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Feedback, Op Amps and Compensation

Introduction

There are many benefits [1] which result from the use of
feedback in electronic circuits, but the drawbacks are the
increased complexity of the calculations and the opportunity
for the resulting circuit to ring or oscillate. This paper employs
graphical techniques to simplify stability calculations, thus
enabling the designer to achieve a stable, well behaved circuit
which meets all reasonable performance criteria. Now the
designer can obtain the advantages of feedback without
worrying about ringing or oscillation.

Development of the General Feedback Equation

Referring to the block diagram shown in Figure 1, Equation 1,
Equation 2 and Equation 3 can be written by inspection if it is
assumed that there are no loading concerns between the
blocks. The no loading assumption is implicit in all block dia-
gram calculations, and this requires that the output imped-
ance of a block be much lower than the input impedance of
the block it is driving. This is usually true by one or two orders
of magnitude. Algebraic manipulation of Equation 1, Equation
2 and Equation 3 yield Equation 4 and Equation 5 which are
the defining equations for a feedback system.

VO = EA (EQ. 1)

E = VI - βVO (EQ. 2)

E = VO/A (EQ. 3)

VO/VI = A/(1 + Aβ) (EQ. 4)

E/VI = 1/(1 + Aβ) (EQ. 5)

FIGURE 1. FEEDBACK SYSTEM BLOCK DIAGRAM

The parameter A, which usually includes the amplifier and
thus contains active elements, is called the direct gain in this
analysis. The parameter β, which normally contains only
passive components, is called the feedback factor. Notice
that in Equation 4 as the value of A approaches infinity, the
quantity Aβ, which is called the loop gain, becomes much
larger than one; thus, Equation 4 can be approximated by
Equation 6. VO/VI is called the closed loop gain, and since
the direct gain, or the amplifier response, is not included, the
equation for the closed loop gain it is independent of ampli-
fier parameter changes. This is the major benefit of feedback
circuits.

VO/VI = 1/β for Aβ >> 1 (EQ. 6)

Equation 4 is adequate to describe the stability of any feed-
back circuit because all feedback circuits can be reduced to
the this form through block diagram reduction techniques [2].
The stability of the feedback circuit is determined by setting
the denominator of Equation 4 equal to zero.

1 + Aβ = 0 (EQ. 7)

Aβ = -1 = |1| / -180 (EQ. 8)

Referring to Equation 4 and Equation 8, it is observed that if
the magnitude of the loop gain, Aβ, can achieve one while
the phase equals -180 degrees, the closed loop gain
becomes infinity because of division by zero. Since this state
is unstable, the circuit will oscillate, and it will oscillate at the
frequency where the phase shift equals to -180 degrees. If
the loop gain at the frequency of oscillation is slightly greater
than one it will be reduced to one by the reduction in gain
suffered by the active elements as they approach the limits
of saturation, but if the value of Aβ is much greater than one,
gross nonlinearities can occur and the circuit may then cycle
between saturation limits. Preventing instability is the
essence of feedback circuit design, thus this topic will be
touched lightly here and covered in detail later. A good start-
ing point for discussing stability is finding an easy method to
calculate it. Figure 2 shows that the loop gain, Aβ, can be
calculated from a block diagram by opening current inputs,
shorting voltage inputs, breaking the loop and calculating the
response to a test input signal.

VTO/VTI = Aβ (EQ. 9)

The block diagram techniques can be applied to op amps
thus reducing the stability analysis to a simple task. The
schematic for a non-inverting amplifier is shown in Figure 3,
and the block diagram equivalent is shown in Figure 4.
Equation 10 and Equation 11 are combined to yield Equation
12 which describes the block diagram shown in Figure 4A,
while block diagram transformations [3] are employed to get
to Figure 4B.

FIGURE 2. BLOCK DIAGRAM FOR COMPUTING THE LOOP
GAIN

VO = a(VI - VB) (EQ. 10)

VB = VOZ1/(Z1 + Z2), IB = 0 (EQ. 11)

VO = aVI - aZ1VO/(Z1 + Z2) (EQ. 12)
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FIGURE 3. NON-INVERTING CIRCUIT

The block diagram shown in Figure 4A is written by inspec-
tion of Equation 12. The block diagram shown in Figure 4B is
derived from Figure 4A by block diagram manipulations.
Equation 13 is derived from Equation 12 by algebraic manip-
ulation, or it can be written by inspection of Figure 4B
because the system is shown in standard form.

FIGURE 4A. BLOCK DIAGRAM AS WRITTEN FROM EQUATION 12

FIGURE 4B. AFTER BLOCK DIAGRAM MANIPULATION

FIGURE 4. BLOCK DIAGRAM OF THE NON-INVERTING OP
AMP AS SHOWN IN EQUATION 12

VO/VI = a/(1 + aZ1 / (Z1 + Z2)) (EQ. 13)

The loop gain, Aβ, is equal to aZ1/(Z1+Z2), the closed loop
gain, 1/β, is equal to (Z1+Z2)/Z1, and the direct gain, A, is
equal to the op amp gain, a. The loop gain can be deter-
mined from Figure 4B by inspection, or if the system block is
not available the loop gain can be obtained directly from the
amplifier schematic as shown in Figure 5. First set voltage
sources to zero by grounding them, then open current
sources, break the feedback loop at any convenient place
and then calculate the loop gain. Remember, the output
impedance of the op amp must be much lower than the feed-
back impedance so that block diagram techniques can be
used. The test input is VTI, and it is amplified by the op amp
gain, a. The op amp output, aVTI is divided by β before it is
fed back as VTO.

