at the initial
power-on boot. The package identifier used to indicate a resume package is RESUMEBLID
(0x52736D32) from Table 10 below.

The NTIM Resume package is defined as follows:

typedef struct

{

 WTP_RESERVED_AREA_HEADERWRAH;

 OPT_TIM_RESUME_DDR_INFO TimResumeDDRInfo;

}OPT_TIM_RESUME_SET, *pOPT_TIM_RESUME_SET;

typedef struct

{

 UINT_T DDRResumeRecordAddr;

 void*DDRScratchAreaAddr;

 UINT_T DDRScratchAreaLength;

}OPT_TIM_RESUME_DDR_INFO, *pOPT_TIM_RESUME_DDR_INFO;

The DDRResumeRecordAddr points to a structure defined as follows:

typedef struct
{
 UINT_T ResumeAddr;
 UINT_T ResumeParam;
 UINT_T ResumeFlag;
}OPT_RESUME_DDR_INFO, *pOPT_RESUME_DDR_INFO;

Before entering Hibernate, software must populate an OPT_RESUME_DDR_INFO structure and
place it in the SDRAM location pointed to by “DDRResumeRecordAddr” of the NTIM DDR Resume
package. The ResumeFlag must be 0x55AA55AA if the structure is valid. High-level operating system
code should leave in SDRAM memory a filled out OPT_RESUME_DDR_INFO structure. Upon
resumption of Hibernate mode (and also on “cold boot”), the Boot ROM inspects the Resume package,
ensures the flat is 0x55AA55AA, and resumes directly to Operating System code available at
ResumeAddr.

ARMADA 16x B0 stepping supports resuming to OS code without having to load the OBM. This
feature is called QuickBoot. ARMADA 16x A0 does not support QuickBoot. For QuickBoot to work,
the Boot ROM must be able to read from the DDR device (i.e. to read the ResumeFlag). This means
the Boot ROM needs to re-configure the ARMADA 16x DDR Controller before reading from the DDR
device. Thus, the CMCC package in the NTIM must be as follows for QuickBoot to work in ARMADA
16x B0:

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 30 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

CMCC_CONFIG_ENA_ID: 0x00000001
CMCC_MEMTEST_ENA_ID: 0x00000000
CMCC_CONSUMER_ID: 0x54425249

If the CMCC_CONSUMER_ID is not 0x54425249 or if the CMCC_CONFIG_ENA_ID is not 1, then
the Boot ROM will not be able to read from the DDR device. In that case, for ARMADA 16x B0, the
NTIM needs to include a GPIO package which instructs the Boot ROM to take the DDR device out of
Self-refresh. This GPIO package is not needed on ARMADA 16x A0 Boot ROM as it does not
contain the QuickBoot feature. Since the Boot ROM cannot read from the DDR device in this case,
the Boot ROM will not be able to resume to OS code; instead, it will load the OBM. The OBM will
inspect the NTIM for a resume package and resumes to OS code. The GPIO package looks as
follows:

0x4750494F; GPIO Package
0x00000014; number of bytes in this package.
0x00000001; number of pairs: 1
0xB0000120; ddr command register address
0x00000001; initialize ddr command

3.4.6 Summary of Predefined Package IDs
Table 10 summarizes the predefined package IDs as indicated in the header of each package.

Table 10: Pre-defined Package IDs

Name Hex Word Value

DDRID 0x44447248

AUTOBIND 0X42494e44

TERMINATORID 0x5465726D

GPIOID 0x4750494F

UARTID 0x55415254

USBID 0x00555342

RESUMEID 0x5265736D

USBVENDORREQ 0x56524551

USB_DEVICE_DESCRIPTOR 0x55534200

USB_CONFIG_DESCRIPTOR 0x55534201

USB_INTERFACE_DESCRIPTOR 0x55534202

USB_LANGUAGE_STRING_DESCRIPTOR 0x55534203

USB_MANUFACTURER_STRING_DESCRIPTOR 0x55534204

USB_PRODUCT_STRING_DESCRIPTOR 0x55534205

USB_SERIAL_STRING_DESCRIPTOR 0x55534206

USB_INTERFACE_STRING_DESCRIPTOR 0x55534207

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

USB_DEFAULT_STRING_DESCRIPTOR 0x55534208

USB_ENDPOINT_DESCRIPTOR 0x55534209

RESUMEBLID 0x52736D32

Table 10: Pre-defined Package IDs

Name Hex Word Value

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 32 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Boot ROM DRAM Initialization Details
Default Operation

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 33

4 Boot ROM DRAM Initialization Details

4.1 Default Operation
There is no default DDR configuration performed by the Boot ROM. Any initialization of DDR
requires a Configure Memory Controller Control (CMCC) package and a DDR Custom (DDRC)
package to be in the reserved area of the NTIM.

4.2 Configuring DDR
These two packages are required to be in the NTIM extended reserved area to initialize DDR.

CMCC (Configure Memory Controller Control)

DDRC (DDR Custom)

Both of these packages are optional, and the Boot ROM searches for them in the order listed above.
The CMCC package in the NTIM specifies whether or not the Boot ROM consumes the DDRC
package.
The Boot ROM first looks in the reserved area of the TIM for a CMCC package. This package
contains three parameters consisting of Id / value pairs:

CMCC_CONFIG_ENA_ID

CMCC_MEMTEST_ENA_ID
CMCC_CONSUMER_ID

The default values for the above flags are zero.

If a CMCC package is found and CMCC_CONSUMER_ID has an associated value “TBRI” (Trusted
Boot ROM ID in ASCII), then the boot ROM looks for the other two flags and enables DDR
initialization if CMCC_CONFIG_ENA_ID is found and has a value of 1, or enables the memory test if
CMCC_MEMTEST_ENA_ID is found and has a value of 1.

If the DDR config flag is 1, then the Boot ROM searches for a DDRC package in the reserved area of
the TIM. This package can modify the default register values for the Memory Controller.

There is no DDR initialization for situations where:

No CMCC package is present, or
CMCC package is found but no CMCC_CONSUMER_ID is present, or

CMCC_CONSUMER_ID is not “TBRI”

See Section 3.4.3, DDR Packages for detailed information on the CMCC and DDRC package
formats.

The memory test is optional once the DDR is initialized successfully. If the DDR Memory test is
enabled, the Boot ROM tests the first 2 KB of SDRAM for read/write functionality. The memory test
involves reading each memory location in the first 2048 bytes, inverting each bit, writing it back to
memory and compared to what was written to determine if the memory is reliable.

If the memory initialization or memory test is unsuccessful, the memory is considered to be
uninitialized. This situation has an impact on any image loads to SDRAM or transfer of control to any
image that should have been loaded into SDRAM (the load/transfer of control will be unsuccessful).

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 34 November 2010 PUBLIC RELEASE

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010, PUBLIC RELEASE Page 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

5 Non-Trusted Image Module
The Non-Trusted Image Module (NTIM) is used for booting a non-trusted platform where security
checking is not performed during the boot process. The minimum requirements for an NTIM are the
Version Information, Flash Information, image module sizing parameters, and two image information
structures. There are no maximum restrictions except that the size of the entire NTIM must be less
than 8 KB. Figure 3 shows an example of a minimal NTIM that can be used to boot to an OEM boot
module (first-level boot loader).

Figure 3: Example of a Minimum Version 3.1.xx NTIM Header in Binary Format

V e rs io n In fo rm a tio n
u nsi gned in t Ve rsi on;
u nsi gned in t Id ent ifie r;
u nsi gned in t Tr ust ed;
u nsi gned in t Is sue Date;
u nsi gned in t OE MUn ique ID;

O ffset Data ASCII
000000 02 01 03 00
000004 48 4 d 49 54 HMIT
000008 00 00 00 00
00000 c 07 20 09 03 . ..
000010 ee fe ef be îþï¾
000014 ff ff ff ff ÿÿÿÿ
000018 ff ff ff ff ÿÿÿÿ
00001 c ff ff ff ff ÿÿÿÿ
000020 ff ff ff ff ÿÿÿÿ
000024 ff ff ff ff ÿÿÿÿ
000028 06 4 e 41 4e .NAN
00002 c 02 00 00 00
000030 00 00 00 00
000034 00 00 00 00
000038 48 4 d 49 54 HMIT
00003 c 49 4 d 42 4f IMBO
000040 00 00 00 00
000044 00 b 0 02 d1 .°. Ñ
000048 ec 00 00 00 ì...
00004 c 00 00 00 00
000050 00 00 00 00
000054 00 00 00 00
000058 00 00 00 00
00005 c 00 00 00 00
000060 00 00 00 00
000064 00 00 00 00
000068 00 00 00 00
00006 c 00 00 00 00
000070 00 00 00 00
000074 49 4 d 42 4f IMBO
000078 ff ff ff ff ÿÿÿÿ
00007 c 00 00 02 00
000080 00 d 0 02 d1 .Ð. Ñ
000084 00 9 f 00 00
000088 00 00 00 00
00008 c 00 00 00 00
000090 00 00 00 00
000094 00 00 00 00
000098 00 00 00 00
00009 c 00 00 00 00
0000a 0 00 00 00 00
0000a 4 00 00 00 00
0000a 8 00 00 00 00
0000ac 00 00 00 00

F la sh In fo rm a tio n
unsi gne d in t R ese rved [5];
unsi gne d in t B oot Flas hSi gn;

Im a g e M o d u le S iz in g In fo rm a tio n
u nsi gned in t Nu mIm ages;
u nsi gned in t Nu mKe ys;
u nsi gned in t Si zeO fRes erv ed;

Im a g e In fo rm a tio n fo r N T IM h e a d e r
u nsi gned in t Im age ID;
u nsi gned in t Ne xtI mage ID;
u nsi gned in t Fl ash Entr yAd dr;
u nsi gned in t Lo adA ddr;
u nsi gned in t Im age Size;
u nsi gned in t Re ser ved[1 0] ;

Im a g e In fo rm a tio n fo r O B M Im a g e
u nsi gned in t Im age ID;
u nsi gned in t Ne xtI mage ID;
u nsi gned in t Fl ash Entr yAd dr;
u nsi gned in t Lo adA ddr;
u nsi gned in t Im age Size;
u nsi gned in t Re ser ved[10] ;

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 36 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6 Marvell® ARMADA 16x Applications

Processor Boot ROM Operation Details

6.1 General Operation
Version 3.2.xx Boot ROM operates using a high-level state machine. The number of states varies
depending on the Boot mode. Figure 4 shows the high-level state diadem used during a non-trusted
boot. Table 11 provides a brief explanation of the function of each state.

After reset, the Boot ROM performs the essential initialization including:

Reading the boot state configuration

Programming the clocks
GPIO settings
Initializing the stack pointers

Initializing heap pointers

The ARMADA 16x Applications Processor is hard wired to jump to the Boot ROM after power-on,
causing the core to execute instructions from the physical ROM space identified in Section 1.4
"ROM Location, Size, and Mapping" . The Boot ROM requires an NTIM header to boot to the next
layer of software. This is true whether the next software image is loaded from a Flash device or over
a port device, such as USB. Depending on the fuse configurations, the Boot ROM takes different
actions as part of the boot process. Methods are in place to enable and disable certain features such
as download capabilities over the ports.

The remainder of this section provides details of the operation based on Operational mode, Flash
type, and download operation.

Table 11: Description of States that the Boot ROM traverses

State Descript ion

STARTUP Initial State when Boot ROM begins to execute and initializes the runtime
environment.

RE-START REASON State when Boot ROM check for the re-start reason. For ARMADA 16x only power
on reset is required.

CONFIGUREFLASH State where the Boot ROM configures Boot flash.

TIMLOAD State where the Boot ROM loads NTIM from Boot flash.

RESERVEDDATA State where Boot ROM analyzes optional reserved date in the NTIM to setup
additional features.

IMAGELOAD State where the Boot ROM loads the next boot image (OBM).

XFER State right before Boot ROM hands control off to the OBM.

