
Closer to metal: Reverse engineering the
Broadcom NetExtreme’s firmware

Guillaume Delugré
Sogeti / ESEC R&D

guillaume(at)security-labs.org

HACK.LU 2010 - Luxembourg

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Purpose of this presentation

Hardware trust?

Hardware manufacturers are reluctant to disclose their
specifications

You do not really know what firmwares do behind your back

Consequently you cannot really trust them. . .

So here comes the need for reverse engineering

Previous works

A SSH server in your NIC, Arrigo Triulzi, PacSec 2008

Can you still trust your network card?, Y-A Perez, L.
Duflot, CanSecWest 2010

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 2/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Purpose of this presentation

What is this presentation about?

Reverse engineering of the Broadcom Ethernet NetExtreme
firmware

Building an instrumentation toolset for the device

Developing a new firmware from scratch

Why?

To have a better understanding of the device internals

To look for vulnerabilities inside the firmware code

To develop an open-source alternative firmware for the
community

To develop a rootkit firmware embedded in the network card!

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 3/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 4/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Where should we begin?

About the target

Targeted hardware: Broadcom Ethernet NetExtreme NIC

Standard range of Ethernet cards family from Broadcom

Massively installed on personal laptops, home computers,
enterprises. . .

Sources

Broadcom device specifications (incomplete, sometimes
erroneous)

Linux open-source kernel module (tg3)

A firmware code is published as a binary blob in the kernel tree

It is actually not loaded by the Linux driver

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 5/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

The targeted device

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 6/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

NIC overview

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 7/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Device overview

Core blocks

The PHY block

DSP on the Ethernet link
Passes raw data to the MAC block

The MAC block

Processes and queues network frames
Passes them to the driver

MAC components

one or two MIPS CPU

a non-volatile EEPROM memory

a volatile SRAM memory

a set of registers to configure the device

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 8/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Communicating with the device

PCI interface

Cards are connected to the PCI bus

Device is accessible using memory-mapped I/O

Mapped on 16 bits (64 KB)

First 32 KB are a direct mapping onto the device registers
Last 32 KB constitute a R/W window into the internal volatile
memory
The base of the window can be set using a register

EEPROM memory can be accessed in R/W using a dedicated
set of registers

We have access to registers, volatile and EEPROM memory
through the PCI bus.

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 9/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Physical PCI view

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 10/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Different kinds of memory

EEPROM

Manufacturer’s information, MAC address, . . .

Firmware images

Non-documented format

Volatile memory

Copy of the firmware image executed by the CPU

Network packet structures, temporary buffers

Registers

MANY registers to configure and control the device

Some of them are non-documented

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 11/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 12/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Instrumenting the device

We want to

Get easy access to all kinds of memory

Dump the executing firmware code

Inject and execute some code

Test it

Debug it

At first we have to easily access the device’s memory, so we are
going to write a little kernel module.

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 13/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .
Accessing the device’s internal memory
Getting to debug firmware code

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 14/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Linux Kernel Module

Basics

At boot time, the BIOS assigns each device a physical
memory range

The OS maps this range onto a virtual address range

In MMIO mode, we have to get the device’s base virtual
address then just access it like any other memory

A kernel proxy between the NIC and userland

The module provides primitives for reading and writing inside
the NIC (registers, volatile, EEPROM)

It exposes them to userland by creating a virtual char device

Processes can then use open, read, write, seek syscalls

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 15/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Extracting the firmware code

Firmware dump

We can dump the executed firmware code from userland

Based at address 0x10000 in volatile memory (refering to the
specs)

We can directly disassemble MIPS code, obviously it is not
encrypted, nor obfuscated

Static analysis

Static disassembly analysis already made possible

We will focus on how to dynamically analyze the
executed code

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 16/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .
Accessing the device’s internal memory
Getting to debug firmware code

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 17/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Going further

Plan

Using this kernel proxy, we can easily dump and modify the
device’s memory from userland

Now we have to control what is executed on the NIC, the
firmware code

Two firmware debuggers

InVitroDbg is a firmware emulator based on a modified Qemu.

InVivoDbg is a real firmware debugger to control code executed
on the NIC.

Both use the kernel proxy to interact with the NIC.

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 18/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

InVitroDbg

A firmware emulator

Emulates the NIC MIPS CPU

Interacts with the physical NIC memory

Mechanism

Based on a modified Qemu

Firmware code embedded in a userland ELF executable

Code segment mapped at the firmware base address

Catches memory faults and redirects accesses to the real
device

Debugging made possible using the GDB stub of Qemu

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 19/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Architecture de InVitroDbg

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 20/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

InVivoDbg

Firmware debugger

Firmware code really executed on the NIC

Controlling the CPU using dedicated registers

Mechanism

CPU control with NIC registers: halt, resume, hbp

CPU registers found in non-documented NIC registers

Debugger core written in Ruby

Integrated with the Metasm dissassembly framework

Real-time IDA-like graphical interface for debugging

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 21/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Debuggers comparison