FIGURE 5. NON-INVERTING OP AMP WITH INPUT GROUNDED
AND FEEDBACK LOOP BROKEN

(EQ. 14)

Referring to the inverting op amp configuration shown in
Figure 6, the analysis will be performed by working from the
amplifier circuit to the block diagram. The closed loop gain
equations are derived in references one and six as well as
most electronic text books. The closed loop gain which is
equal to 1/β is known to be -Z2/Z1; thus, β is calculated as
Z1/Z2 with the minus sign indicating a negative input. Refer-
ring to Figure 6, if VI is set to zero and the loop is broken at
the negative input to the op amp the circuit is identical to that
shown in Figure 5.

FIGURE 6. INVERTING OP AMP SCHEMATIC

An examination of Figure 5 and Figure 6 reveals that the loop
gain, Aβ, is identical for both the inverting and non-inverting
circuit configurations. The loop gain is the only parameter that
determines stability, and it is not a function of the location of
the inputs. Hence the loop gain for the inverting op amp is
given to us by Equation 14. Now that Aβ and 1/β are both
known, A can be determined by multiplication to be
aZ2/(Z1 + Z2). Since the direct gain and the loop gain are both
known Figure 7 can be constructed from these quantities.

FIGURE 7. BLOCK DIAGRAM OF THE INVERTING OP AMP

Equation 15, which is the closed loop gain equation for an
inverting op amp can be written directly from Figure 7. As (a)
approaches infinity in Equation 15, the closed loop gain
approaches -Z2/Z1.
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(EQ. 15)

The closed loop gain for the non-inverting circuit,
VO/VI = (Z1 + Z2)/Z1, is different from the closed loop gain for
the inverting circuit, VO/VI = -Z2/Z1. It will always be the case
that the loop gain, hence the stability, is independent of the loca-
tion of the inputs, but the closed loop performance is highly
dependent on the placement of the input. Many circuits take
advantage of this phenomena to gain better performance as will
be shown in the benefits section.

ANON-INV = a; which is ≠ to AINV = aZ2/(Z1 + Z2) (EQ. 16)

Comparing the block diagrams of the non-inverting and
inverting circuits reveals that their direct gains are different,
and this explains why there are some slight performance dif-
ferences between the configurations. The non-inverting cir-
cuit with the higher direct gain has less closed loop error; at
a closed loop gain of 2 for both circuits the non-inverting cir-
cuit has a 3.5dB more loop gain. The inverting circuit is more
stable for the same magnitude of closed loop gain; i.e., for a
closed loop gain of 2, AβINV = 0.33a and AβNON-INV = 0.5a.
Normally these differences are minor, but they are pointed
out because they may be taken advantage of or they can
cause very subtle problems in unique situations.

There are many other op amp circuit configurations, but they
will all reduce to these two basic forms; each of which is a
variation of the basic feedback circuit shown in Figure 1. Let-
ting Z1 and or Z2 equal various combinations of RLCs will
give different closed loop performance, but the analysis tech-
niques remain the same. More complicated circuit configura-
tions can all be reduced to these simple circuits through
block diagram reduction techniques and superposition.

Benefits of Feedback

The tolerances and drift coefficients of passive components
are much less than those associated with active compo-
nents. If the circuit transfer function can be made to be
dependent only on the passive component parameters it will
be a much more stable circuit; feedback accomplishes this
through the direct gain as shown here. Differentiating the
closed loop Equation 4, with respect to the direct gain yields
Equations 17 and Equation 18 shown below. Notice that the
percentage change in the closed loop gain is the percentage
change in the direct gain divided by the loop gain. Thus for
very high loop gains the initial accuracy and drift will be a
function of the passive components rather than of the direct
or amplifier gain. Although the feedback reduces the gain
errors, other amplifier errors such as input voltage offset are
not affected by the feedback because they occur as an input
rather than within the feedback loop.

(EQ. 17)

(EQ. 18)

All amplifiers have noise and distortion characteristics asso-
ciated with them, and low noise or low distortion amplifiers
command a premium price. Very often feedback can be used
at no cost increase to reduce the effects of distortion and
noise. Both closed loop and open loop systems are shown in
Figure 8 and Figure 9; notice that both systems have the
same number of components except for the passive feed-
back elements.

FIGURE 8. CLOSED LOOP SYSTEM

FIGURE 9. OPEN LOOP SYSTEM

Equation 19 and Equation 20 are derived from the closed
loop and open loop systems shown in Figure 8 and Figure 9.
If Equation 19 is rewritten as shown in Equation 21 it is obvi-
ous that Equation 22 results when the quantity A1A2
approaches infinity as it will in an ideal system.

