
Adventures in HSV Space
Darrin Cardani

dcardani@buena.com

Abstract: Describes how to convert RGB images into HSV space and why you would want
to do so. It also describes some new techniques for choosing parameters in HSV space,
and presents code for some interesting image and video filters that work in HSV space,
including cleaning up skin tones, creating cartoon-like effects, and manipulating
individual colors in a complex scene.

What is HSV Space?
Most operating systems, image processing
programs and texts treat images as collections
of pixels comprised of red, green and blue
values. This is very convenient for display
purposes, since computer monitors output color
by combining different amounts of red, green
and blue. However, most users don’t think of
color in these terms. They tend to think about
color the same way they perceive it - in terms of
hue (the English name we give colors, like
“reddish” or “greenish”), purity (pastels are
“washed out”, saturated colors are “vibrant”),
and brightness (a stop sign is “bright” red, a
glass of wine is “dark” red). So scientists came
up with what they call perceptual color spaces.

A perceptual color space represents color in
terms that non-technical people understand.
There are many perceptual color spaces,
including the PANTONE® Color System, the
Munsell Color System, HSV (Hue, Saturation,
Value) space, HLS (Hue, Lightness , Saturation)
space, and countless others. The one with which
most Mac users are familiar is Hue, Saturation
and Value space. It can be seen in Apple’s HSV
Color Picker, included with every Mac since at
least System 6.[Apple86] (See figure 1.)

(Note: HSV space is sometimes referred to as
HSI for hue, saturation and intensity, or HSB for
hue, saturation, and brightness.)

Figure 1: Apple’s HSV Color Picker

Conceptually, the HSV color space is a cone.
Viewed from the circular side of the cone, the
hues are represented by the angle of each color
in the cone relative to the 0° line, which is
traditionally assigned to be red. The saturation
is represented as the distance from the center of
the circle. Highly saturated colors are on the
outer edge of the cone, whereas gray tones
(which have no saturation) are at the very
center. The brightness is determined by the
colors vertical position in the cone. At the
pointy end of the cone, there is no brightness, so
all colors are black. At the fat end of the cone
are the brightest colors.

Adventures in HSV Space, page 1

mailto:dcardani@buena.com

Figure 2: The HSV Cone

Why (or When) Should I Use HSV
Space?
So why should you use the HSV color space if
the OS itself needs colors to be in RGB space to
display them? There are two main times RGB is
inconvenient. The first is when you want to get a
color from a typical user. Since most users don’t
understand the nuances of RGB, you need to
present them with a way to pick colors which
they can understand. Apple’s HSV color picker
does this very well. The second time you want
to use HSV space is when you have to match
colors, or programatically determine if one color
is similar to another color. Let’s look at why
RGB comparisons are difficult.

The RGB color space is conceptually a cube with
one axis representing red, one representing
green, and one representing blue, as shown
below.

Figure 3a: The black corner (0,0,0) of the RGB Cube

Figure 3b: The white corner (255,255,255) of the
RGB Cube

As you can see, where the axes meet at (0,0,0),
we have black, and at (255,255,255) (or
(1.0,1.0,1.0) if you prefer), we have white. How
do we tell if a color in an image is close to a
color we picked? We could take the Euclidian
distance between the two colors and see if it’s
less than a “similarity” parameter. That sounds
reasonable, but lets look at how this works from
a perceptual standpoint. Let’s say you allow the
user to set a “similarity” threshold for matching
all colors that are similar to a chosen color. In
RGB space, all points less than or equal to the
“similarity” distance from the chosen color form
a sphere inside the RGB cube. The user probably
thinks of matching a color by choosing “all the
bluish tones”, or some similar perceptual way.
But the sphere we get in the RGB cube doesn’t

Adventures in HSV Space, page 2

include many of the values that would meet this
criteria, and it does include many that probably
wouldn’t. You can shrink the sphere to remove
those which don’t match, but there is no obvious
transform you can perform to get more of those
colors which don’t match, but that you want to
include.

