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Preface

These worksheets were originally constructed for my graduate teaching before I retired in Septem-
ber 2005. Since then, I have a lot more time to be interested in lots more things! So I am
continually (but slowly) adding more examples and graphs, and I have also made some minor
editorial changes: this version of the worksheets includes a small index of the commands used,
and also of the datasets.
If you have any comments or queries, please contact me at

p.m.e.altham@statslab.cam.ac.uk

http://www.statslab.cam.ac.uk/~pat
Special thanks must go to Dr R.J.Gibbens for his help in introducing me to S-Plus, and also to
Professor B.D.Ripley for access to his S-Plus lecture notes. Several generations of keen and critical
students for the Cambridge University Diploma in Mathematical Statistics, and since 1998 for the
MPhil in Statistical Science, have made helpful suggestions which have improved these worksheets.
These worksheets may be used for any educational purpose provided their authorship (P.M.E.Altham)
is acknowledged.
Most of the multivariate theory used is explained in my Lecture Notes at http://www.statslab.
cam.ac.uk/~pat/AppMultNotes.pdf
These worksheets form a companion set to “Introduction to S-Plus for Generalized Linear Mod-
elling”, or (more recently) to my R worksheets for a similar course, which are available at http:
//www.statslab.cam.ac.uk/~pat/redwsheets.pdf
Nearly all of the examples given below will work in R, the free software (see link on my webpage).
Aristotle said
‘For the things we have to learn before we can do them, we learn by doing them.’
This is a quotation I found at the start of the book by B.J.T.Morgan, ‘Applied Stochastic Mod-
elling’, published by Arnold (2000).

References.
Agresti, A. (2002) Categorical Data Analysis. New York: Wiley.
Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S-Plus. New York:
Springer-Verlag. Also, any of the 3 previous editions this book.
Webb, A. (1999) Statistical Pattern Recognition. London: Arnold (this shows the relevance of
multivariate analysis to the topic of Statistical Pattern Recognition.)
Note added April 2008 A very interesting article by Michael Friendly, which has a good online
dataset and some marvellous graphics, is
‘A.-M.Guerry’s Moral Statistics of France: Challenges for Multivariable Spatial Analysis’, in Sta-
tistical Science, 22, 368-399.
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This is based on a nineteenth-century dataset.
Note added May 2009 A very topical application of both Principal components analysis and
hierarchical clustering is given in
Bollen J, Van de Sempel H, Hagberg E (2009) ‘A principal component analysis of 39 scientific
impact measures’, see http://xxx.lanl.gov/abs/0902.2183.
This paper analyses 39 × 39 correlation matrix between 39 ‘scientific impact measures’, one of
which is the citation Impact Factor. The authors note that ‘the notion of scientific impact is a
multi-dimensional construct that cannot be adequately measured by any single indicator’.
Another way of rating the influence of journal is the ‘Eigenfactor’, which is not based on PCA but
on the leading eigenvector of a particular Markov transition matrix, see www.eigenfactor.org

http://xxx.lanl.gov/abs/0902.2183
www.eigenfactor.org


Chapter 1

Classical Statistics and
Introduction to non-parametric
methods

The 2-sample t-test and the 2-sample Wilcoxon test
Notation: let (x1, x2, . . . , xm) and (y1, y2, . . . , yn) be independent random samples from the distri-
bution functions F (.), G(.) respctively.
If we know that F,G correspond respectively to N(µ1, σ

2) and N(µ2, σ
2) then the optimum test

of
H0 : µ1 = µ2 against the alternative H1 : µ1 < µ2 is achieved by the ‘2-sample t-test’, and here is
an example, for a very small and obvious set of data.

>x <- scan()
3.7 2.1 4.5 7.1

>y<- scan()
6.1 7.9 10.3 11.4 13.7

>summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.1 3.3 4.1 4.35 5.15 7.1

>summary(y)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.1 7.9 10.3 9.88 11.4 13.7

>t.test(x,y, alt ="less")

Standard Two-Sample t-Test

data: x and y
t = -3.1364, df = 7, p-value = 0.0082
alternative hypothesis: true difference in means is less than 0

5
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95 percent confidence interval:
NA -2.189557

sample estimates:
mean of x mean of y
4.35 9.88

Thus here we reject H0 in favour of H1. Observe that here, µ1 < µ2 implies that F (x) > G(x) for
all x, ie the x’s tend to be smaller than the y’s.
But what if we want to test HP0 : F (x) = G(x) for all x against the alternative HP1 : F (x) > G(x)
for all x, without making a specific assumption about the shape of F,G?
It turns out that we can get a long way (and in fact produce tests that are really rather efficient)
simply by considering the ranks of the observations xi, yj .
This is what ‘nonparametric’ (or more accurately, ‘distribution-free’) statistical tests achieve, and
as such they have a long history.
First, we find the ranks of (x), (y) in the combined sample, which has 4 + 5 = 9 elements.

> rank(c(x,y))
[1] 2 1 3 5 4 6 7 8 9

Then we find W , the sum of the ranks of (x1, . . . , xm) in the combined sample; here W = 2 + 1 +
3 + 5 = 11. We reject HP0 in favour of HP1 if W is sufficiently SMALL, say if W ≤ c, where
P (W ≤ c|HP0) = .05, say.
The beauty of non-parametric statistics is that we can compute the ‘null distribution’ of W purely
from m,n, the respective sample sizes.

>wilcox.test(x,y, alt ="less")

Exact Wilcoxon rank-sum test

data: x and y
rank-sum statistic W = 11, n = 4, m = 5, p-value = 0.0159
alternative hypothesis: true mu is less than 0

How is the p-value computed? Note that under the null hypothesis, we can say by symmetry that
all the orders of the x1, . . . , xm, y1, . . . , yn are equally likely, and each such order must therefore
have probability

1/
(
m+ n

m

)
= q say.

Here’s how we build up the null distribution of W .
You can check that by definition, q = .007936. Further, by definition, W ≥ 10, and W = 10(=
1 + 2 + 3 + 4) with probability q.
And W = 11 = (1 + 2 + 3 + 5) with probability q also, hence

P (W ≤ 11|HP0) = 2× q = .0159.
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Note that in general (for reasonable sorts of distributions, in fact) the non-parametric test is con-
servative with respect to the corresponding t-test (we are throwing away some data by using only
ranks) so that we should expect that the non-parametric test will have a larger p-value than the
corresponding t-test.

Now we consider a new problem, tests for paired samples.
Suppose we have data (x1, y1), . . . , (xn, yn), a random sample from the bivariate distribution func-
tion F (x, y). We wish to test the hypothesis HP0 : F (x, y) = F (y, x) for all x, y against the
alternative hypothesis HPalt that the x’s tend to be smaller than the corresponding y’s. In the
example given below, n = 6, and it is fairly obvious that the x’s tend to be less than the y’s, but
the sample size is rather small. Now we know that if F (., .) is bivariate normal, then the optimum
test of HP0 against HPalt is the paired sample t-test, carried out as follows:

> cbind(x,y,y-x)
x y

[1,] 12.3 12.43 0.13
[2,] 14.4 14.71 0.31
[3,] 2.3 2.97 0.67
[4,] 5.1 5.98 0.88
[5,] 6.7 6.12 -0.58
[6,] 9.1 9.99 0.89

>summary(y-x)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.58 0.175 0.49 0.3833 0.8275 0.89

> t.test(x,y,paired =T,alt = "less")

Paired t-Test

data: x and y
t = -1.6687, df = 5, p-value = 0.078
alternative hypothesis: true mean of differences is less than 0
95 percent confidence interval:

NA 0.07956285
sample estimates:
mean of x - y

-0.3833333

Hence, the corresponding p-value is 0.078, so that at level 10% we reject HP0 in favour of HPalt.
How can we carry out the corresponding test if we make no assumption about the shape of F (., .)?
Here’s the way we do it.
Put zi = yi − xi, then z1, . . . , zn is a random sample from the distribution function G(.) say.
We test H0 : G(z) = 1−G(−z), ie G corresponds to a pdf symmetric about 0,
against H1, G corresponds to a pdf symmetric about a point > 0.
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So, we compute zi = yi − xi, find the ranks of |zi|, 1 ≤ i ≤ n
and then compute as our test statistic V , defined as the sum of the ranks of the |zi| for which
zi < 0.

> rank(abs(y-x))
[1] 1 2 4 5 3 6
> abs(y-x)

[1] 0.13 0.31 0.67 0.88 0.58 0.89

> wilcox.test(x,y,paired =T,alt ="less")

Exact Wilcoxon signed-rank test

data: x and y
signed-rank statistic V = 3, n = 6, p-value = 0.0781
alternative hypothesis: true mu is less than 0

How is the p-value computed?
Here it is P (V ≤ 3|H0) and so we see that it is P (V = 0, 1, 2 or 3|H0).
Let M = number out of z1, . . . , zn which are < 0. Then it can easily be seen that on H0, M is
distributed as Bi(n, 1/2).
Hence . . . it can be shown that, on H0,

P (V = 0) = 1/26 = P (V = 1) = P (V = 2)

and
P (V = 3) = P (V = 1 + 2 or V = 3) = 1/26 + 1/26

giving P (V ≤ 3|H0) = 5/26 = .0781 as given.
This way we can build up the null distribution of V , our test statistic, without even knowing the
parent distribution G().
For large n the asymptotic null distribution of V is normal, with mean and variance which are
known functions of n, and a corresponding result holds for the 2-sample Wilcoxon test. You will
find that R and SPlus use these asymptotic results to compute the p-values for large sample sizes.
Here is a very quick illustration, on the same very small sample, of bootstrap methods, here
used to find 2 slightly different versions of a 95% confidence interval for the mean.

>z # this is our sample, of size 6.
[1] 0.13 0.31 0.67 0.88 -0.58 0.89
>t.test(z) # this will give a 95% confidence interval for mu,
# based on the assumption that the z’s form a random sample
# from a Normal distribution, mean mu.

One Sample t-test

data: z
t = 1.6687, df = 5, p-value = 0.1560
alternative hypothesis: true mean is not equal to 0
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95 percent confidence interval:
-0.2071798 0.9738465
sample estimates:
mean of x
0.3833333

Now we will use the bootstrap library to find our confidence intervals for the mean. This con-
struction does not depend on the assumption of normality. We generate 1000 bootstrap samples,
and compute the mean for each such sample. Each sample is drawn *with* replacement from the
original z1, . . . , z6.

>library(boot)
>set.seed(1.7) # the arbitrary choice 1.7 ensures we get the same result each time
> z.boot = boot(data=z, statistic = function(x,i) mean(x[i]) , R =1000)
> boot.ci(z.boot, type=c("perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = z.boot, type = c("perc", "bca"))

Intervals :
Level Percentile BCa
95% (-0.0467, 0.7567 ) (-0.1350, 0.7183 )
Calculations and Intervals on Original Scale

Now a different example for you to try. The datafile
taxrevenue
contains, as rows, the taxrevenue for sales of
tobacco, spirits, beer, wine, cider and sherry, betting.
The columns are 1989-90,1990-91,1991-92.
These data are from “ The Independent” Aug 18, 1993. (Note, data from a newspaper, while
interesting and topical, does not usually constitute a “random sample”. We press on regardless.)
Here is the dataset taxrevenue

x y z
5035.3 5636.0 6289.5
1513.5 1703.0 1742.1
2074.2 2290.0 2324.9
791.2 855.3 924.5
58.8 68.6 73.8

976.1 1006.4 1052.8

These data provide an opportunity for a tour through some S-Plus classical tests.

tax <- read.table("taxrevenue", header = T)
tax
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attach(tax)
a <- (y-x)/x ; b <- (z-y)/y # we compare relative increases.
#first, one-sample tests on a.
a ; summary(a)
t.test(a,mu=.10)
names(t.test(a))
t.test(a)$conf.int
# Now the nonparametric version of this.
wilcox.test(a, mu =.10)
t.test(a,mu =.01) ; wilcox.test(a,mu =.01) #compare p-values.

Now compare a with b, but pretending a, b independent of each other.

t.test(a,b) # This assumes the 2 variances are equal.
t.test(a,b,var.equal =F) # This doesn’t assume the 2 variances equal.

But, the above were WRONGLY applied: they assumed independent a, b. So now we do it correctly,
ie allowing for the PAIRING of a, b.

t.test(a,b,paired =T)
wilcox.test(a,b,paired =T)

Next we demonstrate 2 methods of testing the independence of a, b. The first, which uses the
Pearson correlation coefficient, is effectively assuming that we have a random sample from a bi-
variate normal distribution. The second, constructed by Spearman in the context of intelligence-
testing, tests for independence of a, b without making any assumption on the parent distribution
F (a, b), this is therefore a non-parametric test. It essentially replaces ai, bi by their ranks, eg
(1, 3), . . . , (n, n) and works out the corresponding Pearson coefficient. On the null hypothesis of
independence of a, b this has known distribution, depending only on n, the sample size.

cor.test(a,b)
cor.test(a,b,method ="spearman")
help(friedman.test) # experiment with this new non-parametric test.
# can you apply it to the data x, y, z ?
# Try some plots. Do they enlighten you ?
i <- 1:3 ; ttax <- t(tax)
matplot(i, ttax, type ="l") # might help

Here is another dataset, this time from The Independent, June 30, 1999, on the safety of multi-
purpose vehicles (MPV’s). The 8 types of vehicle were subjected to ‘Front Impact’ tests (in which
the front impact takes place at 40mph (64kph)) and ‘Side Impact’ tests, in which the side impact
takes place at 30mph (50kph)). The corresponding scores are given in the Table below: the higher
the score, the better the vehicle.

Frontal_score(%) Side_Score(%)
RenaultEspace 67 100
ToyotaPicnic 61 93
Peugeot806 42 93
NissanSerena 34 100
VolkswagenSharan 36 96
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MitsubishiSpWagon 24 96
Opel/VauxhallSintra 21 93
ChryslerVoyager 0 89

Questions for you:
i) Is the Frontal Score significantly less than the Side Score?
ii) Is there a positive association between these two scores?

‘How the world is getting hungrier each year’ is the headline in The Independent of 26 November,
2003, showing the following distressing data: for the following 40 countries, the percentage of the
population that is undernourished, for the years 1999-2001, and for 1990-92.

y99-01 y90-92
1 DRCongo 75 31
2 Somalia 71 68
3 Burundi 70 49
4 Afghanistan 70 58
5 Eritrea 61 63*
6 Mozambique 53 69
7 SierraLeone 50 46
8 Zambia 50 45
9 Haiti 49 65
10 Angola 49 61
11 CAR 44 50
12 Tanzania 43 35
13 Ethiopia 42 57*
14 Liberia 42 33
15 Rwanda 41 43
16 Zimbabwe 39 43
17 Mongolia 38 34
18 Cambodia 38 43
19 Kenya 37 44
20 Madagascar 36 35
21 Niger 34 42
22 Chad 34 58
23 NKorea 34 18
24 Yemen 33 35
25 Malawi 33 49
26 Bangladesh 32 35
27 Congo 30 37
28 Nicaragua 29 30
29 Guinea 28 40
30 PNewGuinea 27 25
31 Cameroon 27 33
32 Gambia 27 22
33 Iraq 27 7
34 Panama 26 20



P.M.E.Altham, University of Cambridge 12

35 Guatemala 25 16
36 Lesotho 25 27
37 Togo 25 33
38 DominicanR 25 27
39 Sudan 25 31
40 SriLanka 25 29

* corresponds to 1995-97, as the earlier figure was unavailable.

New for July 2008: The Tompkins Table for Cambridge Colleges Examinations results, 2000−2008.
Each year The Independent publishes the examination rank order of the 29 Cambridge Colleges:
Emmanuel has been at the top of the Table for each 2006 and 2007, but now (ie 2008) Selwyn is
top.
Here is the Table of ranks for each of the last 9 year (note that certain colleges were only included
in this Table from 2003 onwards). Suggestions for a non-parametric test, and a plot of the various
college ‘tracks’ over the 8 years, are given below. First, here is the dataset.

College y00 y01 y02 y03 y04 y05 y06 y07 y08
Christs 1 1 4 2 2 4 6 2 8
Churchill 15 9 10 9 19 18 13 15 6
Clare 9 6 3 6 4 9 12 17 13
CorpusC 10 20 18 7 10 16 8 8 9
Downing 8 10 8 12 17 15 11 3 12
Emmanuel 3 2 2 1 1 5 1 1 2
Fitzwilliam 21 13 20 20 15 13 19 14 21
Girton 18 17 16 17 25 24 22 21 22
G&Caius 12 8 7 4 5 2 2 10 4
Homerton NA NA NA 25 24 26 25 26 25
HughesH NA NA NA 27 27 29 29 29 26
Jesus 13 11 9 10 9 7 10 9 7
Kings 20 21 14 16 20 10 17 18 19
LucyC NA NA NA 26 26 27 26 24 28
Magdalene 22 22 15 18 22 20 20 13 5
NewHall 16 23 24 24 23 25 24 23 23
Newnham 24 24 22 21 13 21 23 22 24
Pembroke 6 7 1 3 6 6 4 7 10
Peterhouse 14 19 23 22 21 22 21 25 17
Queens 5 5 5 5 8 8 14 11 16
Robinson 19 14 21 23 16 11 18 20 18
StCaths 11 18 12 11 7 1 3 5 11
StEdmunds NA NA NA 29 29 28 28 28 29
StJohns 4 4 11 13 14 12 15 19 20
Selwyn 7 12 13 14 11 19 7 4 1
SidneyS 23 16 19 15 18 14 9 12 14
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Trinity 2 3 6 8 3 3 5 6 3
TrinHall 17 15 17 19 12 17 16 16 15
Wolfson NA NA NA 28 28 23 27 27 27

Tompkins <- read.table("Tompkins", header=T)
Tompkins <-Tompkins[-c(10,11,14,23,29),]#to remove the incomplete rows
matTomp <- as.matrix(Tompkins[,2:10])
friedman.test(t(matTomp)) #

Note that we transpose the matrix in order to test for the differences between the 24 colleges. The
Friedman test results in a chi-squared statistic of 150.82 on 23 df, apparently showing that there
are indeed systematic differences between these 24 colleges. However, this use of the Friedman test
may not be strictly valid, since consecutive years (‘blocks’ in the parlance of the Friedman test)
will not be independent. Each Tompkins score, for a given year and a given college, is obtained
from the examination results of students from years 1, 2 and 3 of that college. Thus typically a
particular student, arriving in say autumn 2001, will contribute to the scores of his/her college in
2002, 2003 and 2004.

> round(cor(matTomp),2)
y00 y01 y02 y03 y04 y05 y06 y07 y08

y00 1.00 0.80 0.76 0.75 0.70 0.55 0.66 0.62 0.50
y01 0.80 1.00 0.83 0.75 0.69 0.65 0.62 0.54 0.47
y02 0.76 0.83 1.00 0.91 0.72 0.71 0.72 0.67 0.60
y03 0.75 0.75 0.91 1.00 0.78 0.71 0.83 0.73 0.65
y04 0.70 0.69 0.72 0.78 1.00 0.81 0.79 0.67 0.55
y05 0.55 0.65 0.71 0.71 0.81 1.00 0.78 0.62 0.45
y06 0.66 0.62 0.72 0.83 0.79 0.78 1.00 0.86 0.78
y07 0.62 0.54 0.67 0.73 0.67 0.62 0.86 1.00 0.77
y08 0.50 0.47 0.60 0.65 0.55 0.45 0.78 0.77 1.00

This does indeed fit in with the suggestion of positive correlation between successive years. In this
case I suspect that the Friedman test statistic of 150.82 should actually be ‘deflated’ by a suitable
factor (but what is this?) before referring it to the χ2 distribution. Now we show a method of
plotting the ‘time tracks’ of the 24 colleges.

college <- Tompkins[,1] # to set up college names
# we could use ‘matplot’ to plot the tracks of the individual colleges,
# but ‘interaction.plot’ turns out to be quicker to use
v <- as.vector(matTomp) # this reads DOWN the rows
College <- gl(24,1, length=216, labels = college)
Year <- gl(9,24, length=216, labels=2000:2008)
y <- 25-v # to make graph give ‘best’ college at the TOP
interaction.plot(Year, College, y, col=c("black", "red", "green3", "blue"), ylab="")

This results in Figure 1.1. Some of the middling ‘tracks’ do seem to go all over the place.
Following a suggestion by Dr Richard Gibbens, we could also also plot the ‘tracks’ another way,
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Figure 1.1: The ‘time tracks’ of Cambridge colleges, ranked by Tompkins scores
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resulting in Figure 1.2.

library(lattice)
year <- gl(9,24, length=216, labels=c(0:8)) # to reduce clutter on plot
xyplot(y~year|College, type="l")

Here is a fuller version of the Tompkins Table for 2008, in rank order.

College score %firsts
1 Selwyn 68.47 29.9
2 Emmanuel 68.30 30.6
3 Trinity 68.27 31.4
4 G&Caius 67.33 27.9
5 Magdalene 65.97 24.5
6 Churchill 65.72 27.1
7 Jesus 65.60 25.2
8 Christs 65.27 25.7
9 CorpusC 65.24 24.1
10 Pembroke 64.96 24.5
11 StCaths 64.63 23.5
12 Downing 64.48 22.8
13 Clare 64.44 22.5
14 SidneyS 64.22 20.9
15 TrinityH 63.76 19.3
16 Queens 63.58 22.3
17 Peterhouse 63.21 22.9
18 Robinson 63.20 20.6
19 Kings 63.07 22.5
20 StJohns 62.48 20.5
21 Fitzwilliam 61.08 18.2
22 Girton 60.84 15.3
23 NewHall 60.03 13.9
24 Newnham 59.96 13.3
25 Homerton 58.62 13.0
26 HughesHall 56.36 20.8
27 Wolfson 55.15 7.4
28 LucyC 52.61 8.7
29 StEdmunds 51.56 11.2

So you see that the two columns are correlated, but not perfectly correlated.
You may well want to know exactly how the Tompkins score is computed. The table allocates 5,
3, 2, 1, 0 points respectively for each of a First, a 2-1, a 2-2, a 3rd and ‘granted an allowance’. (I
think that complete failures are not counted at all.) Then to quote Wikipedia
“The scores in each subject are then weighted to a common average, to avoid the bias towards
colleges with higher proportions of students entered for subjects which receive higher grades. The
result is then expressed as a percentage of the total number of points available.”
(Hence for construction of the Tompkins table, a First in Mathematics (for example) for college x
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Figure 1.2: Using the lattice() library to plot the ‘time tracks’ of Cambridge colleges, from 2000-
2008
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‘counts’ less than a First in English for college x.)

Note added July 2009: Dr R.J.Gibbens has compiled a more complete set of data, including the
results from 2009. Please see

http://www.statslab.cam.ac.uk/~pat/RGdata.csv

for a comma-separated file, from 1988-2009 (with some gaps).

The Independent, 5 August 2008, presents the following cricketing data, under the headline ‘For
better or Worse: England’s captains’ performances since Tony Greig. (This item follows the
resignation of Michael Vaughan as England’s Captain.) We can compare the batting average of an
individual player when he was Captain with his batting average when he was not Captain.
With the help of my colleague Dr Richard Samworth (using cricinfo) I have corrected the figures
given in the Independent for Stewart.

MC AvC MnC AvnC
Greig 14 38.04 44 41.32
Brearley 31 22.48 8 24.28
Botham 12 13.14 90 36.74
Willis 18 21.59 72 26.31
Gower 32 43.59 85 45.50
Gatting 23 44.05 56 32.21
Gooch 34 58.72 84 35.93
Atherton 54 38.73 61 35.25
Stewart 15 39.22 118 39.59
Hussain 45 36.04 51 38.10
Vaughan 37 36.02 45 50.98
Flintoff 11 33.23 58 32.32

key: MC= number of matches as Captain,
AvC = batting average as Captain
MnC = number of matches not as Captain,
AvnC = batting average not as Captain.

Here is my suggestion for plotting the data. You may also like to think of some suitable non-
parametric tests: eg is the batting average of a Captain smaller than his batting average when not
a Captain? Can you do anything useful with the information on the numbers of matches played?

Cricket <- read.table("Cricket.data", header=T)
attach(Cricket)
captains <- row.names(Cricket)
plot(AvC ~ AvnC, type="n", xlab = "average not as Captain",
ylab = "average as Captain", xlim=c(10,60), ylim=c(10,60))

text(AvC ~ AvnC, labels=captains)
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This results in Figure 1.3 as shown.

New for June 2009: Cochran’s Q statistic.
Here is a brief note on how to compute Cochran’s Q for a table of binary data. Consider the
set of data given below (taken from Siegel and Castellan 1988, ‘Non-parametric statistics for
the behavioral sciences’). We have 3 different ‘treatments’, which here correspond to 3 different
interviews. The yes/no responses (1 or 0) form the columns of this Table, and each row gives
the responses of a particular subject: there are 18 subjects in all. Let us assume that yit is the
response of the ith subject to the tth treatment, where i = 1, . . . , n, and t = 1, . . . , T . For our
example n = 18, T = 3. We follow the notation of Agresti 2002, Categorical Data Analysis, in
particular Problem 11.22 on p488. Let us assume that the responses yit are independent variables,
with Pr(yit = 1) = pit = 1− Pr(yit = 0). Assume further a linear logistic model, thus

log((pit/(1− pit)) = λi + µt.

Here the parameters of interest are µt. These correspond to the ‘treatment’ effects, and in particular
we wish to test the null hypothesis

H0 : µt = 0 for all t.

The parameters (λi) are the unknown subject effects, and in classical parlance these are ‘nuisance’
parameters.
Note that the distribution of (yit) conditional on the statistics (

∑
t yit), 1 ≤ i ≤ n is free of the

nuisance parameters (λi). Using this conditional distribution, Agresti explains why an appropriate
statistic for testing H0 is Cochran’s Q statistic, defined by

Q =
n2(T − 1)

∑
t(y.t − y..)2

T
∑

i yi.(1− yi.)

where
y.t =

∑
i

yit/n, yi. =
∑

t

yit/T, and y.. =
∑

i

∑
t

yit/nT .

In other words, to compute Q we just need the row means, the column means, and the overall
mean of (yit). The statistic Q is derived from the distribution of (y.t) conditional on the subject
means (yi.), and on the null hypothesis H0, Q is approximately χ2 with (T −1) degrees of freedom.
First, here is the dataset.

sub r1 r2 r3
s1 0 0 0
s2 1 1 0
s3 0 1 0
s4 0 0 0
s5 1 0 0
s6 1 1 0
s7 1 1 0
s8 0 1 0
s9 1 0 0
s10 0 0 0
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s11 1 1 1
s12 1 1 1
s13 1 1 0
s14 1 1 0
s15 1 1 0
s16 1 1 1
s17 1 1 0
s18 1 1 0

If you think about the construction of our test statistic, you will realise that any row of the
datamatrix where all the responses are the same (for example the first row in our dataset) will
make no contribution to Q.
And now, here is the program. You could do things in a more sophisticated way if you wish. I find
our old friend ‘tapply’ very handy.