(EQ. 19)

(EQ. 20)

(EQ. 21)

For A1A2 approaching infinity (EQ. 22)

Now let V0 and V1 represent the amplifier’s internal noise
referred to the input, and let V2 represent the noise from the
any other system components. Notice from Equation 22 that
in the closed loop system V2 has disappeared, V1 is
decreased proportional to the gain A1 and that the input
noise has only been multiplied by the closed loop gain, 1/β.
Conversely, Equation 20 indicates that in the open loop sys-
tem the input noise has been multiplied by A1A2 (which
would be equivalent to the closed loop gain), that V1 is multi-
plied by A2 and that V2 is present. The feedback in the
closed loop system has dramatically reduced the noise from
the sources which follow the amplifier A1 so this can become
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a big design advantage. In the closed loop system the ampli-
fier A1 should be selected for it’s excellent noise perfor-
mance, but the amplifier A2 can be selected based on some
other criteria such as cost. This option is not available in the
open loop system.

Very often when driving low impedances like speakers, the
output amplifiers are driven as close to the power supply
rails as possible to obtain the maximum dynamic range. One
result of this practice is that some distortion of the signal
occurs as active device parameters are driven so that they
become nonlinear. This and most other sources of distortion
usually occur in the output stages of the amplifier. Because
the distortion occurs at the output it can be represented by
V2 in Equation 19, and this quantity goes to zero as the
direct gain approaches infinity, so it is essentially eliminated
by feedback. The connection from the speaker driver output
to the preamplifier input in audio amplifiers is there to pro-
vide the feedback which reduces the amplifier’s distortion
when the amplifier is driven to its limits. Some amplifiers
such as guitar amplifiers purposely introduce distortion into
the sound, so open loop amplifiers are used in these cases,
but closed loop amplifiers are usually employed in high fidel-
ity applications.

If the noise source, V1, is set to zero in Equation 22, then the
amplifier input noise represented by V0 is multiplied by the
closed loop gain 1/β. There is a method to further reduce the
effects of V0 by using frequency discrimination methods. If
V0 is examined as a function of frequency, it will be noticed
that the noise is made up of many different frequency com-
ponents, see Figure 10.

FIGURE 10. INSERTING AN IDEAL FILTER IN THE TRANSFER
FUNCTION REDUCES NOISE

The signal of interest has a finite bandwidth, and if the noise
bandwidth is larger than the signal bandwidth, the noise can
be reduced by making the loop gain a function of frequency.
Assuming that the noise bandwidth is 10KHz and that the
signal bandwidth is 100Hz, the noise beyond 100Hz can be
reduced to a minimum if 1/β is reduced to zero beyond
100Hz. One method available to accomplish this bandwidth
reduction is through the ideal filter inserted in the closed
loop, as shown in Figure 10. This filter can be approximated
with passive components.

The input and output impedance of the closed loop circuit
can be controlled by the amount of feedback and by the cir-
cuit configuration [4]. Through the use of feedback it is pos-
sible for the same amplifier IC to appear to have an output
impedance approaching zero or approaching infinity,
depending on the circuit configuration employed.

Another interesting aspect of feedback systems is that if a
function is put in the feedback loop, in a manner similar to
the feedback factor, β, the inverse function will appear at the
output.

Graphical Representation of the Feedback Equation

The mathematical manipulations required to analyze a feed-
back circuit are complicated because they involve multiplica-
tion and division; H. W. Bode [5] developed a technique called
a Bode plot which simplifies the analysis through the use of
graphical techniques. The Bode equations are log equations
which take the form of 20LOG(F(t)) = 20LOG(|F(t)|) + phase
angle. Since these are log equations, the terms which were
multiplied and divided can be now added and subtracted;
thus, they can easily be solved graphically as will be shown.
The transfer function for the integrator shown in Figure 11 is
given in Equation 23.

FIGURE 11. INTEGRATOR CIRCUIT

(EQ. 23)

Where s = jω and j = √(-1)

The magnitude of the transfer function is given by the equa-
tion |VO/VI| = 1/√(1+(RCω)2). The approximate magnitude
or |VO/VI| =1 when ω = 0.1/RC, |VO/VI| = 0.707 when ω
=1/RC and |VO/VI| = 0.1 when ω = 10/RC. These values are
plotted in Figure 12 using straight line approximations.

FIGURE 12. BODE PLOT OF INTEGRATING CIRCUIT
TRANSFER FUNCTION
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The downward slope of the amplitude curve in Figure 12 is -
20dB/decade, and the point at which the slope changes, at ω
= 1/RC, is termed the breakpoint. Reading the curve, it can
be seen that gain initially is one, 0dB, at very low frequen-
cies, falling off to 0.707, -3dB, at the break frequency and
decreases at a rate of -20dB/decade for higher frequencies.
The phase shift for the integrator is given in Equation 24 and
plotted in Figure 12. Notice that the phase shift is -45
degrees at the breakpoint where ω = 1/RC.

φ = -tangent-1 (1/ωRC) (EQ. 24)

When the breakpoint occurs in the denominator, its slope is
negative and is called a pole. Conversely, when the break-
point occurs in the numerator, its slope is positive and it is
called a zero.