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 38 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 4: Non-Trusted Boot State Diagram

6.2 Flash Types Supported: NAND Flash
The Boot ROM for the Marvell® ARMADA 16x Applications Processor Family supports many
different SLC NAND and MLC Nand devices such as:

Startup

Re-Start
Reason

Configure
Flash

Load NTIM

Interpret
Reserved

Data

Load Image

Transfer
Control

If supported by platform
 check for Resume

Resume not supported
Increment to Configure Flash

Platform is resuming
 from a power mode, and
we are ready to transfer

Found a
flash device

No resume
in progress Configure supported flash

devices. If auto probe is
supported loop until a

device is found

No NTIM found
 check next flash device

NTIM found

Load OBM image

OBM loaded sucessfully

Wait for a download

No NTIM

No OBM

Download succesful

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Large Block NAND x8 and x16
Small Block NAND x8 and x16

ONFI compliant NAND devices version 1.0

The Boot ROM supports booting from x8 or x16 NAND devices attached to Chip Select 0 of the
processor NAND Flash Controller. Both large- and small-block devices, as well as ONFI 1.0
compliant devices are also supported. Contact a Marvell field representative for information about
specific devices.

The image module (NTIM) should be located at offset 0x0 of any of the first 10 blocks of the NAND
device. The Boot ROM searches for the “TIMH” identifier embedded in the version information of the
image module (NTIM). If the structure is found, it is loaded into the internal SRAM of the system.

A NAND platform requires support for bad-block management, as well as error detection and
correction. ECC_EN and SPARE_EN are enabled when programming NAND blocks using the NAND
Flash controller. The Boot ROM makes use of the Marvell bad-block management scheme if the
bad-block table is present. If the Marvell bad-block table is not present, the OEM Boot Module is
limited in size as defined in Table 12.

If the Marvell bad-block scheme is implemented, the OEM Boot Module size restriction does not
exist and the OEM Boot Module can be any size. The size of the OEM Boot Module is determined
from the image module as well as the starting location. The OEM Boot Module likely consumes
contiguous blocks in the NAND device, (Blocks 1 through 3, for example). The image cannot be
broken into non-contiguous blocks unless a block is relocated through the bad-block table. Refer to
Section Section 6.6, Flash Management for more details on NAND bad-block management.

6.2.1 Boot ROM NAND Device Recognition
An algorithm to enable booting from different types of NAND devices works as follows:

1. Boot ROM issues the reset command 0xFF to the NAND device (a requirement of the ONFI
standard). During the reset command, the NAND device toggles the Ready/Busy# when the
reset command is issued. This mechanism determines if a NAND device is present. If
Ready/Busy# is not toggled, then the Boot ROM does not attempt any additional commands to
the NAND device.

2. Next, the Boot ROM issues several different READ ID commands to determine the device type.
The first READ ID command is to check for the “ONFI” signature. If the ONFI signature is
detected, the Boot ROM issues the Read Parameter Page command. The data from the Read
Parameter Page command is then validated. If validation of the CRC passes, skip to Step 5 and
configure the DFC controller for operation. If the CRC fails, continue with the next READ ID
command in Step 3.

3. The Boot ROM now issues a 2-byte READ ID command to detect the manufacturer and device
ID. Because some legacy small-block devices did not return device parameters, a lookup table
is used to check for known small-block devices (see Table 13). If the device is a small-block
device, skip to Step 5 and configure the DFC controller. If the device is not found in the look-up
table, continue to Step 4 and the final READ ID command.

Table 12: OEM Boot Module Sizes Without Marvell Bad Block Management

Small B lock NAND Large Block NAND

Block 0 – 1 page (15.5 KB) Block 0 -1 page (127 KB)

Block 0 – image module - 1 page (approximately
15 KB)

Block 0 – image module -1 page (approximately
126 KB)

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 40 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Note

Note The two bytes (manufacturer ID and device ID) are compared against the small block
codes in Table 13. All Boot ROM versions support these devices.

If the device is a small-block device, the Boot ROM configures the NAND controller for small-
block operation with a 512-byte page size and 16 KB block size.

 Table 13: Small Block Devices

4. The Boot ROM issues another READ ID command and retrieves 4 bytes of data from the
device. The 4th byte of data from the device is used to interpret the device parameters and then
configure the NFC. This example has a generic implementation where:

• The Boot ROM uses the information returned in the 4th byte to determine the page and block
size of the NAND device. Bits 1 and 0 for the page size and Bits 5 and 4 for the block size.

• The Boot ROM does NOT use the manufacturer and device codes for large-block NAND
configuration. The NFC is configured for large block based on the device parameters.

5. The Boot ROM then configures the command set for the appropriate NAND device (based on
the above steps) and continues with normal Read operation.

Note

Note This operation was originally documented as the Boot ROM expecting 0x15 for x8 large
block NAND and 0x55 for x16 large-block NAND devices. Although the entire 4th byte
is read from the NAND device, the Boot ROM uses only bits 0, 1, 4, and 5, not the entire
byte (all 8 bits) to configure the appropriate memory device.

The NAND Flash Controller (NFC) is set up for the appropriate NAND configuration as noted in
Table 14. NDCR[DWIDTH_C] and NDCR[DWIDTH_M] are configured by the Boot ROM depending
on the boot configuration SKU of the processor.

Manufacturer
Manufacturer

Code Device Codes

Samsung 0xEC

0x71, 0x78, 0x79, 0x72, 0x74,
0x36, 0x76, 0x46, 0x56, 0x35,
0x75, 0x45, 0x55, 0x33, 0x73,
0x43, 0x53, 0x39, 0xE6, 0x49,
0x59

Toshiba 0x98
0x46, 0x79, 0x75, 0x73, 0x72,
0xE6

Hynix 0xAD
0x76, 0x56, 0x36, 0x46, 0x75,
0x55, 0x35, 0x45,
0x73, 0x53, 0x49

ST Micro 0x20

0x73, 0x35, 0x75, 0x45,
0x55, 0x76, 0x36, 0x46,
0x56, 0x79, 0x39, 0x49,
0x59

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6.2.2 XIP Flash Support
The ARMADA 16x Applications Processor Boot ROM supports NOR Flash memory on the Data
Flash interface (DFI) bus. Flash is supported through a command set, not through a particular
JEDEC ID. Any device is supported, provided that the device complies with the commands as
described in Table 16.

The processor natively can support AA/D muxed memories. Other memories may be connected and
booted from but external latches are required. NOR-like NAND devices such as Samsung
OneNAND are also supported via the DFI bus using the XIP data window for the device. The Boot
ROM also has an integrated device driver for the Samsung OneNAND part, allowing use of the main
memory array for boot images. Refer to Section 6.2 "Samsung OneNAND and FlexOneNAND" for
more details.

Table 14: NAND Flash Controller Initial Register Settings

Register Value for Small Block
Operat ion

Value for Large Block
Operat ion

NDCR[DWIDTH_C] and
NDCR[DWIDTH_M] (bits27:26) initial
settings are determined by the boot
state fuses

0xCC02_1FFF 0xCD04_1FFF

Timing register 0 0x003F_3F3F 0x003F_3F3F

Timing register 1 0x1FF0_C0FF 0x1FF0_C0FF

Table 15: NAND Command Set

Command Small Block Command Code Large Block Command Code

Read 0x0000_ 0x3000

Read Status 0x0070 0x0070

Read ID 0x0090 address 0 0x0090 address 0

Read ONFI ID 0x0090 address 0x20

Read Parameter
Page

0x00EC

Table 16: Flash Commands Supported by the Boot ROM

Flash Command Name Flash Command Data Flash Type

Read Array 0xFF Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

Read Device Identifier 0x90 Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

Clear Status Register 0x50 Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

Word Program 0x40 Intel StrataFlash® Wireless Memory
(XIPA)

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 42 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6.2.2.1 NOR Flash on Chip Select 0
The Boot ROM supports booting from an XIP device attached to Chip Select 0 of the processor
Static Memory Controller. Several XIP devices are supported in AA/D muxed mode of operation;
contact your local Marvell field engineering representative with questions about specific devices.

The image module (NTIM) should be located at offset 0x0 of the XIP device. For Chip Select 0, the
XIP device is memory-mapped to 0x8000_0000. The Boot ROM searches for the "TIMH"
identifier embedded in the version information of the image module (NTIM). If the structure is found,
it is loaded into the internal SRAM of the system. From this point, the Boot ROM uses the image
module to load the OEM Boot Module.

The OEM Boot Module is described by the image information contained in the “IMAGE
INFORMATION” array. It is identified by the "OBMI" image identifier, which is a required identifier for
proper use with the Trusted Boot ROM. Using the information that describes the OEM Boot Module,
the image is loaded from the offset pointed to by FlashEntryAddr to the location pointed to by
LoadAddr. The ImageSize entry determines the number of bytes that are loaded.

6.2.2.2 Managed NAND on Chip Select 0
Many managed NAND hybrid devices have a NOR interface with an XIP area intended for booting.
The Boot ROM can boot from these devices using the XIP area, provided that both the NTIM and
first-level boot loader can be sized to fit into the XIP area of the device. On some devices, the XIP
area is 1 KB in size, making the trusted boot operation impractical. For these devices, non- trusted
operation is possible with a minimal NTIM and IPL initial program loader (IPL) that can read from the
main memory array.

The IPL module is described by the image information contained in the “IMAGE INFORMATION”
array. It is identified by the "OBMI" image identifier, which is a required identifier for proper use with
the Boot ROM. Using the information that describes the OEM Boot Module, the image is loaded from
the Flash offset pointed to by FlashEntryAddr to the location pointed to by LoadAddr. The
number of bytes loaded is determined by the ImageSize entry. Here, the IPL module, acting as the
OEM Boot Module, then loads the next software image from the main NAND array of the device.

This boot procedure is somewhat restrictive, and the NTIM and IPL module sizes must be calculated
carefully to ensure they both fit into the XIP area of the device.

6.2.2.3 Samsung OneNAND and FlexOneNAND
When the Boot ROM is defined as having support for OneNAND and FlexOneNAND memory
devices, this means that the Boot ROM has an embedded device driver that can access the main
memory array of the device. Specific requirements are needed for accessing these memories and
also the location of certain boot images.

Word Program
(Intel StrataFlash® Cellular
Memory (M18))

0x41 Intel StrataFlash® Cellular Memory (M18)
(XIPB)

Unlock Block 0x60/0xD0 Intel StrataFlash® Wireless Memory
(XIPA), Intel StrataFlash® Cellular
Memory (M18) (XIPB)

NOTE: The command set supported by the Boot ROM is not specific to Intel StrataFlash®. Any NOR
Flash device is supported if that device supports the same command sets as described in this
table.

XIPA and XIPB are used for reference in other Boot ROM chapters.

Table 16: Flash Commands Supported by the Boot ROM (Continued)

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 43

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

The Boot ROM can program the Static Memory Controller and can directly access the correct
memory locations to execute the OBM images and NTIM headers.

Even though the Boot ROM may have integrated drivers for these memories, it does not replace the
necessity of OS-level Flash drivers. These drivers must be implemented in the OS.

The Samsung OneNAND and FlexOneNAND memory connects to the processor using the DFI bus
with nCS0 as the boot chip select.

The NTIM can be placed at the start of any of the first ten blocks, which should be specified in the
header itself where the header binary must also reside. The OBM location is also defined in the
header and must be loaded at the indicated location.

For all subsequent Boot ROM versions, only the Manufacturer ID of 0xEC must be read. The Boot
ROM then reads the Device and Generation IDs to determine whether the device is a OneNAND or
FlexOneNAND device. The Boot ROM also calculates the density of the OneNAND without having
them predefined as with previous generations.

6.2.3 SD/MMC Devices
The Boot ROM supports booting from certain SD and MMC protocol-based Flash devices attached
to the MMC1 or MMC3 ports. Refer to Section 7.1 for Multi-Function Pins (MFPs) used for each port.
The Boot ROM driver supports reading, writing, erasing and switching partitions. Boot ROM supports
MMC specification V4.2 and V 4.3, and eSD specification V2.1.

For MMC-based devices, the Boot ROM searches for a NTIM at address 0x0 of Partition 1 (MMC
V4.3 or later) or Address 0x0 (if no hardware partitions are supported by the MMC device; MMC
V4.2). For eSD-based devices, the Boot ROM searches for the NTIM at address 0x0 of the user
partition. B0 Boot ROM checks up to 10 blocks (assumes 512 bytes/block) for the NTIM. Thus, the
NTIM can be placed at offsets 0x000, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xE00, 0x1000,
or 0x1200. ARMADA 16x A0 Boot ROM checks offset 0x0 only.The OBM can then be found in a
user choice partition and address as indicated in the NTIM.