> Cochranq.data = read.table("Cochranq.data", header=T)
> y = Cochranq.data[,2:4]
>Y = c(y$r1, y$r2, y$r3)
>Y
[1] 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0

[39] 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
>Treatment = gl(3,18, length= 54)
>Subject = gl(18, 1, length= 54)
> Tmean = tapply(Y, Treatment, mean)
> Tmean

1 2 3
0.7222222 0.7222222 0.1666667
> Submean = tapply(Y,Subject, mean)
> Submean # as a check

1 2 3 4 5 6 7 8
0.0000000 0.6666667 0.3333333 0.0000000 0.3333333 0.6666667 0.6666667 0.3333333

9 10 11 12 13 14 15 16
0.3333333 0.0000000 1.0000000 1.0000000 0.6666667 0.6666667 0.6666667 1.0000000

17 18
0.6666667 0.6666667
> n = 18; T = 3
> Ymean = mean(Y) ; Ymean
[1] 0.537037
> den = T* sum(Submean*(1-Submean)) ; den
[1] 8
> num = (n^2)*(T-1) * sum((Tmean- Ymean)^2) ; num
[1] 133.3333
> 133.3333/8
> Q = num/dem ; this is Cochran’s Q: refer it to chisq with 2 df
> Q
[1] 16.66666

The three Treatments are clearly significantly different.
Afterthought You may well wonder why we don’t just use the linear logistic structure and try



P.M.E.Altham, University of Cambridge 21

summary(glm(Y ~ Subject + Treatment, binomial)) # and now check the increase in deviance with
summary(glm(Y ~ Subject, binomial))

The reason why the correct approach is to condition on the Subject totals is that we need a
test-statistic whose distribution is asymptotic in n, the number of subjects. Thus we look at the
distribution of the data conditional on the subject totals in order not to have the problem of the
number of parameters going to infinity (as it would with the unconditional distribution).



Chapter 2

Getting started in multivariate
normal analysis: simulating and
plotting

We start by simulating a sample of 200 observations from a given 3-dimensional normal. (You
could do this via the function rmvnorm() if you prefer.)

i <- 1:200
x <- rnorm(i) # to generate 200 NID(0,1) rvs
y <- rnorm(i) # to generate a further set of 200 NID rvs
z <- rnorm(i) # and again.
v1 <- 2*x + y + 29
summary(v1)
v2 <- x+z+10
v3 <- 3*x + 72 # now (v1,v2,v3) form a r.s. of 200 observations
# from a specified 3-variate normal distribution.
a <- cbind(v1,v2,v3) # a is the corresponding data-matrix
plot(v1,v2)
pairs(a)
brush(a) # can you see what’s going on ?
options(digits =4) # makes things easier on the eye
b.cov <- var(a) # the sample covariance matrix
b.cov # how close is it to the true covariance matrix?
b.cor <- cor(a) # the sample correlation matrix
b.cor
b.lm <- lm(v1~ x+y)
summary(b.lm)
hist(v1) # does this look as you would expect ?
e.cov <- eigen(b.cov) ; names(e.cov) # eigen-values etc
e.cor <- eigen(b.cor)
e.cov ; e.cor # why are these 2 sets of e-vals different ?

#(Now we do DIY calculation of sample covariance matrix)

22
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col.means <- apply(a,2,mean)
col.means ; help(apply)
col.resid <- sweep(a,2,col.means) ; help(sweep)
# "apply" & "sweep" are not terms you’ld ever have thought of !
cov.diy <- t(col.resid) %*% col.resid # t( ) is transpose
# You can probably find a more elegant way of computing cov.diy.
cov.diy <- cov.diy/199 # %*% is matrix mult’n
cov.diy ;b.cov # for comparison
# Here’s another useful function.

b <- scale(a,center =T,scale =T) # NB U.S. spelling
pairs(b)
var(a) ; var(b)
cor(a) ; cor(b) # Now try a Hotelling T-Test.

Now we set up a function to compute the bivariate normal density function, for correlation co-
efficient ρ, calculate this density at each point in a 20 × 20 grid, and demonstrate three ways of
plotting this density.
We compute

f(x, y) = exp−(x2 − 2ρxy + y2)/2(1− ρ2).

x <- seq(-2,2, length= 40); y <- x; rho <- .7
bivnd <- function(x,y){
exp(-(x^2 - 2*rho *x *y +y^2)/(2*(1- rho^2)))
}
z <- x %*% t(y) # to set up z as a matrix of the right size
for (i in 1:40){
for (j in 1:40){
z[i,j] <- bivnd(x[i],y[j])

}
}
contour(x,y,z)
image(x,y,z)
persp(x,y,z)

The resulting three plots are given respectively as Figures 2.1, 2.2 and 2.3.

Repeat, experimenting with different values of ρ. Think about the problem of simulating a
sample of size n from this distribution, and then checking its empirical density.
In fact nested loops, while possible in SPlus, are to be avoided if possible (see Venables and Ripley’s
book). A little thought about matrix algebra shows us that they do not need to be used here. Try
the following.

x2 <- x^2 ; y2 <- y^2
one <- rep(1, times= 40) # this is the unit vector, of length 40.
z0 <- (x2 %*% t(one) - 2 * rho * x %*% t(y) + one %*% t(y2))/(2*(1- rho^2))
z0 # to check that z0 is a matrix
z <- exp(-z0)
contour(x,y,z) # and so on....
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Figure 2.1: The bivariate normal density with ρ = 0.7, a contour plot
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Figure 2.2: The bivariate normal density with ρ = 0.7, an image plot
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Figure 2.3: The bivariate normal density with ρ = 0.7, a perspective plot

Finally, as an optional extra, we plot an ellipse, as shown in Figure 2.4, to show the shape of a
contour of the bivariate normal density function.
The ellipse will be centred at (x0, y0). What are a, b and alpha?

a <- 3 ; b <- 4; alpha <- pi/3; x0 <- 1 ; y0 <- 2
theta <- seq(0, 2*pi, length=1000)
x <- x0 + a*cos(theta)* cos(alpha) - b*sin(theta)*sin(alpha)
y <- y0 + a*cos(theta)* sin(alpha) + b*sin(theta)*cos(alpha)
plot(x,y, type="l")
points(x0, y0, pch=20) # to show the centre of the ellipse

Why does this correspond to a pdf with NEGATIVE correlation?
I got the code from a reply to Rhelp in October 2006 by Alberto Monteiro. If you eliminate θ from
the expressions for x, y you should be able to write the equation of the above ellipse as in the usual
form, and hence find the correlation coefficient ρ in terms of a, b, α.
Advanced Exercise Now you see how to draw an ellipse, choose six points at random on your
ellipse, and draw seven lines to illustrate Pascal’s theorem. (not a lot to do with statistics, I
grant you, but good for your general education! I learnt Pascal’s theorem when I was at school,
and have somehow never forgotten it.)
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Chapter 3

Graphical models for normal
distributions: a simulation, and
the Times Online Good University
Guide data

Note added March 2009: the R package ggm, graphical Gaussian models, by G.M.Marchetti
provides very fully for graphical modelling of continuous multivariate data.
First we generate data from a multivariate normal distribution, with x1, x2, x3 mutually indepen-
dent, conditional on x4. So the corresponding graphical model for dependencies is as shown in
Figure 3.1.

We show that a more conventional multivariate analysis, ie principal components, will not pick up
this structure.
(Would a factor analysis detect the structure?)

i <- 1:100 ; x4 <- rnorm(i) # first generate x4
x1 <- 7*x4 + (.5)*rnorm(i);x2 <- 8*x4+(.7)*rnorm(i)
x3 <- -10*x4 + rnorm(i)
library(ggm)
dag <- DAG(x1~x4, x2~x4, x3 ~x4) # for the corresponding directed acyclic graph
z = drawGraph(dag)

This gives the onscreen plot of the graphical dependence, for you to adjust by clicking near to each
point in turn. When you have adjusted the position of the 4 points to your satisfaction click on
middle button to quit. The final positions of the 4 points will be in z, as you can check by

points(z, pch=19)
a <- cbind(x1,x2,x3,x4) # This is our data matrix
pairs(a) # for pairwise associations
v <- var(a) # sample covariance matrix

27
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Figure 3.1: x1, x2, x3 mutually independent, conditional on the variable x4.

inv <- solve(v) # inverse sample cov.matrix
round(v,2) ; round(inv,2) # to have a look at them.

Note:
var(x4|all remaining variables) = 1/inv44

where inv is the inverse of the covariance matrix of the x′s.
Hence for example, we see that var(x4|x1, x2, x3) is SMALL compared with var(x4), ie, x4 is
closely determined by x1, x2, x3. Check this by

l.m <- lm(x4~x1+x2+x3) ; summary(l.m)

Note: standard theory also shows that, for example,

corr(x1, x2|all remaining variables) = −inv12/
√
inv11inv22.

Inspection of inv also shows us for example, that corr(x1, x2|remaining variables) is LOW, and
corr(x1, x4|remaining variables) is HIGH.
A more cunning way to find these conditional correlations is to use the linear model ‘trick’.

y <- 1:100 #Invent a y-variable
trick.lm <- lm(y~x1+x2+x3+x4)
summary(trick.lm, cor= T)

This has given us MINUS the matrix of conditional correlations. (Ignore the column corresponding
to ‘intercept’.)
Now let’s try principal components.
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a.pr <- princomp(a) #for principal components
first <- a.pr$x[,1];second <- a.pr$x[,2] # first 2 princ. comps
b <- cbind(a,first,second); pairs(b)

This plot will show us how x1,... are related to first and second principal components.

round(cor(b),2) # x4 has no special role.
# We can use the D-matrix to compute appropriate test statistics:
d <- diag(inv) ; d<- 1/d ; d<- sqrt(d) #gives vector of 1/sqrt(d(i,i))
dd <- matrix(d) #turns it into 4X1 matrix
t.d <- dd %*% t(dd) #gives matrix of (1/sqrt(d(i,i)d(j,j)))
corr <- inv*t.d # note, element by element multiplication
chi.sq <- 1 - corr^2
chi.sq <- -100*log(chi.sq)
chi.sq # refer each term to chi-sq(1) to test sig.

# See Whittaker, p175

You could experiment with a ‘heat map’ picture of the correlation (or conditional correlation)
matrix. You do have to remember that whereas a graph is indexed from the bottom left-hand
corner, with a matrix we count from the top left-hand corner.

z = cor(a) # for the 4 by 4 correlation matrix
i = 1:4 ; j = 4:1
zz = z[i,j] # necessary ‘flip’
ii= 1:4; jj = 1: 4 ; image(ii,jj,zz)

New for 2008: the Times Online Good University Guide data from April 28, 2008.
Firstly, here is the dataset for 2008, omitting the institution names. The column headings are
R= Rank (there are some ties), StudSat = Student Satisfaction (with some NA’s), ResQual=
Research Quality,
ServSpend= Services and Facilities spend, Entry= Entry Standards, Compl= Completion rate,
GoodH = percentage getting a ‘Good Honours’ degree
GradProsp = Graduate Prospects, Total= Total score.

R StudSat ResQual StudStaff ServSpend Entry Compl GoodH GradProsp Total
1 1 NA 6.2 13.0 2671 522 98.6 89.4 78.6 1000
2 2 NA 6.5 12.2 2097 530 97.9 84.5 87.9 995
3 3 3.9 5.8 9.7 2828 453 96.0 72.4 86.0 960
4 4 3.9 6.3 13.2 1416 471 96.9 74.6 83.0 915
5 5 4.1 5.3 15.4 1009 458 94.8 79.7 72.6 841
6 6 3.9 5.5 9.4 1623 429 94.3 72.5 79.8 832
7 7 NA 5.6 17.1 1724 453 96.7 79.3 73.0 813
8 8 3.9 5.2 14.9 1426 440 95.8 81.3 76.0 811
9 9 4.0 5.2 20.3 1250 452 96.4 75.4 75.8 810
10 10 4.0 4.7 12.4 1546 399 93.2 67.2 79.8 777
11 11 3.8 5.2 16.7 1235 443 95.3 76.8 78.9 764
12 12 4.1 4.3 17.6 1217 368 94.0 63.8 69.7 755
13 13 3.8 5.0 14.5 1254 458 92.2 77.8 76.4 742
14 14 4.0 5.4 16.7 1323 402 90.7 71.3 67.8 738
15 15 3.9 3.9 14.6 1701 346 88.4 64.3 76.9 734
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16 16 3.9 5.5 15.0 1144 436 95.2 71.0 64.3 733
17 17 4.0 4.7 16.8 1016 387 94.8 74.6 65.6 726
18 18 3.8 5.3 9.5 1603 365 84.4 69.2 73.3 722
19 19 3.8 5.0 15.6 1368 431 96.2 74.5 70.7 721
20 20 4.1 5.0 17.0 1104 364 91.2 65.4 59.2 709
21 21 4.1 4.5 16.2 1149 371 92.9 62.5 64.6 705
22 22 3.9 4.5 15.1 1085 408 92.4 73.3 70.3 699
23 23 3.9 4.4 16.7 1402 390 92.3 67.6 72.9 694
24 24 3.9 5.2 13.9 1093 356 88.2 71.3 61.9 688
25 25 4.0 4.9 16.8 914 358 91.7 69.1 64.5 683
26 26 3.9 4.3 16.6 1200 389 92.4 69.6 70.2 678
27 27 3.9 5.4 15.8 1074 366 92.5 64.2 61.0 670
28 28 3.9 4.5 13.9 1136 377 90.1 66.3 70.1 658
29 29 3.8 5.1 14.6 1323 406 92.3 68.8 65.6 656
30 30 3.9 4.5 18.4 972 387 92.1 71.2 68.0 653
31 31 3.9 4.3 13.9 1130 425 85.5 64.8 68.0 650
32 32 NA 4.0 13.9 1174 447 78.8 64.3 75.8 648
33 33 3.9 4.3 17.2 1164 363 86.6 69.1 73.2 626
34 34 3.9 4.6 15.5 916 370 90.0 64.8 70.8 625
35 35 3.7 5.1 13.6 1136 382 88.3 70.3 61.6 621
36 36 3.9 4.8 14.7 1111 316 83.4 56.8 63.2 611
37 37 NA 3.9 14.5 1027 334 89.9 62.0 66.9 609
38 38 3.9 4.0 16.4 1093 324 87.0 60.5 65.1 608
39 39 4.1 4.0 19.2 976 299 89.8 61.1 56.1 607
40 40 3.7 4.7 15.9 1089 341 86.8 61.6 79.1 603
41 40 3.9 3.7 18.7 748 318 85.0 63.9 80.6 603
42 42 3.8 4.7 12.8 1088 342 88.5 61.6 72.6 599
43 42 4.0 3.2 19.0 761 294 83.9 57.3 71.1 599
44 44 NA 3.6 18.3 998 429 81.8 67.9 71.2 598
45 45 NA 4.2 16.8 1056 375 82.3 57.9 61.0 551
46 46 3.9 4.4 16.9 979 289 88.3 54.1 60.1 531
47 47 4.0 3.9 16.9 1042 290 77.0 50.0 65.8 530
48 48 3.9 3.4 18.6 1105 265 82.2 54.2 75.8 519
49 49 3.9 1.6 17.0 908 295 84.9 56.6 72.1 512
50 50 NA 4.2 17.6 939 382 68.7 58.6 74.6 502
51 51 3.7 3.1 16.7 1188 302 85.4 63.7 63.3 496
52 52 3.8 4.9 20.2 758 297 82.2 58.9 58.4 486
53 53 3.9 2.4 19.2 1345 279 77.0 61.8 59.2 485
54 54 3.8 4.0 18.1 693 314 84.3 56.0 64.1 484
55 55 NA 0.9 18.5 927 311 79.8 53.4 81.8 480
56 56 3.7 1.4 19.1 810 283 89.1 53.3 77.1 456
57 57 4.0 4.4 26.2 554 258 76.9 60.5 67.7 453
58 58 NA 1.5 21.3 710 333 77.7 60.3 75.2 447
59 59 3.5 4.4 18.7 873 391 87.1 57.9 51.3 442
60 60 3.9 1.6 17.5 1017 275 81.2 55.9 55.5 437
61 61 3.8 1.7 18.1 805 280 83.0 55.3 64.2 425
62 62 NA 1.2 18.1 767 354 74.8 60.0 61.6 419
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63 62 3.7 0.7 18.5 851 278 85.2 59.8 63.7 419
64 64 3.9 1.1 18.1 943 241 79.8 52.2 53.3 399
65 65 3.9 1.3 16.3 1063 273 69.3 52.1 53.4 397
66 66 3.8 0.8 16.2 1024 252 77.3 57.7 62.5 396
67 67 NA 0.8 17.8 960 292 73.3 57.4 61.8 393
68 68 3.9 1.7 21.0 652 242 88.0 45.1 59.2 391
69 69 3.9 1.5 20.6 746 265 84.5 54.7 49.4 385
70 70 3.8 0.9 17.4 928 246 76.9 48.1 66.3 383
71 71 3.8 1.9 20.3 1257 237 79.5 52.7 55.6 382
72 72 3.8 1.6 19.8 867 266 80.6 56.7 59.8 380
73 73 3.8 1.1 21.9 1031 291 80.7 52.4 59.3 375
74 74 3.8 1.7 20.2 1000 242 80.5 51.3 53.7 371
75 75 3.8 0.8 20.7 1077 248 85.1 48.4 54.5 366
76 75 3.9 1.0 20.6 929 239 73.7 56.0 61.1 366
77 75 3.9 1.1 20.4 583 252 83.5 45.8 62.4 366
78 78 3.9 0.5 19.1 826 228 74.9 56.5 56.7 365
79 79 3.8 1.7 19.0 758 256 81.4 48.0 59.3 363
80 80 3.8 1.2 18.3 882 228 78.6 49.2 64.0 362
81 81 3.8 1.7 16.7 710 238 77.0 50.4 56.1 360
82 82 3.9 1.0 19.4 692 221 80.0 56.8 55.4 359
83 83 3.7 2.1 16.7 857 269 73.2 53.5 59.7 356
84 84 NA 0.6 23.4 1808 207 75.4 41.1 59.6 348
85 85 3.8 1.2 18.5 840 252 77.1 48.4 57.1 335
86 85 3.8 1.4 18.5 860 235 75.9 45.1 61.9 335
87 87 3.7 1.1 23.8 911 270 85.0 55.4 61.2 332
88 88 3.7 1.5 24.4 502 264 85.7 67.7 54.8 328
89 89 3.8 0.8 20.2 828 221 80.8 45.4 63.1 323
90 90 3.8 1.2 18.9 822 261 75.2 47.8 53.7 319
91 91 3.7 1.2 17.5 739 229 80.5 56.4 53.5 318
92 92 3.9 0.9 20.6 610 244 78.9 46.0 55.5 317
93 93 3.9 0.8 17.7 785 179 63.3 51.7 64.7 316
94 94 NA 0.7 20.0 1085 313 68.7 43.8 55.5 311
95 95 3.9 0.7 20.7 705 236 74.4 44.6 63.0 310
96 96 3.7 0.8 23.2 928 263 82.7 49.0 59.5 305
97 97 3.7 1.4 21.5 753 246 80.6 47.7 63.8 303
98 98 3.8 0.9 22.4 978 215 77.0 49.8 57.1 298
99 99 NA 1.4 22.3 1298 190 68.5 40.0 58.0 284
100 100 3.8 0.5 17.8 672 253 76.1 46.1 48.4 280
101 100 NA 0.7 19.8 1478 214 64.0 47.2 51.9 280
102 102 3.7 0.4 25.6 780 266 85.4 49.9 61.7 276
103 103 NA 1.3 23.1 800 191 72.0 51.7 61.9 270
104 104 3.8 0.5 19.9 615 242 64.8 52.7 61.5 262
105 105 3.7 0.5 21.6 940 224 78.2 43.9 48.8 247
106 106 3.9 0.4 22.8 248 243 78.3 38.1 55.7 242
107 107 3.6 0.6 22.8 626 257 76.6 46.5 70.7 229
108 108 3.7 1.3 29.6 1576 189 71.9 46.5 55.7 219
109 109 3.6 0.7 26.3 793 255 83.9 52.3 48.9 214
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Figure 3.2: The pairs plot for the Times Online Good University Guide data, 2008

110 109 3.7 1.2 24.0 791 210 79.7 42.3 57.3 214
111 111 3.6 0.4 19.4 586 202 69.5 48.7 61.9 209
112 112 3.7 0.6 21.2 917 204 73.9 43.5 52.6 207
113 113 3.7 0.7 24.3 833 220 73.6 47.0 52.6 191

I used only the variables

ResQual, ..., GradProsp

for which the corresponding pairs plot is Figure 3.2. Finally, here is the matrix of conditional cor-
relations, derived as above. You will see that the only two variables that have a strong correlation,
conditional on the remaining five variables, are ‘GoodHon’ and ‘Entry’.

ResQual StudStaff ServSpend Entry Compl GoodH GradProsp
ResQual 1.00 -0.24 0.06 0.31 0.28 0.21 0.00
StudStaff -0.24 1.00 -0.15 -0.17 0.14 -0.02 -0.12
ServSpend 0.06 -0.15 1.00 0.08 -0.03 0.07 0.12
Entry 0.31 -0.17 0.08 1.00 0.18 0.48 0.24
Compl 0.28 0.14 -0.03 0.18 1.00 0.21 -0.02
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GoodH 0.21 -0.02 0.07 0.48 0.21 1.00 0.07
GradProsp 0.00 -0.12 0.12 0.24 -0.02 0.07 1.00

Afterthought: the above analysis was perhaps a bit simple-minded, since

hist(ResQual)

shows that this variable has a clearly bi-modal distribution. You could try using only the first 60
rows of the data-matrix in your analysis.
In case you feel you really HAVE to know the rank order of the 113 Universities concerned, here
it is (I abbreviated some of the names). I see that Cambridge is second. Huh!

[1] Oxford Cambridge
[3] Imperial_College London_School_of_Economics
[5] St_Andrews University_College_London
[7] Warwick Bristol
[9] Durham Kings_College_London
[11] Bath Loughborough
[13] Edinburgh Southampton
[15] Aston York
[17] Exeter S_O_A_S
[19] Nottingham East_Anglia
[21] Leicester Sheffield
[23] Newcastle Royal_Holloway
[25] Reading Birmingham
[27] Lancaster Cardiff
[29] Manchester Leeds
[31] Glasgow Aberdeen
[33] Queens_Belfast Liverpool
[35] Sussex Essex
[37] Stirling Kent
[39] Aberystwyth Surrey
[41] City Queen_Mary_London
[43] Hull Strathclyde
[45] Heriot-Watt Swansea
[47] Bangor Bradford
[49] Oxford_Brookes Dundee
[51] Brunel Goldsmiths_London
[53] Ulster Keele
[55] Robert_Gordon Nottingham_Trent
[57] Lampeter Queen_Margaret_Edinburgh
[59] Univ_of_the_Arts,London Plymouth
[61] Brighton Glasgow_Caledonian
[63] Bournemouth Staffordshire
[65] Glamorgan UCE_Birmingham
[67] Napier Chichester
[69] Winchester Central_Lancashire
[71] Roehampton West_of_England
[73] Northumbria Gloucestershire
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[75] UWIC_Cardiff Coventry
[77] Canterbury_Christ_Church Newport
[79] Portsmouth Kingston
[81] Sunderland Northampton
[83] Salford Bedfordshire
[85] LiverpoolJohnMoores Hertfordshire
[87] Sheffield_Hallam Bath_Spa
[89] Worcester Manchester_Metropolitan
[91] Westminster Huddersfield
[93] Bolton Paisley
[95] Teesside Leeds_Metropolitan
[97] DeMontfort Derby
[99] East_London Chester

[101] Abertay York_St_John
[103] London_South_Bank Anglia_Ruskin
[105] Southampton_Solent Edge_Hill
[107] Cumbria Middlesex
[109] Lincoln Greenwich
[111] Thames_Valley Wolverhampton
[113] Liverpool_Hope



Chapter 4

Manova on 3 groups, using
Fisher’s classic Iris data

This dataset consists of 50 cases of each of 3 species, namely Iris setosa, Iris virginica, and Iris
versicolor. Each case has 4 measurements on the length and width of its petals and sepals.

R
data(iris)
ir.species <- gl(3,50, length=150, labels=c("s", "c", "v"))
pairs(ir) # not so revealing: we need to label the 3 species separately.
plot(ir[,1:2], type="n")
text(ir[,1:2], labels=as.character(ir.species)) # for a simple pairwise plot
# but, for a really good plot, we use the R example, thus
pairs(iris[1:4], main = "Anderson’s Iris Data -- 3 species",
+ pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

These pairwise plots result in Figures 4.1 and 4.2 respectively, and show some separation between
the three groups.

summary(aov(ir[,1] ~ ir.species)) # for a 1-way anova on the 1st vector
iris.manova <- manova(ir~ ir.species) # for the manova
summary(iris.manova, univar=T) # compare with result of aov()
summary(iris.manova, test="wilk") # to look at the whole vector
liris.manova <- manova(log(ir)~ ir.species) #to try log-transform
summary(liris.manova, test="wilk")

The iris dataset works almost too well. For a fun dataset, where the separation between the groups
is less clearcut, try the painters data (de Piles).

library(MASS)
?painters
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Figure 4.1: Fisher’s Iris data: a simple pairs plot
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x <- painters[,1:4] ; x <- as.matrix(x)
school <- painters[,5]
is.factor(school) ; table(school)
painters.manova <- manova(x~ school)
summary(painters.manova, univar =T)
summary(painters.manova,test ="wilk")
for (i in 1:4){
+ cat(round(tapply(x[,i],school,mean),3),"\n")
+ }
# This shows us the differences between the Schools.

Exercise: do a ‘pairs’plot of the ‘painters’ data, with a different plotting symbol for each of the 8
Schools.



Chapter 5

Linear discrimination between
groups

Let x be the original data vector, and consider doing a 1-way anova on the scalar quantity y = uTx.
We want to choose a u such that the 1-way anova on y gives maximal separation between the groups:
hence you can see that we aim to solve the problem:
choose u to maximise uTBu subject to uTWu = 1, where B,W are the between-groups and within-
groups sums of (squares and products) matrices, respectively.
This gives us that Bu = λWu, and so taking λ as the largest such value gives the maximum value
of uTBu/uTWu.
Hence, for the transformed variable y = uTx, in the 1-way anova, we find that
‘between groups ss/(within groups ss)’ = λ, and hence
‘between groups ss/ total ss’ = λ/(λ+ 1) = R2,
where R2 is the usual multiple regression R2: in this case it measures how well the separation into
groups explains the overall variation.
In the example below, each of B, W is a 4× 4 matrix, and since there are just 3 groups, it follows
that B is of rank 2, hence the final λ, and hence the final R2, is effectively zero.

