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ABSTRACT 

This paper presents the design and implementation of a 

wearable oral sensory system that recognizes human oral 

activities, such as chewing, drinking, speaking, and 

coughing. We conducted an evaluation of this oral sensory 

system in a laboratory experiment involving 8 participants. 

The results show 93.8% oral activity recognition accuracy 

when using a person-dependent classifier and 59.8% 

accuracy when using a person-independent classifier. 

Author Keywords 

Sensing, Activity Recognition, Oral Activity Recognition 

ACM Classification Keywords 

C.3 Special-purpose and application-based systems:  

Signal processing systems. 

INTRODUCTION 

The human mouth is one part of the human body that is 

almost always in constant use. We use our mouth to 

perform some of the most important daily functions, such as 

eating, drinking, speaking, coughing, breathing, and 

smoking. Because our mouth is an opening into assessing 

the health of the human body, it presents the opportunity for 

the placement of a strategic sensor for detecting human oral 

activities. For this study, we developed such an oral sensory 

system, where we explored the use of a small motion sensor 

embedded inside artificial teeth for the recognition of 

human oral activities. The detection of human oral activities 

can enable numerous health care applications, such as food 

and fluid intake monitoring.    

Previous research has explored wearable sensory devices 

installed in various locations of the upper body for 

detecting human oral activities. For example, Amft et al. [1] 

used an earphone-attached microphone sensor to record 

human chewing sounds and detect food types based on their 

acoustic profiles. Amft et al. [2] proposed another approach 

that combined surface Electromyography (EMG) and a 

microphone worn around the neck area to recognize low- or 

high-volume swallowing actions. BodyScope [3] placed an 

acoustic sensor around the neck area to recognize different 

oral activities (e.g., eating, drinking, speaking, laughing, 

and coughing) by analyzing sounds generated from the 

throat area. In comparison, our oral sensory system explores 

a unique sensor placement not on the human body, but 

inside the human body, specifically the mouth. Because a 

sensor placement inside the mouth has the advantage of 

being in proximity to where oral activities actually occur, 

this enables our oral sensory system to accurately capture 

the motion of oral activities.  

This paper presents the design and evaluation of this in-

mouth oral sensory system, which uses a small 

accelerometer sensor embedded inside artificial teeth. Our 

motivation was based on our observation that most oral 

activities, such as chewing, drinking, speaking, and 

coughing, each produce a unique teeth motion. By 

recording and identifying teeth motion profiles for each oral 

activity, the proposed oral sensory system builds classifiers 

that distinguish different human oral activities.  

The main contributions of this work are as follows: (a) We 

introduce an in-mouth, motion-based oral sensory system 

for detecting human oral activities; and (b) We conducted a 

laboratory experiment with 8 participants performing four 

common oral activities, which are chewing, drinking, 

speaking, and coughing. The results demonstrated the 

feasibility of this oral sensory system, in which a person-

dependent classifier achieved 93.8% recognition accuracy, 

and a person-independent classifier achieved 59.8% 

accuracy. 

SYSTEM OVERVIEW 

The system consists of two main components: (a) an oral 

sensory unit; and (b) oral activity classifiers.  

Oral Sensory Unit 

Figure 1(b) shows a small breakout board with a tri-axial 

accelerometer sized 4.5 mm x 10 mm. This small breakout 

board is sufficiently small to be embedded inside a 

removable artificial tooth, as shown in Figs. 1(a) and 1(c). 

To ensure that this sensor board is safe and saliva-proof for 

human mouth placement, we carefully coated the sensor 

board with dental resin. In actual system deployment, this 

sensor board would include a small Bluetooth radio capable 

of wirelessly transmitting sensor data to a nearby mobile 

phone for data analysis and oral activity recognition. In the 

current proof-of-concept system, we have yet to place a 

Bluetooth radio on this oral sensory unit; therefore, thin 
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wires are used to connect the sensor board to an external 

data-logging device for data retrieval and power. These thin 

wires also protect users from accidentally swallowing the 

sensor units.  

Oral Activity Analysis 

Oral activity recognition comprises the following three 

steps: (1) data preprocessing, (2) feature extraction, and (3) 

data classification. These steps are described as follows:  

Data preprocessing 

The sampling rate of the accelerometer sensor is set to 100 

Hz. The system first divides the accelerometer data into 

windows of 256 samples with a 50% overlap between 

consecutive windows [4]. In each data window, the system 

extracts the time-domain and frequency-domain features 

shown in Table 2.  