The following SD/MMC devices are currently supported by the Boot ROM:

Samsung MoviNAND: KMAFN0000M, KMAKE0000M, KMBLE0000M, KMCME0000M

Sandisk iNAND based MCP: MCP211, MCP212, MCP214

6.2.4 SPI Flash Devices
The ARMADA 16x Applications Processor Boot ROM supports booting from many SPI devices
attached to the SSP port. Booting from SPI flash is attempted as part of the autoboot process when
NAND and eMMC devices are not bootable, or in the event of a boot failure.

The supported SPI devices can be found in Table 17:

Table 17: Supported SPI Devices

Device Name Manufacturer ID Device ID 1 Device ID 2

Numonyx M25P40 0x20 0x20 0x13

ST Micro M25P32 0x20 0x20 0x16

Spansion S25FL016A 0x01 0x02 0x14

Atmel AT25FS040 0x1F 0x66 0x04

Atmel AT40DB642D 0x1F 0x28 0x00

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 44 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6.2.4.1 SPI Command Sets

6.2.4.2 SPI Device Detection
The Boot ROM first issues a Release from Power Down command (ABh) to the device, followed by
a Read JEDEC ID command (9Fh). The ID returned is compared to those in Table 17, to determine
which device is connected and which command set to use.

If an unknown device is detected, the Boot ROM assumes a 256-byte page size, and uses the
command (03h) to read from the device.

6.3 Preprogrammed Flash Requirements
Preprogramming of Flash memory is supported for large-volume manufacturing and requires the
following when using an image module (NTIM):

Program the NTIM to the correct offset; contact your local Marvell field engineering
representative for more information.

Program the OEM Boot Module and any other image described in the image module to the
address indicated by FlashEntryAddr of the image module.

The Boot ROM examines Flash memory and searches for the NTIM. After it is found, the image is
loaded to the address specified in the NTIM.

6.4 Download Capability
The Boot ROM enables the USB 2.0 OTG port in device mode shortly after a power-on reset. An
image can be downloaded over one of these ports by using the Communication protocol as described
in Chapter 9, “Communication Protocol”.

6.4.1 USB Port
The default USB configuration is the USB 2.0 OTG port. This port is configured after a power-on
reset and is run in Interrupt mode. Contact your local Marvell field engineering representative for
more information about the communication protocol used by the target and host.

6.4.2 Error Reporting Capability
The V3.2.XX Boot ROM can tabulate in real-time a collection of information called the “Boot ROM
Status Structure” (BRSS). The BRSS serves the following purposes:

1. Place holder for collecting information during run-time for error codes, traversed states and
pointers to other relevant structures that are used during the boot process. This information

Table 18: SPI Command Sets

Device Read Read
Status

Write
Enable

Page
Program

Program
(stage 2)

Sector
Erase

Numonyx M25P40 03h 05h 06h 02h N/A D8h

ST Micro M25P32 03h 05h 06h 02h N/A D8h

Spansion S25FL016A 03h 05h 06h 02h N/A D8h

Atmel AT25FS040 03h 05h 06h 02h N/A D8h

Atmel AT40DB642D 03h D7h N/A 84h 88h 50h

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

serves to debug potential problems by impaction or output through one of the enabled ports
during debug with or without JTAG enablement.

2. Place holder for information passed up to higher levels of software, particularly aimed for the
OBM. This information can be used to reduce boot-up times by not requiring duplicate work
such as loading the NTIM, initializing DDR or even probing flash.

The location of the BRSS will be constant with respect to the start address of volatile memory (refer
to section 0.1.2.) It is always the base address of ISRAM/L2 + 0x40 and has 192 bytes reserved for
it. Table 19 depicts the layout of the BRSS.

6.5 Resume From Hibernate
The ARMADA 16x Applications Processor starting with the B0 stepping supports the capability to
resume directly to a section of software left behind in DDR in instances where the DDR has been left
in state-retentive mode. This feature can save critical boot time by aiding the Boot ROM to skip
several time-intensive steps such as re-loading the OEM boot module from flash. To enter this mode
of operation, several criteria must be met:

Table 19: Boot ROM Status Structure (BRSS)

Offset Descript ion of Content

0x0 Boot ROM Version

0x4 Boot ROM Build Date

0x8 Platform Type

0xC Platform SubType

0x10 Current State of the Boot ROM. (refer to tables 7 and 8)

0x14 The previous state of the Boot ROM. (refer to tables 7 and 8)

0x18 32 bits of fuse relevant tabulation used by the Boot ROM

0x1C 32 bit error code. Should be used in conjunction with the state fields of the Boot ROM
to pinpoint exact failure location.

0x20 Transfer Address of the next image. Note that on normal initialized boot, Transfer
Address will contain an appropriate value only after IMAGELOAD state.

0x24 Probe Flash Index is used to determine at real-time inspection what flash has been
configured in the probe mechanism. Probe Flash Index will change during run-time on
platforms that require flash probing.

0x28 Pointer to the where the constant part of the NTIM (CTIM) that has been loaded in
volatile memory.

0x30 Pointer to the first IMAGE_INFO structure of the NTIM in volatile memory, there may
be multiple in an array fashion.

0x38 Pointer to the beginning of Reserved Area of the NTIM in volatile memory.

0x48 Flag indicates if the first of the security engines have been initialized. Platform
dependent.

0x4C Flag indicates if the second of the security engines have been initialized. Platform
dependent.

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 46 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

1. The operation must not be an initial power-on reset where critical boot images have not
previously been loaded to DDR since the last power-on reset “cold boot”.

2. A NTIM with a resume package RESUMEBLID (0x52736D32) must be present in the resume
area.

3. DDR must be initialized using the relevant DDR NTIM packages via the Boot ROM.

When the Boot ROM begins to execute, initially it has no indication if it is executing due to a power
on reset, hardware reset, or Hibernate mode. The Boot ROM loads the NTIM, and looks for a
package in the reserved area with the RESUMEBLID identifier. If the Boot ROM finds such a
package it then examines the Resume Address field to find another copy the
OPT_RESUME_DDR_INFO structure in the DDR. This structure in turn has the true address where
the Boot ROM can directly jump without loading any additional images or further processing. The
package in the DDR must also have a flag set to the value “0x55AA55AA” to indicate that the jump
to image can handle a direct-resume process. However, before the Boot ROM transfers control, it
inverts this flag and writes it out to the DDR at the same location (see ResumeFlag field in the
OPT_RESUME_DDR_INFO package.)

Note

Note Software capable of handling the resume process after the Boot ROM must write out
proper contents of the OPT_RESUME_DDR_INFO structure before going to Hibernate
mode.

6.6 Flash Management
The Boot ROM supports two different Flash management schemes to accommodate the various
restrictions on many Flash devices. The two schemes are detailed further in this section.

The two supported schemes for managing Flash are:

Legacy Bad Block Management (BBM) for NAND and OneNAND devices
Marvell Flash Management with Partitioning support (all supported Flash devices)

The Boot ROM determines which scheme is being used based on the version of the NTIM found in
Flash. A NTIM with a version of 3.1.x (0x00030100) or lower forces the Boot ROM to use the
backward-compatible mode. An NTIM with a version of 3.2.x (0x00030200) forces the Boot ROM to
use the newer Marvell Flash Management scheme. See Chapter 3, “Image Modules” for information
on NTIM versions. The Boot ROM does not create a BBT or update an existing BBT. The Boot ROM
only reads a BBT from Block 0 to determine whether a block is good or bad and needs to be read
from somewhere else.

6.6.1 Legacy Bad-Block Management
The bad-block management scheme consists of two components: the bad-block table and the pool
of reserved relocatable blocks. The relocation table contains a list of bad blocks and their
relocations. The table is stored in Block 0 of the Flash (see Section 6.6.1.1, Bad-Block Table (BBT)
Location). The pool of reserved blocks is located at the end of the Flash device and consists of 2%
of the device.

This management scheme supports NAND and OneNAND bad-block detection and relocation.
Because of the physical limitations of NAND and OneNAND devices, any block (besides Block 0)
may be bad (meaning, it cannot be written to reliably). The relocation table contains a list of these
bad blocks and their relocations.

XIP, Managed NAND, and MMC devices can still be used as boot devices under this scheme;
however, there is no support for partitioning and bad-block management is irrelevant.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 47

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6.6.1.1 Bad-Block Table (BBT) Location
The initial BBT typically is written to the page starting at offset 0x1000. The bad-block table requires
exactly one page per block. If the bad-block table has to change at run time, each page is treated
like a new slot for additional tables. Rather than erasing and creating a new table over the initial
page each time, a new table is simply written to the next page after the current table, which reduces
wear and tear on the block by reducing the number of erase cycles. This process of updating to the
next page continues to the end of Block 0 and reduces the need to erase Block 0.

Note

Note To support backward compatibility with older tools sets, including XDB and the Wireless
Trusted Platform Tools Packages, the Boot ROM checks the last page of Block 0 for a
BBT. It then uses the table with the most entries as the default BBT.

The maximum number of bad-block tables that can be written, before an erase is required, is defined
by the size of the Flash device. To calculate this number, subtract 4 KB from the block size (this is
the reserved size for the NTIM), and divide by the page size. (Example: 128 KB block with 2 KB
pages. (128 - 4) / 2 = 62 pages). See Figure 5.

Note

Note The Boot ROM uses a binary search algorithm to find the most current table between
the page starting at address 0x1000 (page 2 in Figure 5) and the last page in Block 0
(page 63 in Block 0). Figure 5 is an example of a typical Block 0 layout at run time
indicating how the slot-based mechanism works.

Figure 5: Block 0 Layout on a Micron MT29F2G08* with 128 KB Block Sizes and 2
KB Pages

6.6.1.2 Bad Block Table Definition
Each bad-block table has a layout in Flash, as defined with the following structure:

Typedef struct S_Reloc
{

Initial BBT

Page 0

Page 63

Page 1

Page 2

….

Page 3

Page 62

…

BBT - Update

BBT - Update

BBT - Update

TIM
0x0

0x20000

0x800

0x1FE00

0x1000

0x1800
Initial BBT

Page 0

Page 63

Page 1

Page 2

….

Page 3

Page 62

…

BBT - Update

BBT - Update

BBT - Update

TIM
0x0

0x20000

0x800

0x1FE00

0x1000

0x1800
Initial BBT

Page 0

Page 63

Page 1

Page 2

….

Page 3

Page 62

…

BBT - Update

BBT - Update

BBT - Update

TIM
0x0

0x20000

0x800

0x1FE00

0x1000

0x1800

N

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 48 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

USHORT Header;
USHORT NumReloc;
Rel_T Relo[NAND_RELOC_MAX];

}Reloc_T;

The header is a fixed value of 0x524E to identify the presence of a bad-block table; that is, if the
header is valid as defined above, the initial block scan has been completed. Otherwise, the block
scan has not been completed. The NumReloc parameter identifies the number of blocks that has
currently been relocated and is followed by up to 127 relocation pairs.

Typedef struct S_Rel
{

USHORT From;
USHORT To;

}Rel_T;

Const ULONG NAND_RELOC_MAX = 127;

Each “From” entry identifies the block that has been relocated and the entry “To” identifies the
relocated block number.

6.6.1.3 Bad Block Relocation Area
The last two percent of the blocks of the device are reserved for bad-block relocations. The first
block that is relocated goes to the very last block of the device; the second block relocated goes to
the second to the last block of the device, and so forth. This process effectively allows relocated
blocks to grow from the highest address down. A block in the relocation pool itself may be relocated,
so use caution when relocating to skip over these blocks. Figure 6 presents a typical Flash part
layout and a relocation table layout to tie the concepts together.

Figure 6: Example of Bad Block Table NAND Flash Mapping in Use —
Small Block NAND Flash Type: Samsung K9K1216Q0C* (Device ID =
0x46)

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 49

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6.6.2 Marvell Flash Management with Partitioning Support
Marvell’s current processor technology offers a flexible boot implementation allowing boot from
NAND, NOR, and hybrid Flash devices. This variety of devices offers different features and
implements differing technology. NAND and hybrid devices are moving from the current Single-Level
Cell (SLC) technology towards the Multi-Level Cell (MLC) technology where multiple bits are stored
per transistor. Newer devices, such as eMMC and eSD (embedded MMC and embedded SD), Flex
OneNAND™, and mDoc devices also have partitioning capability at the hardware level. All of these
features are making Flash management more complex for software developers.