We use the Iris dataset defined above, and compare 2 methods. (The function lda() is also used
on this dataset in Venables and Ripley, 4th edition.)

a <- log(ir) ; grou <- ir.species # for convenience
teeny.dis <- discr(a,3 )
teeny.dis
teeny.dv <- a %*% teeny.dis$vars #new coords
teeny.x <- teeny.dv[,1]
tapply(teeny.x,grou,mean)

Now relate this to teeny.dis output. I have always had great difficulty interpreting

teeny.dis$groups

but in fact the ?discr does tell you what to expect. Here goes.
Taking the first column of the 3× 3 matrix

39
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teeny.dis$groups,

we set

x1 <- c(rep(0.8074378, times =50), rep(-0.2986802,times =50), rep( -0.5087577,times =50))
cor.test(x1, teeny.x)

and sure enough, this reveals to us the correlation 0.9887738, as we get for the first component of

teeny.dis$cor

above.

par(mfrow =c(3,1)) # 3 plots on 1 page
hist(teeny.x[grou=="s"]);hist(teeny.x[grou =="c"]);hist(teeny.x[grou =="v"])
par(pty ="s") # to make graph frames SQUARE
par(mfrow =c(1,1))
teeny.y <- teeny.dv[,2]
plot(teeny.x,teeny.y,type ="n",xlab ="first disc var",ylab ="second disc var")
text(teeny.x,teeny.y, labels = as.character(ir.species))

We now compare with data in original co-ordinates

v1 <- a[,1] ; v2 <- a[,2]
plot(v1,v2,type ="n") ; text(v1,v2, labels= as.character(ir.species))
library(MASS)
?lda
ir.lda <- lda(log(ir), ir.species)
ir.lda
plot(ir.lda) # we’ll do this another way now
ir.ld <- predict(ir.lda, dimension =2)$x
plot(ir.ld, type ="n", xlab = "first lin discr", ylab = "second lin discr"))
text(ir.ld, labels = as.character(ir.species), cex =1.0)

Here’s how to apply it for the painters’ dataset.

summary(painters)
table(School)
k <- scan()
10 6 6 10 7 4 7 4

x <- painters[,1:4]
first.dis <- discr(x,k) ; first.dis



Chapter 6

Principal Components Analysis

The data below are from Hartigan, 1975, “Clustering Algorithms” Our first object is to see whether
the 9 points in 5 dimensions can be represented as 9 points in a plane. Here is Hartigan’s data set.

energy protein fat calcium iron
beef 180 22 10 17 3.7
chicken 170 25 7 12 1.5
clams 45 7 1 74 5.4
crabmeat 90 14 2 38 0.8
mackerel 155 16 9 157 1.8
salmon 120 17 5 159 0.7
sardines 180 22 9 367 2.5
tuna 170 25 7 7 1.2
shrimp 110 23 1 98 2.6

food <- read.table("food",header=T) ; food
attach(food)
a <- data.matrix(food) ; a
a.cov <- var(a) ; a.cov
a.corr <- cor(a) ; a.corr
pairs(a)
help(princomp)
a.pcp <- princomp(a) ; names(a.pcp)
a.pcp # Can you understand what it’s telling you ?
a.pcp$sdev # What are these ?
help(eigen) # We find out directly.
x <- eigen(a.cov) ; names(x)
x$values
z <- a.pcp$sdev ; z <- z*z ; z

Do you see the connection? Let’s get a plot of the 9 points using first 2 principal components.
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Figure 6.1: Principal components on the unstandardised food data

a.pcp # for a reminder
x1 <- a.pcp$scores[,1] # first column
x2 <- a.pcp$scores[,2] # second column
plot(x1,x2) # but we really need to label the points
a.lab <- row.names(food)
plot(x1,x2,type="n",xlab ="first principal component",ylab="second principal component")
text(x1,x2,a.lab)

This gives us Figure 6.1. Because of the high variability of calcium relative to the other 5
variables, this variable will dominate the first principal component, as is shown by Figure 6.2,
which is obtained by

plot(x1,calcium,type="n") ; text(x1,calcium,a.lab)

We may prefer to standardise all the original variables to have mean 0, variance 1 before we do the
principal components analysis. Thus, in effect, we find the eigen-values of the correlation matrix
rather than those of the covariance matrix. Of course, this gives each of the 5 variables “equal
weight” in the analysis. The final plots may look completely different from the plots which result
from the unstandardised variables.
A problem for you: compute the standardised data matrix from a above, and do the principal
components analysis on this.
Compare the results of the above with what you get from princomp() . You should also try

a.pcp <- princomp(a,cor =T)
a.pcp$loadings
Loadings:
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Figure 6.2: Showing that the first principal component is (almost) - calcium

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
energy -0.601 -0.173 0.778
protein -0.516 0.277 0.714 -0.374
fat -0.519 -0.286 -0.286 -0.561 -0.503
calcium -0.123 -0.793 0.533 0.268
iron 0.297 -0.458 -0.773 0.321

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
SS loadings 1.0 1.0 1.0 1.0 1.0
Proportion Var 0.2 0.2 0.2 0.2 0.2
Cumulative Var 0.2 0.4 0.6 0.8 1.0

Note: Figure 6.3 shows a biplot of the data. This is an ingenious 2-dimensional picture of the
data (using the standardised variables) is produced by

biplot(a.pcp)

The directions of the arrows in the biplot correspond to the ‘loadings’ of components 1 and 2.
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Chapter 7

Hierarchical Cluster Analysis

Here is a data set which represents 10 points in 3 dimensions, and I choose this very small data-set
so that you can see what to expect from the result of the cluster analysis.

0 2 3
4 5 6
70 7 7
10 11 12
3 4 5
6 7 18
19 20 21
22 23 44
25 26 27
28 29 30

Here’s how to analyse it in R (S-Plus will do the same, but with slightly different terminology). A
fundamental problem with hierarchical cluster analysis is that there are several ways of choosing the
distance function, and having made that particular choice, there are then several ways of choosing
the particular method of clustering: this is because we can define the distance between two clusters
in several different ways. You have to realise that cluster analysis is a ‘data-analytic’ method, ie a
(sensible) way of reducing a complex dataset, but it does not depend on any fundamental statistical
modelling ideas such as likelihood, parameters, goodness of fit etc.

a <- read.table("tinycluster") ; a
a <- data.matrix(a) ; a

Observe that R can cope with missing values in constructing a distance matrix.

d <- dist(a,method ="euclidean")
round(d,2) # which results in the interpoint distances below

1 2 3 4 5 6 7 8 9
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2 5.83
3 70.29 66.04
4 16.19 10.39 60.34
5 4.12 1.73 67.10 12.12
6 16.91 12.33 64.94 8.25 13.67
7 31.76 25.98 54.46 15.59 27.71 18.63
8 51.05 45.74 62.68 36.22 47.36 34.47 23.39
9 42.15 36.37 52.78 25.98 38.11 28.34 10.39 17.52
10 47.35 41.57 52.70 31.18 43.30 33.35 15.59 16.37 5.20
# You can see that points 2 and 5 are the closest of the 10.
par(mfrow=c(2,1))
h1 <- hclust(d,method ="complete") # this is the default method
names(h1)
plclust(h1) # does this make sense to you ?
h2 <- hclust(d,method ="single")
plclust(h2) # Observe differences from previous plot
# Now we’ll put labels on the points
teeny.lab <- scan(,"")
a b c d e f g
h i j

# NB,blank line
par(mfrow=c(1,1))
plclust(h2,labels =teeny.lab)

This results in the graph given in Figure 7.1.

Now we’ll try an example of some BINARY data.
Here’s my file for the Lent 2003 cohort of graduate students.
The questions are
1.do you eat eggs?
2.do you eat meat?
3.do you drink coffee?
4.do you like beer?
5. Are you a UK resident?
6. Are you a Cambridge graduate?
7. Are you female?
8. Do you play sports?
9. Do you have a full driving licence?
10.Are you left-handed?
The students gave the responses Yes or No, as ‘y’, ‘n’ respectively.
I admit these questions are BORING, but more interesting, personal questions might not be
publicly usable, as these are.

...........................................................................
data for Lent 2003

eggs meat coffee beer UKres Cantab Fem sports driver Left-h
Vivienne y n y n y n y y y n
Taeko y y y n y y y n n n
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Luitgard y n y n n n y y y n
Alet y y y y n n y n y n
Tom y y y y y y n y y n
LinYee y y y n n n n y y n
Pio y y y n n n n y n n
LingChen y y n n n n y y n n
HuiChin y y y n n n y y y n
Martin y y y y y n n y y n
Nicolas y y y y n n n y y y
Mohammad y y y n n n n n y n
Meg y y y n n n y y n n
Cindy y y y y n n y y y n
Peter y y y y n n n y y n
Paul y y n y y y n y n n

# What follows below was done in S-Plus
a <- read.table("students2003", header=T)
student.lab <- row.names(a)
a ; student.lab
a <- (a=="y")*1 # to convert to 0,1 data
a
d <- dist(a,"binary") ; d # can you understand it ?
s <- 1-d ; s #s is the SIMILARITY matrix
h <- hclust("compact",sim =s) # operating on the similarity matrix
plclust(h) # does this make sense ?
h <- hclust(d,"compact") ; plclust(h) # now on the dissimilarity matrix
# essentially the same as the previous plot ?
# Now for fun with labels.
plclust(h,labels =student.lab)

ls() # to show you all your S-Plus objects
# use rm() to remove unnecessary clutter
ls() # shows you what you’ve done.

Exercise: do a cluster analysis on the 16 students using the FIRST 4 questions only.



Chapter 8

Decision trees

You are a trainee astronaut, learning how you should decide whether or not to use your autolander.
You have a “training set” of 256 lines of data, telling you whether or not the autolander was used
for all combinations of 6 factors(eg visibility yes/no) in the past. Here we show you how to use
Splus to grow a “decision tree” to guide your actions in the future.

library(MASS)
help(shuttle)
shuttle
attach(shuttle)
summary(shuttle)
table(use,vis)
table(use,vis,error) # and so on,for some useful summaries.
shuttle.tree <- tree(use~.,shuttle) # this grows a tree
# making use of all 6 factors,if necessary.
summary(shuttle.tree)
shuttle.tree # what is this telling you ?
# Do we make use of "vis" in our decision ?
# Do we make use of "wind" ?
plot(shuttle.tree)
text(shuttle.tree,srt =90)

Now try growing a tree using only the first 4 factors,and compare your results with the first tree
obtained. For an interesting comparison with R, look at the function rpart() thus

library(rpart) # rpart means ‘recursive partitioning’
tree.rp <- rpart(use ~. , shuttle) ; tree.rp
plot(tree.rp,compress =T)
text(tree.rp,use.n =T)
post.rpart(shuttle.rp) # for a nice postscript graph

Note added June 2007. Now that I have discovered the new (ie 2007) book ‘Data analysis and
graphics using R: an example-based approach’ by Maindonald and Braun, I realise that I should
have also included the use of the cross-validation error rate to construct the best tree with
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rpart().
A very simple use of the tree() function is given in Worksheet 15, below, for the Cushing’s dataset.
Here are the first 50 rows of the data-set from the Venables and Ripley library(MASS), originally
from D.Michie (1989).

stability error sign wind magn vis use
1 xstab LX pp head Light no auto
2 xstab LX pp head Medium no auto
3 xstab LX pp head Strong no auto
4 xstab LX pp tail Light no auto
5 xstab LX pp tail Medium no auto
6 xstab LX pp tail Strong no auto
7 xstab LX nn head Light no auto
8 xstab LX nn head Medium no auto
9 xstab LX nn head Strong no auto

10 xstab LX nn tail Light no auto
11 xstab LX nn tail Medium no auto
12 xstab LX nn tail Strong no auto
13 xstab XL pp head Light no auto
14 xstab XL pp head Medium no auto
15 xstab XL pp head Strong no auto
16 xstab XL pp tail Light no auto
17 xstab XL pp tail Medium no auto
18 xstab XL pp tail Strong no auto
19 xstab XL nn head Light no auto
20 xstab XL nn head Medium no auto
21 xstab XL nn head Strong no auto
22 xstab XL nn tail Light no auto
23 xstab XL nn tail Medium no auto
24 xstab XL nn tail Strong no auto
25 xstab MM pp head Light no auto
26 xstab MM pp head Medium no auto
27 xstab MM pp head Strong no auto
28 xstab MM pp tail Light no auto
29 xstab MM pp tail Medium no auto
30 xstab MM pp tail Strong no auto
31 xstab MM nn head Light no auto
32 xstab MM nn head Medium no auto
33 xstab MM nn head Strong no auto
34 xstab MM nn tail Light no auto
35 xstab MM nn tail Medium no auto
36 xstab MM nn tail Strong no auto
37 xstab SS pp head Light no auto
38 xstab SS pp head Medium no auto
39 xstab SS pp head Strong no auto
40 xstab SS pp tail Light no auto
41 xstab SS pp tail Medium no auto
42 xstab SS pp tail Strong no auto
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43 xstab SS nn head Light no auto
44 xstab SS nn head Medium no auto
45 xstab SS nn head Strong no auto
46 xstab SS nn tail Light no auto
47 xstab SS nn tail Medium no auto

stability error sign wind magn vis use
48 xstab SS nn tail Strong no auto
49 stab LX pp head Light no auto
50 stab LX pp head Medium no auto



Chapter 9

Introduction to Time-Series
modelling

Diggle, 1990, p169, gives this excellent flowchart for guidance in arima modelling

Begin
|_________________________________
| |
Does a tsplot of the data|___NO - Difference the
appear to be stationary? | data
| |
yes |
| |
Does the correlogram of |___NO___|
the data decay to zero?
|
yes
|
Is there a sharp cutoff |___NO_Is there a sharp cutoff|_NO__
in the correlogram? | in partial corr’gram | ARMA
| |
yes yes
| |
MA AR

We follow the approach in Venables and Ripley, and also use a PMEA data set.

library(MASS)
deaths # total UK monthly deaths from lung diseases for 1974-9
tsplot(deaths)
sablplot(sabl(deaths),title= "deaths") # seasonal components
acf(deaths)
acf(deaths,type= "partial")
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spectrum(deaths)
spectrum(deaths,spans = 3) # smoothed spectrum
spectrum(deaths,spans= c(3,3))
spectrum(deaths,"ar")

Now another dataset shown in Diggle, p42, on luteinising hormone.

lh ; tsplot(lh)
acf(lh) # looks like AR(1) or ARMA(1,1)
acf(lh,type= "partial")
spectrum(lh,"ar")
ar1 <- ar(lh,,1)
ar2 <- ar(lh) #allowed free rein,chooses AR(3)
arima1 <- arima.mle(lh,model= list(order=c(1,0,0)))

# full MLE fit
2*arima1$loglik # deviance - constant
arima.diag(arima1) # diagnostics plot
arima3 <- arima.mle(lh,model=list(order= c(3,0,0)))
2*arima3$loglik # not much better than AR(1)
arima.diag(arima3)
arima11 <- arima.mle(lh,model=list(order= c(1,0,1)))
2*arima11$loglik #no better than AR(1)
arima.diag(arima11)
# Now use arima1 to forecast 12 steps
lh.fore <- arima.forecast(lh,n =12,model =arima1$model)
x <- lh.fore$mean ; sd <- lh.fore$std.err
tsplot(lh,x,x+2*sd,x-2*sd)

Now some popmusic data from ‘The Independent’, February 1994. First copy my files
Splus/popmusic and Splus/popdata

source("popmusic") # (this assumes you have BOTH files)
tsplot(ind)
acf(ind)
lind <- log(ind+1) ;tsplot(lind) # and so on

Can you model the log-index? What is your prediction for 1994 ? Here is the popmusic file.
Data from ‘The Independent’, Wed Feb 23, 1994 “An Index of British penetration of the US singles
market”. The scoring system is :
give 30 points for the year’s best-selling single, and go on down the scale to 1 point for the single
that came 30th in that year’s sale.
Thus the figure for 1993 is 28 pts for “UB40”(the 3rd best-seller)
+ 4 pts for “The Proclaimers”(27th)

pdata<- read.table("popdata", header=T); attach(pdata)
plot(year,ind)
# Here is the ‘‘popdata" file.
year ind
1960 0
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1961 0
1962 14
1963 0
1964 179
1965 219
1966 131
1967 102
1968 48
1969 71
1970 61
1971 76
1972 38
1973 78
1974 36
1975 132
1976 105
1977 102
1978 166
1979 76
1980 142
1981 65
1982 36
1983 137
1984 111
1985 201
1986 70
1987 25
1988 170
1989 31
1990 38
1991 40
1992 48
1993 32



Chapter 10

Survival Data Analysis

We follow closely Venables and Ripley (1994) Chapter 11.
Two data-sets are used:
i)uncensored data on survival times for leukaemia (see Cox and Oakes, 1984, p9)
ii) The 2-sample Gehan data on remission times for leukaemia(Cox and Oakes, 1984, p7)

library(MASS)
attach(leuk) ; leuk
plot(log(time)~ag + log(wbc)) #log() is variance-stabilising here.
plot(survfit(Surv(time)~ag), lty= c(2,3))

These graphs suggest that
survival is BETTER with ag present than with ag absent, and
survival DECREASES as log(wbc) INCREASES.

legend(80,0.8,c("ag absent","ag present"),lty= c(2,3))
options(contrasts<-c("contr.treatment","contr.poly"))
leuk.glm <- glm(time ~ ag* log(wbc),Gamma(log))

Here we fit a gamma model, using the log-link. Check that you can write down the likelihood.

summary(leuk.glm,dispersion= 1)# sets df of gamma as 1. Thus, we have neg. exponential.
anova(leuk.glm) # what is this telling us ?
# We drop the interaction term
leuk.glm <- update(leuk.glm, ~ . - ag:log(wbc))
summary(leuk.glm,dispersion= 1)
leuk.glmi <- glm(time ~ag*log(wbc),Gamma(inverse))

Does using the canonical link function improve the fit?

summary(leuk.glmi,dispersion= 1)

Again, we are forcing a neg exponential fit. Now we use survreg(), for exponential, Weibull and
log-logistic regression analyses.
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survreg(Surv(time) ~ag*log(wbc),dist= "exponential")
summary(survreg(Surv(time)~ag + log(wbc),dist= "exp"))
summary(survreg(Surv(time)~ag+log(wbc)))
summary(survreg(Surv(time)~ag+log(wbc),dist= "log"))

Now we will use a semi-parametric model, the Cox proportional hazards.

leuk.cox <- coxph(Surv(time)~ ag + log(wbc))
summary(leuk.cox)
detach("leuk") #to tidy our space.

Next we find the product-limit estimators of survival curves.

attach(gehan); gehan
plot.factor(gehan)
plot(log(time) ~ pair) # variance- stabilising transformation again.

Now we will estimate the survivor function, using Greenwood’s formula for standard errors. Some
of what is written below is now out of date, since your version of Splus may have survfit() rather
than surv.fit(). See Venables and Ripley, 1999, p371, for a method which replaces surv.fit() by
survfit().

wt1 <- ifelse(treat=="control",1,NA) # to pick out control group
wt2 <- ifelse(treat=="6-MP",1,NA) # to pick out treatment group
wt1 ; wt2 # to check
fit1 <- surv.fit(time,cens,wt= wt1,type= "kaplan-meier",error= "greenwood")
fit1
fit2 <- surv.fit(time,cens,wt= wt2,type= "kaplan-meier",error= "greenwood")
fit2
surv.plot(time,cens,treat,lty= c(3,1),yscale= 100,

xlab= "time of remission",ylab= "% survival")
legend(25,90,c("control","6-MP"),lty= c(1,3))

# or,a diy version,which has error-bars
plot(stepfun(fit1$time,fit1$surv),type= ’l’,ylim= c(0,1),

xlab= "time of remission",ylab= "survival")
t1 <- fit1$time ; s1 <- fit1$surv ; std1 <- fit1$std.err
t2 <- fit2$time ; s2 <- fit2$surv ; std2 <- fit2$std.err
lines(stepfun(t1,exp(log(s1) + 1.96*std1)),lty= 2)
lines(stepfun(t1,exp(log(s1) - 1.96*std1)),lty= 2)
lines(stepfun(t2,s2),lty= 3)
lines(stepfun(t2,exp(log(s2) + 1.96*std2)),lty= 2)
lines(stepfun(t2,exp(log(s2) - 1.96*std2)),lty= 2)
legend(1,0.2,c("control","6-MP","95% conf.int."),lty= c(1,3,2))
# or, use the packet-recipe
gehan.surv <- survfit(Surv(time, cens) ~ treat,conf.type= "log-log")
summary(gehan.surv)
plot(gehan.surv,conf.int= T,lty=c(3,2),log= T,

xlab= "time of remission(weeks)",ylab= "survival")
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survreg(Surv(time,cens) ~ factor(pair)+treat,dist= "exp")
summary(survreg(Surv(time,cens)~treat,dist= "exp")
summary(survreg(Surv(time,cens)~treat))

help(surv.fit)

This enables us to find out about other options.
Now, to test for a difference between the 2 groups:

survdiff(Surv(time,cens) ~ treat, rho=0) # This is the log-rank test
survdiff( Surv(time,cens) ~ treat,rho=1) # almost Gehan-Wilcoxon test

# see Cox & Oakes p 124



Chapter 11

Survival analysis for the British
monarchy

Under the heading
“How long British monarchs have lived”,
the Independent on Sunday (26/11/95) gave the Table below. This gives, for each of 40 monarchs,
the date of death, the lifetime, and a 0 or 1 according to whether the death was natural or not.
(The list omits Lady Jane Grey, who was executed aged 16 in 1553, after 2 weeks on the throne.
Mary, wife of William of Orange, is listed separately as she was Queen in her own right.)

death length natural
WilliamI 1087 60 0
WilliamII 1100 40 1
HenryI 1135 67 0
Stephen 1154 53 0
HenryII 1189 56 0
RichardI 1199 42 1
John 1216 48 0
HenryIII 1272 65 0
EdwardI 1307 68 0
EdwardII 1327 43 1
EdwardIII 1377 64 0
RichardII 1399 33 1
HenryIV 1413 47 0
HenryV 1422 34 0
HenryVI 1471 49 1
EdwardIV 1483 40 0
EdwardV 1483 12 1
RichardIII 1485 32 1
HenryVII 1509 52 0
HenryVIII 1547 55 0
EdwardVI 1553 15 0
Mary 1558 42 0
ElizabethI 1603 69 0
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JamesI 1625 58 0
CharlesI 1649 48 1
CharlesII 1685 54 0
JamesII 1701 67 0
WilliamIII 1702 51 1
Mary(II) 1694 32 0
Anne 1714 49 0
GeorgeI 1727 67 0
GeorgeII 1760 76 0
GeorgeIII 1820 81 0
GeorgeIV 1830 67 0
WilliamIV 1837 71 0
Victoria 1901 81 0
EdwardVII 1910 68 0
GeorgeV 1936 70 0
EdwardVIII 1972 77 0
GeorgeVI 1952 56 0

We use R to plot the Survivor function for the natural lifetimes (so that, for example, William II
counts as a CENSORED observation.)

library(survival}
monarchy.data = read.table("monarchy.data", header=T)
attach(monarchy.data) ; cens= 1-natural
Surv(length, cens)
fit = survfit(Surv(length, cens)~ 1) ; fit
summary(fit)
plot(fit) ; abline(.5,0)

and here is the resultant survivor function. Counting forward from age 0 years, the first observed
natural death was for Edward VI, who died aged 15 years: there are only 39 monarchs at risk at
this age as (poor little) Edward V has been ‘censored’ at 12 years old.

time n.risk n.event survival std.err lower 95% CI upper 95% CI
15 39 1 0.9744 0.0253 0.9260 1.000
32 38 1 0.9487 0.0353 0.8820 1.000
34 35 1 0.9216 0.0435 0.8402 1.000
40 34 1 0.8945 0.0499 0.8018 0.998
42 32 1 0.8666 0.0557 0.7640 0.983
47 29 1 0.8367 0.0612 0.7249 0.966
48 28 1 0.8068 0.0659 0.6874 0.947
49 26 1 0.7758 0.0703 0.6495 0.927
52 23 1 0.7420 0.0749 0.6088 0.904
53 22 1 0.7083 0.0787 0.5696 0.881
54 21 1 0.6746 0.0819 0.5317 0.856
55 20 1 0.6408 0.0845 0.4950 0.830
56 19 2 0.5734 0.0880 0.4244 0.775
58 17 1 0.5397 0.0891 0.3905 0.746
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Figure 11.1: Survivor function for natural lifetime of English monarchs

60 16 1 0.5059 0.0897 0.3575 0.716
64 15 1 0.4722 0.0898 0.3253 0.686
65 14 1 0.4385 0.0895 0.2939 0.654
67 13 4 0.3036 0.0836 0.1769 0.521
68 9 2 0.2361 0.0774 0.1241 0.449
69 7 1 0.2024 0.0734 0.0994 0.412
70 6 1 0.1686 0.0684 0.0761 0.374
71 5 1 0.1349 0.0625 0.0544 0.335
76 4 1 0.1012 0.0552 0.0347 0.295
77 3 1 0.0675 0.0460 0.0177 0.257
81 2 2 0.0000 NA NA NA

The resulting plot is given in Figure 11.1.
Now compute the Kaplan-Meier estimates of the survivor function for the male monarchs and

for the female monarchs, and try fitting parametric distributions to these. (Note, there are just 5
queens in the list.)



Chapter 12

Classical Metric Multidimensional
Scaling and Chernoff’s faces

a <- read.table("Dip97",header= T) # reads in the responses from 16 students
student.lab <- row.names(a)
a <- as.matrix(a)
d <- dist(a,metric= "binary") # This sets up the interstudent "distances"
new <- cmdscale(d,k= 2,eig= T) ; new

This finds the best 2-dimensional representation of the 16 points.

coord1 <- new$points[,1] # the first column
coord2 <- new$points[,2] # the second
par(pty="s") # sets up a square plot
r <- range(new$points)
plot(coord1,coord2,type= "n")
text(coord1,coord2,seq(along= coord1)).