Another way to match colors in RGB space
would be to pick a range of red, green, and blue
in which colors must fall. So now you’ve cut out
a smaller cube from the RGB cube. If you want
to, say, match purplish colors, you run into a
similar problem as with using a Euclidian
distance. Since the purplish colors run along the
diagonal between the red and blue axes, you
either end up including a bunch of points you
don’t want, not including points you do want,
or doing a whole bunch of math for what should
be an easy problem.

Now let’s see how you would make such a
match in HSV space. The user picks a color, and
sets a similarity control. You convert the color to
HSV space, if it isn’t already in HSV space.
Now you can see if other colors match the
chosen one based on their hue angle. If the user
wants only aqua colors, they will likely choose a
color with a hue angle of 180°. Colors that
match have hues of roughly 165° to 195°. Using
those parameters you cut a pie slice out of the
HSV cone. The user probably doesn’t want very
dark cyans, since colors that are close to black
often appear to be black. And she probably
doesn’t want colors that are too close to gray or
white, either. So we can limit the colors that
match to not only be within a given hue range,
but also a given saturation and value range.
Brief experimentation with the HSV color picker
suggests that a saturation of 25% or greater, and
a value of 50% or greater gets us a nice range of
colors that most users would probably qualify
as “close to aqua”. So allowing the user to
choose a range for the hue, a range for the
saturation, and a range for the value gets us
reasonable results. This is easier for the user,
and as you’ll see below, fairly easy for the
programmer, too.

How Do I Convert from RGB to HSV
Space?
Foley, van Dam, et al. describe a fairly

straightforward way of converting from RGB
space to HSV.[Foley90] Here is a C translation
of their pseudocode which I’ve used in
production software. It produces 16 bit signed
integers in the range 0-360 for hue, 0-255 for
saturation, and 0-255 for value. Values can be
scaled to be in any range that’s convenient for
your application, and the function can be
rewritten to use only integers if this version
proves to be too slow.

void RGBtoHSV (RGBColor* prgbcIn, short*
piOutHue, short* piOutSaturation, short*
piOutValue)
{

short iMax, iMin;

// Calculate the value component
if (prgbcIn->red > prgbcIn->green) {

iMax = prgbcIn->red;
iMin = prgbcIn->green;

} else {
iMin = prgbcIn->red;
iMax = prgbcIn->green;

}

if (prgbcIn->blue > iMax)
iMax = prgbcIn->blue;

if (prgbcIn->blue < iMin)
iMin = prgbcIn->blue;

*piOutValue = iMax;

// Calculate the saturation component
if (iMax != 0) {

*piOutSaturation = 255 *
(iMax - iMin) / iMax;

} else {
*piOutSaturation = 0;

}

// Calculate the hue
if (*piOutSaturation == 0) {

*piOutHue = kHueUndefined;
} else {

float fHue;
float fDelta;
fDelta = iMax - iMin;

if (prgbcIn->red == iMax) {
fHue = (float)(prgbcIn->green -

prgbcIn->blue) / fDelta;
} else if (prgbcIn->green == iMax) {

fHue = 2.0 + (prgbcIn->blue -
prgbcIn->red) / fDelta;

Adventures in HSV Space, page 3

} else {
fHue = 4.0 + (prgbcIn->red -

prgbcIn->green) / fDelta;
}

fHue *= 60.0;

if (fHue < 0)
fHue += 360;

*piOutHue = (short)fHue;
}

}

“That’s great for color matching,” you say, “but
once I’ve converted the image and matched the
colors, the image is in HSV space, which my OS
doesn’t understand!” You simply need the
reverse transformation. Here’s the code to get
back into RGB from HSV space (also translated
from [Foley90]):

void HSVtoRGB (short iInHue, short
iInSaturation, short iInValue, short* piRed,
short* piGreen, short* piBlue)
{

if (iInSaturation == 0) {
*piRed = iInValue;
*piGreen = iInValue;
*piBlue = iInValue;