The goal of the Marvell Flash management method is to align all of the software developed at
Marvell with a common Flash management method for the entire software stack. This flexible
method takes into consideration the varying features of both hardware and operating system
software. The design provides a robust boot capability in the event of Flash device failures at the
block level. The design also provides hooks for features such as Firmware-Over-the-Air (FOTA)
updates and OEM customization.

The following NAND features have caused requirements to change:

Move to MLC technology. MLC technology has new restrictions for proper operation and
different wear characteristics.

• Linear write ordering requirement – All pages must be written in order within a block from the
least significant page (LSP) to the most significant page (MSP).

• Program/erase cycles are reduced to 10 K before the first failure is possible.

• ECC requirements have increased dramatically.

• “Read Disturb” phenomenon can occur when a Read to a page disturbs the data on an
adjacent page, within a block.

• Multiple Writes to an erased page are no longer allowed. The practice of writing to the data
area and then later writing to the spare area is prohibited.

Capability to implement hardware-based partitions. Many of the Flash devices entering the
market have capabilities to create custom partitions or come partitioned from the factory. These
include Flex-OneNAND™, mDoc, and eMMC/SD devices.

To handle these new requirements, the current implementation for bad-block management requires
some changes. The management method incorporates several new structures and concepts to the
overall Flash management infrastructure. The updates include:

A backup boot block located in the next available block of the Flash device, normally Block 1.
A partition table has been added to the boot block that defines the partitions within the device
and their usage. Partitions can be either logical or hardware based. Their implementation is
optional and the system still boots if no partition table is present.
The bad-block table structure is updated to accommodate the new Flash management
infrastructure.
A factory bad-block table is located in Block 0 that stores only the factory marked bad blocks of
a device.
The runtime bad-block table resides in a separate block and is optional for each partition. The
runtime bad-block table should be cumulative and incorporate the factory bad-block table
information, as well as runtime bad-block information.

Each defined partition has its own associated reserved pool and mechanism for implementing
relocation to allow file system partitions to use the full block count of a partition for wear leveling
without affecting relocated blocks.

Figure 7 shows the previous Flash bad-block management and the new Flash management
method.

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 50 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 7: Layout Change

As an enhancement to the boot process, Marvell suggests passing information to the next level of
software to optimize/reduce access to the Flash devices. In particular, the Non-Trusted Image
Module (NTIM), Partition Table, and the Factory Bad-Block Table can remain in memory and a
structure of pointers can be passed to the next layer of software. The location of the structure is
implementation dependent.

Example 1: Proposed Structure for Passing Boot Information

struct {

__int32* pNTIM;

__int32* pPT;

__int32* pFBBT;

__int32 Reserved

}

The Marvell Flash management method is intended for use with all Flash types to provide for a
consistent boot implementation independent of any operating system. The data found in the boot
partition Block 0 is considered the master copy of the boot data for the device. All devices have a
boot partition, whether it is logical or physical. This partition is designed for boot purposes and is
used at a minimum by the Boot ROM and/or OEM Boot Module (OBM) firmware. Three important
structures reside in the boot partition: the NTIM, the Factor Bad-Block Table (FBBT) for NAND
devices, and the master partition table. These structures are described in detail in later sections.

Partitioning and bad-block management are considered optional by the embedded Boot ROM and
the system can still boot without these features. However, there are side effects to device operation
without them; software designers: consult vendor specifications to understand the technology being
used. Also, the features implemented can vary according to the technology type being supported on

Block 0

Boot Partition

OSL Partition

File System Partition

Reserved Pool

Example Flash Layout With
Partitioning

Block 1

Block 4095

Reserved Pool

Block 0

Example Flash Layout
Without Partitioning

Block 4095
Reserved Pool

TIM FBBT
TIM
TIM

FBBT
FBBT

PT
PT

NTIM
NTIMNTIM

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 51

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

the platform. NOR devices do not require a bad-block table, but can make use of partitioning. The
Marvell Flash management method provides enough flexibility to boot using a wide variety of Flash
devices.

6.6.2.1 Important Structures
Several important structures are involved in the Marvell Flash management method: the NTIM, the
bad-block table(s), and the partition table. Only the NTIM structure is required for proper boot
operation and the implementation of the bad-block table and partition table depends on the Flash
device being used and OEM requirements.

In the absence of a partition table, the entire device is viewed as one logical boot partition and is
expected to follow the format defined in section Section 6.6.2.3, Boot Partition and Boot Process.
For NAND devices, the absence of a bad-block table forces a best effort type of boot, which means
that the block defined in the NTIM is loaded and if an error occurs, the boot process may halt.
Carefully consider such choices for each design.

The full NTIM structure is defined in the Boot ROM and Marvell Wireless Trusted Platform Tool
Package (WTPTP) specifications. Some necessary modifications are being made to the Image
section of the NTIM header to support partitioning. As a result of the changes, the version number
for the NTIM is also incremented to version 3.2.0 (0x00030200). Within the NTIM, the following
structures are modified:

The Image Information structure (IMAGE_INFO) is modified to include a partition field.

Example 2: Image Information Structure Changes in the NTIM

struct {

unsigned int ImageID;

unsigned int NextImageID;

unsigned int FlashEntryAddress;

unsigned int LoadAddress;

unsigned int ImageSize;

unsigned int ImageSizetoHash;

unsigned int HashAlgorithm;

unsigned int Hash[8];

unsigned int PartitionNumber;

}

The bad-block table structure has been updated to provide more relevant information. Two bad-
block tables can now be defined: a factory bad-block table and a runtime bad-block table. The bad-
block tables can exist with partitioning information or in the absence of partitioning information. This
situation has the effect of requiring fields that may not always be used. These fields are treated as
reserved when not in use. Example 3 captures the new factory bad-block table format. Example 4
captures the new runtime bad-block format.

Example 3: Factory Bad Block Table Structure

struct {

unsigned int Identifier;

unsigned int Version;

unsigned int Type;

unsigned int Reserved0;

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 52 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

unsigned int Reserved1;

unsigned int NumberofFactoryBadBlocks

unsigned int RunTimeBBTLocationBootPartition;

unsigned int Reserved2;

unsigned int Reserved3;

unsigned int Reserved4;

unsigned int FactoryBadBlocks[NumberofFactoryBadBlocks];

}

The factory bad-block table is used to maintain the factory marked bad-block information on a NAND
device. This table MUST be maintained for the life of the device as it is used as a reference in the
event that errant software erases the factory information located in the spare area of the bad block.
The fields used are as follows (also see Example 4):

Identifier – 32-bit ASCII encoded hex identifier “MBBT” (0x4D424254). This identifier is
used by the Boot ROM and must be set to “MBBT” for the Boot ROM to load and use the
information in the table.
Version – 32-bit version identifier currently set to 0x31303031. This field is used for tracking
purposes and is not currently required by the Boot ROM.
Type – 32-bit ASCII encoded hex identifier “Fact” (0x46616374). This identifier is used by the
Boot ROM and must be set to “Fact” for the Boot ROM to recognize this table as the factory
bad-block table.

NumberofFactoryBadBlocks – Number of blocks identified as bad by the manufacturer.
RunTimeBBTLocationBootPartition – Address offset from the base of the boot partition
to the location of the runtime bad-block table used for the boot partition.
FactoryBadBlocks [] – Array of block numbers identified as bad from the manufacturer.

Example 4: Runtime Bad Block Table Structure

struct {

unsigned int Identifier;

unsigned int Version;

unsigned int Type;

unsigned int Reserved;

unsigned int PartitionID;

unsigned int NumberofRleocationPairs;

unsigned int Reserved;

unsigned int Reserved;

unsigned int BackupRuntimeBBTLocation;

unsigned int Reserved;

unsigned int RelocationPairs[NumberofRelocationPairs];

}

The runtime bad-block table is optional, but strongly suggested. At boot time, if the Boot ROM does
not find the runtime bad-block table, it performs a best-effort boot. This means that it will read the
first-level boot loader (OBM) according to information in the NTIM header and transfer control if no
errors are encountered. For NAND devices, if an ECC error is encountered the boot process would
be terminated. One option is to put the first-level boot loader into the first block of the NAND device

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 53

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

and lock the block as a read-only block, which would minimize the need for having a runtime
bad-block table for use by the Boot ROM.

When the runtime bad-block table is present, more flexibility is provided for Flash memory layout
and size of the first-level boot loader. The fields in the runtime bad-block table are used to locate the
images in the event a relocation operation occurred. The fields in the runtime bad-block table are
used as follows:

Identifier – The 32-bit ASCII encoded hex identifier “MBBT” (0x4D424254). This identifier
is used by the Boot ROM and must be set to “MBBT” for the Boot ROM to load and use the
information in the table.
Version – The 32-bit version identifier currently set to 0x31303031. This field is used for
tracking purposes and is not currently required by the Boot ROM.
Type – The 32-bit ASCII encoded hex identifier “Runt” (0x52756E74). This identifier is used by
the Boot ROM and must be set to “Runt” for the Boot ROM to recognize this table as the runtime
bad-block table.

PartitionID – Partition number in which this runtime bad-block table resides. Used as a
check when partitioning is enabled.

NumberofRelocationPairs – Number of blocks that have been relocated.
BackupRunTimeBBTLocation – Address offset from the base of the partition to the location
of the backup runtime bad-block table; used in the event of a runtime failure of the primary
NAND block. This field is optional.

RelocationPairs[] – Array of block number pairs with the [FROM, TO] format. The
algorithm for creating relocation pairs is presented below.

A block is relocated when it is determined to have gone bad. In general, when a block has gone bad,
it is defined by the manufacturer. Typically, it happens when an Erase or program failure occurs to
the block. In this case, the block can be relocated to a reserved area of good blocks. The general
format is to list the bad block first (the FROM block) and the good block in the reserved pool last
(the TO block).

There are several special cases that must also be considered. The Marvell Flash management
method does not chain relocated pairs. If Block 1 is relocated to Block 20, an entry of [1,20] is
placed into the RBBT. At some later time, if Block 20 goes bad, the software does not create an entry
of [20,19]. Because Block 20 was already used in a TO field, an entry is written into the table as [20,
-1]. This means that Block 20 is not usable and cannot be relocated. The original entry
[1, 20] would be replaced with [1,19], assuming Block 19 is a good block in the reserved pool. This
maintains one entry per relocated block.

The relocation of blocks may not be necessary for all partitions. If block-based wear leveling is
incorporated into the NAND management scheme, then the use of a reserved pool and relocation
may not be necessary. Reserved pool implementation is implementation defined and must be
reviewed during the implementation phase. The Marvell Flash Management Method is flexible
enough to allow for proprietary implementations in the management of the Flash device.

The partition structures are used to store the partition information of the Flash device. This structure
consists of a partition table structure with an array of partition information structures. The high-level
partition table structure is used for version information and to determine the number of partitions in
the device. The partition information structure holds the specific parameters for a partition. See
Example 5.

Example 5: Partition Table and Partition Information Structures

struct {

unsigned int 64Identifier;

unsigned int Version;

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 54 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

unsigned int NumberofPartitions;

unsigned int Reserved;

unsigned int Reserved;

PartitionInfo Partitions[NumberofPartitions];

}PartitionTable;

struct {

unsigned int Type;

unsigned int Usage;

unsigned int Identifier;

unsigned int PartitionAttributes;

unsigned int StartingAddress;

unsigned int Reserved1;

unsigned int EndingAddress;

unsigned int Reserved2;

unsigned int RsvdPoolStartingAddr;

unsigned int Reserved3;

unsigned int RsvdPoolSize;

unsigned int Reserved4;

unsigned int RsvdPoolAlg;

unsigned int RuntimeBBT_Type;

unsigned int RuntimeBBTStartAddr;

unsigned int Reserved5;

unsinged int BackupRuntimeBBTStartAddr;

unsigned int Reserved6;

unsigned int Reserved7;

unsinged int Reserved8;

}PartitionInformation;

Partitioning can be logical or physical, which allows hardware-based partition support for devices
such as eMMC and eSD, or software-based partitioning on flat devices such as a raw NAND device.
If a partition table is not present, the Boot ROM views the device as one flat boot partition. The fields
for the PartitionTable are used as follows:

Identifier – The 64-bit identifier which is ASCII encoded "MRVL MPT"
(0x4D52564C, 0x204D5054).
Version – The 32-bit version identifier used for tracking purposes. Not currently used by the
Boot ROM.
Number of Partitions – Number of partitions on the Flash device.

Partition[] – Array of PartitionInformation structures.