This labels the points by integers. Alternatively, we could use the default setting of a 2-dimensional
representation, thus:

new <- cmdscale(d)
plot(new,type= "n")
text(new,labels= student.lab) # this time put the NAMES on the plot
faces(a, labels= student.lab)

How to insult your students!
Chernoff’s faces (available in R via the package aplpack) represent up to 15 variables by features
of cartoon faces as you will see in Figure 12.1.
The corresponding data set, ‘Dip97’, is given below.

eggs meat coffee beer UKres Cantab Female Sports Driver Left.h
Anna 1 1 1 0 0 0 1 1 1 0
Rachel 1 1 1 1 1 1 1 1 1 0
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Anna
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Graham
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Ian
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Christ.

Piers

Keith

John

Figure 12.1: Chernoff’s faces for the Diploma 1996-7 class
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Gillian 1 1 1 1 1 0 1 0 1 0
Graham 1 1 1 1 1 0 0 1 1 0
Pierre 1 1 1 1 0 0 0 1 1 0
Franc. 1 1 1 0 0 0 1 1 1 0
Peter 1 1 1 1 1 0 0 0 1 0
Ian 1 1 1 1 0 0 0 1 1 0
Jerome 0 1 1 1 0 0 0 0 1 0
Ant. 1 1 1 1 0 0 0 0 1 0
PekWai 1 1 1 0 0 0 1 0 1 0
Sean 1 1 1 0 0 0 0 0 1 0
Christ. 1 1 1 0 0 0 1 0 1 0
Piers 1 1 1 1 1 1 0 1 1 0
Keith 1 1 0 1 1 1 0 1 1 1
John 1 1 1 0 0 0 0 1 1 1

And finally, new for 2002, the following data MPhil/Part III, applied multivariate analysis, Feb
2002.

...........................................................................
eggs meat coffee beer UKres Cantab Fem sports driver Left-h specs

Josh y y y y y n n y n n y
TjunKiat y y y n n n n y y n y
Flora y y y y y n y y y n y
ChauLoong y y y n n n n y n n n
Eleanor y y y y y n y y y n n
Teresa y y y n n n y y y n n
Jim y y y y y y n y y y n
Mama y y y y n n n y y n n
Chao y y y y n n n y y n y
Qi y y y y y n n y n n y
LeeLee y y n y n n y y y n y
Karthi y y y n n n n n n n y
David y y y y y n n y y n y
Neeraj y y n n y n n n n n y
Cosme y y n n n n n y y n y
Arnaud y y y y n n n y y n y
Jochen y y y n n y n y y n y
Sophia y y y n y y y y y n y
Stephane y y n n n n n y y n n
JimmyL y y y y n n n y y n y

Note, the first 2 columns turn out to be unhelpful, so you may prefer to omit them before trying,
eg

dist() for use with hclust() or cmdscale()
The above data set is of course based on rather trivial questions.

By way of complete contrast, here is a data set from The Independent, Feb 13, 2002. on ‘Countries
with poor human rights records where firms with British links do business’. It occurs under the



P.M.E.Altham, University of Cambridge 64

headline

CORPORATE RISK: COUNTRIES WITH A BRITISH CONNECTION.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
SaudiArabia 1 0 0 0 0 1 0 1 0 0 1 1 0 1
Turkey 1 0 1 0 1 1 0 0 0 1 0 1 0 1
Russia 1 0 1 0 1 1 1 0 0 0 0 1 0 1
China 1 1 1 0 1 1 1 0 0 0 0 1 0 1
Philippines 1 1 1 0 0 0 0 0 1 0 0 1 1 0
Indonesia 1 1 1 0 0 1 1 1 0 0 0 1 0 0
India 1 0 1 0 1 0 0 1 1 0 1 1 0 0
Nigeria 0 0 1 0 0 0 1 0 0 0 0 1 1 0
Brazil 1 0 1 1 1 0 1 0 0 1 0 1 0 0
Colombia 1 1 1 1 1 0 0 0 0 1 0 1 0 0
Mexico 0 1 1 0 0 1 0 0 0 0 0 1 0 1

Key to the questions (1 for yes, 0 for no)
Violation types occurring in the countries listed

1 Torture
2 ‘Disappearance’
3 Extra-judicial killing
4 Hostage taking
5 Harassment of human rights defenders
6 Denial of freedom of assembly and association
7 Forced labour
8 Bonded labour
9 Bonded child labour
10 Forcible relocation
11 Systematic denial of women’s rights
12 Arbitrary arrest and detention
13 Forced child labour
14 Denial of freedom of expression

Note that the total number of 1’s in each row ranges from 4, for Nigeria, to 8, for China.
Figure 12.2 shows my 2-dimensional plot of the 11 countries, using the

method ="binary"

option in computing the between-countries distance matrix. (Of course, this treats the 14 different
types of ‘violation’ as equally serious, which is not necessarily the correct thing to do.) In order
to interpret the axes of this graph, I suggest the following:

a <- a[,-12] # to remove the 12th column from the matrix (it’s all 1’s)
b <- cbind(new, a) # new being the first 2 cmd co-ordinates
round(cor(b),2) # so that you can see, for example, which columns of a
are most closely correlated with new[,1]
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Figure 12.2: Countries with a British connection: human rights abuses
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Figure 12.3: Hierarchical clustering for the countries data

You might like to compare the results of cmdscale with those of hierarchical clustering, as follows.

a = read.table("human.rights") # to read in the data
a = data.matrix(a)
d = dist(a, method="binary")
h = hclust(d, method="complete")
# "complete" in R is same as "compact" in Splus
plclust(h)

The resulting graph is shown as Figure 12.3.

Finally, an interesting financial data set, as found on the BBC website in November 2011.
Under the headline ‘Eurozone debt web: Who owes what to whom?’ the BBC website http://
www.bbc.co.uk/news/business-15748696 gives the following figures on how much each of various
major economies owes to each other, expressed in billions of Euros, from data collected from
their various banks at the end of June 2001. (China is known to hold European debt, but no
comprehensive figures are available.)
You have to read this table DOWN the columns: thus for example the UK owes 578.6 to the US,
and Spain owes 74.9 to the UK. (I had to read the figures from 10 different graphs, so I can’t
be absolutely sure I read the figures correctly: you are encouraged to check for yourselves from
the website.) The 10 countries given are UK, US, France, Spain, Portugal, Italy, Ireland, Greece,
Japan, Germany.

http://www.bbc.co.uk/news/business-15748696
http://www.bbc.co.uk/news/business-15748696
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UK US Fra Sp Port It Ire Gre Jap Ger
UK NA 834.5 227 74.9 18.9 54.7 104.5 9.4 101.8 141.1
US 578.6 NA 202.1 49.6 3.6 34.8 39.8 6.2 244.8 174.4
Fra 209.9 440.2 NA 112 19.1 309 23.8 41.4 107.7 205.8
Sp 316.6 170.5 0 NA 65.7 29.5 0 0 0 0
Port 0 0 0 19.7 NA 0 0 7.5 0 0
It 0 0 37.6 22.3 2.9 NA 0 2.8 0 202.7
Ire 113.5 0 0 0 0 0 NA 0 0 0
Gre 0 0 0 0 0 0 0 NA 0 0
Jap 122.7 835.2 79.8 20 0 32.8 15.4 0 NA 108.3
Ger 379.3 414.5 123.5 131.7 26.6 120 82 15.9 42.5 NA

Can you think of a sensible way to use this matrix to construct a distance matrix between the 10
countries, and hence to obtain a single 2-dimensional plot of the countries?



Chapter 13

Analysis of a Repeated Measures
design

You see below the data from p28 of M.J.Crowder and D.J.Hand (1990) ‘Analysis of Repeated
Measures’.
To quote from Crowder and Hand, ‘The effect of a vitamin E diet supplement on the growth of
guinea pigs was investigated as follows. For each animal the body-weight was recorded at the ends
of weeks 1,3,4,5,6 and 7. All animals are given a growth-inhibiting substance during week 1, and
the vitamin E therapy was started at the beginning of week 5. Three groups of animals, numbering
five in each, received respectively zero, low and high doses of vitamin E.’

The body weights (in grams) are given in the table below. The rows correspond to Animals 1, . . . 15,
respectively, and the columns to the weeks 1, 3, 4, 5, 6, 7. The first 5 rows are Group 1, the next 5
are Group 2, and the final 5 are Group 3. We reconstruct the analysis given by Crowder and Hand
on p34, following Venables and Ripley (1997) Chapter 10.
This model allows for three sources of random variation: one is that between the 15 animals, one
is the random interaction effect animals × occasions and and finally one is the ‘error’ variation.
The model to be fitted is

xij = µij + αij + +εij

for i = 1, · · · , 15, j = 1, · · · , 6, where we assume that

αij = αI
i + αIO

ij

where αI
i , α

IO
ij , εij are independent, with variances σ2

I , σ
2
IO, σ

2 respectively. (The first 2 of these 3
terms are known as variance components.)
We assume that

µij = µ
(g)
j for iε Group g.

x <- scan()
455 460 510 504 436 466

68
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Figure 13.1: Time tracks showing growths for Group 1 guinea pigs

467 565 610 596 542 587
445 530 580 597 582 619
485 542 594 583 611 612
480 500 550 528 562 576
514 560 565 524 552 597
440 480 536 484 567 569
495 570 569 585 576 677
520 590 610 637 671 702
503 555 591 605 649 675
496 560 622 622 632 670
498 540 589 557 568 609
478 510 568 555 576 605
545 565 580 601 633 649
472 498 540 524 532 583

We <- c(1,3,4,5,6,7)
week <- We

First we plot the 15 ‘timetracks’, on 3 separate plots, one for each of the 3 Groups. These are
shown as Figures 13.1, 13.2 and 13.3 respectively.

a <- matrix(x,nrow= 15,ncol= 6,byrow= T)
b<- t(a)
par(mfrow=c(3,1))
matplot(week,b[,1:5],type= "l", ylim= c(400,750))
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Figure 13.2: Time tracks showing growths for Group 2 guinea pigs
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Figure 13.3: Time tracks showing growths for Group 3 guinea pigs
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matplot(week,b[,6:10],type= "l", ylim= c(400,750))
matplot(week,b[,11:15],type= "l", ylim= c(400,750))
library(nlme) # for use in R
Gr <- 1:3 ; An <- 1:15
y <- expand.grid(We,An)
Week <- y[,1] ; Animal <- y[,2]
Group <- gl(3, 30, length=30, labels=c("zero", "low", "high")
Week <- factor(Week); Animal <- factor(Animal)
first.aov <- aov(x~Week*Group + Error(Animal))
summary(first.aov)

This shows that the Group*Week interaction is non-significant. So next we try

sec.aov <- aov(x~ Week + Group + Error(Animal))
summary(sec.aov)

This results in the following output, where you can see that the original 89 df have been partitioned
into 89 = (2+12)+(5+70), giving us the ‘between Animals’ comparisons and the ‘Within Animals’
comparisons, respectively.

Error: Animal
Df Sum Sq Mean Sq F value Pr(>F)

Group 2 18548 9274 1.0555 0.3782
Residuals 12 105434 8786

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Week 5 142555 28511 47.164 < 2.2e-16 ***
Residuals 70 42315 605

sec.lme <- lme(x ~ Week + Group, random= ~1 | Animal)
summary(sec.lme) # for comparison
> summary(sec.lme)
Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
831.9379 856.0051 -405.9689

Random effects:
Formula: ~1 | Animal

(Intercept) Residual
StdDev: 36.92713 24.58668

Fixed effects: x ~ Week + Group
Value Std.Error DF t-value p-value

(Intercept) 466.2333 18.068104 70 25.804220 0.0000
Week3 48.8000 8.977786 70 5.435639 0.0000
Week4 88.0667 8.977786 70 9.809397 0.0000
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Week5 80.6000 8.977786 70 8.977715 0.0000
Week6 93.0667 8.977786 70 10.366328 0.0000
Week7 126.8667 8.977786 70 14.131176 0.0000
Grouplow 33.1333 24.202181 12 1.369023 0.1961
Grouphigh 26.7667 24.202181 12 1.105961 0.2904
Correlation:

.....................................................
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-2.62053931 -0.51705480 0.01798091 0.62523764 2.09203976

Number of Observations: 90
Number of Groups: 15

Note: I have used ‘Groups’ to mean treatments zero, low, high here. This was not such a good
choice of name, as lme() uses ‘Groups’ to mean Animals in this context.
Compare this also with

summary(lm(x ~ Week + Group)) # which assumes that all observations are independent

Note added March 2009: To fit the random effects model in R, I believe that what you need to do
is

library(lattice); library(Matrix) ; library(lme4)

Now use the function

lmer()

Venables and Ripley show you how to look at residuals.
The current example follows the analysis given by Hand and Everitt. However ‘Week’ is definitely
ordered in time, and so there may be a more suitable error structure than the symmetric one given
here. See Venables and Ripley (1997) p312 for examples of other error structures.
Note that the function

glmmPQL()

available via library(MASS) provides a very general method of dealing with ‘random effects’ ver-
sions of generalized linear models. But beware: Hayley Jones, in her MPhil Applied Project, found
that SPlus6 and R give different solutions when using this function on identical datasets.
(The problem seems to be connected with the fact that we are maximising a multi-modal log-
likelihood function, and R may go off in the wrong direction.) For this reason we preferred to
work with the SPlus version of the function. In either case, understanding all the output from
glmmPQL() is tricky.



Chapter 14

Fitting a beta-binomial
distribution to the IVF hospitals
data

I checked the computations in Splus7 in July 2008.
E.C.Marshall and D.J.Spiegelhalter (1998) ‘Reliability of league tables of in vitro fertilisation clin-
ics: retrospective analysis of live birth rates’, British Medical Journal, 316, 1701-4 analyse the data
from which the Table below has been constructed. To quote from E.C.Marshall’s unpublished PhD
thesis, which also includes these data, ‘In July 1996 the Human Fertilisation and Embryology Au-
thority reported on 25730 in vitro fertilisation treatments carried out in 52 clinics over the period
from 1 April 1994 to 31 March 1995. An overall adjusted live birth rate of 14.5 % was found.’
In the Table below, r is the number of live births, and n the number of fertilisations. (r was
computed from n and the observed percentage p, both of which were given in Marshall’s PhD
thesis.)

r n
Withington 7 147

ManchesterFS 41 506
Fazakerley 20 240
Ninewells 42 501

Hull 33 390
King’sColl 125 1453
BMIChiltern 13 149

Cromwell 39 427
Aberdeen 32 327
Walsgrave 45 458

Hartlepool 9 85
BUPALe’ster 12 110

UCH 41 366
WirralFC 17 141
GlasgowRI 105 876

SheffieldFC 80 661

73
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Le’sterRI 14 114
LondonFC 100 786
StMary’s 82 627
NewhamGH 9 68

EdinburghACU 59 447
BMIPortland 21 152
Washington 42 307
RoyalVicI 47 342

BourneHallC 185 1315
UHWales 24 168

BridgeFC 81 568
EsperanceH 31 212
WessexFS 60 404

ChurchillC 78 519
MidlandFS 120 787

UnivBristol 119 773
WolfsonFC 160 1004

RoyalMasonic 133 839
Northampton 36 223

NStaffs 19 116
LondonWomens 105 643
Guys&StThom 84 496

BMIPark 111 640
BUPARoding 38 211
HollyHoFU 49 262
BMIPriory 46 241

S.Cleveland 20 104
LeedsGenI 186 946

BMIChelsfield 42 208
OxfordIVF 128 603

SouthmeadGen 18 82
Lister 244 1104

RMHBelfast 122 548
StJames’s 121 537

Birmingham 60 267
NURTURE 204 861

First we will fit the binomial with constant probability p to these data, namely

ri ∼ independent Bi(ni, p), 1 ≤ i ≤ 52.

This is easily achieved by

hdata <- read.table("hospitals.data", header= T)
attach(hdata)
first.glm <- glm(r/n ~ 1, binomial, weights= n)
summary(first.glm)

which shows a deviance of 390.76, with df = 51. So we have substantial overdispersion with
respect to the model of constant binomial parameter p. We will compute the binomial residuals,
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for comparison later with the betabinomial residuals.

p <- first.glm$fitted.values ; q <- 1-p
res <- (r-n*p)/sqrt(n*p*q)
sum(res^2) # as a check
chisq.test(cbind(r,n-r)) # as another check
# sqrt(n) * resid(first.glm) would give us the deviance residuals instead

Our next step is to allow one extra parameter: we assume that

ri|pi ∼ Bi(ni, pi)

and assume further that pi has the beta distribution, parameters θ, φ.
This has the consequence that each ri then has a beta-binomial distribution, parameters ni, θ, φ.
Again assume that all the ri’s are independent.
We pause to derive the frequency function for the beta-binomial. Now

f(r|p) =
(
n

r

)
pr(1− p)n−r, for r = 0, · · · , n

where p has density g(p) say, where

g(p) =
Γ(θ + φ)
Γ(θ)Γ(φ)

pθ−1(1− p)φ−1, for 0 ≤ p ≤ 1.

Thus, integrating with respect to p, we find that∫
f(r|p)g(p)dp =

(
n

r

)
Γ(θ + φ)
Γ(θ)Γ(φ)

Γ(θ + r)Γ(φ+ n− r)
Γ(θ + φ+ n)

.

In the commands below, we compute

−Σilogf(ri|θ, φ)

as MINUS the loglikelihood function, and then minimise it to find the maximum likelihood esti-
mates of θ, φ. ‘General optimization and maximum likelihood estimation’ is given as Chapter 9 in
Venables and Ripley (1997).

lbetabin <- function(p)
{
th <- p[1]
phi <- p[2]
sum( - lgamma(th + r) - lgamma(phi + n - r) + lgamma(th + phi + n) +
lgamma(th) + lgamma(phi) - lgamma(th + phi))
}
p <- c(.15,.85)

These are our initial estimates of θ, φ, taken from the binomial fit, and setting θ+φ = 1. One way
to proceed is as follows
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fit.first <- nlmin(lbetabin,p,print.level= 1) # this does not quite converge, but
fit.first$converged # shows that we have not yet reached convergence, but
fit.first$x # shows that we have
# estimates theta =10.73 , phi=63.07. So we use these as starting values, thus
p <- fit.first$x
fit.next <- nlmin(lbetabin,p,print.level= -1) # now quickly converges, giving
# the following estimates
fit.next$x
10.89 63.04 # for theta, phi

Now we will try a different minimisation function.

p <- c(.15,.85) # the same starting values as before
fit.betabin <- nlminb(start = p, objective = lbetabin, lower = c(0, 0))
# which gives convergence, and

fit.betabin$parameters
[1] 10.89 63.06 # and we need the corresponding se’s, so
library(MASS)
vcov.nlminb(fit.betabin) # gives us the approximate covariance matrix for these

parameter estimates

It is interesting that we find

θ̂ = 10.89(se = 2.51), φ̂ = 63.06(se = 14.85)

which corresponds to the beta-density for p, shown in Figure 14.1, which is quite sharply peaked.
You can do this plot for yourself by

th <- 10.89; phi <- 63.06
p <- (1:100)/100
f <- dbeta(p,th,phi)
plot(p,f,type= "l")

We can use the parameter estimates to compute the correct estimated variance for ri, and hence
compute a χ2 goodness of fit statistic for the model.

th <- 10.89; phi <- 63.06; pi <- th/(th + phi)
betabin.resid <- (r - n*pi)/sqrt( n*pi *(1-pi)*(1+ (n-1)/(th + phi+1)))
plot(res,betabin.resid)
betabin.chi2 <- sum(betabin.resid^2)

This finds the χ2 statistic as 50.35, with 50 df, showing that the inclusion of just 1 extra parameter
gives a model that satisfactorily accounts for the ‘over-dispersion’ relative to the ordinary binomial.
Here are the ordered binomial residuals.

round(sort(res),2)
# This shows us ‘best’ and ‘worst’ on crude 1-parameter binomial model
King’sColl ManchesterFS Ninewells Hull Withington Cromwell Walsgrave

-6.85 -4.36 -4.16 -3.63 -3.48 -3.4 -3.11
Fazakerley Aberdeen GlasgowRI BMIChiltern SheffieldFC UCH LondonFC StMary’s



P.M.E.Altham, University of Cambridge 77

p

f

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

The beta density with parameters 10.89, 63.06

Figure 14.1: The beta density with parameters 10.89, 63.06

-2.9 -2.65 -2.51 -2.15 -2.1 -2.04 -1.8 -1.36
BUPALe’ster Hartlepool EdinburghACU WirralFC BourneHallC Le’sterRI RoyalVicI

-1.21 -1.14 -1.08 -0.98 -0.97 -0.82 -0.66
Washington BridgeFC BMIPortland NewhamGH UHWales EsperanceH WessexFS

-0.66 -0.51 -0.42 -0.41 -0.27 -0.16 -0.09
ChurchillC MidlandFS UnivBristol NStaffs Northampton RoyalMasonic WolfsonFC

0.01 0.18 0.29 0.41 0.47 0.67 0.81
LondonWomens Guys&StThom S.Cleveland BUPARoding BMIPark HollyHoFU

0.93 1.19 1.2 1.22 1.65 1.67
SouthmeadGen BMIPriory BMIChelsfield Birmingham LeedsGenI OxfordIVF

1.76 1.77 2.09 3.41 4 4.27
RMHBelfast StJames’s Lister NURTURE

4.75 4.87 6.59 7.12
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and here are the ordered beta-binomial residuals, which can also be compared to the standard
normal

round(sort(betabin.resid),2) # for betabinomial residuals
Withington ManchesterFS King’sColl Ninewells Hull Fazakerley Cromwell

-1.99 -1.51 -1.46 -1.45 -1.4 -1.37 -1.26

BMIChiltern Walsgrave Aberdeen UCH Hartlepool BUPALe’ster GlasgowRI
-1.2 -1.11 -1.09 -0.79 -0.74 -0.72 -0.64

SheffieldFC WirralFC LondonFC Le’sterRI StMary’s EdinburghACU NewhamGH
-0.61 -0.53 -0.47 -0.47 -0.38 -0.35 -0.25

Washington RoyalVicI BMIPortland BourneHallC BridgeFC UHWales EsperanceH
-0.23 -0.22 -0.18 -0.16 -0.11 -0.09 -0.02

WessexFS ChurchillC MidlandFS UnivBristol RoyalMasonic WolfsonFC Northampton
0.03 0.07 0.12 0.16 0.26 0.29 0.3

NStaffs LondonWomens Guys&StThom BMIPark BUPARoding S.Cleveland HollyHoFU
0.32 0.37 0.5 0.61 0.69 0.84 0.86

BMIPriory BMIChelsfield LeedsGenI SouthmeadGen OxfordIVF Birmingham
0.93 1.15 1.16 1.28 1.5 1.67

RMHBelfast Lister StJames’s NURTURE
1.73 1.74 1.79 2.1

We could compare the 2 sets of residuals graphically via

par(mfrow= c(2,1))
qqnorm(res) ; qqline(res)
qqnorm(betabin.resid); qqline(betabin.resid)

This gives the graphs (note that the y-axes have different scales) shown in Figure 14.2.
Exercise:

The sample correlation matrix for θ̂, φ̂ suggests that we could find a much ‘better’ parametrisation,
in which the two parameters are closer to being orthogonal. Experiment with the parametrisation

π = θ/(θ + φ), ψ = θ + φ.

Afterword.
One of the objectives of Marshall and Spiegelhalter in looking at this table was to produce a
‘reliable’ ranking of the hospitals, since a ranking based only on the crude success rate can be quite
misleading. How do we address this question with the benefit of our beta-binomial model?
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Figure 14.2: residuals for the binomial and the betabinomial distributions



Chapter 15

Multinomial logistic regression
and classification

Here we follow the example on Cushing’s syndrome, given in Venables and Ripley (1999) p350,
and we give some supplementary explanation.
The dataset is given below.

Tetrahydrocortisone Pregnanetriol Type
a1 3.1 11.70 a
a2 3.0 1.30 a
a3 1.9 0.10 a
a4 3.8 0.04 a
a5 4.1 1.10 a
a6 1.9 0.40 a
b1 8.3 1.00 b
b2 3.8 0.20 b
b3 3.9 0.60 b
b4 7.8 1.20 b
b5 9.1 0.60 b
b6 15.4 3.60 b
b7 7.7 1.60 b
b8 6.5 0.40 b
b9 5.7 0.40 b
b10 13.6 1.60 b
c1 10.2 6.40 c
c2 9.2 7.90 c
c3 9.6 3.10 c
c4 53.8 2.50 c
c5 15.8 7.60 c
u1 5.1 0.40 u
u2 12.9 5.00 u
u3 13.0 0.80 u
u4 2.6 0.10 u

80
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u5 30.0 0.10 u
u6 20.5 0.80 u

The data ‘are on diagnostic tests on patients with Cushing’s syndrome, a hypersensitive disorder
associated with over-secretion of cortisol by the adrenal gland. The dataset has three recognised
types of the syndrome represented as

a, b, c.

(These encode ‘adenoma’, ‘bilateral hyperplasia’, and ‘carcinoma’, and represent the underlying
cause of over-secretion. This can only be determined histopathologically.) The observations are
urinary excretion rates (mg/24h) of the steroid metabolites tetrahydrocortisone and pregnanetriol,
and are considered on a log scale.’
In the analysis given below, we do not use the last 6 rows of the data, for which the ‘Type’ was
unknown. We fit the following logistic model

log(P (b|x)/P (a|x)) = βT
2 x, log(P (c|x)/P (a|x)) = βT

3 x

with x as a 3-dimensional vector, having first element 1, and

P (a|x) + P (b|x) + P (c|x) = 1.