} else {
float fHue, fValue, fSaturation;
SInt32 i;
float f;
float p,q,t;

if (iInHue == 360)
iInHue = 0;

fHue = (float)iInHue / 60;
i = fHue;
f = fHue - (float)i;

fValue = (float)iInValue / 255;
fSaturation = (float)iInSaturation /

255;

p = fValue * (1.0 - fSaturation);
q = fValue * (1.0 - (fSaturation *

f));
t = fValue * (1.0 - (fSaturation *

(1.0 - f)));

switch (i) {
case 0:

*piRed = fValue * 255;
*piGreen = t * 255;

*piBlue = p * 255;
break;

case 1:
*piRed = q * 255;
*piGreen = fValue * 255;
*piBlue = p * 255;

break;

case 2:
*piRed = p * 255;
*piGreen = fValue * 255;
*piBlue = t * 255;

break;

case 3:
*piRed = p * 255;
*piGreen = q * 255;
*piBlue = fValue * 255;

break;

case 4:
*piRed = t * 255;
*piGreen = p * 255;
*piBlue = fValue * 255;

break;

case 5:
*piRed = fValue * 255;
*piGreen = p * 255;
*piBlue = q * 255;

break;
}

}
}

What Can I Do With It?
Now that you know how to convert between
RGB and HSV color spaces, let’s look at some of
the useful things you can do with it.

Color Picking
As stated previously, users tend to have an
easier time choosing colors in HSV space.
Apple’s HSV color picker is pretty good. Adobe
also has two interesting HSV color pickers in
Premiere and Photoshop that are also worth
noting.

In Photoshop, they decided to put the hue in a
control by itself, rather than the value. The user
chooses a hue on the color strip in the center of
the dialog box. Then the large area to the left of
it displays the hue with its value varying from

Adventures in HSV Space, page 4

0% at the bottom to 100% at the top, and its
saturation varying from 0% at the left to 100%
at the right.[Adobe2000]

Figure 4: Adobe Photoshop Color Picker

Premiere has a conceptually more complicated
color picker, although it lays out the colors quite
nicely from a perceptual standpoint. For the
top half of the color picker, the value is set to
100%. The hue varies from left to right, and the
saturation is varied from 0% to 100% from top
to the middle of the image. For the bottom half
of the color picker, the value varies from 100%
down to 0% from the middle to bottom but the
saturation remains at 100%. On the left, there is
also a gray scale so you can choose pure gray
tones.[Adobe94] This is essentially the exterior
of the HSV cone mapped onto a rectangle.

Figure 5: Adobe Premiere Color Picker

New Ways of Choosing Color Ranges in
HSV Space
Since non-technical users have an easier time of
selecting color in a perceptual space, it stands

to reason that they would have an easier time
picking a color range in a perceptual space, as
well. I’d like to look at some possible ways to
make choosing ranges of colors easier by doing
the picking in HSV Space.

Round Range Picker

Figure 6: Round HSV Range Picker

In the picture above, the user selects a range of
colors using a control similar to Apple’s round
HSV color picker. Instead of selecting a single
color, though, they can select a maximum and
minimum hue by adjusting the lines coming from
the center of the circle. The user then selects a
saturation range by moving the semi-circular
controls in and out. Finally, they can use the
double slider below the circle to choose a range
for the value parameter.

The advantage to using a control like this is that
it uses controls similar to Apple’s HSV color
picker which is familiar to users. The
disadvantage is that programming and using
curved controls is cumbersome.

Square Range Picker

Figure 7: Square HSV Range Picker

With the Square Range Picker, pictured above,
the hues are laid out horizontally, and vary in
saturation vertically. The user can then choose a
value range using the double slider on the right.
(You could also switch parameters around so

Adventures in HSV Space, page 5

that saturation is on a slider, and value is
displayed along with hue.) This is significantly
easier to program, and the user should have an
easier time manipulating the controls, as well.
However, choosing shades of red can be
somewhat problematic, since they are split at 0°
and 360°. Allowing the user to rotate the hues
should solve the problem, although it’s not
immediately obvious to the user that they can
do so.