The band reject circuit shown in Figure 13 has two poles,
two zeros and a DC gain. Each pole and zero is plotted sep-
arately in Figure 14. The DC gain component is plotted as a
straight line at -6dB because it is frequency independent.
The two zeros in the numerator both occur at ω = 1/RC; thus
they are plotted on top of each other, and this results in a
positive sloped line rising at 40dB/decade. The two poles in
the denominator occur at ω = 0.44/RC and ω = 4.56/RC, and
they are each plotted with a negative slope of -20dB/decade.

FIGURE 13. BAND REJECT FILTER CIRCUIT

(EQ. 25)

Where s = jω.

FIGURE 14. BODE PLOT OF THE INDIVIDUAL COMPONENTS
OF THE BAND REJECT FILTER

Each of the separate Bode plots shown in Figure 14 are com-
bined into one composite plot in Figure 15. The phase plots
are treated much like the amplitude plots because the sepa-
rate phase responses from the poles and zeros can be com-
bined into one plot such as is shown in Figure 15. Now the
complete amplitude or phase response of the circuit can be
observed by looking at Figure 15. Although the phase shift at
a pole is -45 degrees, the plot indicates -5 degrees at ω =

0.44/RC because the double zero located at ω = 1/RC has
already accumulated significant positive phase shift at the
pole frequency. The non-linearity of the phase plot, a result of
the tangent function, makes it hard to approximate accurately
when several poles and zeros congregate in the same vicinity.

FIGURE 15. COMPOSITE BODE PLOT FOR THE BAND REJECT
FILTER

Spacing the poles and zeros by a decade enables an accurate
phase plot using approximate methods, but the circuit perfor-
mance criteria usually will not allow this luxury. The amplitude
plot also becomes smeared by the close proximity of the poles
and zeros, but the exact values are not usually plotted because
the approximate values usually suffice for analysis [6]. The
demand for the phase accuracy stems from the oscillation or
stability criteria which is dependent on phase.

Applying logarithms to the system equations will enable a quick
and rather complete analysis. Equation 4 is repeated in Equa-
tion 26 in log form; i.e., both sides of the equation have been
operated on by the function 20LOG10 (F(t)).

20LOG(VO/VI) = 20LOG(A) - 20LOG(1 + Aβ) (EQ. 26)

As would be expected from the preceding analysis, the shape
of the plot will be determined by the breakpoints, if any, con-
tained in A or β.The magnitude portion of the closed loop sys-
tem equation is plotted in Figure 16 for the case where A and β
are not a function of frequency. Notice that both plots are flat
lines, and there is no phase plot. Obviously this case is trivial
and of no interest to the circuit designer because it does not
represent the real world since the gain of all amplifiers is a func-
tion of frequency [7].

FIGURE 16. PLOT OF EQUATION 4 WHEN A AND β ARE NOT
FREQUENCY DEPENDENT

Most high gain amplifiers such as operational amplifiers have
multiple poles, two per transistor, with the amplifier having as
many as 20 transistors leading to a potential of 40 or more
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poles. Normally only a few poles are important because the
other poles occur at very high frequencies where the gain is
less than one so that they can not cause oscillation. In many
amplifiers the manufacturer compensates the amplifier with a
single pole usually called a dominant pole (fAMP), and the
amplifier’s performance can be approximated by the transfer
function A = a/(1 + j (f/fAMP)). Equation 4 is plotted in Figure 17
with the assumption that A is frequency dependent and β is
resistive or frequency independent.

FIGURE 17. PLOT OF EQUATION 4 WHEN A = a /(1 + j (f/fAMP))
AND β IS FREQUENCY INDEPENDENT

The closed loop gain graphical approximation is constant until
its projection intersects the amplifier gain at point X. The
actual closed loop gain starts rolling off prior to point X, and it
is down -3dB at point X. If 20LOG(VO/VI) -20LOG(A) = -3dB
then -20LOG(1 + Aβ) = -3dB, and if the magnitude of (1 + Aβ)
is considered, then the square root of (1 + (Aβ)2) = 1.414
resulting in Aβ = 1. In other words, A = 1/β at the intersection
of the two curves. There is a method [8] of relating the phase
shift, and thus the stability, to the slope of the curves at the
intersect point, but this method will not be covered here in
favor of the Bode Aβ method.

The dominant pole causes the open loop gain to have a break-
point at the frequency fAMP. The internally compensated op
amp acts like a dominant pole characteristic so its AC parame-
ters can be determined by referring to the “Open-Loop Fre-
quency Response” curve contained in the data sheet. Although
the curve is called “Open-Loop Frequency Response”, it really
is the direct gain (A). Notice that the CA158 op amp as shown
in the Intersil Corporation catalog [9] has a breakpoint which
occurs at fAMP = 5Hz., and the DC gain is 110dB. If the transfer
function shown in Figure 17 was for the CA158 then the direct
gain would be A = a/(1 + j (f/fAMP)), or A = 316,227/(1 + j (f/5)).
Consider for a moment the difficulty and hence the probable
error associated with measuring the DC gain and the break
point. A popular method of measuring the op amp gain and
phase is to configure the op amp in the inverting mode and then
measure the error voltage; i.e., the voltage from the inverting
input to ground. Then Equation 3, E = VO/A, is employed to cal-
culate the op amp gain from the measured error. Assume that
the op amp is configured in a gain of -100; then the direct gain
is A = 100/101 times the op amp gain so a small offset must be
accounted for because the measurement is not a direct mea-
surement in the inverting circuit configuration. If the output volt-
age, VO, is kept small to guarantee small signal accuracy, say
one volt, then for the CA158, VERROR = 1/316,217 = 3.16µV.
Measuring this small voltage especially considering that noise
may be present is a formidable task so designers must assume
that there may be a considerable tolerance associated with
these measurements. The numbers given in this paper are for

explanation purposes; professional test engineers will often
configure the op amp with a gain of A = -10,000 and then be
measuring errors in the nano-volt range. These measurements
require considerable skill, and even then there may be a 24dB
difference between the minimum specification point and the
typical value such as in the HA5177 data sheet.