InVitro

Firmware code executed in userland

No injection in the device memory

A lot of transactions on the PCI bus

Fake memory view from the PCI bus

InVivo

IDA-like GUI

Easily extensible with Ruby scripts

Few PCI transactions required

Real memory view from the NIC CPU

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 22/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Extending InVivoDbg

Execution flow tracing

Reuse the Metasm plugin BinTrace (A. Gazet & Y. Guillot)

Log every basic block executed

Save a trace which can be visualized offline

Support differential analysis of different traces

Interest

Quickly visualize the default execution path of the code

Monitor the effect of various stimuli (received packet, driver
communication. . .) on execution

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 23/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Execution flow trace

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 24/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Extending InVivoDbg

Memory access tracing

Step-by-step firmware code

Log each memory access (lw, sw, lh, sh, lb, sb)

Save the generated trace

Replay the trace

Interest

Does not rely on firmware code analysis

Extracts the very core behavior of the firmware

Logs every register access tells us what the firmware is
actually doing, e.g. how it configures the device

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 25/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Memory access trace

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 26/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 27/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Creating a new firmware: what for?

Multiple purposes

Provides an open-source alternative to proprietary firmware

Creates a rootkit firmware resident in the NIC

Code testing

We control the firmware image in volatile memory

We control the MIPS CPU state

Thus we can quickly inject and test code in memory

How to get our code loaded during the device
bootstrap?

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 28/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware
Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 29/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Reversing the EEPROM format

Non-documented format

EEPROM contains non-volatile data

Data is r/w accessible using specific device registers

Format is not documented by Broadcom spec. sheets

Contents

Discovered by firmware code and memory analysis

It contains

A bootstrap header
Device metadata (manufacturer’s id, device revision. . .)
Device configuration (MAC, voltages, . . .)
A set of firmware images (bootstrap code, default image,
PXE. . .)

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 30/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware
Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 31/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Description of the bootstrap process

Firmware bootstrap

How is the firmware loaded from EEPROM to volatile
memory ?

Method: reset the device and stop the CPU as quick as
possible!

Result: CPU executes code at address 0x4000 0000

So?

This memory zone is execute-only (not read/write), probably
a ROM

Hack: An non-documented device register holds the current
dword pointed by $pc

We can dump the ROM by modifying $pc and polling this
register!

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 32/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Description of the bootstrap process

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 33/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Description of the bootstrap process

No trusted bootstrap sequence!

Bootstrap

Every time the source power is plugged-in, or a PCI reset is issued,
or the reset register is set:

1 CPU starts on a boot ROM
1 Initializes EEPROM access
2 Loads bootstrap firmware in memory from EEPROM

2 Execution of the bootstrap firmware
1 Configures the core of the device (power, clocks. . .)
2 Loads a second-stage firmware from EEPROM

3 Execution of the second-stage firmware
Is the default firmare executed
Configures networking (Ethernet link, MAC, . . .)
Can load another firmware if requested

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 34/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware
Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 35/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Developing your own firmware

Building our own firmware

All we need is

A cross-compiled binutils for MIPS

ld-scripting to map the firmware at 0x10000

We can start developing our firmware in C

Inject our firmware in the EEPROM

Memory mapping

Memory view from the CPU is documented in the specs

Volatile memory is accessible from address 0

Memory greater than 0xC000 0000 maps into device registers

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 36/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Developing our own firmware

Size requirements

Code can reside between 0x10000 and 0x1c000

48 KB memory shared by code, stack, and incoming packet
buffers

Firmware structure

Initialize the stack ($sp = 0x1c000)

Configure the device for working (way far beyond this talk)

Perform custom malicious/fun actions from the NIC!

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 37/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Examples of customized firmware

Remote firmware debugger

Remote debugging using the Ethernet link

Would offer debugging even if the machine is shut down

Rootkit capabilities

Rootkit (still in development)

Take over the network

Packet interception/forge by the firmware
Embedding an IP/UDP stack and a light DHCP client
→ Stealthy communication (OS never aware)

Corrupt physical memory

Reuse DMA capabilities over PCI to corrupt system RAM
Write access OK, read access still unstable

The device and the OS driver still have to work properly!

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 38/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Conclusion

In a nutshell. . .

Reverse engineering of a proprietary firmware for security
purpose

Made possible with a few free open-source tools (Qemu, Ruby,
Metasm, binutils, . . .)
Real-time firmware debugging!
But depends on targeted device (here Broadcom NICs)

No firmware signature/encryption in Broadcom Ethernet NICs

One can build and load its own firmware

To offer an open-source alternative for the community
To build a highly stealthy rootkit embedded in the NIC

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 39/40

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Reversing the EEPROM format
Description of the bootstrap process
Building your own firmware

Thank you for your attention!

Questions?

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 40/40

	Overview of the NIC architecture
	Instrumenting the network card…
	Accessing the device's internal memory
	Getting to debug firmware code

	…and developing a new firmware
	Reversing the EEPROM format
	Description of the bootstrap process
	Building your own firmware