Eye Dropper Picker

Figure 8: Eye Dropper Range Picker

A third method of choosing a range of colors is
extremely simple for the user, but presents some
challenges to the programmer. If you display the
content to be manipulated and allow the user to
simply click on it at different places, you can get
a list of samples from the image. You can then
base your parameters on the maximum and
minimum hue, saturation, and value of the
samples chosen. However, if the user chooses
wildly varying hues, covering more than 180°,
how do you decide what the range you should
cover is? For example, if a user chooses yellow
at 60°, then chooses a bluish cyan, at 200°, and
then chooses a bluish magenta at 265°, should
the hue range be 60° through 265°? Or should it
be -105° (265° coming from the other direction)
through 200°?

Using Matched Colors During
Processing
The other major useful application of HSV
space is that you can more easily match colors

in a way that is fairly consistent with human
color perception. So what does that get you? It
allows you to apply manipulations (in other
words filters and effects) only to selected areas
of an image or video clip. This is useful because
it means you can apply your effects to objects in
complex scenes without having to film two
scenes and composite them together later. It also
saves time by not applying a complex filter to
an entire image when only part of the image
needs to be manipulated.

HSV Curves
If you’ve ever used photo editing software,
you’ve probably dealt with the “curves” dialog.
In Photoshop, for example, you can change the
output of any RGB color channel by adjusting
the graph in the curves dialog as shown below.

Figure 9: Photoshop’s Curves Tool

We can create a similar tool for adjusting the
hue, saturation and value of an image. This
allows us some unique opportunities that aren’t
available with other tools. In RGB space it
doesn’t usually make sense to have the input of
a curve be one channel, and the output to be
another channel. Usually, you want the input
and output to be the same. But in HSV space,
we can use the fact the hue is in one component,
and the saturation or value is another
component to create some interesting results.
Let’s say you want the blues in your image to be
darker. If you have hue as the input and value
as the output, you can adjust the brightness of
only the blue values.

Adventures in HSV Space, page 6

Figure 10: Sample image before manipulation

Figure 11a: Hue/Value curve

Figure 11b: Result of Hue/Value manipulation

Unlike with the RGB curves, where adjusting the
blue channel adjusts any color that has blue in
it, including cyan and magenta and gray tones,
adjusting the blues in HSV space only adjusts
those colors that users think of as actually being
blue.

If you want to change one color to another, you
can do that by making the hue be the input and
the output. Let’s say you wanted to change
yellow to green. Just adjust the curves so that
hues in the yellow range are moved to the green
range, while leaving the rest alone.

Figure 12a: Hue/Hue curve

Adventures in HSV Space, page 7

Figure 12b: Yellows are shifted into the green range
using the HSV Curves dialog

You can use variations in the output saturation
to remove color from objects. Maybe you want
only reds to show up in your image. Adjust your
HSV curves like so:

Figure 13a: Hue/Saturation Curve

Figure 13b: All colors, except for reds are
desaturated

The possibilities are mind boggling. Layering the
effect several times gives you an opportunity to
do even more complex changes. And the great
thing about it is that you can make the changes
using the perceptual tools you’re used to using
with color.

Beer Goggles
Adjusting colors can be fun and even useful, but
the real power of using HSV becomes obvious
when you start applying filters only to areas
that are a particular color, or in a particular
color range. We all need a tool to make us look
better, right? We need to get rid of wrinkles,
acne, moles, body odor, etc., don’t we? Well the
HSV color space is just the place to do that.
(Except for the body odor. You’ll need to buy
some deodorant for that.) By selecting the skin
tones in an image and applying a filter which
eliminates noise or dust and scratches, you can
effectively make people look better and younger
without effecting the entire frame. Here’s the
basic algorithm:

for each row in the image
for each pixel in the row

Convert the pixel to HSV space
if the pixel is close to the hue,
saturation and value chosen

destination pixel = Filter (current
pixel)

else
destination pixel = current pixel

end if

Adventures in HSV Space, page 8

end for
end for

So how well does it work? Here are some tests I
ran:

Figure 14a: A human subject

Figure 14b: Before and after Despeckle applied to
subject’s skin tones

Figure 14c: Before and after a 3x3 Median applied
to subject’s skin tones

The effects of the Despeckle version (see Figure
14b) are a bit too subtle. The 3x3 median (see
Figure 14c) does a good job of removing the
visible pores without altering the image
unnaturally. The detail in the hair and eyebrows
remains.