Thus, for example, if an object has covariate value x, we will predict it as b if βT
2 x > 0, & βT

2 x >
βT

3 x. We use library(nnet) to maximise the resulting multinomial log-likelihood.

library(MASS)
library(nnet)
Cushings # to view the data
tp <- factor(Cushings$Type[1:21])
Cf <- data.frame(tp<-tp, Tetra <- log(Cushings[1:21,1]),
Pregna <- log(Cushings[1:21,2]))
attach(Cf)
Tetra <- Tetra- mean(Tetra) ; Pregna <- Pregna -mean(Pregna)

this improves the parametrisation, making convergence of maximisation algorithm faster.

cush.multinom <- multinom(tp ~ Tetra + Pregna, Hess = T, maxit = 250)
cush.multinom
Call:
multinom(formula = tp ~ Tetra + Pregna, Hess = T, maxit = 250)

Coefficients:
(Intercept) Tetra Pregna

b 7.288130 14.39930 -0.244936
c 2.385204 16.26469 3.358042

Residual Deviance: 12.30232
AIC: 24.30232

Note that the residual deviance is not an absolute measure of goodness of fit. In fact, the parameters
are estimated rather imprecisely, as we see from
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summary(cush.multinom)
Call:
multinom(formula = tp ~ Tetra + Pregna, Hess = T, maxit = 250)

Coefficients:
(Intercept) Tetra Pregna

b 7.288130 14.39930 -0.244936
c 2.385204 16.26469 3.358042

Std. Errors:
(Intercept) Tetra Pregna

b 7.755119 13.73160 0.6692837
c 8.276217 13.38103 2.0996099

Residual Deviance: 12.30232
AIC: 24.30232
............................................

round(predict(cush.multinom, type= "probs"),3)
a b c

1 0.89 0.01 0.10
2 0.99 0.01 0.00
3 1.00 0.00 0.00
4 0.50 0.50 0.00
5 0.43 0.56 0.00
6 1.00 0.00 0.00
7 0.00 0.99 0.01
8 0.60 0.40 0.00
9 0.58 0.42 0.00

10 0.00 0.99 0.01
11 0.00 1.00 0.00
12 0.00 0.29 0.71
13 0.00 0.97 0.03
14 0.00 1.00 0.00
15 0.01 0.99 0.00
16 0.00 0.91 0.09
17 0.00 0.10 0.90
18 0.00 0.06 0.94
19 0.00 0.63 0.37
20 0.00 0.13 0.87
21 0.00 0.03 0.97

The above shows that there is considerable uncertainty about the predicted class for some of the
observations, eg numbers 8, 9.

predict(cush.multinom)
[1] a a a a b a b a a b b c b b b b c c b c c

table(predict(cush.multinom),tp)
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a b c
a 5 2 0
b 1 7 1
c 0 1 4

which shows that the ‘confusion matrix’ is not so bad as we might have expected: the total of the
offdiagonal terms is 5, so that the misclassification error rate with this method is 5/21, ie .24.
For this dataset, the logistic multinomial regression is actually less successful in prediction than
the simple classification tree, which we can easily obtain as follows.

> first.tree <- tree(tp ~ Tetra + Pregna) # use rpart() if in R
> first.tree
node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 21 44.220 b ( 0.2857 0.4762 0.2381 )
2) Tetra<-0.323364 8 8.997 a ( 0.7500 0.2500 0.0000 ) *
3) Tetra>-0.323364 13 17.320 b ( 0.0000 0.6154 0.3846 )
6) Pregna<0.582761 7 0.000 b ( 0.0000 1.0000 0.0000 ) *
7) Pregna>0.582761 6 5.407 c ( 0.0000 0.1667 0.8333 ) *

> summary(first.tree)
Classification tree:
tree(formula = tp ~ Tetra + Pregna)
Number of terminal nodes: 3
Residual mean deviance: 0.8002 = 14.4 / 18
Misclassification error rate: 0.1429 = 3 / 21

What this is telling us is the following.
If you know neither Tetra nor Pregna, then you should predict all 21 cases to be ‘b’.
But, this is not a ‘terminal node’ (in fact it is the root node), and we can improve our prediction.
Our next step is
now look at Tetra, there are 8 cases for which Tetra < −0.323364, and all these cases should be
predicted as ‘a’,
The remaining 13 cases have Tetra > −0.323364, and if you are allowed no further information,
then predict all these cases as ‘b’.
But this also is not a ‘terminal’ node: you can improve things further by
looking at Pregna for these 13 cases.
The 7 cases for whom Pregna < 0.582761 should be predicted as ‘b’ (this will be perfectly correct,
and so must be a terminal node).
The remaining 6 cases for whom Pregna > 0.582761 should be predicted as ‘c’ (this will be not
quite correct, but is a terminal node nonetheless).
You can check that this classification tree is then incorrect in exactly 3 out of the 21 cases, so the
overall error rate is 0.1429.
I haven’t given you the story here about the deviance, but that’s something you can work out for
yourself. The root deviance is easily seen to be

44.220 = −2n
∑

pi log(pi)

where n = 21, and p1 = 6/21, p2 = 10/21, p3 = 5/21.
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> post.tree(first.tree, file="tree.pdf", pointsize=6) # for a ‘pretty’ plot

We show how the sample space is divided up by the following plot, given as Figure 15.1.

> plot(Tetra, Pregna, type="n") # blank plot so far
> text(Tetra, Pregna,c("a","b","c")[tp]) # putting the points on with their labels
> abline(v= - 0.323364) # for the vertical dividing line
> abline(h= 0.582761) # for the horizontal dividing line
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Figure 15.1: How the classification tree for the Cushings data is constructed

New for August 2008: Olympic medals data
The Independent, 6 August 2008, presents the dataset below on ‘British medal hauls at the past
10 Olympics’.
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Gold Silver Bronze
Athens2004 9 9 12
Sydney2000 11 10 7
Atlanta96 1 8 6
Barcelona92 5 3 12
Seoul88 5 10 9
LosAngeles84 5 11 21
Moscow80 5 7 9
Montreal76 3 5 5
Munich72 4 5 9
MexicoCity68 5 5 3

Suppose we wish to find whether the distribution of medals into Gold, Silver, Bronze has changed
over these 10 Games. Specifically we will fit

log(p2i/p1i) = α2 + β2i, and log(p3i/p1i) = α3 + β3i,

for i = 10, 9, . . . , 1 (the first row corresponding to 2004) with p1i, p2i, p3i being the respective
probabilities that in a given year, a medal is Gold, Silver, Bronze. (p1i + p2i + p3i = 1, of course.)
If you apply the analysis below, you will see that β2 = 0, β3 = 0 and that for the British teams,
the probabilities of Gold, Silver, Bronze, respectively in any given year have remained more or less
constant at .24, .33, .42.
Suggestion for analysis:

library(MASS) ; library(nnet)
Olympics <- read.table("Olympics.data", header=T)
Year <- 10:1 ; attach(Olympics) ; Olmat <- cbind(Gold, Silver, Bronze)
chisq.test(Olmat)

Strangely, the chisq statistic is 19.8 on 18 df, so really there’s not a lot more to be said, but we
will press on with the more complex multinomial logistic model as an exercise.

par(mfrow=c(1,2))
plot(Silver/Gold ~ Year) ; plot(Bronze/Gold ~ Year)
# these plots show no obvious trends
Total <- Gold + Silver + Bronze
first.multinom <- multinom(Olmat~ Year, Hess=T)
summary(first.multinom)
eigen(first.multinom$Hess) # to check Hessian is positive-definite
Olp <- predict(first.multinom, type="probs"); round(Olp,2) # for fitted probabilities
Olp <- Olp*Total ; Olp<- round(Olp,2) # for fitted frequencies
cbind(Olp, Olmat) # for comparison
base.multinom <- multinom(Olmat ~1, Hess = T) # baseline model
#in which probabilities do not change with year
round(predict(base.multinom, type="probs"),2)

The resulting graphs are shown as Figure 15.2.
Note that there is a perceptible increase in the Total number of medals gained by Great Britain

since 1968. This must be due in part to the increase in the number of Olympic events over the
years; there were 172 events in 1968, and in 2008 there will be a total of 302 events. Try
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plot(Total ~ Year)

But we see that Los Angeles 1984, in which there was a Total of 37 medals, was a ‘strange’ year,
and in fact that was the Olympic Games which was boycotted by nearly all the Eastern Bloc
countries. For this reason we now try

first.glm <- glm(Total[-6] ~ Year[-6], poisson) # to omit Los Angeles 1984
summary(first.glm) # shows a residual deviance of 6.83 on 7 df, hence a good fit
YYear <- 11:1
fv = exp(2.58660 +(0.07147*YYear))
plot(fv ~ YYEAR, type="l") # for fitted values, including for 2008

This gives
a predicted Total of 29.2 medals in 2008 (can you work out a confidence interval?), of which we
expect
7.1, 9.7, 12.4 as Gold, Silver, Bronze respectively.
Contrast this with the rather upbeat prediction given before the start of the 2008 games by Nick
Harris in The Independent. He predicted
16, 17, 26 as Gold, Silver, Bronze respectively.
As of August 19, 2008, it looks as though the actual outcome will be much better
than my predictions of 7.1, 9.7, 12.4!
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Figure 15.2: Have the British medals distributions changed from 1968 to 2004?



Chapter 16

Mohammad Raza’s multivariate
dataset on 50 famous films

Here is an interesting new dataset with which you can experiment, as collected by collected by
Mohammad Raza of Wolfson College, Cambridge, for his May 2003 Mathematical Tripos Part
III essay ‘Analysis of a large and complex data set’. I am very grateful to Mohammad for his
permission to use the data.
We have data for 50 famous recent movies, compiled via the Internet Movie Database (IMDB).
KEY to the variables
year= year when the film was released
gross= amount of money in millions of US dollars, the film made, in the US
budget= amount in millions of $ US spent in making the film,
(note that the 2 monetary figures given above are not ‘adjusted’ in any way, eg for inflation.)
rating (also male rating & female rating)= ‘opinion of registered users of the IMDB website’. Each
individual gives an integer score between 1 (‘awful’) and 10 (‘excellent’) for a given film. The rating
for the film is then calculated as the average score. The ‘male rating & female ratings’ correspond
to scores given by men, women, respectively.
AWARDS:
These are AA, GG, BAFTA for Academy Award, Golden Globe Award and British Academy of
Film & Television Arts Awards, with a 1 indicating that the film won the ‘Best Picture’ award,
and a 0 indicating that it did not.
GENRE:
Each movie is given a 1 or a 0 to indicate whether it was in a particular ‘genre’, eg comedy, scifi
.... A film can be in more than one such genre.

year gross budget rating malerating femalerating
Titanic 1997 600.743 200.000 7.0 6.8 7.2
StarWars 1977 460.936 11.000 8.8 8.8 8.6

ET 1982 434.949 10.500 7.8 7.8 8.1
SWPhantomMenace 1999 431.065 115.000 6.7 6.7 6.5

SpiderMan 2002 403.706 139.000 7.7 7.7 7.8
JurassicPark 1993 356.763 63.000 7.3 7.3 7.1
ForrestGump 1994 329.452 55.000 8.0 8.0 8.0
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HarryPotterI 2001 317.558 130.000 7.3 7.2 8.0
LOTRFellowship 2001 313.364 109.000 8.9 8.9 9.0

TheLionKing 1994 312.775 79.300 7.6 7.5 7.9
TheGodfather 1972 134.821 6.000 9.0 9.1 8.6

TheShawshankRedemption 1994 28.341 25.000 9.0 9.0 9.0
TheGodfatherII 1974 57.300 13.000 8.9 8.9 8.4
SchindlersList 1993 96.067 25.000 8.8 8.8 8.9

ShichininNoSamurai 1954 0.187 0.500 8.9 9.0 7.7
Memento 2000 25.530 5.000 8.8 8.8 8.6

DrStrangelove 1964 9.164 1.800 8.7 8.8 8.1
SWReturnOfTheJedi 1983 309.064 32.500 8.1 8.1 8.0
IndependenceDay 1996 306.200 75.000 6.0 5.9 6.5
TheSixthSense 1999 293.502 55.000 8.3 8.2 8.4

SWEmpireStrikesBack 1980 290.159 18.000 8.7 8.7 8.4
HomeAlone 1990 285.761 15.000 6.2 6.2 6.7

Shrek 2001 267.652 60.000 8.1 8.1 8.3
HowTheGrinchStoleChristmas 2000 260.031 123.000 6.0 5.9 6.4

Jaws 1975 260.000 12.000 8.2 8.3 7.9
OneFlewOverTheCuckoosNest 1975 112.000 3.000 8.7 8.7 8.5

RearWindow 1954 1.559 1.000 8.7 8.7 8.6
RaidersOfTheLostArk 1981 242.374 20.000 8.6 8.7 8.4

TheUsualSuspects 1995 23.272 6.000 8.7 8.7 8.7
NorthByNorthwest 1959 13.275 4.000 8.6 8.7 8.5

PulpFiction 1994 107.930 8.000 8.6 8.7 7.9
Psycho 1960 32.000 0.800 8.6 8.6 8.3

TheSilenceOfTheLambs 1991 130.727 22.000 8.5 8.6 8.5
LawrenceOfArabia 1962 0.342 12.000 8.6 8.6 8.4

Monsters,Inc 2001 255.870 115.000 8.1 8.0 8.4
Batman 1989 251.189 35.000 7.3 7.3 7.1

MenInBlack 1997 250.148 90.000 6.8 6.8 7.0
ToyStory2 1999 245.823 90.000 8.2 8.2 8.3
Twister 1996 241.700 92.000 5.9 5.8 6.3

GhostBusters 1984 238.600 30.000 7.4 7.4 7.5
BeverlyHillsCop 1984 234.760 15.000 7.1 7.1 7.1

CastAway 2000 233.630 90.000 7.3 7.3 7.4
TheLostWorldJurassicPark 1997 229.074 73.000 5.4 5.4 5.2

AmericanBeauty 1999 130.058 15.000 8.5 8.5 8.3
Goodfellas 1990 46.836 25.000 8.5 8.6 8.0

Vertigo 1958 3.200 2.479 8.5 8.6 8.3
ApocalypseNow 1979 78.800 31.500 8.5 8.5 8.0

TheMatrix 1999 171.383 63.000 8.5 8.5 8.4
TaxiDriver 1976 21.100 1.300 8.4 8.5 7.9

SomeLikeItHot 1959 25.000 3.500 8.5 8.5 8.6

AA GG BAFTA comedy drama action horror fantasy
Titanic 1 1 1 0 1 0 0 0
StarWars 1 1 1 0 0 1 0 1
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ET 1 1 1 0 0 0 0 1
SWPhantomMenace 0 0 0 0 0 1 0 0

SpiderMan 0 0 0 0 0 1 0 1
JurassicPark 0 0 0 0 0 1 1 0
ForrestGump 1 1 1 1 1 0 0 0
HarryPotterI 0 0 0 0 0 0 0 1

LOTRFellowship 1 1 1 0 0 0 0 1
TheLionKing 0 0 1 0 0 0 0 0
TheGodfather 1 0 1 0 1 0 0 0

TheShawshankRedemption 1 0 0 0 1 0 0 0
TheGodfatherII 1 0 1 0 1 0 0 0
SchindlersList 1 1 1 0 1 0 0 0

ShichininNoSamurai 0 1 0 0 1 1 0 0
Memento 0 0 0 0 1 0 0 0

DrStrangelove 1 1 0 1 0 0 0 0
SWReturnOfTheJedi 0 0 0 0 0 1 0 1
IndependenceDay 0 0 0 0 0 1 0 0
TheSixthSense 1 1 0 0 1 0 1 0

SWEmpireStrikesBack 0 0 0 0 0 1 0 1
HomeAlone 0 0 1 1 0 0 0 0

Shrek 0 1 1 1 0 0 0 1
HowTheGrinchStoleChristmas 0 0 0 1 0 0 0 1

Jaws 1 1 1 0 0 1 1 0
OneFlewOverTheCuckoosNest 1 1 1 0 1 0 0 0

RearWindow 0 1 0 0 0 0 0 0
RaidersOfTheLostArk 1 1 0 0 0 1 0 0

TheUsualSuspects 0 1 0 0 0 0 0 0
NorthByNorthwest 0 0 0 0 0 0 0 0

PulpFiction 1 1 1 0 1 1 0 0
Psycho 0 0 0 0 0 0 1 0

TheSilenceOfTheLambs 1 1 1 0 0 0 1 0
LawrenceOfArabia 1 1 1 0 1 0 0 0

Monsters,Inc 0 0 0 1 0 0 0 1
Batman 0 0 0 0 0 1 0 1

MenInBlack 0 0 1 1 0 1 0 0
ToyStory2 0 0 1 1 0 0 0 1
Twister 0 0 0 0 0 1 0 0

GhostBusters 0 0 1 1 0 0 0 1
BeverlyHillsCop 0 0 1 1 0 1 0 0

CastAway 0 0 0 0 1 0 0 0
TheLostWorldJurassicPark 0 0 0 0 0 1 1 0

AmericanBeauty 1 1 1 0 1 0 0 0
Goodfellas 1 1 1 0 1 0 0 0

Vertigo 0 0 0 0 1 0 0 0
ApocalypseNow 1 1 1 0 1 1 0 0

TheMatrix 0 0 0 0 0 1 0 0
TaxiDriver 1 1 0 0 1 0 0 0
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SomeLikeItHot 0 1 1 1 0 0 0 0

scifi romance thriller animation
Titanic 0 1 0 0
StarWars 1 0 0 0

ET 1 0 0 0
SWPhantomMenace 1 0 0 0

SpiderMan 1 0 0 0
JurassicPark 1 0 1 0
ForrestGump 0 0 0 0
HarryPotterI 0 0 0 0

LOTRFellowship 0 0 0 0
TheLionKing 0 0 0 1
TheGodfather 0 0 0 0

TheShawshankRedemption 0 0 0 0
TheGodfatherII 0 0 0 0
SchindlersList 0 0 0 0

ShichininNoSamurai 0 0 0 0
Memento 0 0 1 0

DrStrangelove 1 0 0 0
SWReturnOfTheJedi 1 0 0 0
IndependenceDay 1 0 0 0
TheSixthSense 0 0 1 0

SWEmpireStrikesBack 1 0 0 0
HomeAlone 0 0 0 0

Shrek 0 1 0 1
HowTheGrinchStoleChristmas 0 0 0 0

Jaws 0 0 1 0
OneFlewOverTheCuckoosNest 0 0 0 0

RearWindow 0 0 1 0
RaidersOfTheLostArk 0 0 0 0

TheUsualSuspects 0 0 1 0
NorthByNorthwest 0 1 1 0

PulpFiction 0 0 1 0
Psycho 0 0 1 0

TheSilenceOfTheLambs 0 0 1 0
LawrenceOfArabia 0 0 0 0

Monsters,Inc 0 0 0 1
Batman 0 0 1 0

MenInBlack 1 0 0 0
ToyStory2 0 0 0 1
Twister 0 0 1 0

GhostBusters 1 0 0 0
BeverlyHillsCop 0 0 0 0

CastAway 0 0 0 0
TheLostWorldJurassicPark 1 0 1 0

AmericanBeauty 0 0 0 0
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Goodfellas 0 0 0 0
Vertigo 0 0 1 0

ApocalypseNow 0 0 0 0
TheMatrix 1 0 1 0
TaxiDriver 0 0 1 0

SomeLikeItHot 0 1 0 0



Chapter 17

Fun and Games for British Union
leaders (2004), and the Monetary
Policy Committee (2007)

The dataset below was given in The Independent on May 29, 2004, under the headline
‘One out of order, all out of order’.
‘This week’s unseemly brawl (at a barbecue in Hampstead) by Aslef officials continued a rich
tradition of union leaders’ excesses.’
The columns in the Table below give the ‘out of order rating’ for the categories
1. Fisticuffs, 2. Big Dinners, 3. Champagne socialist, 4. Luxury Travel,
5. Beer (no sandwiches), 6. Colourful Language, 7. Expenses Enthusiast, 8. Gender issues.
(By the way, if English is not your first language, you may need to get someone to explain some
of the above (euphemisms) to you.)
The ratings are given for the 8 union leaders listed below (I omit their surnames).

1 2 3 4 5 6 7 8
Joe ‘The Cherub’ 0 0 3 2 0 0 0 0
John ‘Big Boss’ 0 0 0 0 0 1 1 2
Andy ‘Chasse-Spleen’0 3 1 0 0 0 1 0
Derek 2 0 0 0 0 1 0 0
Shaun 2 0 0 0 2 1 0 0
Roger ‘The Dodger’ 0 1 1 0 0 0 2 0
Bollinger Bob 0 1 3 0 0 1 1 1
Raucous railwayman 0 1 2 0 2 2 0 0

You could, for example, construct a matrix to show the dissimilarities between all pairs of the 8
union bosses listed above.
Moving to a much more respectable scenario, but with data of the same structure, The Independent
on July 2, 2007, gave the following data set on the voting of the 9 members of the Monetary Policy
Committee with respect to the UK interest rates, under the heading ‘Hawks, doves and pigeons:
who influences UK interest rates?’. There were 9 successive monthly meetings, the first being 4/5
October, 2006.
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Here we denote 1 to mean ‘votes for an increase (of 0.25%), 0 to mean ‘votes for no change in
interest rate’ and −1 to mean ‘votes for a decrease (of 0.25%)’.
(For the record, interest rate was initially 4.75%, and at the end of the 6/7June meeting was 5.5%.)
We illustrate the positions of the 9 members of the MPC firstly with hierarchical clustering, and
then by classical scaling. You may disagree with my (default) choice of metric. The individuals
are plotted via hierarchical clustering in Figure 17.1, and via classical scaling in Figure 17.2. This
latter is less successful as there are 3 pairs of coincident points, reflecting the fact that there are
3 pairs of individuals who vote identically. You could experiment with ‘jitter’ to improve the look
of this plot.

4/5Oct 8/9Nov 6/7Dec 10/11Jan 7/8Feb 7/8Mar 4/5Apr 9/10May 6/7Jun
Blanchflower 0 0 0 0 0 -1 0 1 0
Besley 1 1 0 1 1 0 1 1 1
Sentance 1 1 0 1 1 0 1 1 1
King 0 1 0 1 0 0 0 1 1
Gieve 0 1 0 1 0 0 0 1 1
Tucker 0 1 0 0 0 0 0 1 0
Bean 0 1 0 0 0 0 0 1 0
Barker 0 1 0 1 0 0 0 1 0
Lomax 0 0 0 0 0 0 0 1 0

a <- read.table("MPCdata.July2", header=T)
MPCnames <- row.names(a)
a <- as.matrix(a)
d <- dist(a)
clust.MPC <- hclust(d)
postscript("MPC.ps")
plclust(clust.MPC, hang=0.1,labels=MPCnames,main="Monetary Policy Committee")
dev.off()
loc <- cmdscale(d) ; x <- loc[,1] ; y <- loc[,2]
plot(x,y, type="n", main = "cmdscale for Monetary Policy Committee")
text(x,y, MPCnames, cex=1 )
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Figure 17.1: The monetary policy committee, hierarchical clustering
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Chapter 18

Using capture-recapture data to
estimate a total population size

Alan Agresti, in his 1994 Biometrics article
‘Simple capture-recapture models permitting unequal catchability and variable sampling effort’,
Vol 50, pp 494-500, (and also in his 2002 book) gives a table of counts, first discussed by Cormack
in 1985. This dataset was obtained from the results of a Capture-Recapture study of Snowshoe
Hares, and consists of a 26 contingency table, with one missing entry, on the numbers of hares in
a closed population which were trapped on each of 6 successive trapping days.
We need to set up suitable notation in order to describe the data precisely, thus
let a = 0 if an animal is NOT captured on the first day, and let a = 1 if it was captured on the
first day.
Define b = 0, 1, ..., f = 0, 1 for the remaining sequence of 5 days.
The sequence of 64 entries in the variate ‘count’ follows the pattern

a= 0 1 0 1 0 1................. 0 1
b= 0 0 1 1 0 0 1 1 ............ 1 1
c= 0 0 0 0 1 1 1 1 0 ...
d= 0 0 0 0 0 0 0 0 1 1 .....
e= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ..
f= 32 0’s followed by 32 1’s

We can set up this nested pattern of 0’s and 1’s using expand.grid() as shown below.

count <- scan()
NA 3 6 0 5 1 0 0
3 2 3 0 0 1 0 0
4 2 3 1 0 1 0 0
1 0 0 0 0 0 0 0
4 1 1 1 2 0 2 0
4 0 3 0 1 0 2 0
2 0 1 0 1 0 1 0
1 1 1 0 0 0 1 2
# data from Agresti (2002) p512
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Thus you see that we don’t know the number NOT caught on any of the 6 days, and
for example, 6 animals were caught on day 2, but not on any of the other 5 days.
(There were 2 wretched creatures who were caught on every one of the 6 days.)

x <- expand.grid(a=0:1, b=0:1, c=0:1,d=0:1, e=0:1,f=0:1)
x[1:10,] # as a check
attach(x)
sum(count[2:64])

This shows that a total of 68 animals were seen at least once each.
Our aim is to fit a model to this table of 26− 1 counts, in order to estimate the number of hares in
this (closed) population which were never seen at all: this enable us to estimate the total population
size.

A <- factor(a) ; B <- factor(b); C <- factor(c) ; D <- factor(d); E<- factor(e)
F<- factor(f)

First we fit a model which assumes mutual independence of the 6 catching occasions, but which
does not assume equal catchability. (The output has been slightly reduced.)

> first.glm <- glm(count~ A+B+C+D+E+F, poisson)
> summary(first.glm)
......................

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.9553 0.2891 6.765 1.34e-11 ***
A1 -1.3061 0.2875 -4.543 5.55e-06 ***
B1 -0.5194 0.2491 -2.085 0.037052 *
C1 -1.0128 0.2681 -3.778 0.000158 ***
D1 -0.6351 0.2520 -2.520 0.011735 *
E1 -0.8170 0.2585 -3.160 0.001575 **
F1 -0.2970 0.2460 -1.207 0.227357

Null deviance: 112.846 on 62 degrees of freedom
Residual deviance: 58.314 on 56 degrees of freedom
AIC: 154.50

> exp(1.9553)
[1] 7.066039

(You can see that a total of 16 animals were caught on day 1, compared with a total of 32 animals
caught on day 6: perhaps the animals were getting tired, and/or the trappers were getting better
at their task.)
The Residual deviance of 58.314 on 56 degrees of freedom shows us that the model does not fit
very well, but we will still use the estimate of the intercept to provide us with an estimate of the
count for which a = 0, b = 0, . . . f = 0, giving us a value of exp(1.9553) = 7.066039, and hence
an estimate of 68 + 7.1 = 75.1 as our estimate of N , the total population size. (We could use
68 + exp(1.9553 + /− 2 ∗ 0.2891) to give us our confidence interval for N .)
Agresti (1994) discusses various models which might fit better than the simple model of mutual
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independence, and therefore which might provide more accurate estimates of N . For simplicity
here, we discuss only one generalization of the independence model: namely the model which allows
all 2-factor interactions between A,B, . . . , F . There are 15 such interactions, each with 1 df. We
again edit the resulting output somewhat.

next.glm <- glm(count~ (A+B+C+D+E+F)^2 , poisson)
summary(next.glm)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.60498 0.51850 6.953 3.58e-12 ***
A1 -2.28082 0.57134 -3.992 6.55e-05 ***
B1 -1.82090 0.51966 -3.504 0.000458 ***
C1 -2.31716 0.55609 -4.167 3.09e-05 ***
D1 -2.14780 0.54364 -3.951 7.79e-05 ***
E1 -2.06819 0.53846 -3.841 0.000123 ***
F1 -2.09074 0.54177 -3.859 0.000114 ***
.....................
A1:E1 1.46053 0.66617 2.192 0.028348 *
.....................
C1:F1 1.59899 0.64082 2.495 0.012588 *
D1:F1 1.79685 0.60052 2.992 0.002770 **

Null deviance: 112.846 on 62 degrees of freedom
Residual deviance: 32.424 on 41 degrees of freedom
AIC: 158.61

> exp(3.60498)
[1] 36.78095

Hence this more complex model (for which in fact only 3 of the 15 interactions are significant)
gives us a point estimate of N as 36.8 + 68 = 104.8.
Comment: I try to illustrate each of these worksheets with an appropriate graph. I haven’t yet
worked out what would be a suitable graph for this particular problem, so that is a challenge for
you!
The dataset discussed above is by now rather old (though a classic, no doubt). Agresti’s 1994
paper gave a GLIM program for the log-linear analysis, discussed a variety of possible models
(including latent class models) for this dataset. If you want a new dataset as a challenge, try the
following, taken from ‘Capture-recapture methods to size alcohol-related problems in a population’
by Corrao, Bagnardi, Vittadini and Favilli, J.Epidemiol. Community Health 2000;54;603-610.
Our object is to estimate the total number of individuals with alcohol-related problems (ARP) in
the target population, by combining data from 4 different (and clearly non-independent) ‘flagging’
sources.
Here is the table of data, as published on p 606 by Corrao et al. (You may need to think a bit in
order to put it into R/S-Plus.)