The PartitionInformation structure is used to describe a particular partition. Many of the fields
in this structure can be customized by an OEM. The fields are used as follows:

Type – Identifies the partition as physical or logical using a 32-bit ASCII identifier of “Phys”
(0x50687973) or “Logi” (0x4C6F6769).

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 55

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Usage – 32-bit identifier to specify the use of the partition. This can be a vendor-specific value
or a predefined vlaue:

• “Boot” – 0x424F4F54

• “OSLD” – 0x4F534C44

• “KRNL” – 0x4B524E4C

• “FFOS” – 0x46464F53

• “FSYS” – 0x46535953

Identifier – The 32-bit identifier specified by the OEM to track the partition (if multiple
partitions of the same type are used).
Partition attributes – The 32-bit word of attribute flags used to define partition
attributes.
Starting Address – Absolute byte address for the LSB of the partition. For hard partitions,
this value would normally be 0x0; for logical partitions, this value would be the offset from the
base of the Flash.
Ending address – Absolute byte address of the MSB in the partition.
RsvdPoolStartingAddr – Absolute byte address for the starting block of the reserved pool,
if used. If no reserved pool is present, this field is set to NULL.
RsvdPoolSize – Size of the reseved pool, in bytes. If no reserved pool is present, set this field
to NULL.
RsvdPoolAlg – One of three 32-bit identifiers used to define the direction of the reserved pool
growth:

• NULL – Reserved pool not used.

• “UPWD” – 0x55505744 – Reserve pool grows up.

• “DNWD” – 0x444E5744 – Reserved pool grows down.

RuntimeBBT_Type – The 32-bit identifier used to identify the runtime BBT type being used:

• “MBBT” – 0x4D424254 – Marvell bad-block Table.

• “WNCE” – 0x574e4345 – Microsoft® Windows® bad-block Table format.

• “Linx” – 0x4C695E78 – Linux® bad-block table format.

• NULL – Bad-block table NOT used.

• Custom – Any custom 32-bit identifier.

RuntimeBBTStartAddr – Absolute address of the runtime bad-block table Flash block, in
bytes.
BackupRuntimeBBTStartAddr – Absolute address of the backup runtime bad-block table
Flash block, in bytes. This is optional and should be set to NULL if not used.

Reserved fields are intended for future use. This includes support for 64-bit addresses as Flash
devices increase in size.

6.6.2.2 Operation
This section describes the suggested operation of the software implementation. It is meant as a
guide for software developers, but should not be considered the only approach. The goal is to define
some common methods for Flash management implementations in software, and to point out where
implementations can vary. In the end, a reliable Flash management implementation is required to
assure consistent mobile device operation for the end user.

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 56 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6.6.2.2.1 Common Software Implementations
Several concepts need to be common among all software implementations for the Flash
management method to be successful. Many of the concepts are common because the Boot ROM
implementation is the same for different Flash devices. This forces the lower levels of software to
adhere to some components of the implementation. Other concepts and components can vary
greatly at the OS level, where value add becomes more important.

First, there must be agreement on the general handling of Flash blocks. These concepts are not as
critical for all Flash devices. NOR devices and managed NAND devices have better user visible
characteristics than RAW NAND devices. In general, these concepts can apply to all devices.

A bad block is any block that has:

Been marked bad by the device manufacturer

Experienced a failure when an Erase command has been issued that results from bits that
cannot be reset from 0 to 1. An Erase failure from a power outage should be re-tried.

Experienced a program failure where the bits cannot be programmed correctly within an
allowable ECC correction threshold. A program operation can be tried more than once but, in
general, if two program attempts fail successively, the block should be marked as bad and no
longer used.

A corrupt block is any block that has a data error on a Read operation. The error may not be due to
block failure, but could be due to some other event. For Instance, and error can occur from a power
failure during a Program operation, or improper programming procedure in software algorithms.

A disturbed block is any block that has experienced data errors due to a Read Disturb phenomenon,
where the data is corrected by ECC and is usable, but the ECC threshold has been exceeded. The
data must be refreshed on the block before the number of errors exceeds what can be corrected by
the ECC algorithms.

A good block is any block that:

Passes a Read operation with the number of ECC corrections below the threshold.
Can be successfully erased and programmed with new data.

Having a common definition of various Flash block states helps understand why certain Flash
operations are required. Primarily, these operations help manage raw NAND Flash devices. For
other devices, some of the steps in the following flows never occur. For example, when reading a
NOR device, getting an ECC error is not expected, and the Read should always be successful. But
the basic flow operates the same way for both NAND and NOR.

All software that can program and erase Flash blocks must be able to detect a bad-block situation,
for all Flash, and properly relocate the block on a NAND Flash device. Once a bad block is detected,
several steps ensure there is no loss of data.The flows in Figure 8 through Figure 12 are suggested
flows and should be customized based on the implementation requirements. The flows are also
geared towards boot partitions where data reliability is the highest importance. For implementations
that are performance sensitive or that incorporate wear-levelling features, these algorithms should
be modified as needed.

Figure 8 shows the general flow for handling a relocation of a block on a NAND device. The
relocation flow may not be required on a managed NAND or NOR device. One key step is to erase
the block that was found bad after the data has been relocated. This step is performed to avoid using
stale data at a later time if the block is read by another software layer.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 8: Flow for Relocating a Block Found Bad During Runtime

When erasing a block, the flow shown in Figure 9 should be used as a guideline. The one
assumption is that the data resides in volatile memory before the Erase operation begins. To ensure
the data is in volatile memory, use a Read/Modify/Erase/Write sequence for runtime operation. The
details of this operation are at the software developer’s discretion.

Figure 9: Erase Operation Flow

The program operation is detailed in Figure 10. The important step for this operation is to ensure that
the data is within the ECC threshold after the program operation. ECC thresholds applies to MLC
technologies where data errors are expected and ECC is used to correct most errors.

Failure

Done

Scan runtime BBT
and locate next

available block in
reserved pool

Success
Erase RSVD Block

Block is Bad
Mark block as bad in the

runtime table

Start - Bad Block detected
Note: It is assumed that the data
from the entire block has been
read into memory before the

relocation process starts

Program Data to
RSVD Block:
See Program

Operation Flow

Success

Erase Bad Block

Update and
program new
runtime BBT

Relocate
Block

Failure

Done
Scan BBT

If block is relocated,
use relocated block

Success
Erase

Block is Bad

Start

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 58 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 10: Program Operation Flow

The Read operation described in Figure 11 adds a check after the data is read to verify the number
of ECC corrections that were required. This check is not needed for all devices, but for those that
support ECC, it should be checked after every Read operation. MLC NAND has a high number of
ECC bit corrections. Once the correction level exceeds a predefined threshold, the block must be
refreshed using a Read/Modify/program operation as detailed in Figure 12. For MLC NAND,
exceeding the ECC threshold occurs due to the Read phenomenon that is possible with this
technology.

Figure 11: Read Operation Flow

Write Within ECC
threshold?

Relocate
Block

Failure

Success Read
Yes Write

Complete
Success

No
FailureFailure

Was this
the first time you
tried writing to

this block?

No

Yes

Scan BBT
If block is relocated,
use relocated block

Success

Erase

Block is Bad

Start

Within ECC
threshold?

Read Yes

Read
Complete

No

Scan BBT
If block is relocated,
use relocated block

Block is Bad

Block needs
a refresh. Refresh

successful ?

Start

Relocate
Block

Yes

No

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 59

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 12: Refresh Operation for Blocks with Read Disturb

6.6.2.3 Boot Partition and Boot Process
This section describes the methods and algorithms as well as the layout of the boot partition that is
used by the Marvell Boot ROM. Additional information about the Boot ROM is provided in the
Marvell Boot ROM specification.

6.6.2.3.1 Boot ROM Flow and Expected Boot Partition Layout
The boot partition is a read-only partition that contains critical boot information and boot loaders. The
level of protection to implement for the boot partition depends on the Flash device chosen and the
needs of the OEM. Types of protection can include the following:

Hardware locking mechanisms where the Flash provides the capabilities through hardware
signalling to lock Write access to blocks in the Flash device.

Software locking mechanisms where the Flash device offers commands issued through
software to lock Flash device blocks.

Logical separation where the Flash is partitioned logically through software, but no physical
protection is implemented.

Figure 13 shows the expected layout of the boot partition. The critical boot data resides in Block 0
with a backup copy in Block 1 (or the first good block after Block 1). The boot layout can be applied
to all Flash device types, not just NAND devices. This methodology can have benefits for FOTA
even on NOR or managed NAND platforms. Even if a power failure occurs during an update of
critical data, the backup block still books and continues the updates. The critical data needed to boot
the platform includes the NTIM header, factory bad-block table for NAND platforms, and partitioning
table (if multiple partitions are present). The next critical piece for boot operation is the OEM Boot
Module. This first-level loader can reside in the same block as the header information, such as Block
0 and Block 1, if it is small enough to fit within the block size. Optionally, it can be placed elsewhere
in the boot partition in a separate physical block.

The next important consideration is the location of the reserved pool for the boot partition. A
reserved pool for the boot partition must reside in Blocks 2 through Block n. This location falls
immediately after the backup block, Block 1, to streamline the boot process in the event of bad-block
scenarios. When the platform is provisioned, there is no way to know which blocks might be bad.
This scenario has the potential to make initial programming a cumbersome and complex task. If
Block 1 is bad from the factory and Block 0 goes bad during a runtime operation, the location of the
reserved pool must be in a location that the Boot ROM knows about. To avoid potential boot issues

Failure

Done

Read entire block into
 volatile memory DDR or

ISRAM. Make any necessary
modifications to update the data.

Success
Erase Block

Block is Bad

Start – ECC threshold exceeded on
read operation

Program Data to
Block:

See Program
Operation Flow

Success

Failure

Relocate
Block

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 60 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

and provisioning issues, the reserved pool MUST be located starting at Block 2 and grow up from
there. The algorithm performs the following steps during the boot process to locate the backup block
in the event Block 0 becomes bad.

Start:

1. Read the critical boot data from Block 0. Check for the NTIM if the data is good. Perform a boot
if the NTIM is found.

Loop:

2. Check for the backup block if the NTIM is not found or data is corrupt. Check for the NTIM if
data is good. Perform a boot if the NTIM is found.

3. Increment the pointer to the next block. Now the blocks in the reserved pool are being
consumed by boot code and the reserved pool usage must be adjusted to account for this
modification in the reserved pool size.

4. Have all possible backup blocks been checked? If not, then Loop.
5. At least 10 blocks have been checked and no NTIM has been found. Wait for a download or

terminate the boot process.
Boot:

Continue loading images.

Figure 13: Boot Partition Layout

Reserved Pool
First RP entry

Last RP entry

Runtime BBT

Backup Runtime BBT

Other Boot Images

Block 1

Block 0

TIM

TIM

FBBT

FBBT

PT

PT

OBM (opt)

OBM (opt)

Block N

NTIM

NTIM

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 61

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

The benefit of the reserved pool may not be immediately clear from the boot process alone. When
the platform is first provisioned, the Flash programming tool must first gather the bad-block
information for a NAND device. If Block 1 is bad, this could have a ripple effect on the system if
images were placed in Block 2 instead of the reserved pool. Because of the algorithm used, in the
event that Block 0 goes bad during a runtime operation, the backup block would force the Flash
programming tool to perform unnecessary relocation operations until a good block was found for the
backup block. To avoid the ripple effect at programming time, the reserved pool location is moved so
that the reserved pool blocks can be consumed if Block 1 is bad from the factory. Then the Flash
programming tool can simply make an adjustment to the reserved pool start and size.

To satisfy the Write ordering requirements of MLC NAND devices, all blocks are programmed in
linear order starting with the least significant page of the block and ending with the most significant
page of the block. From the Boot ROM perspective, only the NTIM and OBM are required to boot.
The bad-block table and partition table are optional. However, if the bad-block table and partition
table are missing, then the boot process becomes a best effort boot and may fail under certain
circumstances, especially with NAND devices.

In the absence of the bad-block table, the Boot ROM relies on the NTIM specified addresses for
booting the system. In the event of a data error, the boot process would be terminated. With a bad-
block table in place, a data error would cause the Boot ROM to look for a relocated block and
attempt to boot using data from the reserved pool.