Figure 14d: Before and after a Gaussian Blur with
radius 1.8 applied to subject’s skin tones

Figure 14e: Gaussian Blur with radius 3.2 applied
to subject’s skin tones

The Gaussian Blur with a radius of 1.8 is also
pretty good (see Figure 14d). Turning it up to 3.2
causes too much blurring of other areas of the
image (see Figure 14e).

As you can see from the before and after picture
below, the rest of the image retains its crispness.

Figure 15: The entire image, before and after
Gaussian blur with radius 1.8.

Adventures in HSV Space, page 9

Cartoon Filter
Another fun filter that works in HSV space is
the filter which makes photographic images look
like cartoons. Simply constrain the hue of each
pixel to be the nearest of the six primary or
secondary colors and constrain the saturation
and value to a limited number of values.
Whenever there is a change in the constrained
hue from one pixel to the next, replace the pixel
with a black pixel. This gets you an outline
around objects when the hue changes from one
color to another.

In experimenting with this technique, I’ve found
that using a wider neighborhood for deciding if
a pixel should be black improves the quality of
the outline. I’ve also found that constraining
pixels with saturation under about 30% or value
under about 25% to being grayscale also helps
improve the quality of the output.

Some Caveats
As you can see, working in HSV space offers
several opportunities for improving the ease of
use of color input from users, improved color
matching within your application, and lots of
really cool filters for a variety of applications.
However, there are some things you need to
watch out for when using HSV space. The gray
tones, from black to white, have undefined hue
and 0 saturation. As such, they can present
some special problems for both users trying to
select or match colors, and programmers trying
to use those colors.

In particular, colors with very low saturation
tend to look like shades of gray to a user. When
manipulating colors based on their hue, you can
get some unexpected results when dealing with
low saturation colors. The problem is made
much worse by compression algorithms that use
this fact to throw out data in order to save
space. Colors with widely different hues that all
appear to be gray to the user, may get assigned
the same value in a compressed image.
Applying a filter to that image will leave a large
unnatural block of the image filtered, and
looking terribly processed.

In addition to the discontinuity of hue when
saturation is set to 0, there is the problem of the
colors wrapping around at 360°. This can

usually be dealt with by always setting your
hues to be within the 0-360° range using
modulus arithmetic. However, when subtracting
one hue from another to find how close they are,
you need take special care to make sure that
values on the high end of the hue wheel are
considered close to values on the low end. This
can generally be dealt with by normalizing the
difference of two hues to always be in the -180°
to 180° range.

Bibliography
[Adobe94] Adobe Systems, Inc., User Guide
Adobe Premiere™ version 4.0, Adobe Systems,
Inc. 1994

[Adobe2000] Adobe Systems, Inc., Adobe®
Photoshop® 6.0 User Guide for Windows® and
Macintosh, Adobe Systems, Inc. 2000

[Apple86] Apple Computer, Inc., Inside
Macintosh Volume V, Addison Wesley, Reading,
MA. 1986

[Foley90] Foley, van Dam, Fiener, Hughes,
Computer Graphics: Principles and Practice,
Addison Wesley, Reading, MA. 1990

Adventures in HSV Space, page 10

	Darrin Cardanidcardani@buena.com
	What is HSV Space?
	Why (or When) Should I Use HSV Space?
	How Do I Convert from RGB to HSV Space?
	What Can I Do With It?
	Color Picking
	Using Matched Colors During Processing
	Some Caveats
	Bibliography