Gender M M F F
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Age Y O Y O Total
Patients flagged by exactly 1 source
F1 30 40 6 12 88
F2 31 12 7 7 57
F3 12 5 3 2 22
F4 46 81 12 16 155

Patients flagged by exactly 2 sources
F1&F2 2 1 0 0 3
F1&F3 1 0 0 0 1
F1&F4 1 2 0 0 3
F2&F3 2 2 0 1 5
F2&F4 3 3 1 0 7
F3&F4 3 1 0 0 4

Patients flagged by exactly 3 sources
F1&2&3 0 0 0 0 0
F1&2&4 0 0 0 0 0
F1&3&4 1 0 0 0 1
F2&3&4 1 0 1 0 2

Patients flagged by all 4 sources
F1&2&3&4 1 0 0 0 1
____________________________
Total 134 147 30 38 349
___________________________

Key to above table
Gender, M = male, F =female
Age, Y = under 50 yrs, O = 50 yrs or older
The sources for ‘flagging’ the patients were
F1 = self-help volunteering groups (similar to Alcoholics Anonymous)
F2 = psychiatric ambulatory
F3 = Public Alcohology Service
F4 = hospital discharges.
The catchment area was ‘all residents in the area of Voghera, a Northern Italy rural area with an
economy based on vinegrowing and wine production... with a resident population of 132618 over
15 years in age.’
Corrao et al discuss various log-linear models, and conclude that the target population contained
approximately 2500 individuals with ARP.
How does this compare with your estimate? What is your confidence interval? Do you have to
treat the table for men differently from that for women?
(The authors conclude that the answer to this question is No, but that Young and Old should be
analysed separately.)



Chapter 19

The Ibrahim index, and links to
other multivariate datasets

The Ibrahim Index of African Governance assesses the 48 countries of sub-Saharan Africa accord-
ing to each of the following 5 features
Safety and Security
Rule of Law, Transparency and Corruption,
Participation and Human Rights,
Sustainable Economic Opportunity,
Human Development.
These 5 scores are given as the first 5 numeric columns of the datamatrix below,and are followed
by the Ibrahim index and its Rank (so you see that Mauritius ranks best, and Somalia ranks
worst). We use this dataset as an opportunity for a ‘stars’ plot, so we obtain a plot of each of the
5 attributes for each of the 48 countries.
Obviously there are many other multivariate techniques you could usefully apply to this dataset.
The figures below give the Ibrahim Index for 2008 (published October 6, 2008) which is based on
data from 2006.

Safety Law HumRights EconOpp HumDev IbIndex Rank
Angola 82.0 38.4 29.0 32.9 34.4 43.3 44
Benin 86.1 52.3 81.1 36.9 56.2 62.5 13
Botswana 75.0 81.6 87.4 58.2 68.0 74.0 4
Burkina_Faso 86.1 56.5 70.1 30.3 48.4 58.3 20
Burundi 62.0 48.3 60.4 35.9 43.3 50.0 35
Cameroon 77.7 43.3 54.7 44.7 56.5 55.4 25
Cape_Verde 100.0 86.1 77.7 47.2 62.6 74.7 3
Central_African_Republic 46.7 42.7 60.2 34.9 33.2 43.6 43
Chad 51.5 40.1 29.8 25.6 22.5 33.9 46
Comoros 94.4 52.8 73.1 37.5 51.5 61.9 14
Congo 68.5 43.5 48.6 48.7 57.1 53.3 28
Congo,_Dem_Republic 52.8 24.3 14.7 26.3 30.7 29.8 47
Cote_dIvoire 75.2 36.0 22.6 42.9 51.6 45.6 42

100
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Djibouti 86.0 43.6 55.6 36.8 54.0 55.2 26
Equatorial_Guinea 86.0 43.3 32.2 48.5 36.0 49.2 36
Eritrea 81.0 56.6 10.6 35.4 48.8 46.5 41
Ethiopia 72.8 47.9 40.4 40.5 52.7 50.9 31
Gabon 100.0 56.4 61.2 61.6 67.8 69.4 8
Gambia 86.0 54.7 42.5 40.5 52.2 55.2 27
Ghana 86.1 72.7 80.2 47.3 64.3 70.1 7
Guinea 80.3 51.0 25.4 32.3 50.0 47.8 40
Guinea-Bissau 80.5 34.6 75.2 23.3 45.8 51.9 30
Kenya 63.3 56.0 63.3 48.6 64.5 59.1 17
Lesotho 75.0 69.3 75.5 42.9 53.7 63.3 12
Liberia 58.8 26.8 87.9 36.9 33.2 48.7 38
Madagascar 86.1 57.3 74.9 39.4 44.3 60.4 16
Malawi 86.1 64.0 69.1 40.7 59.7 63.9 11
Mali 77.8 50.0 74.7 31.4 45.8 55.9 23
Mauritania 71.0 58.8 30.8 36.8 56.5 50.8 32
Mauritius 91.7 80.5 92.2 71.4 89.9 85.1 1
Mozambique 86.1 50.4 70.4 36.7 41.7 57.1 22
Namibia 83.3 76.7 75.3 57.4 61.6 70.9 6
Niger 86.1 51.7 79.4 27.6 32.5 55.5 24
Nigeria 63.7 48.2 44.1 40.7 45.9 48.5 39
Rwanda 98.4 46.0 69.5 37.7 43.6 59.0 18
Sao_Tome&Principe 100.0 55.6 83.4 41.5 61.1 68.3 9
Senegal 85.4 66.2 81.7 42.3 54.9 66.1 10
Seychelles 83.2 80.4 76.9 70.0 88.4 79.8 2
Sierra_Leone 79.6 37.3 69.8 27.1 31.8 49.1 37
Somalia 38.8 8.2 6.4 26.0 15.2 18.9 48
South_Africa 61.1 78.1 86.3 63.5 68.7 71.5 5
Sudan 29.0 29.8 12.0 42.2 58.0 34.2 45
Swaziland 69.4 56.9 28.8 46.5 49.2 50.2 34
Tanzania 83.3 59.6 65.4 43.4 56.4 61.6 15
Togo 77.2 47.1 44.2 42.0 54.4 53.0 29
Uganda 75.1 55.8 61.0 42.2 57.4 58.3 19
Zambia 77.8 60.5 66.6 43.0 43.5 58.3 21
Zimbabwe 75.1 44.6 41.9 38.8 51.7 50.4 33

Africa = read.table("Ibrahim.data", header=T)
stars(Africa[, 1:5],full=FALSE,len = 0.6,key.loc = c(-1,10),
+ draw.segments = TRUE,nrow =8, cex = .8)

This results in the ‘stars’ plot shown as Figure 19.1. See how poor little Somalia is an almost
invisible dot, while Mauritius and the Seychelles are large and visible, reflecting their relative
attractiveness as places to live.

New for 2009: CO2 emissions data
Here is another topical data set for you to play with.
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Figure 19.1: A stars plot of the 48 sub-Saharan African countries: components of the Ibrahim
Index
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The Independent, under the headline ‘The challenge facing the world’s biggest polluters’ on March
11, 2009, gave the following data, in an article beginning
‘The clock is ticking in the race to agree a new treaty to cut the emissions that cause global
warming. Michael McCarthy names and shames the offenders who must mend their ways.’ The
dataset consists of ‘the 20 worst offenders’ in terms of CO2 emissions, which form the first column
of numbers in million tonnes, presumably per annum.
The GDP is given in trillions of dollars,
GDPpc = GDP per capita, given in dollars,
EcG = Economic growth rate, as a percentage,
Pop = Population, in millions,
PopGr = Population growth rate, as a percentage.

CO2 GDP GDPpc EcGr Pop PopGr
China 6018 7.8 6100 9.8 1330 0.62
US 5903 14.8 48000 1.4 303 0.88
Russia 1704 2.22 15800 6.0 140 -0.47
India 1293 3.32 2900 7.3 1140 1.57
Japan 1247 4.48 35300 0.7 127 -0.13
Germany 858 2.86 34800 1.7 82 -0.04
Canada 614 1.33 40200 0.7 33 0.83
UK 586 2.28 37400 1.1 61 0.27
S.Korea 515 1.27 26000 2.5 48 0.27
Iran 471 0.859 13100 6.6 65 0.79
Italy 468 1.8 31000 0.0 58 -0.02
S.Africa 444 0.506 10400 3.7 48 0.83
Mexico 436 1.57 14400 2.0 109 1.14
SaudiAr 424 0.600 21300 4.2 28 1.95
France 418 2.09 32700 0.7 62 0.57
Australia 417 0.825 39300 2.5 21 1.22
Brazil 377 2.03 10300 5.2 196 1.23
Spain 373 1.37 36500 1.3 40 0.10
Ukraine 329 0.360 6900 2.1 46 -0.65
Poland 303 0.684 17800 5.3 38 -0.04

New for 2012: The Happy Planet Index.
see http://www.happyplanetindex.org for a large multivariate dataset, easily downloadable.
(use your desktop to reformat from a .xlsx file to the .csv file you want, in order to read it into R
for appropriate analyses.)

New for 2012: Student Crime Statistics.
see http://www.thecompleteuniversityguide.co.uk/student-crime-statistics/ for a 3-dimensional
data set. (use your desktop to reformat from a .pdf file to the .txt file you can input into R, after
some slight editing.)
Of the 3 crime rates (Violent, Burglary, Robbery) it appears that conditional on Robbery, the

http://www.happyplanetindex.org
http://www.thecompleteuniversityguide.co.uk/student-crime-statistics/
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other two are approximately independent. (Look at the pairwise conditional correlations, obtained
by inverting the variance-covariance matrix.)

New for 2012: Olympic Triathlon results, men 2008.
see http://www.sport.maths.org/content/olympic-triathlon. I actually had to work a bit to
read the dataset into R, since the times are displayed as 0:30:13.9, for example, ie hours:minutes:seconds.
We have a 4-dimensional dataset, since the ‘Total time’ is the time for the 1.5km swim, plus the
time for the 40 km cycle ride, plus the time for the 10 km run, PLUS the transition between events
time (this is normally about a minute, we are told).
New for 2012: results from the London Olympics. There is a wealth of multivariate data available
here, (although a given table is not always in the format most convenient for us, eg if we want to
work out a correlation matrix).
Here is the link to a very simple example
http://www.london2012.com/equestrian/event/eventing-individual/phase=eqx003400/index.
html Dressage is just one of three components in the equestrian eventing competition. Can you
find the other two, and see how the three components are related to one another?
‘Climate variability and conflict risk in East Africa, 1990–2009’ by J.O’Loughlin and others, pub-
lished in PNAS, 2012, see http://www.pnas.org/content/109/45/18344.abstract is a very
substantial paper, illustrating both generalized additive modelling and negative binomial mod-
elling. This paper has excellent online resources, including not only the full datasets, but also all
the R programs used. To reproduce just a small part of the authors’ calculations, showing full
understanding of them, would make an excellent and challenging student project.

http://www.sport.maths.org/content/olympic-triathlon
http://www.london2012.com/equestrian/event/eventing-individual/phase=eqx003400/index.html
http://www.london2012.com/equestrian/event/eventing-individual/phase=eqx003400/index.html
http://www.pnas.org/content/109/45/18344.abstract


Chapter 20

A Bayesian analysis for matched
pairs with incomplete data

‘Using Bayesian p- values in a 2 × 2 table of matched pairs with incompletely classified data’ by
Lin, Lipsitz, Sinha, Gawande, Regenbogen and Greenberg appeared in Appl. Statist. (2009) 58.
I was intrigued to see this paper, not least because it extends a result I published in 1971, specifically
Altham, P.M.E. (1971) ‘The analysis of matched proportions’. Biometrika, 58 561-576.
Lin et al. give a numerical example, and show how to derive appropriate Bayesian p- values.
However, they do not give computational details, except to say that a SAS macro may be obtained
from the first author.
Naturally I wanted to see how we could do the computations in R. By happy chance Dr Robin
Hankin gave a seminar in the Statistical Laboratory, University of Cambridge, on February 20,
2009, in which I realised that he had already developed a general method in R for dealing with his
‘hyperdirichlet distributions’ which would solve the computational problem here.
For convenience I present the practical example given in Lin et al., and follow their notation.
The dataset is given here as Table 20.1. These arise from 69 medical malpractice claims, and are
the two Surgeon Reviewers’ answers to the question: was there a communication breakdown in
the hand-off between physicians caring for the patient? The rows of the Table correspond to the
answers given by Reviewer 1, and the columns to the answers given by Reviewer 2.
As you will see, there were 69 cases in all, but in 11 cases where Reviewer 1 gave an answer, there
was no answer given by Reviewer 2. Correspondingly in 8 cases where Reviewer 2 gave an answer,
there was no answer given by Reviewer 1.
Following Lin et al, we adopt the notation given in Table 20.2 for the corresponding observed
frequencies.

Yes No Missing Total
Yes 26 1 2 29
No 5 18 9 32
Missing 4 4 0 8
Total 35 23 11 69

Table 20.1: Two surgeon reviews of malpractice claims data
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Yes No Missing Total
Yes y11 y10 z1+ y1+ + z1+
No y01 y00 z0+ y0+ + z0+
Missing u+1 u+0 0 u++

Total y+1 + u+1 y+0 + u+0 z++ n

Table 20.2: Notation for the data

What we want to know is whether Reviewer 2 is giving significantly higher proportion of ‘Yes’
responses than is Reviewer 1.
Note that it is easy to do the McNemar test on the 2× 2 table of complete observations, thus:

>x <- matrix(c(26,1,5,18),nrow=2,byrow=T,
dimnames=list("Reviewer 1"=c("Yes","No"),"Reviewer 2"= c("Yes", "No")))

> x
Reviewer 2

Reviewer 1 Yes No
Yes 26 1
No 5 18

> mcnemar.test(x)

McNemar’s Chi-squared test with continuity correction

data: x
McNemar’s chi-squared = 1.5, df = 1, p-value = 0.2207

Not surprisingly (since this is just comparing 5 with 1) the answer is that there is no significant
difference. We could easily do an exact test for this problem: it would be based on the Binomial
distribution with parameters 6, 1/2.
However, it is unsatisfactory not to make use of the observations in the ‘Missing’ row and column.
To make use of these observations we note that, following equation (1) of Lin et al, the likelihood
function of the data D may be taken as

L(θ|D) ∝
∏
ij

θij
yij

∏
i

θi+
zi+

∏
j

θ+j
u+j

where i = 0, 1 and j = 0, 1.
If we take a Dirichlet prior for (θij), i = 0, 1, j = 0, 1, namely

π(θ) ∝
∏
ij

θij
αij−1, with

∑
ij

θij = 1,

then the posterior density of θ given the data D is

π(θ|D) ∝
∏
ij

θij
(yij+αij−1)

∏
i

θi+
zi+

∏
j

θ+j
u+j .

We want to work out Pr(θ+1 > θ1+|D), equivalently we will find Pr(θ01 > θ10|D). We will do this
for the special case of αij = 1 for all i, j, which corresponds to the uniform prior density for (θij).
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The important thing to notice is that while the expression for π(θ|D) looks very awkward, it is in
fact a special case of a hyperdirichlet, as defined by Robin Hankin. He has an R package which
will manipulate this density, for example to find a given probability by integration. Here we seek
the probability Pr(θ01 > θ10|D). To fit in with Robin’s notation, it is a little easier if we rewrite
the original 2× 2 table of probabilities as Table 20.3.
In terms of (p1, p2, p3, p4) we seek the posterior probability Pr(p3 > p2|D).

Yes No
Yes θ11 = p1 θ10 = p2

No θ01 = p3 θ00 = p4

Table 20.3: Rewriting the probabilities

The R program below first reads in all the necessary R packages (in the correct order), then set
up the hyperdirichlet distribution, and finally does the required integration. The posterior density
function is

π(p|D) ∝ p26+1−1
1 p1+1−1

2 p5+1−1
3 p18+1−1

4 (p1 + p2)2(p3 + p4)9(p1 + p3)4(p2 + p4)4

for pi ≥ 0, and p1 + p2 + p3 + p4 = 1.
Although the true Dirichlet distribution has many elegant analytic properties, it looks pretty hard
to say anything elegant or analytic about this hyperdirichlet distribution. That’s why we need R
to do the computation.

library(mvtnorm)
library(adapt,lib.loc="~/Rlibs")
library(Brobdingnag,lib.loc="~/Rlibs")
library(polynom,lib.loc="~/Rlibs")
library(partitions,lib.loc="~/Rlibs")
library(aylmer,lib.loc="~/Rlibs")
library(abind, lib.loc="~/Rlibs")
library(hyperdirichlet,lib.loc="~/Rlibs")
# Note added June 2012. I realise that the above process (ie loading the necessary libraries,
# in the correct order, can be made much swifter, by the following two commands
# install.packages("hyperdirichlet", dependencies=TRUE)
# library(hyperdirichlet)

(b <- dirichlet(1:4)) # for useful starting point
p1 p2 p3 p4 params powers

[1] 0 0 0 0 0 0
[2] 0 0 0 1 4 3
[3] 0 0 1 0 3 2
[4] 0 0 1 1 0 0
[5] 0 1 0 0 2 1
[6] 0 1 0 1 0 0
[7] 0 1 1 0 0 0
[8] 0 1 1 1 0 0
[9] 1 0 0 0 1 0
[10] 1 0 0 1 0 0
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[11] 1 0 1 0 0 0
[12] 1 0 1 1 0 0
[13] 1 1 0 0 0 0
[14] 1 1 0 1 0 0
[15] 1 1 1 0 0 0
[16] 1 1 1 1 0 0

# Note that we are setting up the powers for a total
# of 16 possible combinations of p1, .., p4
#(with the restriction that the first and last rows
# have powers 0).

Normalizing constant: 3.30687830687831e-05
# Now edit b so that it corresponds to our data
> b[2] = 19; b[3]= 6; b[4] = 9; b[6] = 4
> b[9] = 27; b[11] = 4; b[13] = 2
> b

p1 p2 p3 p4 params powers
[1] 0 0 0 0 0 0
[2] 0 0 0 1 19 18
[3] 0 0 1 0 6 5
[4] 0 0 1 1 9 9
[5] 0 1 0 0 2 1
[6] 0 1 0 1 4 4
[7] 0 1 1 0 0 0
[8] 0 1 1 1 0 0
[9] 1 0 0 0 27 26
[10] 1 0 0 1 0 0
[11] 1 0 1 0 4 4
[12] 1 0 1 1 0 0
[13] 1 1 0 0 2 2
[14] 1 1 0 1 0 0
[15] 1 1 1 0 0 0
[16] 1 1 1 1 0 0

> is.hyperdirichlet(b)
[1] TRUE
> x <- hyperdirichlet(b)
> f <- function(p){p[2]>p[3]}
> prob <-probability(x,disallowed=f)
# this evaluates prob(p[2]< p[3])
> prob
[1] 0.969555
> (probability(x,disallowed=f, eps=1e-3))
[1] 0.9689503 # for more accurate version

> max.like(b)
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$MLE
p1 p2 p3 p4

0.45121066 0.01799551 0.11125458 0.41953925
# We expect the response of Reviewer 1, 2 to be positively
# correlated, and indeed the mle’s show (p1*p4)>> (p2*p3)
....................

Hence we see that Pr(θ01 > θ10|D) = 0.969, ie Reviewer 2 is more likely to give a ‘Yes’ answer
than is Reviewer 1.

Afterword i) In this instance, if we stop and think for a little, we see that it is not necessary
to do 3-dimensional integration in order to find the normalization constant of the hyperdirichlet
posterior density. For, using Hankin’s notation for simplicity, we see that the posterior density is
of the form

π(p|D) ∝ pa
1p

b
2p

c
3p

d
4(p1 + p2)A(p3 + p4)B(p1 + p3)C(p2 + p4)D

for suitably defined non-negative integers a, b, c, d, A,B,C,D. Now use 4 binomial expansions, eg

(p1 + p2)A =
∑

x

(
A

x

)
px
1p

(A−x)
2 , . . . .

This gives

π(p|D) ∝
∑

x,y,z,w

pa
1p

b
2p

c
3p

d
4 f(x, y, z, w) px

1p
A−x
2 py

3p
B−y
4 pz

1p
C−z
3 pw

2 p
D−w
4

where x = 0, . . . , A, y = 0, . . . , B, z = 0, . . . , C, and w = 0, . . . , D, f(x, y, z, w) being a known
product of binomial coefficients.
Now we can integrate over the simplex pi > 0 for all i,

∑
pi = 1 and apply the general result

Γ(ν)
∫

p

∏
i

pνi−1
i dp =

∏
i

Γ(νi)

where ν =
∑
νi, and hence find the normalisation constant.

Similarly, diligent integration of each term of the summation over the region (pi > 0 for all i,∑
pi = 1 and p2 < p3) should give us an exact formula for

Pr(p2 < p3|D)

in terms of sums of the beta-tails, ie binomial sums. For if θ has a beta distribution, then Pr(θ <
1/2) is a tail of the corresponding binomial distribution with parameter 1/2.
This is shown by the following argument:
Suppose θ is beta, with parameters a, b, which are positive integers. To find Pr(θ < 1/2) as a
binomial sum, you could integrate by parts. But a better way is to consider a random sample of
a+ b− 1 points from the uniform distribution on [0, 1]. Define θ as the distance from 0 to the ath
point of the sample, then we see that θ has the beta distribution with parameters a, b. Further
Pr(θ < 1/2) = Pr(N ≥ a), where N is the number of points of the sample in the interval [0, 1/2],
hence N ∼ Bi(a+ b− 1, 1/2).
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Afterword ii) For this example, it isn’t very difficult to maximise the log-likelihood function ex-
plicitly, and hence find that log(p̂3/p̂2) = log(0.11125458/0.01799551). From the matrix of sec-
ond derivatives of the log-likelihood function, we can also find the approximate standard error of
log(p̂3/p̂2). You see below a simple way of doing this in R.

a = c(26,1,5,18)
A = 2; B = 9 ; C = 4; D = 4
x0 = rep(0.1, times=3) # starting values
lhyper = function(p)
+ {
+ p[4] = 1-p[1]-p[2]-p[3]
-sum(a*log(p)) - A* log(p[1] + p[2]) - B*log(p[3] + p[4])
- C*log(p[1] + p[3]) - D*log(p[2] + p[4])

+ }
# The hardest thing here is to remember the MINUS signs!!
fit.dir =optim(x0,lhyper, method="BFGS", hessian=T)

fit.dir$par # gets the max likelihood estimates
0.45118225 0.01800136 0.11127152
fit.dir$hessian
V = solve(fit.dir$hessian) # for covariance matrix

eigen(V) # to check positive definite
phat = fit.dir$par

# We now find the approx variance of log(phat[3]/phat[2])
> V[2,2]/(phat[2]^2) - 2*V[2,3]/(phat[2]*phat[3]) + V[3,3]/(phat[3]^2)
[1] 1.164936
> sqrt(1.164936)
[1] 1.079322
> (log(phat[3]/phat[2]))/1.079322
[1] +1.687658 # refer this to N(0,1)

To simulate the distribution of say log(p2/(p2 + p3)) use

rhyperdirichlet()

The work given in this Chapter led to ‘Correspondence: Using recently developed software on a
2 × 2 table of matched pairs with incompletely classified data’ by Altham and Hankin, Applied
Statistics 59, (2010), 377–379.



Chapter 21

An Index of Child Well-Being in
Europe

In ‘An Index of Child Well-Being in Europe’, Jonathan Bradshaw and Dominic Richardson (pub-
lished online April 1, 2009 in Child Indicators Research) presented the data in the first 10 columns
below. These 29 countries consist of the 27 European Union countries together with Norway and
Iceland.
The first 6 columns for the various countries consist respectively of ranks for Health, Subjective
wellbeing, Children’s Relationships, Material Resources, Behaviour and Risk, and Education. Thus
we see that for Health, Sweden is best (ie rank 1) but the UK has rank 24 out of 29.
The ‘cwb’ column is an Index of Child Well-being, constructed from several different aspects of
children’s lives. The Netherlands does best, with score of 117.25002.
The penultimate column is the Gini index for income distribution. This is a measure of income
inequality, and here I have used the United Nations list given on Wikipedia. The Gini index for a
given country is defined to be in [0, 100]. It is 0 if everyone in that country has the same income
(eg $20000), and is 100 in the case of extreme inequality of income, as when 1 person earns say $2
million, and everyone else earns $10. (The mathematical definition is given in Wikipedia.)
The final column (please do check it!) is also taken from Wikipedia. It gives the IMF figures in
international $ of the GDP (gross domestic product) at Purchasing Power per Capita. (This is a
better measure of the wealth of an individual in a country than the simple per capita GDP).)
Consider the data in the Table below. Sadly, we have to ask why the UK does so badly: a view
expressed in the Child Poverty Action Group report of Spring 2009 ‘Where the UK stands in the
European table’.