FIGURE 18. OPEN LOOP FREQUENCY RESPONSE OF THE
HA2842C

Figure 18 is a plot of the gain phase relationship for a high
frequency op amp, the HA2842C. The DC gain is 90dB, and
since the phase shift reaches -45 degrees at 1200Hz the
first pole must occur at approximately 1200Hz. This is a high
frequency op amp so the internal compensation capacitor
has been reduced significantly to increase the bandwidth
available to the designer, and it is apparent that a second
pole exists because the phase shift approaches -135
degrees at 70MHz. Looking closely at the point where the
gain crosses the 0dB axis, and then following that constant
frequency line, 120MHz, down to the phase curve indicates
that the phase shift is about -165 degrees. This op amp is
marginally stable, and the op amp is susceptible to stability
problems unless external compensation techniques are
employed. The HA2842C can be modeled with a DC gain of
31,623, the first break point at 1200Hz and the second
breakpoint at 145MHz. The equation for the HA2842C is
then A = 31,623/(1 + j (f/1200))(1 + j (f/145E6)).

Stability as Determined from Loop Plots

Aβ = -1 = |1| /-180 (EQ. 27)

Equation 8 has been repeated above as Equation 27. If the
magnitude of the gain is greater than one in Equation 27, the
equation will be satisfied because the non-linear effects of
the active devices as they enter saturation will reduce the
gain to one. This is demonstrated in oscillator design where
the designer must design for a worse case gain of at least
one, so the circuit will oscillate under all conditions, and the
nominal gain usually is much greater than one. The oscillator
designers are caught in a trap, for if they design for a worse
case low gain greater than one, then the worse case high
gain will be much greater than one. In the low gain case, the
circuit barely oscillates, but the sinewave is very pure. In the
high gain case, the circuit always oscillates, but there is sig-
nificant distortion in the sinewave. Just as the oscillator
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designer must make compromises for the sake of instability,
so, the analog designer make compromises for the sake of
stability. In the case of amplifier design, the phase shift must
never become -180 degrees, at a gain greater than one, or
oscillation will occur. The compromise occurs when the
amplifier designer trades off gain and/or bandwidth for posi-
tive phase shift because the methods which produce a safe
phase shift tend to reduce gain or bandwidth, as will be shown
later. In many cases oscillation is not the limiting factor because
as the phase shift gets much greater than -135 degrees, the
amplifier output will have increasing overshoot and ringing.
Plotting the loop gain gives great insight into both the stability
and closed loop performance; stability will be discussed in this
section and closed loop performance predictions from open
loop plots will be discussed in the next section.

(EQ. 28)

where K = DC gain.

FIGURE 19. LOOP PHASE AND GAIN PLOT OF EQUATION 27

Figure 19 is used to help define the industry standard terms,
phase margin, φM, and gain margin, GM. Phase margin is a
measure of relative stability, and it is defined as the amount of
phase shift between the point where the loop gain equals 0dB
and -180 degrees. Equation 29 defines the phase margin math-
ematically.

φM = 180 - tangent-1(Aβ) (EQ. 29)

Gain margin is defined as the gain at the point where the phase
equals -180 degrees. Gain margin is always a negative (dB), or
less than one, in a stable system, and it does not contain much
information about stability or closed loop performance. The
phase margin shown in Figure 19 is approximately 16 degrees;
attempting to measure the phase margin in Figure 19 points out
how important it is to plot phase margin accurately. This circuit
will be stable since the phase margin is positive; the phase shift
cannot ever reach the -180 degrees required for oscillation if
the circuit is to remain stable. Because the phase margin is
very small, the overshoot will be very large, and the output will
exhibit a damped oscillation commonly known as ringing. If the
gain, K, were increased in the loop transfer function until it
crossed the 0dB axis at -180 degrees phase shift, then the cir-
cuit would oscillate; thus, there is a definite limit on the loop
gain. The loop transfer function, shown as Figure 19, is
repeated in Figure 20 with the gain increased by a factor of C.
Notice that indeed the -180 degree phase crossover point

occurs prior to the 0dB crossover point, so the phase margin is
negative and the circuit will oscillate. Conversely, the transfer
function shown in Figure 20 does not even have enough gain at
the -180 degree point to ensure oscillation under production tol-
erances, so the circuit is good for nothing in its present condi-
tion.

FIGURE 20. LOOP PHASE AND GAIN PLOT OF EQUATION 27
WITH ADDED GAIN C

Extremely high gain systems have very low errors, but they
are limited in the bandwidth they can obtain without oscillat-
ing, so designers resort to other techniques such as non-
linear transfer functions. An example of a high gain, accurate
system which employs non-linear techniques to achieve
stability, is a gyro stabilization platform which would go into a
limit cycle if the gain was not reduced upon start-up.