If the partition table is not present, the entire device is considered to be the boot partition, where the
layout of the Flash remains consistent with the boot partition layout. With low-level software viewing
the entire flash as a boot partition, there may be some changes at the OS level where the reserved
pool location is now at the beginning of the Flash. One option would be to reserve a few blocks in the
beginning to satisfy the backup block requirements, then have another reserved pool located
elsewhere in the Flash for use by the OS. The Boot ROM does not prevent this from happening and
would still boot the system.

Under normal circumstances where all boot data is present, the boot would be as shown in
Figure 14 for an initialized system. The Boot ROM stores Read Disturb information, for the block that
it reads, to allow the OBM to handle any Read Disturb phenomenon. Figure 15 provides details of
the uninitialized boot flow where a download happens. The uninitialized flow is expected to happen
only when the Flash on the platform has not been programmed.

Figure 14: Boot Flow for an Initialized Platform

Read Block Found
TIM?

Found
PT?

Locate
Runtime BBT

Found
runtime
BBT?

Load OBM
using Boot

Partition BBM

Store Read Disturb
Info for Block 0
and OBM block

Transfer to OBM

Load OBM
using FBBT

Found
OBM?

Recovery
Routine

No

Yes Yes Yes

YesIncrement
Block

NoYes

No

Null out
PT Pointer

No No

Was this
block 10?

Start with
Block 0

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 62 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Figure 15: Boot Flow for an Uninitialized Platform

6.6.2.3.2 Boot Process for Higher Level Software (Post Boot ROM)
This section provides details of the general steps required to boot the system once the Boot ROM
has transferred to the next layer of software. The implementation provides flexibility for OEMs to add
value. Not all of the steps are required; whenever possible, optional steps are distinguished from
required steps.

In general, all software in the software stack must be able to interpret the software structures defined
in section Section 6.6.2.1, Important Structures. These structures provide necessary details about
the system layout, image location, and other important details. These structures can be interpreted
and then translated into customized formats, if necessary. For instance, the factory bad-block table
could be translated into a different runtime format that is proprietary to the operating system, such as
a bit map. However, the original factory bad-block table must not be overwritten as this would cause
issues during the boot process when the Boot ROM is running.

The next general requirement is that all higher level software must be able to handle a “Bad Block,”
“Disturbed Block,” and “Good Block” as described in section Section 6.6.2.2.1, Common Software
Implementations. The higher level software may or may not be capable of handling a “corrupt block”
as defined in section Section 6.6.2.2.1, Common Software Implementations. This is implementation
dependent. To properly handle these types of blocks, the flows in Figure 8 through Figure 12 must
be implemented. Also, the requirements of MLC NAND devices should be adhered to as described
in the manufactures device specification.

At a high level, follow these steps as part of the boot process:

1. Locate the Read Disturb information remaining in memory by the Boot ROM. This information is
gathered from the Flash device by reading the boot block, NTIM, bad-block, and partition table
information.

2. Locate and read the next image in the boot process from Flash using the NTIM or by a
proprietary method.

3. Check the ECC information on all blocks read from Flash to determine if the ECC is within the
threshold.

4. Handle the disturbed blocks by implementing the refresh flow from Figure 12.

5. For bad blocks found during the refresh or normal boot process, relocate the block by
implementing the flow found in Figure 8.

Read Block Found
TIM?

Download Device
Keying Binary
and transfer

Increment
Block

Yes

No

Was this
block 10?

Start with
Block 0

If a TIM is found,

this is an initialized boot
Yes

No

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 63

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

6. Once the next image has been loaded and maintenance tasks handled, prepare to transfer to
the next image. This transfer includes gathering and storing any information required for the
next layer of software.

7. Transfer control to the next image.

6.6.2.3.3 Special Considerations for the OEM Boot Module
The OEM boot module has some special tasks in addition to those defined in the previous steps
because the Boot ROM may not be able to fix Read Disturbs or other issues with Flash blocks.
When the Boot ROM reads the blocks that contain the boot information and OBM binary, it checks
the ECC threshold and stores the results. Upon transfer to the OBM, it becomes the duty of the OBM
to check the results passed up from the Boot ROM and to refresh any blocks that were read by the
Boot ROM and identified as out of the ECC threshold.

6.6.2.3.4 Special Considerations for the Operating System Software
Once the platform is fully operational, there are special considerations at the OS level for MLC
NAND devices to operate reliably. Because the majority of the Flash is reserved for operating
system usage, the OS must periodically check ECC thresholds across any area of the device that it
can read or write. This ECC threshold “check” should be a low-frequency algorithm that runs in the
background as a “garbage collection” type of activity.

6.6.2.4 Requirements for Flash Burning Utilities
Utilities that program the Flash have some additional duties to perform. The algorithms must
consider development environments as well as manufacturing environments. Also, customer
features for downloading versus preprogramming the Flash or parts of the Flash must be
considered. The raw MLC NAND devices are the worst case for programming complexity. However,
some hybrid devices require complex partitioning of the device.

In general, the Flash programming utilities must consider the following:

The device has been programmed before. For a device already in service, the factory bad-block
table must be preserved as well as any runtime updates. For a Flash device that has not
previously been in service, the entire device must be scanned to capture and save the factory
bad-block information.
Algorithms are needed when bad blocks are found and relocations are necessary.

The Boot ROM requires the relocation of the boot block and bad block to the appropriate areas
for reliable boot operations.

The operating system has requirements for partitioning or varying features, such as how to
handle missing partition information, or bad-block table information that is considered optional.

Backward compatibility issues. Several implementations already exist in products that cannot
be modified. The PXA320 processor has a version 2.xx Boot ROM, which uses only the last
page of Block 0 for a BBT. The PXA930 processor, PXA310 processor, and PXA300 processor
have a version 3.xx Boot ROM that implements some basic wear leveling capabilities within the
block. The PXA9XX processors have support for two wear levelling algorithms: one that grows
up and one that grows down.

The Flash burning utilities must perform the following steps to successfully program a platform:

1. Download images and boot information in an implementation-specific manner. In general, the
Flash Binary Format (FBF) must be supported for manufacturing environments. This format
allows the OEM to download and program the entire software stack for a fully functioning
system. In addition, support for development environments could be added that allows partial
download of the software stack.

2. Determine the proper Flash based on information downloaded in the NTIM or Master Header.

3. Scan the Flash to determine if it has been in service previously. For NAND devices, the factory
bad-block information and runtime bad-block information should be preserved. If this is the first

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 64 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

use of the Flash device, the factory information must be gathered and stored in the factory bad
block table. This step can be skipped if it is not a NAND-based device.

4. Determine if the device must be partitioned based on the boot information downloaded.
Partition as required. Treat the entire device as a boot partition if no partition information is
downloaded.

5. Once the factory information and partitioning is completed, start programming data to the
device.

Boot block and backup boot block must be programmed first. If the backup Block 1 is marked
bad from the factory, then use the first good block after Block 1. Also, create an entry in the
bad-block table noting that the block in the reserved pool has been used.

6. Now program the images to the Flash. If a block has been marked as “bad” by the factory, it
MUST NOT be erased as part of this process; skip it and relocate the block accordingly. If
additional blocks are determined to be “bad” from the programming process, then create in
memory a runtime bad-block table. This table is based off of the factory bad-block table, FBBT.
Bad blocks accumulate in memory until all images have been programmed.

7. After all of the images are properly programmed, including any validation that may be required,
transfer the runtime bad-block table to the Flash at the location indicated in the partition table for
the boot partition.

8. If the Flash utility can load the OBM and then boot after complete programming, load the boot
information into memory and pass to the OBM the BootInfoPointer structure.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

7 Marvell® ARMADA 16x Applications

Processor Family Implementation
The following tables provide implementation settings for the ARMADA 16x Applications Processor.

ARMADA 16x Applications Processor Boot ROM Register configurations:

Table 20, “ARMADA 16x Applications Processor Pin Mux Settings"

Table 21, “ARMADA 16x Applications Processor SMC register configuration for CS0 NOR and
OneNand"

7.1 ARMADA 16x Applications Processor Register
Settings

Table 20: ARMADA 16x Applications Processor Pin Mux Settings

Ball Name Signal Name Address Value

Shared NFC and SMC Data Signals

MFP_0 DF_IO15 0xD401_E04C 0x8C0

MFP_1 DF_IO14 0xD401_E050 0x8C0

MFP_2 DF_IO13 0xD401_E054 0x8C0

MFP_3 DF_IO12 0xD401_E058 0x8C0

MFP_4 DF_IO11 0xD401_E05C 0x8C0

MFP_5 DF_IO10 0xD401_E060 0x8C0

MFP_6 DF_IO9 0xD401_E064 0x8C0

MFP_7 DF_IO8 0xD401_E068 0x8C0

MFP_8 DF_IO7 0xD401_E06C 0x880

MFP_9 DF_IO6 0xD401_E070 0x880

MFP_10 DF_IO5 0xD401_E074 0x880

MFP_11 DF_IO4 0xD401_E078 0x880

MFP_12 DF_IO3 0xD401_E07C 0x880

MFP_13 DF_IO2 0xD401_E080 0x880

MFP_14 DF_IO1 0xD401_E084 0x880

MFP_15 DF_IO0 0xD401_E088 0x880

Shared SMC and NFC Control Signals

MFP_21 ND_ALE
SMC_nWE

0xD401_E0A0 0x880

MFP_22 ND_CLE
SMC_nOE

0xD401_E0A4 0x880

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 66 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

MFP_17 ND_nWE
SMC_LUA

0xD401_E090 0x880

MFP_24 ND_nRE
SMC_nLLA

0xD401_E0AC 0x880

Stat ic Memory Control ler SMC_CS0 Signals

MFP_18 SMC_nCS0 0xD401_E094 0x883

MFP_29 SMC_SCLK 0xD401_E0C0 0x880

MFP_28 SMC_RDY 0xD401_E0BC 0x2880

NAND Flash Controller Signals

MFP_16 ND_nCS0 0xD401_E08C 0x881

MFP_26 ND_RDY0 0xD401_E0B4 0x4881

SD/MMC3 Common Data Signals

MFP_0 MMC3_DAT7 0xD401_E04C 0x8C6

MFP_1 MMC3_DAT6 0xD401_E050 0x8C6

MFP_2 MMC3_DAT5 0xD401_E054 0x8C6

MFP_3 MMC3_DAT4 0xD401_E058 0x8C6

MFP_4 MMC3_DAT3 0xD401_E05C 0x8C6

MFP_5 MMC3_DAT2 0xD401_E060 0x8C6

MFP_6 MMC3_DAT1 0xD401_E064 0x8C6

MFP_7 MMC3_DAT0 0xD401_E068 0x8C6

SD/MMC3 Primary Control S ignals

MFP_8 MMC3_CLK 0xD401_E06C 0x8C6

MFP_9 MMC3_CMD 0xD401_E070 0x8C6

SD/MMC3 Secondary Control Signals

MFP_35 MMC3_CMD 0xD401_E0D8 0x8C6

MFP_36 MMC3_CLK 0xD401_E0DC 0x8C6

SD/MMC1 Signals

MFP_37 MMC1_DAT7 0xD401_E000 0x8C1

MFP_38 MMC1_DAT6 0xD401_E004 0x8C1

MFP_54 MMC1_DAT5 0xD401_E044 0x8C1

MFP_48 MMC1_DAT4 0xD401_E02C 0x8C1

MFP_51 MMC1_DAT3 0xD401_E038 0x8C1

MFP_52 MMC1_DAT2 0xD401_E03C 0x8C1

MFP_40 MMC1_DAT1 0xD401_E00C 0x8C1

MFP_41 MMC1_DAT0 0xD401_E010 0x8C1

Table 20: ARMADA 16x Applications Processor Pin Mux Settings (Continued)

Bal l Name Signal Name Address Value

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 67

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

MFP_43 MMC1_CLK 0xD401_E018 0x8C1

MFP_49 MMC1_CMD 0xD401_E030 0x8C1

SPI Signals

MFP_107 SSP2_RXD 0xD401_E1AC 0x884

MFP_108 SSP2_TXD 0xD401_E1B0 0x884

MFP_110 GPIO_110 0xD401_E1B8 0x880

MFP_111 SSP2_CLK 0xD401_E1BC 0x884

MFP_112 GPIO_112 0xD401_E1C0 0x880

Table 20: ARMADA 16x Applications Processor Pin Mux Settings (Continued)

Bal l Name Signal Name Address Value

Table 21: ARMADA 16x Applications Processor SMC register configuration for CS0 NOR and
OneNand

Register Address Value Function

SMC_CSDFICFG0 0x51890009 0x00000000 —

SMC_CSADRMAP0 0x518900C0 0x00000000 —

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 68 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 69

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

8 Methods for Platform Provisioning
The requirements for platform provisioning depend on the operational model selected. This chapter
provides some guidance on provisioning a platform for operation with the Boot ROM. “Provisioning a
platform” means performing the required steps to turn an uninitialized system into an initialized
system capable of booting to an operating system. The provisioning process is a process of
programming the Flash device and providing required information to allow the Boot ROM to boot the
system on the next power-on reset. Therefore, the provisioning process takes a system from an
uninitialized state to an initialized state, allowing the device to be deployed by an end user.