Because people have different mouth and teeth 

specifications, sensor orientation can change for different 

users. Thus, accelerometer readings must be adjusted and 

calibrated using a rotation matrix. During the calibration 

phase, the proposed system asks users to hold their head 

straight and still for a few seconds during the application of 

Rodrigues' rotation formula to compute this rotation matrix. 

Each oral sensor unit has its own rotation matrix, which is 

used to transform its sensor readings from the device’s 

coordinates to real-world coordinates. This normalization 

procedure reduces the negative effect of errors caused by 

varying device orientation. Because this normalization 

procedure reduces, but does not completely remove this 

error, the system also extracts orientation-independent 

features based on the magnitudes of x-, y-, and z-axis 

acceleration. For each sample at time t, its magnitude data 

is calculated as 
zyx ttt

222
 . 

The normalized (orientation-dependent) feature set and the 

orientation-independent feature set have different 

characteristics. The normalized feature set retains separate 

information on tri-axial acceleration values, which are 

required for distinguishing activities involving both vertical 

and horizontal movements. In contrast, the orientation-

independent feature set is based on the magnitude value, in 

which its precision is less affected by changes in device 

orientation; thus, it is suitable for distinguishing activities 

that depend on the movement scale. 

Feature extraction 

Table 1 lists the time-domain and frequency-domain 

features extracted from each data window. Frequency-

domain features are computed using the FFT algorithm. 

Both real and imaginary components of FFT coefficients in 

the 256-sample window are used to generate 256 features. 

Overall, the system trains activity classifiers by computing 

and extracting the following two feature sets: 807 features 

(269 features per axis acceleration) from the normalized 

feature set, and 269 features from the device-independent 

feature set. 

Training Classifiers 

Our system implements three classifiers: the C4.5 Decision 

Three (DT), the Multivariate Logistic Regression (MLR), 

and the Support Vector Machine (SVM). The SVM 

classifier uses the radial basis function kernel and one-

against-one multiclass classification, and it is further 

optimized by an additional parameter selection and data 

scaling. To filter out redundant and irrelevant features, we 

performed feature selection based on the correlations 

between features. Low-relevance features with low 

correlation are filtered out. We adopted principal 

component analysis [5] as a feature selector, in which the 

number of relevant features was reduced to 137.  

For each classification algorithm of the DT, the MLR, and 

the SVM, we trained two classifiers: person-dependent and 

person-independent. A person-dependent classifier uses 

data from all users (i.e., 8 participants in our study) to train 

a generalized activity model for recognizing the oral 

activities of different users. Conversely, a person-

independent classifier uses 7 users’ data to train a specify 

activity model for recognizing remaining person’s oral 

activities 

Figure 1. The breakout board with (b) tri-axial 

accelerometer and (a)(c) sensor embedded denture. 

 
Features 

Time-domain 

Mean, absolute value mean, maxima, 
minima, max-min, zero crossing rate, 
root mean square, standard deviation, 
median, 75% percentile, inter-quartile 
range, inter-axis correlation 

Frequency-
domain 

Entropy, energy, FFT coefficients  

Table 1. Adopted features for oral activity recognition. 



EXPERIMENTAL EVALUATION 

We conducted a laboratory experiment to evaluate the 

accuracies of different classification algorithms. 

Experimental Procedure 

Eight users (5 males and 3 females) participated in this 

experiment. They were asked to install the oral sensor unit 

inside their mouth while performing each of these four oral 

activities: chewing, drinking, talking, and coughing. 

Because it was not possible to customize a removable tooth 

for each participant, we used dental cement to fix the sensor 

units to each participant’s tooth. For each activity, we 

collected 15 samples from each participant. Each sample 

consisted of 2.56 seconds of a specific activity performance. 

For the coughing data, participants were asked to cough 

continuously. For drinking data, participants were asked to 

drink a bottle of water. For chewing data, participants were 

asked to chew gum or to imitate the action. For speaking 

data, participants were asked to read a section of an article. 

We collected 480 activity samples from the 8 participants 

performing these four oral activities. Person-dependent and 

person-independent classifications used the same data set 

collected from the experiment. 

Results 

We conducted 10-fold cross-validation and leave-one-

person-out cross-validation to measure the accuracies of the 

person-dependent and person-independent classifiers. For 

the person-dependent classifiers, each round of cross-

validation involved using all of each participant’s data for 

both training and testing. Table 2 shows the mean F-

measure accuracy results. The SVM (93.8%) classifier 

outperforms both the DT (52.2%) and MLR (60.5%) 

classifiers.   

For the person-independent classifiers, each round of cross-

validation involved using 7 participants’ data for training, 

and the remaining participant’s data for testing. Table 3 

shows the mean F-measure accuracy results. Again, the 

SVM (59.8%) classifier outperformed both the DT (40.8%) 

and MLR (55.9%) classifiers. Reasons for the low-accuracy 

result in the person-independent classifier are as follows. 