If the second breakpoint, 1/R2C2, were moved closer to the
first breakpoint, then the circuit would accumulate phase
shift from the breakpoint earlier and it may become unstable.
Figure 19 is repeated as Figure 21, where the second break-
point has been moved closer to the first breakpoint. Notice
that the -45 degree phase point is not affected, the -135
degree phase point has moved in towards the -45 degree
phase point, and that the -180 degree phase point occurs
prior to the 0dB crossover point. Generally, moving the two
poles closer together can cause instability.

FIGURE 21. LOOP PHASE AND GAIN PLOT OF EQUATION 27
WITH 1/R2C2 CLOSER TO 1/R1C1

The single pole system cannot accumulate more than -90
degrees of phase shift so it cannot become unstable; thus sin-
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gle pole systems will not be discussed here. This does not
mean that an internally compensated op amp, which acts like
a dominant pole, cannot become unstable because all op
amps have more than one pole. The proof of this is the data
sheet, consider the HA2500 [10] which is internally compen-
sated for unity gain, where the Open Loop Frequency and
Phase Response curve shows phase shifts beyond -90
degrees. Lots of good data can be gathered from these
curves; i.e., the phase margin for the HA2500 is approxi-
mately 30 degrees so there will be some overshoot, and there
is a second pole at about 3MHz. There is no such thing as an
unconditionally stable op amp unless it lies on the table with
power disconnected, because all op amps are multiple pole
devices especially when stray capacitances are considered.
This conclusion may lead someone to wonder where to draw
the line when doing an analysis, and most engineers draw the
line at two poles because the mathematics are easy to han-
dle. If required, they obtain a solution for larger systems
through the use of superposition, but usually the poles are
separated far enough for some of them to be ignored or the
circuit is modified to achieve the separation. The next section
will delve into the second order stability analysis more deeply.
Poles and zeros always occur in pairs, although sometimes
either the pole or zero may be at the origin or infinity, thus they
will not always appear in the transfer function. Whenever a
pole is referred to, its corresponding zero is also considered.

Predicting Stability and Performance from Closed Loop
Plots

The closed loop AC performance of a feedback circuit is
dependent on the order of the denominator equation which
is often considered equivalent to the number of poles con-
tained in the circuit. If the circuit has no poles then its AC
performance does not vary with frequency. If the circuit has
one pole then the closed loop AC performance is rather easy
to describe; the gain on a Bode plot will be 20LOG(K) and
the amplitude response will start falling off at the breakpoint
with a -20dB/decade slope. If the circuit has two or more
poles the closed loop AC response is much more compli-
cated, the circuit can overshoot, then ring and finally oscil-
late. The second order circuit, which contains two poles, is
so popular that it is described extensively in the
literature [11], and it is the one that will be dwelled on here.
Higher order circuits can usually be reduced to second order
for closed loop performance analysis, so this analysis will be
restricted to stability and closed loop performance for second
order circuits. Equation 7 is written here as Equation 30 with a
second order loop transfer function substituted for Aβ. Equa-
tion 31 is obtained from Equation 30 through algebraic
manipulation.

(EQ. 30)

where τ = RC

(EQ. 31)

Equation 32 is the standard second order control equation,
and it is compared to Equation 31 to obtain Equation 33 and
Equation 34 which define the damping ratio, ζ, and
undamped natural frequency, ωN.

(EQ. 32)

ω = 2πf

(EQ. 33)

(EQ. 34)

The frequency where the magnitude of the loop transfer func-
tion, Aβ, is equal to one is defined as the crossover frequency,
ωC; this is expressed in Equation 35 with ωC substituted for ω.
Then Equation 35 is algebraically manipulated to obtain
Equation 36 from which the phase functions shown in Equa-
tion 37 and Equation 38 are obtained.

(EQ. 35)

ωC
4 + 2ζωN

2ωC
2-ωN

4 = 0 (EQ. 36)

(EQ. 37)

(EQ. 38)

Considering the transfer function shown in Figure 22, if the
0dB crossover frequency, ω = ωC, occurs well after the
break frequency, 1/τ2, then Equation 39 can be simplified to
Equation 40. Solving Equation 40 for ωC yields Equation 41.

20LOG(Aβ) = 20LOG(K) -20LOG(1 + ω2τ1
2)1/2

-20LOG(1 + ω2τ2
2)1/2 (EQ. 39)

20LOG(Aβ) = 20LOG(K) - 20LOG(ωτ1)
-20LOG(ωτ2) for ω » 1/τ2 (EQ. 40)

(EQ. 41)

FIGURE 22. PHASE MARGIN AND PERCENT OVERSHOOT AS
A FUNCTION OF DAMPING RATIO

Figure 22 is a plot of Equation 38; now the phase margin is
expressed in terms of known quantities so it can be calcu-
lated from a knowledge the pole locations. The estimation
procedure is to determine the pole locations from knowing
the op amp pole locations and from the external circuitry.
Once the pole locations and the gain are known or estimated
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the phase margin, damping ratio and cutoff frequency can
be calculated. Then using Figure 22 yields the percent over-
shoot. The pole locations and gain can be varied to obtain
different solutions to the problem. After all of this data is sat-
isfactory, then the loop transfer function should be plotted to
determine stability. While only the poles were used in the
estimation procedure, both the poles and zeros must be
used to plot the open transfer function. After several itera-
tions a workable solution should pop out if one exists.
Remember that this procedure is an approximation, thus it
must always be verified in the laboratory.