Support tools are required to properly provision a system depending on the Flash devices selected.
Marvell provides the Marvell® Wireless Trusted Platform Tool Package as an example for OEMs.
This package contains all of the host tools and middleware required for non-trusted boot. Contact
your local Marvell field representative for more information.

Software and tools that may be required include:

Firmware capable of running on the target system and initializing the Flash, such as
programming images to the Flash at the proper locations, and initializing the Flash management
infrastructure (for NAND devices).
Host tools running on a PC that can generate the NTIM binary images, and communicate with
the target for downloading images.

There are two basic methods of provisioning: pre-programming and downloading. Each method
requires slightly different tools to accomplish the provisioning process. Pre-programming supports
high-volume manufacturing processes. Downloading is development or manufacturing depending
on the OEM requirements. Details of both methods are provided in the following sections.
Differences between a development system and a manufacturing system are highlighted whenever
possible.

8.1 Non-Trusted Provisioning
The non-trusted boot process occurs on the platform upon every reset of an initialized platform. The
non-trusted boot processes use the information stored in the Non-Trusted Image Module (NTIM) to
load the images from Flash memory before transferring control, if required. Use the provisioning
process described in this section to store an NTIM on an uninitialized platform.

The first step toward provisioning a non-trusted system is to review the use cases to determine the
requirements. During this time, consider the following:

1. How the Flash device is programmed and initialized. Several options are available:
Pre-Programming:

• Using the JTAG port using the JTAG software package

• By a high volume Flash programming vendor

Downloading using a separate software/firmware image. The Boot ROM supports downloading
over the USB port. The “Device Keying Binary” is a reference software image that is provided in
the Marvell® Wireless Trusted Platform Tool Package.

2. The Flash device that is used for booting the system. The options are:

• X16 NAND device on data Flash Controller Chip Select 0

• X8 NAND device on data Flash Controller Chip Select 0

• XIP device on the Static Memory Controller Chip Select 0

• OneNand/FlexOneNand device

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 70 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

• SD/MMC device

3. The size of the first boot loader binary. Size implications must be reviewed and are affected by
processor internal SRAM available, Flash management implementation, and Flash device
chosen. The “OEM Boot Module” is a reference first level boot loader image that is provided in

the Marvell® Wireless Trusted Platform Tool Package.

8.1.1 Provisioning a Non-Trusted Boot Platform Using the
Download Method
Complete these steps fully to provision an uninitialized platform using the download capabilities of
the Boot ROM.

Preparation:

1. Decide on the usage model for booting the system.

2. Prepare a Device Keying Binary or other firmware image, a Non-Trusted Image Module binary
to describe the Device Keying Binary, using the Marvell Wireless Trusted Platform Tool
Package or a custom tool created by the OEM.

3. Prepare the OEM boot module and associated operating system images, as well as a second
NTIM binary to describe them, using the Marvell Wireless Trusted Platform Tool Package or a
custom tool created by the OEM.

Provisioning:

a) Boot the target platform and first download the Non-Trusted Image Module and associated
Device Keying Binary created in Step 2 using the download tool available in the Marvell
Wireless Trusted Platform Tool Package or a custom tool created by the OEM.

b) The Device Keying Binary runs on the system and must perform all of the requirements
documented in Section 8.1.1.1

c) The Non-Trusted Image Module, OEM boot module, and associated OS images created in
Step 3 are downloaded by the Device Keying Binary using the download tool available in the
Marvell Wireless Trusted Platform Tool Package or a custom tool created by the OEM.

d) The Device Keying Binary must have the built-in capabilities to allow debug and testing of the
Non-Trusted Image Module, OEM boot module, and associated OS images created in
Step 3

Test:

4. As a last step, verify the non-trusted boot operation from a power-on reset.

8.1.1.1 Device Keying Binary Requirements for an Unprogrammed
Non-Trusted System
The Device Keying Binary is responsible for provisioning and preparing an uninitialized system for
initial boot. It must determine the Flash used to boot, program the proper images to the Flash, and if
the platform is a NAND platform, validate or create the relocation table.

An OEM may want to create multiple versions of the Device Keying Binary: one for use in
manufacturing, and one for use in development. The development Device Keying Binary could be
used to aid in platform debugging.

The Device Keying Binary is responsible for completing the following on non-trusted boot platforms:

Provide an interface through the USB port to print messages.
Provide an interface through the USB port to download binary images.

Set up the DDR memory to temporarily hold images that are to be stored on the boot device.
Set up all necessary Flashes to store the downloaded images. At a minimum, this would include
the OEM boot module.

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 71

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Initialize the Flash management structures on the Flash device, see “Flash Management” for
details.
Verify images are downloaded error free using an implementation-dependent method such as
CRC check, ECC check, or other method.
Set the initial value of fuses that control processor features and boot options, if required.

8.1.2 Provisioning a Non-Trusted Boot Platform Using the
Pre-Programming Method
Complete these steps fully to provision an uninitialized platform using the pre-programming
capabilities of a Flash programming vendor or JTAG development tools.

Preparation:

1. Decide on the usage model for booting the system.
2. Prepare the OEM boot module and associated operating system images, as well as a second

non-trusted image module binary to describe them, using the Marvell Wireless Trusted Platform
Tool Package or a custom tool created by the OEM.

Provisioning:

a) The pre-programming software must perform all of the requirements documented in
Section 8.1.2.1

b) The Non-Trusted Image Module, OEM boot module, and associated OS images created in
Step 2 are programmed to the Flash according to the NTIM Flash load address for each
image.

Test:

3. As a last step, verify the non-trusted boot operation from a power-on reset.

4. If required, the OBM must be able to program processor fuses on the first boot attempt.

8.1.2.1 Pre-Programming Requirements for an Unprogrammed Non-Trusted
System
The pre-programming software must complete the following tasks for the Boot ROM to boot the
system:

Set up all necessary Flashes to store the images. At a minimum, this would include the OEM
boot module and NTIM.

Initialize the Flash management structures on the Flash device, see “Flash Management” for
details.

Verify images are downloaded error free using an implementation-dependent method such as
CRC check, ECC check, or other method.

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 72 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Communication Protocol

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 73

9 Communication Protocol
The section describes the relevant details of the USB/UART communication protocol to allow OEMs
to port their existing proprietary USB/UART applications to support communication with the Boot
ROM.

The communication protocol is used to download images during the device keying process, as well
as for the JTAG re-enabling process.

Refer to Table 1 for support of this feature.

In this section, the "Host" refers to the WTPTool.exe application and "Target" refers to the Boot
ROM.

The communication protocol follows a strict handshaking methodology, which is always initiated by
the host. The host sends a command packet and the target responds with a status packet (response
packet).

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 74 November 2010 PUBLIC RELEASE

Figure 16: Download Flow Diagram

NOTE: 1. The disconnect command is only issued after the target has transmitted all
of the files.
2. The data header and data command/response packets are sent continually
until all data has been transmitted.

Communication Protocol
Preamble

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 75

9.1 Preamble
The preamble data stream is a 4-byte data packet containing 0x00, 0xD3, 0x02, and 0x2B.
Table 22 represents a 32-bit word: 0x2B02D300. The preamble data stream requires that the bytes
are in network byte ordering.

The target responds to the preamble from the host with the same preamble.

9.2 Structure for Host Commands
The structure of all commands sent by the host follows this format:

struct Command
{

Byte CMD
Byte SEQ
Byte CID
Byte Flags
Unsigned intLEN
Byte [LEN]Data

}

CMD (Command) – Contains the opcode that indicates the type of command being sent. The
size is 1 byte.

SEQ (Sequence) – Used during data transmission (when the data command is used) to ensure
that the block of data that the host sends matches the block of data that the target is expecting.
The sequence number is 0 for all other commands. The sequence number is 1 for the first data
transmission, 2 for the second, and so on. Since the size of the sequence field is 1 byte, the
sequence number rolls over after 255 data transmissions.

CID (Command ID) – Specific number that relates all of the commands (and responses) of a
single flow. A flow is the communication from the preamble to the “done” acknowledgement.
The host defines the CID when it sends the first command after the preamble. The same CID is
used until the done command after a download or a JTAG reenablement. If another download
follows, the host must generate a new CID for the next download flow (after the next preamble).

Flags – Bits [7:1] are reserved.
Bit 0 – Endian format of the data. Once set, this flag must remain the same throughout the flow.

• 1 = big Endian

• 0 = little Endian

LEN (Data Length in Bytes) – Number of bytes of the data field in the current command. This
length does not include the CMD, SEQ, CID, Flags, or LEN fields. It is the total length (in bytes)
of the data in the data field only. The LEN field itself is 4 bytes long, and is in little-endian format.
Data – Data field associated with the current command. The number of bytes of this field must
equal the LEN value above. If LEN is zero, then this field does not exist. On a word (32-bit)
basis, the default configuration is to send the data in little-endian format.

Table 22: Preamble
Byte-3 Byte-2 Byte-1 Byte-0

0x2B 0x02 0xD3 0x00

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 76 November 2010 PUBLIC RELEASE

9.3 List of Commands
Table 23 lists all commands sent by the host.

x: LEN value is variable: SEQ number is incremental

9.4 Structure of Status Responses
The structure of all status responses sent by the target follows this format:

struct Status
{

ByteCMD
ByteSEQ
ByteCID
ByteStatus
ByteFlags
ByteLEN
Byte[Len]Data

}

CMD – Same opcode as the command this response packet is acknowledging.
SEQ (Sequence) – Used during data transmission in response to a data command to keep the
host and target in synchronization. The sequence number is 1 for the first data transmission, 2

Table 23: Host Commands

Commands CMD SEQ LEN Data Comment

Public Key 0x24 0 0 None Indicates that the next command is a data command
containing the public key

Password 0x28 0 0 None Tells the target to send a 64-bit password

Signed Password 0x25 0 0 None Indicates that the next command is a data command
containing the signed password

Get Version 0x20 0 0 None Tells the target to send the version information

Select Image 0x26 0 0 None Tells the target to respond with the image type to be
downloaded

Verify Image 0x27 0 1 0 = ACK
1 = NACK

Tells the target whether the image type asked for in
Select Image is available

Data Header 0x2a y 4 Size Tells the target how much data is left to be downloaded

Data 0x22 y x Data Sends the target the next block of data

Message 0x2b 0 0 None Tells the target to send its message

Done 0x30 0 0 None Tells the target that the current flow is complete, yet
more images are available for download

Disconnect 0x31 0 0 None Tells the target that the current flow is complete and
there are no more images left to download

Note
The CID is not listed in Table 23 because it is unique to each flow.

Communication Protocol
Responses

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 77

for the second, and so on. Since the size of the sequence field is 1 byte, the sequence number
rolls over after 255 data transmissions.
CID (Command ID) – Specific number that relates all of the commands (and responses) of a
single flow. A flow is the communication from the preamble to the “done” acknowledgement.
The host defines the CID when it sends the first command after the preamble. The same CID is
used until the “done” command after a download or a JTAG re-enablement. If another download
follows, the host must generate a new CID for the next download flow (after the next preamble).
Status – Status code of the target in response to the last command sent by the host.
Flags – Bits [7:2] are reserved.
Bit 0 – Message Flag. Tells the host that the target needs to send a message. The next
command the host should send is a message command. The target lowers this flag when no
messages remain in the queue.

• 1 = message waiting to be sent

• 0 = no messages

Bit 1 – Message Type. This flag is applicable only when sent in a message response packet (the
response packet CMD is 0x2B). This flag tells the target whether data in the data field is an
ASCII string or an integer value representing an error code.

• 1 = integer error code

• 0 = ASCII string

For additional information about messaging, see Section 9.6, Messages.