Rank Country Health Subjective Relationships Material Risk Education
1 1 Netherlands 2 1 1 7 4 4
2 2 Sweden 1 7 3 10 1 9
3 3 Norway 6 8 6 2 2 10
4 4 Iceland 4 9 4 1 3 14
5 5 Finland 12 6 9 4 7 7
6 6 Denmark 3 5 10 9 15 12
7 7 Slovenia 15 16 2 5 13 11
8 8 Germany 17 12 8 12 5 6
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9 9 Ireland 14 10 14 20 12 5
10 10 Luxembourg 5 17 19 3 11 16
11 11 Austria 26 2 7 8 19 19
12 12 Cyprus 10 NA NA 13 NA NA
13 13 Spain 13 4 17 18 6 20
14 14 Belgium 18 13 18 15 21 1
15 15 France 20 14 28 11 10 13
16 16 CzechRepublic 9 22 27 6 20 3
17 17 Slovakia 7 11 22 16 23 17
18 18 Estonia 11 20 12 14 25 2
19 19 Italy 19 18 20 17 8 23
20 20 Poland 8 26 16 26 17 8
21 21 Portugal 21 23 13 21 9 25
22 22 Hungary 23 25 11 23 16 15
23 23 Greece 29 3 23 19 22 21
24 24 UK 24 21 15 24 18 22
25 25 Romania 27 19 5 NA 24 27
26 26 Bulgaria 25 15 24 NA 26 26
27 27 Latvia 16 24 26 22 27 18
28 28 Lithuania 22 27 25 25 28 24
29 29 Malta 28 28 21 NA 14 NA

Housing cwb gini GDPppp
1 9 117.25002 30.9 40431
2 3 114.83973 25.0 37245
3 1 114.83537 25.8 53451
4 8 112.71459 NA 40025
5 4 110.96658 26.9 36217
6 5 109.56699 24.7 37266
7 19 107.12159 28.4 29472
8 16 106.08419 28.3 35442
9 2 105.32170 34.3 42539
10 7 104.76378 NA 82306
11 6 104.16369 29.1 39634
12 11 103.72564 NA 29830
13 13 103.64101 34.7 30621
14 12 102.96874 33.0 36235
15 10 100.86114 32.7 34208
16 22 98.89364 25.4 25395
17 15 98.71590 25.8 22040
18 25 96.90719 35.8 20259
19 20 96.08699 36.0 30581
20 23 94.64009 34.5 17482
21 18 94.49209 38.5 22190
22 21 94.32172 26.9 19499
23 14 93.99548 34.3 30535
24 17 92.92664 36.0 36523
25 NA 86.97584 31.0 12580
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Figure 21.1: How does Child-Wellbeing depend on Income Inequality in Europe?

26 NA 84.94478 29.2 12341
27 26 84.06093 37.7 17071
28 24 82.32087 36.0 18946
29 NA 81.89308 NA 23760

Figures 21.1 and 21.2 show how Child Wellbeing is negatively related to the Gini Index and
positively related to GDPppp for the countries given. (These graphs could be improved, with a
little more trouble.)

> plot(gini, cwb, type="n")
> text(gini, cwb, Country)
> points(gini, cwb)
> abline(lm(cwb ~ gini))
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Figure 21.2: How does Child-Wellbeing depend on GDPppp in Europe?



Chapter 22

Estimating the number of
dinosaur species not yet found.

This worksheet might form the basis for a graduate project.
While browsing the BBC website (science) I came across the paper ‘Estimating the diversity of
dinosaurs’ (Proceedings of the National Academy of Science, September 12, 2006) by Steve C.Wang
and Peter Dodson. There are 527 different species (genera) of dinosaurs currently described, and
Wang and Dodson estimate from the observations taken so far, that at least 71% of dinosaur genera
are yet to be described.
This estimation problem intrigued me, as I recalled that it must be essentially the same problem
as that dealt with by Efron and Thisted in 1976 (Biometrika vol 63, p435-447). Their paper was
‘Estimating the number of Unseen Species: How many words did Shakespeare know?’. To quote
from Efron and Thisted ‘Shakespeare wrote 31534 different words, of which 14376 appear only
once, 4343 appear exactly twice,... and so on. The question considered is how many words he
knew but did not use.’
Wang and Dodson used a non-parametric approach published by A.Chao and S-M Lee, J.Amer.
Statist. Ass, 1992, pp210-217. In this worksheet, I briefly summarise the non-parametric estimators
discussed by Chao and Lee, and present you with 2 examples of real data on which to try out the
corresponding R programs.
First, we need some notation, and here we follow closely Chao and Lee.
Suppose we have a random sample of size n taken from a population of elements belonging to N
different classes. Let pi be the probability that any observation belongs to the ith class, and let
Xi be the number of elements of the ith class that are observed in our sample (i = 1, . . . , N); thus
(X1, . . . , XN ) is multinomially distributed.
Let fi be the number of classes that have exactly i elements in the sample, so that for i = 1, 2, . . . , n,

fi =
j=N∑
j=1

I[Xj = i],

where I(A) is the usual indicator function. The object of our inference is to estimate N , the total
number of ‘species’ or classes, based on the data (f1, . . . , fn).
We define D =

∑
fi, the total number of distinct classes observed in the sample. Note that

n =
∑
ifi.
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Chao and Lee define/derive 4 estimators, of increasing sophistication. (You need to look at their
paper to see the assumptions on which these estimators are based.)
Estimator 0. The simplest estimator is N̂0, defined as the solution of the equation

D = N [1− exp(−n/N)].

The asymptotic variance of N̂0 is

var(N̂0) =
N

[en/N − (n/N)− 1]
.

The estimator N̂0 was originally obtained as the approximate mle of N for the special case of
p1 = p2 = . . . = pN = 1/N .
(However, if you look up
Harris, 1968, ‘Statistical Inference in the Classical Occupancy Problem, unbiased estimation of the
number of classes’, J.Amer. Statist. Ass. 63 pp 837-847.
you will see that Harris takes N = θ, and shows that the exact log-likelihood for this problem is

L(θ) = log
(
θ

D

)
− n log θ + a constant.

Therefore, as a little exercise in R, we could directly maximise L(θ) and find var(θ̂), without
bothering with the approximation to L(θ).)

Take the following example discussed by Chao and Lee, p213.
A hoard of 204 ancient coins was classified according to die types (eg pounds, 20p, 10p and 1p
pieces respectively). The purpose was to estimate the total number of dies used in the coin minting
process. The frequencies for the reverse side of the coins were
156 singletons (ie found only once each), 19 doubletons, 2 triplets and 1 quadruplet. The little
R program below obtains (in a very simple-minded fashion) the estimate N̂0 together with its
standard error.

f = c(156,19,2,1)
D = sum(f)
i = 1:4 ; n = sum(i*f)
N= 200:1000
rhs = N*(1- exp(-n/N)) #Note very simple-minded way of solving the equation
# For a more sophisticated approach, try uniroot()
plot(rhs ~ N, type ="l") ; abline(D,0)
N= 600:800 ; rhs = N*(1- exp(-n/N))
plot(rhs ~ N, type ="l") ; abline(D,0)
N[abs(rhs - D) <.01]

This gives us that N̂0 = 731.

v0 = N/(exp(n/N) - (n/N) - 1) ; sqrt(v0)

This gives se(N̂0) = 130.6.
Estimator 1.
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We first define C, the sample coverage, as the sum of the probabilities of the observed classes, ie

C =
i=N∑
i=1

piI[Xi > 0].

Hence C varies with the sample, and is a random variable. A ‘widely used estimator’ of C is

Ĉ = 1− f1/n,

from which a ‘natural estimator’ of N is

N̂1 = D/Ĉ.

This is asymptotically very efficient in the special case of p1 = p2 = . . . = pN = 1/N .
For the hoard of ancient coins example given above, you can check that N̂1 = 757.
Estimators 2 and 3
The assumption of equal values of p1, . . . , pN is of course in practice unrealistic. The estimators
N̂2, N̂3 allow for the fact that the pi’s may vary by incorporating the coefficient of variation
(or an estimate of it) into their definition.
Each of N̂2, N̂3 is of the form

D

Ĉ
+
n(1− Ĉ)γ2

Ĉ
.

For N̂2, we define γ = γ̂, and for N̂3 we define γ = γ̄. Here γ is defined as CV , the coefficient of
variation of (p1, . . . , pN ), and so

γ2 =
∑

i(pi − p̄)2/N
p̄2

where p̄ is the mean of p1, . . . , pN , hence p̄ = 1/N . By definition, γ2 > 0. There are two alternative
estimators of γ2. The first is

γ̂2 =
N̂1

∑
i(i− 1)fi

n(n− 1)
− 1

if this is > 0, with γ̂2 = 0. otherwise,
‘When the true value of CV is relatively large’ (this seems to mean that CV ≥ 1) Chao and Lee
recommend the use of N̂3, where γ2 is estimated by a ‘bias-corrected’ version of γ̂2. This is γ̄2,
defined by

γ̄2 = γ̂2(1 +
n(1− Ĉ)

∑
i(i− 1)fi

n(n− 1)Ĉ
)

if this is > 0, γ̄2 = 0 otherwise.

Exercise 1. Show that

E(f1) =
N∑

i=1

npi(1− pi)n−1.

Solution. Note that f1 = I1 + . . . + IN , where I1 = 1 if species 1 is in the sample exactly once,
I1 = 0 otherwise (with I2, . . . , IN defined similarly). Hence Pr(I1 = 1) = np1(1 − p1)n−1, and
hence we have the given expression for E(f1).
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Exercise 2. Similarly, show that

E(fj) =
N∑

i=1

(
n

j

)
pj

i (1− pi)n−j .

Exercise 3. Hence show that since D =
∑

j fj , it follows that

E(D) = N −
N∑

i=1

(1− pi)n,

and since C =
∑N

1 piI(Xi > 0), it follows similarly that

E(C) = 1−
N∑
1

pi(1− pi)n.

Back to the practical example given by Chao and Lee.
With f1 = 156, f2 = 19, f3 = 2, f4 = 1,
they find D = 178 , γ̂ = .36, and so N̂2 = 844 with se = 186.6.
Further, they give γ̄ = 0.51, and hence N̂3 = 932, with se = 265.7.
Check that you obtain the same estimates N̂2, N̂3.
Unfortunately, it is not possible to write down a simple expression for the standard errors, but
Chao and Lee give the following asymptotic expression as an estimate of the variance of N̂2.

var(N̂2) ≈
∑

i

∑
j

didjcov(fi, fj)

where di = ∂N̂2
∂fi

, i = 1, . . . , n, and

cov(fi, fj) = fi(1− fi/N̂2) if i = j

cov(fi, fj) = −fifj/N̂2 if i 6= j.

In other words, the idea behind the variance derivation is quite simple, but its implementation is
a bit painful.

Here is a new data set, for which we require the answer to the question ‘What is the total number
of species?’ Statcounter.com provides me with a log of the last 2000 hits on my webpage, and in
particular gives me the total number of hits sorted by country of access. On May 5, 2009 I found
the following counts, by sorted by country:

594 322 109 75 69
65 56 51 45 33
32 26 26 22 22 22 22 20 20 18
18 17 16 15 14 14 14 14 14 13
12 12 12 12 11 11 10 10 10 9
9 8 8 6 6 5 5 5 5 4
3 3 3 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1
1
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I will take ‘country’ as ‘species’ in this example.
Thus you can see from the data that, there were 594 hits from the first country (which in fact was
the USA), 322 from the next (the UK), 109 from the third (Italy), and so forth, finally ending up
with a block of 13 countries each of which had exactly one entry. (These were Lesotho, Ghana,
Mongolia, Ukraine, Bulgaria, UAE, Jamaica, Israel, Cuba, Indonesia, Guatemala, Cameroon and
Belarus respectively. This is not something you need to know in order to answer the question, but
I find this list of countries quite intriguing)
From this little example we might consider the problem of estimating N , the total number of
species, or equivalently, the problem of estimating f0, the number of countries not yet ‘seen’ to hit
my webpage.
Chao and Shen 2004 ‘Nonparametric prediction in species sampling’, Journal of Agricultural, Bi-
ological and Environmental Statistics 9, pp 253-269 suggest modifying the estimators given above
by using only the ‘rare’ species, ie those which appear at most 10 times each. Thus in all the
expressions below, the summations are from i = 1 to i = 10 only. Simplifying their notation very
slightly, we will take f̂0 as our estimator of the number of undetected species (countries), where

f̂0 =
Srare

Crare
+

f1γ̂
2

Crare
− Srare

and Srare =
∑
fi is the total number of rare species in the sample, so here Srare = 35.

The estimated sample coverage is Crare, where

Crare = 1− f1/
∑

ifi

and

γ̂2
rare =

Srare

∑
i(i− 1)fi

Crare(
∑
ifi)2

− 1,

if this is strictly positive, γ̂2
rare = 0 otherwise.

Here is a little bit of R code to start you off.

count <- scan("statcounter.data")
ff <- tabulate(count)
f = ff[1:10]

Questions for you
I find f̂0 = 12.087. Do you agree?
Is there a painless way of deriving a reasonable estimate of the variance of f̂0?
Agresti (2002, p596) notes that if the N species have respective probabilities p1, . . . , pN , then
Simpson’s coefficient of ecological diversity is defined as

I(p) = 1−
∑

p2
i .

Show that 0 ≤ I(p) ≤ 1 − 1/N and state the conditions under which the bounds are attained.
Suppose we take two items at random (sampling with replacement) from our population of N
species. Show that the probability that these two animals are from different species is I(p).
Note added November2009
Favaro, Lijoi, Mena and Prünster have recently published at least 3 papers on a Bayesian approach
to this problem, with special application to ‘expressed sequence tags (EST) analysis’ in gene iden-
tification. See for example
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‘Bayesian non-parametric inference for species variety with a two-parameter Poisson-Dirichlet pro-
cess prior’ J.R.Statistic. Soc B (2009) 71 Part 5, pp 993-1008
‘A Bayesian non-parametric method for prediction in EST analysis’ BMC Bioinformatics 2007,
8:339
They appear NOT to give a software reference (eg an R package) for their method but they do
give a useful reference for the software for other methods, eg the methods of Chao and Shen. This
is http://chao.stat.nthu.edu.tw
Note added November 2012. Ji-Ping Wang has written the R package SPECIES, with associated
article in J. Statistical Software, 2011. This looks very promising as a source of useful methods
and interesting data examples.

http://chao.stat.nthu.edu.tw


Chapter 23

Patterns of voting in the
Eurovision Song Contest

The 2009 Eurovision Song Contest, held in Moscow in May, has some interesting voting data,
available from Wikipedia. Table 23.1 shows the Scoreboard from Semi-final 1. There are 18 coun-
tries competing, namely Montenegro, CzechRep, Belgium, Belarus, Sweden, Armenia, Andorra,
Switzerland, Turkey, Israel, Bulgaria, Iceland, Macedonia, Romania, Finland, Portugal, Malta,
and Bosnia Herzegovina.
There are 20 countries voting, namely those 18 which are competing, plus Germany and the UK.
(These latter are 2 out of the ‘big four’ countries, which together with Russia, the host country,
have a guaranteed place in the final.)
No country can vote for itself, and each of the 20 countries voting assigns the votes

12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0

to the remaining 17 or 18 countries: Germany and the UK can vote for any of the 18 competing
countries.
The row headings for the Table are the 18 competing countries given above, so that the first one
you see is Montenegro.
The column headings for the Table are Total score, and then the scores given by the 20 countries
listed above, so that the last one you see is the UK, which rates Turkey as the best (as do 7 other
countries).
Missing values in the Table are denoted by *.
Try out the following commands and see what they tell you.

# I have taken the diagonal elements of the above Table as ‘NA’
# You will need to put row and column headings in your datafile.
x = read.table("Eurodata", na.strings="*", header=T)
x
Votes = x[,3:22] ; Votes
tVotes = t(Votes) ; tVotes
country.lab = row.names(tVotes)
country.lab
d = dist(tVotes, method = "euclidean") # This has a ‘fixup’ for NA’s

121
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44 * 0 0 3 0 5 1 2 5 1 0 0 8 0 0 1 6 10 2 0
0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 * 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 2 1 0 * 1 4 0 0 0 4 1 1 6 0 4 0 1 0 0 0
105 0 6 4 7 * 8 7 4 4 7 0 10 3 4 10 8 8 4 4 7
99 4 12 10 10 5 * 0 1 10 10 8 2 2 8 1 0 0 1 10 5
8 0 0 0 0 0 0 * 0 1 0 0 0 0 0 0 4 3 0 0 0

15 0 0 0 2 2 0 2 * 0 0 0 0 0 0 5 2 0 2 0 0
172 8 5 12 6 7 10 5 12 * 6 12 7 12 12 7 5 10 12 12 12
75 5 4 3 4 6 7 8 5 3 * 4 6 1 3 6 0 4 0 5 1
7 0 0 0 0 0 0 0 0 2 0 * 0 5 0 0 0 0 0 0 0

174 7 10 7 12 12 12 10 7 8 12 6 * 4 10 12 12 12 7 6 8
45 10 3 0 0 0 0 0 6 6 0 10 0 * 2 0 0 0 8 0 0
67 6 0 2 1 0 2 4 0 7 8 5 4 7 * 0 10 2 6 1 2
42 3 0 1 0 10 0 3 0 0 0 0 12 0 1 * 3 5 0 0 4
70 0 2 6 0 3 0 12 10 0 2 2 8 0 7 2 * 0 3 7 6
86 1 7 8 8 4 3 6 3 0 5 3 5 0 6 3 6 * 5 3 10

125 12 8 5 5 8 6 0 8 12 3 7 3 10 5 8 7 7 * 8 3

Table 23.1: 2009 Eurovision Song Contest, Scoreboard from Semi-final 1

round(d,2)
library(MASS)
new = cmdscale(d, k=2, eig=T)
country.lab
new$points
x1 = new$points[,1]
x2 = new$points[,2]
plot(x1,x2, xlim=c(-12,12), ylim=c(-12,12), type="n")
text(x1,x2, labels=country.lab)
dend = hclust(d)
dend
plclust(dend, labels = country.lab)
# Another, perhaps simpler approach is as follows
correlation = cor(Votes, use="pairwise.complete.obs")
# you may prefer to use Spearman’s correlation coefficient here
round(correlation,2)
y = as.vector(tVotes)
y[1:18]
18*20
country.voting = gl(20, 1, length= 360, labels=country.lab)
country.voting[1:21]
is.factor(country.voting)
competing = gl(18,20,length=360, labels= country.lab[1:18])
competing[1:25]
Votes = x[,3:22]
tVotes = t(Votes)
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Figure 23.1: Eurovision Song Contest 2009, Semi-final 1, similarities between countries voting

y = as.vector(tVotes)# nb, retain *’s for this part
y
plot(y~ competing)
plot(y~ country.voting) # as a check
country.voting
tapply(y, competing, sum, na.rm=TRUE)
tapply(y, country.voting, sum, na.rm=TRUE)
first.lm = lm(y ~ competing ) ; summary(first.lm)

Figure 23.1 is the resulting dendrogram, showing which of the 20 countries are voting similarly to
one another.



Chapter 24

An introduction to copulae

This worksheet might form the basis of a project for a graduate student.
The only multivariate distribution considered so far in these worksheets is the multivariate normal
distribution. This is a very important distribution, with many elegant properties, but in several
contexts, particularly those of finance and hydrology, the multivariate normal is too restrictive.
This is why I now give a very brief introduction to the subject of Copulae. I will use the R package
constructed by Ivan Kojadinovic and Jun Yan, who have gone into the subject very thoroughly.
I found the following paper a very helpful introduction to the subject of copulas:
‘Everything you always wanted to know about copula modeling but were afraid to ask
(2007) by C. Genest and A-C. Favre, J. of Hydrologic Engineering pp 347-368.
I paraphrase their introduction a little.
Suppose (X,Y ) is a pair of continuous random variables, and F (x), G(y) are the marginal distri-
bution functions of X,Y respectively. Sklar’s theorem shows that the joint distribution function
H(x, y) = Pr(X ≤ x, Y ≤ y) may be written in the form

H(x, y) = C(F (x), G(y))

for all real x, y. The function C maps the unit square [0, 1]2 to the unit interval [0, 1], and is called
the copula function. In copula modelling, it is assumed that C( , ) is the function of interest,
as modelling the dependence between X,Y . Everything we say about bivariate distributions is
readily extended to multivariate distributions.
An important special type of copula is called an Archimedean copula (why ‘Archimedean’ I have
no idea) and for this we may write

C(u, v) = φ−1(φ(u) + φ(v))

for 0 < u, v < 1, where φ is a convex decreasing function mapping [0, 1] to [0,∞) such that φ(1) = 0
The special case of φ(t) = (t−α − 1) for α ≥ −1 corresponds to a Clayton copula, introduced by
David Clayton in 1978.
First, consider the following construction for a Gaussian or normal copula. This enables us to
construct a particular bivariate distribution function for which each of the marginal distribution
functions is a uniform distribution on [0, 1] and the dependence parameter is the usual correlation
coefficent ρ. Take

Cρ(u, v) = Φρ(Φ−1(u),Φ−1(v))

124
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for 0 ≤ u, v ≤ 1, where Φ−1 is the inverse of the univariate standard normal distribution function,
and Φρ(x, y) is the bivariate normal distribution function for a 2−dimensional vector (X,Y ) each
with mean 0, variance 1 and with correlation coefficient ρ. Here Cρ( , ) is a particular example of
a copula function. You can check that if

Pr(U ≤ u, V ≤ v) = Cρ(u, v)

then the marginal distribution of each of U, V is the rectangular distribution on (0, 1). We will
first generate a random sample from a bivariate Gaussian copula:

library(copula, lib.loc="~/Rlibs")
norm.cop <- normalCopula(0.7, dim=2) # here rho= 0.7
set.seed(26) # for repeatability
x <- rcopula(norm.cop,1000)#to generate a sample from this distribution
plot(x) # to show dependence
hist(x[,1] ) # to show uniform marginal distribution of first variable
hist(x[,2]) # to show uniform marginal distribution of second variable
cor.test(x[,1] , x[,2], method="kendall") # note, non-parametric correlation
# so this is unaffected by 1-1 transformations on each of x[,1], x[,2]
kendallsTau(norm.cop) # so this is the theoretical value

Now try changing the scale

qx <- qnorm(x)
plot(qx)
hist(qx[,1]) # to show N(0,1) distribution
cor.test(qx[,1],qx[,2], method="pearson")
cor.test(qx[,1],qx[,2], method="kendall") # same result as for (x[,1],x[,2])
# as we should expect.

Now let us generate a Clayton copula bivariate distribution, and assess the pairwise dependence by
Kendall’s τ . Note that for an Archimedean copula, there is a closed form expression for Kendall’s
τ : see for example p354 of Genest and Favre. In terms of the parameter used by the R package
copula, Kendall’s τ for the Clayton copula is given by

τ = α/(α+ 2).

First we will plot the probability density function for the bivariate Clayton copula with α = 1, τ =
1/3, shown in Figure 24.1.

clayton.cop1 = claytonCopula(1,dim=2)
persp(clayton.cop1,dcopula) # to look at the density function

Now we show the scatterplots for samples of size 1000 drawn from a Clayton copula with α = 3,
as Figure 24.2, and then with α = 4, as Figure 24.3.

clayton.cop3 <- claytonCopula(3, dim=2)
kendallsTau(clayton.cop3) # we expect the answer 3/5
x3 <- rcopula(clayton.cop3,1000) # to generate a sample from this distribution
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plot(x3)
cor.test(x3[,1] , x3[,2], method="kendall")
clayton.cop4 <- claytonCopula(4, dim=2)
kendallsTau(clayton.cop4) # we expect the answer 4/6
x4 <- rcopula(clayton.cop4, 1000)
plot(x4)
cor.test(x4[,1] , x4[,2], method="kendall")

Now let’s move up to 3 dimensions, and generate a sample from a 3-dimensional Clayton copula
with α = 3, with the resultant plot as Figure 24.4.

clayton.cop33 = claytonCopula(3, dim=3)
x33 = rcopula(clayton.cop33, 1000)
scatterplot3d(x33)
# warning: when you’ve done this 3-dim plot, it’s possible you can’t immediately
# go back to doing a 2-dim plot

xis

yis

zm
at

Figure 24.1: The probability density function for a Clayton copula with τ = 1/3

Sometimes we want to introduce a dependence between the observed variables which is say,
stronger when both variables are large and negative than when both are large and positive. As
you can see from the scatterplots, a Clayton copula will do this nicely.
There’s lots of scope for experimenting with the functions in this package, and the paper by Genest
and Favre will give you suggestions for model-fitting.
But: be warned.......... Wikipedia tells us that
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Figure 24.2: Scatter plot for 1000 points from a Clayton copula with τ = 3/5

‘The Methodology of applying the Gaussian copula to credit derivatives as developed
by David X.Li is said to be one of the reasons behind the global financial crisis of
2008-2009.’
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Figure 24.3: Scatter plot for 1000 points from a Clayton copula with τ = 4/6
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Figure 24.4: Scatter plot for 1000 points from a 3-dim Clayton copula with α = 3



Chapter 25

Standardising or ‘raking’ a
contingency table

Here we discuss how to ‘rake’ a contingency table, and also how to compare two contingency tables,
using an example from historical demography.
One important feature of copula-modelling for say X,Y is the idea of standardising the marginal
distribution for each of X,Y to be uniform. This same approach may be found helpful in assessing
data from contingency tables with ordered rows and columns, as for example in the square table
on social mobility given as Table 25.1 here. This dataset is taken from ‘Comparing contingency
tables: tools for analysing data from two groups cross-classified by two characteristics’ (2007) by
P.M.E.Altham and J.P.Ferrie, Historical methods 40, 3-16. The dataset shows for a sample of 8999
US males,
as the Columns the social classes of Fathers’ occupations in 1850, and
as the Rows their sons’ occupations in 1880.
Clearly the sample size is too large to make fitting of subtle models a realistic proposition, so we
focus on how to present the data as helpfully as possible. Thus we invoke table standardisation,
also known as raking the table, as a helpful (we hope) way of presenting the data. This keeps the
cross-ratios of the table as in the original table, but adjusts the margins so that each margin is a
uniform distribution. Agresti (2002) p346 gives the computational ‘trick’ to be used in glm: here
of course we implement it in R.

White-collar Farmer Skilled/semi-skilled Unskilled Row total
White-collar 260 715 424 142 1541

Farmer 194 3245 454 247 4140
Skilled/semi-skilled 158 874 751 327 2110

Unskilled 70 664 246 228 1208
Column total 682 5498 1875 944 8999

Table 25.1: US Social Mobility: columns are Fathers in 1850, rows are Sons in 1880

n1 <- scan()
260 715 424 142
194 3245 454 247
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158 874 751 327
70 664 246 228

Row <- gl(4,4,length=16) ; Column <- gl(4,1, length=16)
# Now invent a ‘y-variable’ which has the desired row and column totals
e <- 25*(n1/n1) # then e will have every row sum and every column sum equal to 100
first.glm <- glm(e ~ Row + Column + offset(log(n1)), poisson)
fv <- first.glm$fitted.values
# then fv will have every row sum and every column sum equal to 100,
# and fv will have same cross-ratios as n1
fv <- matrix(fv,byrow=T, nrow=4) # so here is the ‘raked’ contingency table
round(fv,2)

[,1] [,2] [,3] [,4]
[1,] 42.58 16.15 25.42 15.85
[2,] 19.88 45.84 17.03 17.25
[3,] 20.35 15.52 35.42 28.71

Note that we can find an overall measure of the association between rows and columns in this table
as follows.

aov(log(n1) ~ Row + Column)
Row Column Residuals

Sum of Squares 1.546580 8.707645 2.051127
Deg. of Freedom 3 3 9
.......................................