Compensation Schemes

All op amps are compensated; some are compensated with
internal components thus saving the designer time and
money. Many op amps are not compensated internally
because leaving out the compensation gives the designer an
extra degree of freedom, and these op amps must have
some kind of external compensation or they will oscillate.
The internally compensated op amps are usually compen-
sated with a method called ‘dominant pole’ or ‘lag’ compen-
sation several forms of which are shown in Figure 23.

FIGURE 23. EXAMPLES OF DOMINANT POLE COMPENSATION

Dominant pole compensation circuits tend to be associated
with the op amp, and they usually are not part of the feedback
circuit. The loop transfer function for an op amp is shown in
Figure 24 in solid lines. There are two poles accumulating
phase shift prior to the 0dB crossover point; thus this circuit
may very well be unstable. The first pole, 1/τ1, is the low fre-
quency break point of the op amp, and the second pole, 1/τ2,
is the high frequency break point. Since these pole locations
are inherent in the op amp design, the circuit designer must
live with them, but the effects of these poles can be modified
with external feedback components. Locating the dominant
pole, 1/τDP, so that the 0dB crossover point coincides with
the first op amp pole,τ1, yields a phase margin of 45 degrees.
By locating the dominant pole zero crossing at 1/τ1 the circuit
sacrifices significant bandwidth which can be regained by
moving the pole further out. The exact pole placement will be
a function of the circuit specifications such as the allowed
overshoot or the bandwidth required.

FIGURE 24. DOMINANT POLE COMPENSATION PLOT

Because of the loop gain loss and the bandwidth loss domi-
nant pole compensation is only used inside the op amp,
when the closed loop bandwidth requirements are not great,
or if noise reduction is desired. A simpler method of compen-
sating the op amp is with gain compensation. Consider
Equation 14 which is repeated here as Equation 42; this
equation is for the loop gain and it is valid for both inverting
and non-inverting op amps. If the closed loop inverting gain
is increased to 9, then Equation 42 becomes A/10 a
decrease of 20dB in the DC intercept. Plotting these results
in Figure 25 reveals that the circuit has become stable with-
out much of a bandwidth reduction.

(EQ. 42)

FIGURE 25. GAIN COMPENSATION

The occasion always arises where the closed loop gain must
be one or less, thereby precluding the use of gain compen-
sation; thus the designer must resort to other techniques to
achieve the circuit performance. An alternate method of
compensation is called lead compensation, and it consists of
putting a zero in the loop transfer function to cancel out one
of the poles. The best place to locate the zero is on top of the
second pole, since this cancels the negative phase shift
caused by the second pole. The schematic of a circuit which
employs lead compensation is shown in Figure 26, and
Equation 43 is for the loop transfer function.

FIGURE 26. LEAD COMPENSATION
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The zero in Equation 43 occurs before the pole, so it can be
used to cancel out the pole at 1/τ2 by placing the zero on top
of the pole. Now the 135 degree phase shift point has moved
out to 1/RF||RICs yielding better phase margin. There are
always compromises to be made when designing a feedback
circuit, and the one made here is to add external compo-
nents. If the op amp has additional poles close to 1/τ2, and
many op amps do, then the pole placement is critical. Some
op amps have so many poles in the area of 1/τ2 that this
method of compensation cannot be used.

(EQ. 43)

Unless specified otherwise, the amplifier gain (a) will be
assumed to have the form a = K/(1 + τ1s)(1 + τ2s).

FIGURE 27. LEAD COMPENSATION PLOT

Sometimes a good look at the problem reveals a potential
solution, so the case of stray input capacitance will be inves-
tigated. An inverting amplifier with a stray input capacitance,
CI, is shown in Figure 28. Looking at Equation 44 for the
open loop transfer function, it is obvious that the stray capac-
itance adds a pole to the transfer function, and if the added
pole is close to 1/τ2 the circuit will become unstable. The
capacitor, CF shown in dotted lines, is added to the circuit to
yield the transfer function shown in Equation 45. Inspection
of Equation 45 reveals that if RICI = RFCF, then the poles
and zeros in the transfer function will cancel each other, and
the transfer function will appear to be independent of fre-
quency. This type of compensation is named after the same
idea used in the compensated attenuator, which is an old
instrument design trick. Which just proves that little in circuit
design is really new.

FIGURE 28. COMPENSATED ATTENUATOR CIRCUIT
SCHEMATIC, GAIN PLOT AND PHASE PLOT

No CF:

(EQ. 44)

CF in circuit:

(EQ. 45)

There are times when an extra degree of freedom is required
and the lead-lag, sometimes called the feed-forward, form of
compensation yields this freedom. This method of compen-
sation puts a pole and a zero in the loop transfer function. If
the pole and zero locations must be independent of each
other, then separate compensation networks need to be
used. An example of this would be to use a lag circuit similar
to that shown in Figure 24, and a lead circuit similar to that
shown in Figure 26. The lead and lag would then be inde-
pendent in the example so they could be placed conve-
niently for compensation purposes. The circuit shown in
Figure 29 has both a pole and a zero, but their placement is
not independent.