LEN (Data Length in Bytes) – Size of the data field of the current response. It is the total length
(in bytes) of the data in the data field only. The maximum value of LEN is 255 bytes.
Data – Data field associated with the current response. The number of bytes of this field must
equal the LEN value above. If LEN is zero, then this field does not exist. On a word (32-bit)
basis, this data is in little-endian format. The maximum size of the data field is 255 bytes.

9.5 Responses
Every command sent by the host requires the target to respond with a status packet. Some of the
responses require data in the data field while others do not. Table 24 describes the contents of the
data field for each response packet.

Table 24: Target Responses

Commands CMD LEN Data

Public Key 0x24 0 No data needed

Password 0x28 8 A 64-bit password

Signed Password 0x25 0 No data needed

Get Version 0x20 12 Version information
The first 4 bytes are ASCII characters and
represent the target stepping version. The
second 4 bytes is an integer capturing the
date. The last 4 bytes are ASCII characters
and represent the type of processor.

Select Image 0x26 4 Image Identifier

Verify Image 0x27 0 No data needed

Data Header 0x2a 4 A 32-bit integer that tells the host how much
data to send in the next Data command

Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page 78 November 2010 PUBLIC RELEASE

9.6 Messages
At any time during the communication process, the target may send a text message to the host by
the target raising Bit 0 of the flag field. The host should then send the message command as the
following command.

9.7 Disconnect
After the target has finished downloading all of the images, the host issues the disconnect
command. The target does not respond to the command until it has finished its operations, which
allows the target to fill up the message queue with any messages needed to be sent to users.

Once the target issues the response packet to the disconnect command, the host must check the
message flag. If the flag is not set, the host shuts down and the target transfers control. However, if
the flag is set, the host must continue issuing message commands until the message flag is lowered.
The host should ignore the status field during this sequence.

9.8 Status Codes
Table 25 describes the current status codes communicated back to the host application.

Data 0x22 0 No data needed

Message 0x2b x ASCII string
This is a message that the target wants
printed for the user.

Done 0x30 0 No data needed

Disconnect 0x31 0 No data needed

Table 24: Target Responses (Continued)

Commands CMD LEN Data

Note

The host is not required to send the message command as soon as the message flag
has been raised. The target keeps the message in the queue and the message flag bit
raised until the message command is sent and the message has been handled.

Table 25: Status Codes

Error Code Descript ion

0x00 ACK

0x01 NACK

0x02 Sequence error

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 79

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

A Return Code Definitions

When the Boot ROM encounters an error, it logs it in Internal memory at address 0xD102005C.The
following list contains the return codes and definitions.

/ * * General Error Code Def ini t ions ** / 0x0 - 0x1F

NoError 0x0

NotFoundError 0x1

GeneralError 0x2

WriteError 0x3

ReadError 0x4

NotSupportedError 0x5

InvalidPlatformConfigError 0x6

PlatformBusy 0x7

PlatformReady 0x8

InvalidSizeError 0x9

ProbeListExhaustError 0xA

DDR_NotInitializedError 0xB

PlatformDisconnect 0xC

/ * * Flash Related Errors **/ 0x20 - 0x3F

EraseError 0x20

ProgramError 0x21

InvalidBootTypeError 0x22

ProtectionRegProgramError 0x23

NoOTPFound 0x24

BBTReadError 0x25

MDOCInitFailed 0x26

OneNandInitFailed 0x27

MDOCFormatFailed 0x28

BBTExhaustedError 0x29

NANDNotFound 0x2A

SDMMCNotFound 0x2B

FlexOneNANDNotFound 0x2C

SDMMCReadError 0x2D

XIPReadError 0x2E

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 80 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

FlexOneNANDError 0x2F

FlashDriverInitError 0x30

FlashFuncNotDefined 0x31

OTPError 0x32

InvalidAddressRangeError 0x33

FlashLockError 0x34

ReadDistrurbError 0x35

FlashReadError 0x36

SPIFlashNotResponding 0x37

ImageOverlayError 0x38

/ * * NFC Related Errors ** / 0x40 - 0x5F

 NFCDoubleBitError 0x40

NFCSingleBitError 0x41

NFCCS0BadBlockDetected 0x42

NFCCS1BadBlockDetected 0x43

NFCInitFailed 0x44

NFCONFIConfigError 0x45

NFC_WRREQ_TO 0x46

NFC_WRCMD_TO 0x47

NFC_RDDREQ_TO 0x48

NFC_RDY_TO 0x49

NFCCS0CommandDoneError 0x4A

NFCCS1CommandDoneError 0x4B

NFC_PGDN_TO 0x4C

/ * * NTIM Related Errors** /

InvalidTIMImageError 0x6A

TIMNotFound 0x6D

/ ** Download Protocols **/ 0x90 - 0xAF

DownloadPortError 0x90

DownloadError 0x91

FlashNotErasedError 0x92

InvalidKeyLengthError 0x93

DownloadImageTooBigError 0x94

UsbPreambleError 0x95

TimeOutError 0x96

UartReadWriteTimeOutError 0x97

Copyright © 11/15/10 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page 81

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

UnknownImageError 0x98

MessageBufferFullError 0x99

NoEnumerationResponseTimeOutError 0x9A

UnknownProtocolCmd 0x9B

UsbRxError 0x9C

/ * * JTAG ReEnable Error Codes **/ 0xB0 - 0xCF

JtagReEnableError 0xB0

JtagReEnableOEMPubKeyError 0xB1

JtagReEnableOEMSignedPassWdError 0xB2

JtagReEnableTimeOutError 0xB3

JtagReEnableOEMKeyLengthError 0xB4

/ * * SD/MMC Error ** /

SDMMC_SWITCH_ERROR 0xD0

SDMMC_ERASE_RESET_ERROR 0xD1

SDMMC_CIDCSD_OVERWRITE_ERROR 0xD2

SDMMC_OVERRUN_ERROR 0xD3

SDMMC_UNDERUN_ERROR 0xD4

SDMMC_GENERAL_ERROR 0xD5

SDMMC_CC_ERROR 0xD6

SDMMC_ECC_ERROR 0xD7

SDMMC_ILL_CMD_ERROR 0xD8

SDMMC_COM_CRC_ERROR 0xD9

SDMMC_LOCK_ULOCK_ERRROR 0xDA

SDMMC_LOCK_ERROR 0xDB

SDMMC_WP_ERROR 0xDC

SDMMC_ERASE_PARAM_ERROR 0xDD

SDMMC_ERASE_SEQ_ERROR 0xDE

SDMMC_BLK_LEN_ERROR 0xDF

SDMMC_ADDR_MISALIGN_ERROR 0xE0

SDMMC_ADDR_RANGE_ERROR 0xE1

SDMMCDeviceNotReadyError 0xE2

SDMMCInitializationError 0xE3

SDMMCDeviceVoltageNotSupported 0xE4

SDMMCWriteError 0xE5

 Marvell® ARMADA 16x Applications Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 11/15/10 Marvell

Page 82 November 2010 PUBLIC RELEASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Acronyms and Abbreviations

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page B-83

B Acronyms and Abbreviations

Table B-1: Acronyms and Abbreviations

Acronym Definit ion

BSP Board Support Package

CRC Cyclic Redundancy Check

DFI Data Flash Interface

ECC Error-Correcting Code

FFUART Full-Featured Universal Asynchronous Receiver-Transmitter

HWR Hardware Reset

NFC NAND Flash Controller

NTIM Non-Trusted Image Module

OBM OEM Boot Module

OEM Original Equipment Manufacturer

ONFI Open NAND Flash Interface

OSBM OEM System Boot Module

OTP One Time Programmable

POR Power On Reset

RNG Random Number Generator

SBE Secure Boot Enable

SDE Secure Download Enable

TIM Trusted Image Module

USB Universal Serial Bus

WDR Watchdog Reset

WTM Wireless Trusted Module

WTP Wireless Trusted Platform

WTPSP Wireless Trusted Platform Service Package

Marvell® ARMADA 16x Application Processor Family
Version 3.2.x Boot ROM Reference Manual

Doc. No. MV-S301208-00 Rev. - Copyright © 2010 Marvell

Page B-84 November 2010 PUBLIC RELEASE

Revision History

Copyright © 2010 Marvell Doc. No. MV-S301208-00 Rev. -

November 2010 PUBLIC RELEASE Page C-85

 C Revision History

Table C-1: Revision History

Revision Major Changes to Document

PUBLIC RELEASE • Initial Release (October 2010)

Marvell. Moving Forward Faster

Marvell Semiconductor, Inc.
5488 Marvell Lane

Santa Clara, CA 95054, USA

Tel: 1.408.222.2500
Fax: 1.408.752.9028

www.marvell.com

Back Cover

www.marvell.com

	Marvell® ARMADA 16x Applications Processor Family
	Version 3.2.x Boot ROM Reference Manual
	Table of Contents
	List of Figures
	List of Tables
	1 Boot ROM Functional Overview
	1.1 General Description
	1.2 Changes from Previous Stepping
	1.3 Purpose Of This Document
	1.4 ROM Location, Size, and Mapping
	1.5 Marvell Boot ROM Features

	2 Marvell® ARMADA 16x Applications Processor Family Boot Feature Overview
	2.1 Boot Memory
	2.2 Autoboot on an Uninitialized System
	2.3 Download Capabilities

	3 Image Modules
	3.1 Image Module Format
	3.2 Version Information
	3.2.1 Flash Information
	3.2.2 Image Module Sizing Information
	3.2.3 Image Information Array
	3.2.4 OEM Reserved Area[SizeOfReserved]

	3.3 Reserved Area Format
	3.3.1 Reserved Area Header
	3.3.2 Reserved Area Packages

	3.4 Predefined Packages
	3.4.1 GPIO Package
	3.4.2 UART/USB Protocol Packages
	3.4.3 DDR Packages
	3.4.3.1 Configure Memory Controller Control (CMCC Package)
	3.4.3.2 DDRC (Custom) Package

	3.4.4 USB Vendor Request Package
	3.4.5 Resume From Hibernate Package
	3.4.6 Summary of Predefined Package IDs

	4 Boot ROM DRAM Initialization Details
	4.1 Default Operation
	4.2 Configuring DDR

	5 Non-Trusted Image Module
	6 Marvell® ARMADA 16x Applications Processor Boot ROM Operation Details
	6.1 General Operation
	6.2 Flash Types Supported: NAND Flash
	6.2.1 Boot ROM NAND Device Recognition
	6.2.2 XIP Flash Support
	6.2.2.1 NOR Flash on Chip Select 0
	6.2.2.2 Managed NAND on Chip Select 0
	6.2.2.3 Samsung OneNAND and FlexOneNAND

	6.2.3 SD/MMC Devices
	6.2.4 SPI Flash Devices
	6.2.4.1 SPI Command Sets
	6.2.4.2 SPI Device Detection

	6.3 Preprogrammed Flash Requirements
	6.4 Download Capability
	6.4.1 USB Port
	6.4.2 Error Reporting Capability

	6.5 Resume From Hibernate
	6.6 Flash Management
	6.6.1 Legacy Bad-Block Management
	6.6.1.1 Bad-Block Table (BBT) Location
	6.6.1.2 Bad Block Table Definition
	6.6.1.3 Bad Block Relocation Area

	6.6.2 Marvell Flash Management with Partitioning Support
	6.6.2.1 Important Structures
	6.6.2.2 Operation
	6.6.2.3 Boot Partition and Boot Process
	6.6.2.4 Requirements for Flash Burning Utilities

	7 Marvell® ARMADA 16x Applications Processor Family Implementation
	7.1 ARMADA 16x Applications Processor Register Settings

	8 Methods for Platform Provisioning
	8.1 Non-Trusted Provisioning
	8.1.1 Provisioning a Non-Trusted Boot Platform Using the Download Method
	8.1.1.1 Device Keying Binary Requirements for an Unprogrammed Non-Trusted System

	8.1.2 Provisioning a Non-Trusted Boot Platform Using the Pre-Programming Method
	8.1.2.1 Pre-Programming Requirements for an Unprogrammed Non-Trusted System

	9 Communication Protocol
	9.1 Preamble
	9.2 Structure for Host Commands
	9.3 List of Commands
	9.4 Structure of Status Responses
	9.5 Responses
	9.6 Messages
	9.7 Disconnect
	9.8 Status Codes

	A Return Code Definitions
	B Acronyms and Abbreviations
	C Revision History