First, because people’s teeth and mouth structure are 

different, their sensor placements are also (slightly) 

different, thus creating variations in the motion data. 

Second, people perform oral activities differently; for 

instance, some people chew or talk faster, slower, harder, or 

softer. It is possible to improve the accuracy of person-

independent classification by extending the training set to 

include different sensor placements and oral activity types. 

DISCUSSION 

This is a feasibility study of an oral sensory system that 

detects human oral activities. We identified the following 

challenges for the proposed oral sensory system. 

Data logging and transmission 

If an application does not require real-time monitoring, 

sensory data can be temporarily stored on the sensor device. 

When users remove their artificial teeth, for example, for 

disinfection and storage, small electrodes on the surface of 

the artificial teeth are used to connect to the sensor board 

and retrieve stored sensor data. For a real-time monitoring 

application, the sensor board must have a low-power 

wireless radio (e.g., Bluetooth) to transmit sensor data to a 

nearby smartphone for data analysis and activity 

recognition. Another possible data transmission medium is 

intra-body communication [6], which has lower power 

consumption compared to wireless radio communication. 

Energy 

Because users must remove artificial teeth for daily 

disinfection and storage, we surmise that a recharging and 

storage station will be required, similar to that of an electric 

toothbrush, in which users would place the cleaned artificial 

teeth on this station for battery recharging and data retrieval.  

Safety 

Because of the sensor placement inside the mouth, the 

safety concern is paramount. All electronic components 

must be sealed securely and tightly. In the event that the 

sensor units are mistakenly swallowed, they will pass the 

human body without causing any harm. Its safety 

requirements are similar to those of capsule endoscopy, in 

which patients swallow a camera pill. Because our current 

Oral Activities 

Person-dependent Classification 
Accuracy 

C4.5 DT MLR SVM 

Coughing 62.5% 62.9% 94.3% 

Drinking 74.5% 70% 94.9% 

Chewing 34.8% 57.5% 92.9% 

Speaking 37.9% 56.8% 93.1% 

Overall 52.2% 60.5% 93.8% 

Table 2. F-measure accuracy of oral activity recognition 

with a person-dependent classifier. 

Oral Activities 

Person-independent Classification 
Accuracy 

C4.5 DT MLR SVM 

Coughing 34.6% 50.7% 49.7% 

Drinking 72.1% 86.5% 78.9% 

Chewing 36.9% 61.9% 50.3% 

Talking 19.6% 24.6% 60.5% 

Overall 40.8% 55.9% 59.8% 

Table 3. F-measure accuracy of oral activity recognition 

with a person-independent classifier. 



prototype (Fig. 1) was not considered safe, we attached a 

safety string to the sensor unit so that participants would not 

be able to swallow it. 

RELATED WORK 

The number of oral sensing technologies for detecting 

human health conditions is increasing. Tooth Tattoo [7] is a 

graphene-based sensor that can be tattooed onto the tooth 

enamel. This grapheme-based sensor can detect respiration 

and bacteria in saliva for monitoring personal oral hygiene. 

X2 xGuard [8] is a commercial product that embeds sensors 

to a mouth guard for tracking an athlete’s accumulated head 

impacts during participation in contact sports. Kim et al. [9] 

developed a mouth guard that can wirelessly detect bruxism 

during sleep. To enhance our understanding of human 

speech, Christophe et al. [10] developed dentures fitted with 

sensors to measure interactions between the tongue and 

teeth during speech. The proposed system targets a different 

problem for oral activity recognition.   

CONCLUSION AND FUTURE WORK 

For this study, we designed and developed an oral sensory 

system that can recognize human oral activities. Our results 

from a laboratory experiment with 8 participants 

demonstrate the feasibility of this oral sensory system in 

recognizing the following four human oral activities: 

speaking, chewing, drinking, and coughing. We found that 

a person-dependent SVM classifier achieved a high F-

measure accuracy of 93.8%, whereas a person-independent 

SVM classifier achieved only an F-measure accuracy of 

59.8%.  

Because the mouth is an opening into human health, this 

oral sensory system has the potential to enhance exiting 

oral-related healthcare monitoring applications such as 

dietary tracking. We will explore several future work 

directions. First, we will design the next prototype, which 

will be integrated with wireless communication and battery-

recharging capabilities. Second, we would like to improve 

the accuracy of our system’s activity classification. Finally, 

we will continue working with dental collaborators to 

improve the safety of our system. 
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