(EQ. 46)
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FIGURE 29. LEAD-LAG COMPENSATION SCHEMATIC AND Aβ
AMPLITUDE PLOT

Referring to Figure 29, it can be seen that the lead-lag com-
pensated circuit crosses 0dB at a lower frequency than the
uncompensated circuit, thus the compensation has made
the circuit more stable. Also, the transfer function of the com-
pensation has been shown in Figure 29 for clarity. There is
an additional advantage to lead-lag compensation in that it
yields higher gain at high frequencies. The closed loop gain
plots, Figure 30, show that the zero precedes the pole; the
poles and zeros interchange when the plot changes from the
loop gain to the closed loop gain. Also, the high frequency
gain is emphasized with lead-lag compensation. The high
frequency emphasis may be desirable when a high overall
gain is needed, but some unwanted effects, such as DC off-
set, must be minimized. The lead-lag method of compensa-
tion usually requires the precise placement of the poles and
zeros so a detailed and accurate [12] phase plot is generally
constructed for this case.

FIGURE 30. LEAD-LAG CLOSED LOOP GAIN PLOTS FOR COM-
PENSATED AND UNCOMPENSATED CIRCUITS

Comparison of Compensation Results

Dominant pole compensation is the easiest method of
compensation to implement within an IC, but it rolls off the
closed loop gain so quickly that it is seldom used except in
op amp design. The circuit resulting from dominant pole
design is very well behaved because the phase margin is
usually about 45 degrees, but the frequency response is
very poor. If the transfer function for the HA2842C shown in
Figure 18 is compensated by dominant pole compensation,
the pole would be placed at 1200Hz; the loop gain when
moving to a lower frequency would then rise at a rate of
20dB/decade until it hit the 90dB point at 0.06Hz. This is an
effective bandwidth reduction of 4.5 decades, from 120MHz
to 1200Hz, so this method is only used when no other type
of compensation is available, noise reduction is more impor-
tant than bandwidth or bandwidth is not important.

Gain compensation is always the preferred method of
compensation if the resulting higher closed loop gain meets
the performance criteria, but many times the design specifi-
cations call for a buffer or an inverter both with a gain of one,
which precludes gain compensation. Gain compensation
does not require any additional external components beyond
the gain setting resistors, it preserves the op amp bandwidth
and it is easy to implement. In a single pole system, increas-
ing gain will reduce the bandwidth by the same factor.

Lead compensation offers an AC compensation which can
function for any DC gain, and it is has a much higher
frequency response than dominant pole compensation. One
deficiency with lead compensation is that the DC gain, the
zero and the pole are all tied together tightly. For example if
the HA2842C shown in Figure 18 is lead compensated for a
closed loop gain of -1 then RI = RF. This means that the pole
and zero are only separated by an octave so the compensa-
tion must be done in an area of the loop gain plot which is very
close to 0dB. Observing Figure 18, it can be seen that the
best place that lead compensation can improve stability signif-
icantly is at the second pole where the phase equals -135
degrees phase shift and the frequency is 75MHz. Placing the
zero at 75MHz yields a phase margin of about 60 degrees
resulting a nice stable circuit with 10% overshoot per Figure
22. The closed loop response equation is VI/VF =
R/RI1/(RFCs + 1), and the closed loop gain is -1 until it
reaches the frequency f =1/2πRFC, 150MHz, where it is down
by -3dB. Lead compensation rolls off the closed loop fre-
quency response dramatically.
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The compensated attenuator approach works well for negat-
ing the effects of an input capacitance because both the
open loop and closed loop transfer functions have a flat
frequency response. Also, the compensation required is very
small. When the output resistance of an op amp gets very
high, the stray capacitance seen across the resistor acts like
a lead circuit and rolls off the high frequency gain. Adding an
input capacitor, the reverse of attenuator compensation,
serves to restore the high frequency performance. Both
digital-to-analog converters and optical receiving diodes
have large associated capacitances, so when they are put
into the input circuit of an op amp, often in an I-to-V con-
verter configuration, the circuit oscillates. The compensated
attenuator tames these circuits, but beware, the compensa-
tion must consider the worst case especially for current
DACs which have a wide range of output capacitance.

The lead-lag compensation scheme is very similar to the
lead compensation scheme but it has two advantages. First,
setting the DC gain does not fix the pole zero separation, so
for low gains the pole and zero could be separated by more
than an octave. Second, a zero shows up in the closed loop
transfer function where it increases the gain at high frequen-
cies. The combination of these two advantages are great
enough to outweigh the cost of the extra components added
to the circuit.

The compensation techniques demonstrated here serve as
a good foundation for feedback circuit design, but like all
foundations it is meant to be built on [13]. There are other
methods of treating compensation such as closed loop sta-
bility plots, Nichols charts, root locus plots and Nyquist anal-
ysis. Each technique offers some advantages and
disadvantages; the Bode method simply is the author’s per-
sonal choice so the other techniques deserve investigation.
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