The residual sum of squares, here 2.051127, will be zero if and only if there is exact independence
of rows and columns in the Table. Furthermore, this residual sum of squares is unaffected by the
marginal totals in the Table: you can check this for example by

aov(log(fv) ~ Row +Column)

However, we must note that the residual sum of squares does of course depend on the numbers of
rows and columns in the Table.
We may wish to compare the 1850-1880 transitions with those in a later Table, say those from
1880-1910, given here as Table 25.2.

White-collar Farmer Skilled/semi-skilled Unskilled Row total
White-collar 1538 1622 1203 529 4892

Farmer 550 3371 363 409 4693
Skilled/semi-skilled 907 1486 1736 858 4987

Unskilled 500 1428 622 611 3161
Column total 3495 7907 3924 2407 17733

Table 25.2: US Social Mobility: columns are Fathers in 1880, rows are Sons in 1910

n2 <- scan()
1538 1622 1203 529
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550 3371 363 409
907 1486 1736 858
500 1428 622 611

aov(log(n2) ~Row + Column)
Row Column Residuals

Sum of Squares 0.8874445 2.9285843 2.1440888
Deg. of Freedom 3 3 9
..........................................

aov(log(n2/n1) ~ Row + Column)
Row Column Residuals

Sum of Squares 2.0175237 2.9131499 0.2207554
Deg. of Freedom 3 3 9
.........................................

Let I be a 4× 4 independence Table, for example a Table with every element 25. We now have a
distance measure with which to compare the associations between rows and columns in the Tables
n1, n2, I, where n1, n2 are the Tables for 1850-80 and 1880-1910 respectively. Thus

(d(I, n1))2 = 2.051127, (d(I, n2))2 = 2.1440888, (d(n1, n2))2 = 0.2207554

and hence
d(I, n1) = 1.43217, d(I, n2) = 1.464270, d(n1, n2) = 0.469861 .

This idea of a metric makes it possible for us to plot the 3 Tables I, n1, n2 onto a 2-dimensional
graph, as in Figure 25.1. While this is a rather trivial exercise for just 3 Tables, it may become
more useful if we have several 4 × 4 tables we wish to compare. Here’s one way of putting the 3
Tables n1, n2, I onto a 2-dimensional graph.

# First set up the 3 by 3 symmetric distance matrix d as
0 0.469861 1.43217
0.469861 0 1.464270
1.43217 1.464270 0

# Now set up labels for the 3 points
lab= c("1850-1880", "1880-1910","Indep")
x <- cmdscale(d, eig =T) ; x
plot(x$points, xlim=c(-1,1), ylim=c(-1,1), type="n")
text(x$points, xlim=c(-1,1), labels=lab)

This results in the graph shown as Figure 25.1. You will see that 1850-80 and 1880-1910 are pretty
close to each other, relative to their distances from the Independence table, but 1850-80 is just a
little nearer to Independence than is 1880-1910. (Three points with known interpoint distances
can always be put exactly onto a plane; if we had say four points with known interpoint distances
then we would generally have to make an approximation.)
Note that this is purely a ‘data-analytic’ way of presenting the the features of interest from the

data: we could of course use glm() to do formal model-fitting if we preferred, for example to test
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Figure 25.1: The associations in 3 social mobility Tables (each of which is 4×4) plotted by cmdscale

whether the interactions in the 1850-1880 Table are the same as those in the 1880-1910 Table.
..................................................................

Here’s another way of looking at the association between rows and columns in a contingency
table.
Assuming that there is a natural ordering for the rows and the same natural ordering for the
columns, we might want to use the original Table 25.1 to construct a non-parametric correlation
between x, the father’s social class, and y, his son’s social class. We will then compute Kendall’s
τ as a measure of association of x and y. Note that this coefficient was originally constructed for
continuous data, and the x, y here are highly discrete. Agresti (2002) p58 gives a formula for τ in
the case of a contingency table, and Dr Laura Thompson gives suitable R code. I adopt a different
approach, which is probably slower than Laura’s (but it is a bit quicker to program).

# Let the 4 by 4 table be a matrix with elements n[i,j]
# To reconstruct the x, y variables, proceed as follows
> N <- sum(n) ; x <- 1:N ; y <- 1:N # to set up x,y as vectors
# with the right number of elements
# subtle triple loop coming up!
> u <- 0 # this will be our counter variable
> for (i in 1:4){
+ for (j in 1:4){
+ for (k in (u+1):(u + n[i,j])){
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+ x[k]=i; y[k]= j
+ }
+ u= u + n[i,j]
+ }
+ }
# This process has a name but I’ve forgotten what it is
> n

[,1] [,2] [,3] [,4]
[1,] 260 715 424 142
[2,] 194 3245 454 247
[3,] 158 874 751 327
[4,] 70 664 246 228
> table(x,y) # as a check

y
x 1 2 3 4
1 260 715 424 142
2 194 3245 454 247
3 158 874 751 327
4 70 664 246 228

> cor.test(x,y, method= "kendall")
Kendall’s rank correlation tau

data: x and y
z = 16.3894, p-value < 2.2e-16
alternative hypothesis: true tau is not equal to 0
sample estimates:

tau
0.1514228



Chapter 26

The Independent (2009) data on
UK universities.

This dataset was taken from The Independent, in August 2009, with the kind assistance of Julia
Blackwell. It is given here in ‘comma-separated variables’ form to save horizontal space. (The
dataset has been slightly edited for simplicity: I have omitted all the little comments about par-
ticular data-rows. You can find these on the original website).
I have made a few suggestions for the analysis and visual presentation of the data set below.

Rank2010,Rank2009,Institution,StudentSatisfaction,ResearchAssessment,EntryStandards,
StudentStaffRatio,AcademicServicesSpend,FacilitiesSpend,GoodHonours,
GraduateProspects,Completion,Score
1,-1,Oxford,4.11,3,524,10.9,2639,587,91.1,82.3,97.6,1000
2,-2,Cambridge,4.18,3,539,11.6,1755,657,87,85.5,99,947
3,-3,Imperial College,3.69,2.9,489,10.3,3036,575,68.5,88.4,97.1,910
4,-3,London School of Economics,3.77,3,483,14.1,1391,265,76,90.6,96.5,853
5,-6,Durham,3.96,2.7,459,15.2,1036,682,77.5,78.3,96.7,819
6,-5,Warwick,3.9,2.8,463,13.5,1630,354,79.7,79.2,95.9,817
7,-7,St Andrews,4.22,2.7,468,12.3,1152,357,85.1,77.8,94.2,801
8,-8,University College London,3.85,2.8,452,9.1,1586,220,80.4,82.9,92,793
9,-14,Bath,3.9,2.7,440,15.3,960,424,75.1,81.9,95.6,765
10,-11,York,3.96,2.8,434,13.4,1246,369,74.9,69.4,95.9,764
11,-21,Edinburgh,3.66,2.7,447,12.8,1660,335,80.6,76.9,90.4,756
12,-10,Lancaster,3.92,2.7,388,13.7,1036,488,69.6,64.3,93.3,749
13,-20,Southampton,3.81,2.7,407,14,1154,449,74.6,76.5,93.7,739
13,-23,Aston,4.02,2.4,365,16.6,895,675,63.6,78.1,91,739
15,-9,SOAS,3.82,2.6,378,10.7,1520,253,73.2,73.5,82.5,735
16,-16,Bristol,3.72,2.7,447,13.3,1386,307,81.5,82,95.7,734
17,-15,Kings College London,3.74,2.7,415,11.6,1589,320,72.8,83.2,92.3,724
18,-13,Loughborough,4.13,2.6,368,17.3,744,496,67.7,75.7,91.4,720
19,-16,Nottingham,3.79,2.7,408,13.8,972,392,74.3,76.3,95.7,713
20,-12,Leicester,4.13,2.5,360,14.8,970,460,71.6,76.2,93,706
21,-19,Exeter,4.15,2.6,394,17.6,987,384,79.4,71.7,91.5,704
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22,-26,Sheffield,3.88,2.7,406,14.5,969,354,74.5,79.1,92.2,703
22,-22,Royal Holloway,3.89,2.7,365,14.6,868,389,70.3,69.8,92.9,703
24,-27,Newcastle,3.84,2.6,405,14.9,1097,398,72.2,79.4,92.3,700
25,-29,Sussex,3.88,2.6,378,15.6,785,333,81.7,70.6,90.1,697
26,-16,Glasgow,3.88,2.6,412,13.5,933,511,71.3,75.4,86.7,693
27,-24,Birmingham,3.89,2.6,403,15.3,1216,401,70.9,72.7,93.7,689
28,-27,Manchester,3.67,2.8,412,14.7,1136,362,70.4,73.8,91.6,685
28,-32,Leeds,3.82,2.7,392,14.4,851,385,73.4,71.1,91.9,685
30,-25,Essex,3.87,2.8,302,13.8,1050,413,61,62.7,87.4,671
31,-30,Surrey,3.8,2.6,352,17,858,347,65.1,80,88.8,653
32,-33,East Anglia,4.08,2.6,361,17.1,866,401,70.1,71.9,85.5,651
33,-34,Queens Belfast,3.8,2.6,358,15.3,905,511,69,78.3,85,648
34,-42,Liverpool,3.77,2.5,387,12.3,1196,285,68.8,72.5,91.2,647
35,-38,Reading,3.91,2.5,347,16.6,709,343,75.4,68.7,91.7,646
36,-37,Cardiff,3.75,2.7,394,14.9,927,253,66.8,77.6,92.5,645
37,-44,Goldsmiths College,3.79,2.6,318,12.8,641,178,65.2,69,85.6,635
38,-35,Kent,4,2.6,317,17,733,312,61.7,71.8,87.8,624
39,-49,Heriot-Watt,3.8,2.5,350,15.8,832,391,65.5,76.2,80.3,618
40,-31,Strathclyde,3.73,2.5,393,19.2,1118,254,74,78.1,83.2,615
41,-41,Brunel,3.74,2.3,319,17.5,1080,423,64.9,67.9,86.3,612
42,-40,Keele,3.92,2.4,319,14.5,808,331,64.4,70.4,89.1,611
43,-43,Queen Mary,3.82,2.7,346,13.4,878,338,64.2,77.3,88.5,609
44,-46,City,3.77,2.5,316,17.9,776,305,66.6,81.4,84.3,599
45,-54,Hertfordshire,3.71,2.4,244,15,822,850,47.3,65.3,82.3,597
46,-52,Nottingham Trent,3.81,2.2,276,16.6,795,399,55.7,74.1,86.2,592
47,-39,Aberdeen,3.97,2.6,363,15.1,929,224,67.6,74.4,77.3,590
48,-35,Stirling,3.82,2.4,324,14.3,873,153,64.3,69.8,81.4,589
49,-52,Dundee,3.84,2.5,371,14.9,935,262,65.8,75.6,71.3,574
50,-61,Robert Gordon,3.82,2.1,332,18.2,913,288,53.2,84.1,81.8,569
51,-51,Ulster,3.74,2.5,268,16.2,1160,356,61.4,65,77.4,568
52,-48,Hull,4,2.4,285,19,799,281,57.7,73.2,87,566
53,-59,Oxford Brookes,3.83,2.2,301,18.7,648,380,66.1,73,83.8,565
54,-56,Bournemouth,3.79,2.2,289,21.2,896,233,57.2,75.5,85.1,558
55,-45,Aberystwyth,4,2.5,310,17.7,746,364,61.1,53,87.5,548
56,-47,Swansea,3.88,2.4,304,15,778,303,50.3,62.5,87.4,536
57,-49,Bradford,3.73,2.3,270,15,830,279,62.8,70.4,82.4,535
58,-73,Northumbria,3.91,2.1,291,17.7,787,271,54.1,73,80.3,534
59,-69,Birmingham City,3.71,2.3,258,17.6,827,519,57.3,65.7,75.4,533
60,-56,U of the Arts London,3.47,2.5,322,22.1,687,90,61.6,63.6,85.5,523
61,-66,W of England Bristol,3.86,2.2,275,19.3,696,328,63.2,66.1,78.8,512
62,-60,Portsmouth,3.94,2.2,271,19,917,265,52.4,63.9,86.1,510
63,-67,Brighton>,3.79,2.4,278,19.8,579,239,58.5,65.3,84.7,506
63,-55,Bangor,3.85,2.4,283,19.2,751,200,55.7,67.8,83.8,506
65,-65,UWIC Cardiff,3.85,1.9,261,20.1,798,461,51.8,61.5,83.2,498
65,-64,De Montfort,3.92,2.3,248,17.2,731,232,51.1,65.7,81.5,498
67,-71,Chichester,4.04,2,234,18.8,567,377,49.3,64,89.2,491
68,-80,Sheffield Hallam,3.72,2,268,18.9,735,239,61.3,64.2,83.8,490
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69,-74,Winchester,3.86,2.2,261,17.5,588,271,55.7,55.6,85.6,482
70, ,U for the Creative Arts,3.55,2.3,247,24.9,1167,284,51.2,58.2,85.3,480
71,-58,Gloucestershire,3.79,1.7,239,18.7,886,354,56.2,64.2,82.1,478
72,-85,Bedfordshire,3.81,2.1,215,15.7,662,426,47.8,66.7,75.1,474
72,-77,Edinburgh Napier,3.82,1.8,291,18.3,780,154,62.4,72.9,72.7,474
74,-96,Glasgow Caledonian,3.8,2,328,21.8,814,159,66.5,68.8,76.8,473
75,-70,Plymouth,3.78,2.2,268,15.9,787,251,61.4,58,84.2,468
76,-71,Salford,3.74,2.4,253,18.8,725,300,55.1,62.7,76.5,463
77,-101,Lampeter,3.99,2.1,252,15.5,658,149,52.8,61.8,82.7,460
78,-99,Lincoln,3.88,1.9,266,22.9,724,228,57.1,60.4,85.1,457
79,-63,Central Lancashire,3.84,2,252,20.2,826,361,49.3,70.1,72.8,456
80,-80,Staffordshire,3.81,1.6,232,17.9,897,311,53,69,78.1,455
81,-89,Kingston,3.83,2,236,19.4,723,310,60.1,61,79.3,454
82,-88,Manchester Metropolitan,3.65,2.2,266,19.9,779,242,57.2,63.8,79,448
82,-76,Bath Spa,3.92,1.9,287,24,418,133,67.7,59,87.1,448
84,-105,Huddersfield,3.77,2.1,265,16.3,671,205,51.9,56.9,81.2,447
85,-84,Coventry,3.69,1.9,280,20.8,798,294,61,67.5,75.2,445
86,-75,Queen Margaret,3.82,1.4,328,20.7,833,111,65.3,69.2,78.6,441
87,-77,Roehampton,3.65,2.2,251,18.9,1049,215,51,56.8,78.5,439
88,-82,Middlesex,3.72,2.2,194,24.1,1476,442,50.8,64.4,64.7,433
89,-92,Westminster,3.64,2.2,249,16.5,581,237,51.5,54.1,77.5,427
90,-90,Chester,3.8,1.7,267,19.3,534,210,54.8,65.1,78.2,422
91,-97,York St John,3.84,1.4,288,20.3,875,299,52.9,58.8,84.4,415
92,-102,Teesside,3.88,2,257,19.9,668,196,52.4,67.3,72.7,411
93,-79,Sunderland,3.93,1.9,226,17.1,554,311,50.2,59.3,75.7,410
94,-86,Glamorgan,3.75,2,263,18,701,202,52.4,60.4,69.1,409
95,-68,Abertay Dundee,3.82,1.8,279,20.5,1260,246,48.3,53.3,70.1,399
96,-93,Worcester,3.88,1.5,236,20.3,708,165,48.4,68.2,83.9,398
95,-68,Abertay Dundee,3.82,1.8,279,20.5,1260,246,48.3,53.3,70.1,399
96,-93,Worcester,3.88,1.5,236,20.3,708,165,48.4,68.2,83.9,398
97,-98,Leeds Metropolitan,3.54,2.1,257,23.1,825,120,53,59.9,82,397
98,-110,Thames Valley,3.76,1.7,197,16.8,878,432,50.4,59.7,63.6,395
98,-83,U of Wales Newport,3.8,2.4,229,26.4,530,304,54.8,55.8,72,395
100, ,Glyndwr,3.83,1.7,212,20,776,345,50.6,69.3,70.1,394
101,-103,Derby,3.75,2,231,19.2,1073,251,46.6,54.9,76.5,392
102,-107,Wolverhampton,3.7,2,204,19.2,800,419,44.6,60.9,73.4,391
103,-86,Buckinghamshire New,3.64,1.7,210,20.4,550,633,46.3,50.9,79.7,388
104,-100,Liverpool John Moores,3.72,2.2,244,19.7,790,212,45.7,58.8,76.2,387
104,-93,Northampton,3.83,1.7,233,20.8,693,209,53.7,59.5,81.4,387
106,-105,East London,3.63,2.2,191,22.7,725,404,44.4,62.7,71.6,371
107,-90,Canterbury Christ Church,3.8,1.8,238,19.1,537,148,49.7,59,80.3,358
108,-104,Cumbria,3.71,1.2,256,31.7,496,181,48.8,71.4,84.6,347
109,-107,Edge Hill,3.84,1.5,248,19.9,928,160,46.1,56.8,79.2,344
110,-95,Southampton Solent,3.58,1.5,211,21.6,699,351,45.7,56.6,74.5,337
111,-111,Greenwich,3.91,1.9,212,23.1,619,219,44.9,59.6,75.8,333
112,-112,Bolton,3.77,1.7,213,19.4,392,328,53.5,59.1,56,307
113,-113,London South Bank,3.63,2.2,179,27.9,652,149,53.7,63.2,69.4,280
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Figure 26.1: Scatterplot for StudentSatisfaction,EntryStandards data

Here are suggestions for your R-commands, including a 2-dimensional kernel density estimate.

> Univ.Data09 <- read.csv("Univ.Data09", header=T)
> attach(Univ.Data09)
> plot(StudentSatisfaction,EntryStandards)
>library(MASS)
> f1 <- kde2d(StudentSatisfaction,EntryStandards, n=113)
> image(f1)
> plot(StudentSatisfaction,EntryStandards)
> image(f1, xlab="StudentSatisfaction", ylab="EntryStandards")
> contour(f1, xlab="StudentSatisfaction", ylab="EntryStandards")
> persp(f1, phi=30, theta=20, xlab="StudentSatisfaction", ylab="EntryStandards")

We look at the relationship (if any) between StudentSatisfaction and EntryStandards, and we
take this opportunity to use the Venables and Ripley computation of the two-dimensional prob-
ability density function of these two variables. As you will see from Figures 26.1, 26.2, 26.3 and
26.4, this probability density function is far from bivariate normal.
Finally, we show as Figure 26.5, the histogram of the 2008 ResearchAssessment scores. You will
observe how this distribution differs from the previous ResearchAssessment distribution (see the
data given for Worksheet 3) which was distinctly bimodal. (Note further that the ‘scoring system’
for 2008 is different from the previous RAE ‘scoring system’)

> truehist(ResearchAssessment)
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Figure 26.2: Image plot of 2-dimensional pdf for Universities 2009 data

Let us also fit a normal distribution to the StudentSatisfaction variable, and plot the corresponding
density function.

y <- Univ.Data09$StudentSatisfaction
> truehist(y)
> fitdistr(y,"normal")

mean sd
3.826814159 0.131143814
(0.012336972) (0.008723557)
> u <- 345:423 ; u <- u/100 # to set up suitable range
> f <- dnorm(u, mean=3.826814159, sd = 0.131143814)
> lines(u,f) # to superimpose the fitted normal density on the histogram
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Figure 26.3: Contour plot of 2-dimensional pdf for Universities 2009 data
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Figure 26.4: Perspective plot of 2-dimensional pdf for Universities 2009 data
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Figure 26.5: The histogram of the 2008 RAE scores



Chapter 27

An intriguing multivariate
data-set: assessing the
Habitability of Exoplanets

In 2011 Schulze-Makuch et al published the article ‘A Two-Tiered Approach to Assessing the Hab-
itability of Exoplanets’ in Astrobiology, vol. 11, no. 10. They compute the ESI, or Earth Similarity
index for various bodies. Their Table 2 gives ‘Data and Calculations for the determination of the
ESI as applied to selected solar system planets and satellites, and exoplanets’. This Table, slightly
edited by me, is given below.

Planet Rad Density EV SurfTemp IntESI SurfESI GlobESI
Earth 1.00 1.00 1.00 288 1.00 1.00 1.00
Mars 0.53 0.71 0.45 227 0.82 0.60 0.70
Mercury 0.38 0.98 0.38 440 0.84 0.42 0.60
Moon 0.27 0.60 0.21 220 0.67 0.46 0.56
Venus 0.95 0.95 0.93 730 0.98 0.20 0.44
Io 0.29 0.64 0.23 130 0.69 0.19 0.36
Callisto 0.38 0.33 0.22 134 0.58 0.20 0.34
Jupiter 10.97 0.24 5.38 152 0.36 0.24 0.29
Ganymede 0.41 0.35 0.25 110 0.60 0.14 0.29
Ceres 0.08 0.36 0.05 167 0.41 0.18 0.27
Europa 0.25 0.55 0.18 102 0.64 0.11 0.26
Saturn 9.14 0.12 3.23 134 0.28 0.22 0.25
Titan 0.40 0.34 0.24 94 0.59 0.10 0.24
Uranus 3.98 0.23 1.91 76 0.46 0.077 0.19
Neptune 3.87 0.30 2.11 72 0.51 0.067 0.18
Titania 0.12 0.31 0.07 60 0.43 0.025 0.10
Enceladus 0.04 0.31 0.02 75 0.32 0.028 0.094
Pluto 0.18 0.37 0.11 40 0.51 0.011 0.075
Triton 0.21 0.38 0.13 38 0.54 0.010 0.074
GJ581g 1.36 1.22 1.51 277 0.90 0.88 0.89
GJ581b 3.97 0.25 1.98 499 0.47 0.36 0.41
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GJ581c 1.60 1.36 1.87 380 0.85 0.58 0.70
GJ581d 1.60 1.36 1.87 232 0.85 0.64 0.74
GJ581e 1.16 1.10 1.21 591 0.95 0.30 0.53
GJ581f 2.16 0.70 1.80 139 0.79 0.27 0.46
HD69830d 4.19 0.25 2.10 312 0.47 0.77 0.60
55Cncc 5.68 0.25 2.84 310 0.43 0.72 0.56

The column headings are Rad= radius, in Earth Units,
Density, also in Earth Units,
EV= Escape Velocity, also in Earth Units,
SurfTemp= Surface Temperature in deg K,
IntESI = Interior ESI,
SurfESI= Surface ESI,
GlobESI= Global ESI, computed from IntESI and SurfESI.
(You need to look at their Appendix A to see how the above variables are computed.)// Can you
provide any useful plots and/or data summaries?
You may like to proceed to the data set given in their Table 3, which is headed ‘Factors that affect
the probability that life could exits on any planetary body, as applied to planetary bodies and
satellites in our solar system and to selected exoplanets’.
PHI is the ‘Planet Habitability Index’ in the penultimate column of the dataset below.
You need to look at their Table 3 for the definitions of their other column headings.

Body Solid/Frozen Atmosphere Magnetosphere Light Heat Redox_chemistry
Tidal_flexing Corg N S P Atmospheric Surface Sub-surface PHI PHIrel
Mercury 1 0 0.1 2 0 0 0 0 0 1 0 0 0 0 0.00 0.00
Venus 1 1 0 2 0 1 0 0.5 1 1 0 0.5 0 0 1.65 0.37
Earth 1 1 1 2 1 2 0.2 2 1 1 1 0.5 2 1 4.37 0.96
Moon 1 0 0 2 0 0 0.2 0 0 1 0 0 0 0 0.00 0.00
Mars 1 0.5 0 2 1 1 0 0.5 0 1 1 0 1 1 2.66 0.59
Ceres 1 0 0.1 1 0 0.5 0 0.5 1 0 0 0 0 0.5 1.05 0.23
Jupiter 0 1 1 1 0 1 0 1 1 1 1 0.5 0 0 1.68 0.37
Io 1 0.1 0.5 1 0 1 1 0.5 0 1 0 0 0.5 0 1.38 0.30
Europa 1 0.1 0.5 1 0 0.5 1 0.5 1 1 0 0 0.5 1 2.22 0.49
Saturn 0 1 1 1 0 1 0 1 1 1 1 0.5 0 0 1.68 0.37
Titan 1 1 1 1 0 1 0 1.5 1 0 0 0.5 2 1 2.89 0.64
Enceladus 1 0.1 0 1 0 0.5 0.5 0.5 1 0 0 0 1 1 1.60 0.35
Uranus 0 1 1 0 0 1 0 1 1 0 0 0.5 0 0 1.19 0.26
Titania 1 0 0 0 0 0.5 0.5 0.5 1 0 0 0 0 0.5 0.93 0.21
Neptune 0 1 1 0 0 1 0 1 1 0 0 0.5 0 0 1.19 0.26
Triton 1 0.1 0.1 0 0 0.5 0 1 1 0 0 0 0.5 0.5 1.05 0.23
Pluto 1 0 0 0 0 0.5 0 1 1 0 0 0 0 0.5 1.00 0.22
GJ581b 0 1 1 2 0 NA 1 NA 1 NA NA 0.5 0 NA 1.19 0.29
GJ581c 1 1 1 2 1 NA 1 NA 1 NA NA 0.5 0.5 NA 1.73 0.41
GJ581d 1 1 1 2 1 NA 0.5 NA 1 NA NA 0.5 0.5 NA 1.57 0.43
GJ581g 1 1 1 2 1 NA 1 NA 1 NA NA 0.5 1 NA 1.73 0.45
HD69830d 0 1 1 2 1 NA 0 NA 1 NA NA 0.5 0 NA 1.32 0.29
55Cncc 0 1 1 1 0 NA 1 NA 1 NA NA 0.5 0 NA 1.32 0.26
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Thanks are due to Julia Blackwell for help in downloading these datasets.

I wanted to reproduce the authors’ Figure 2, which plots Planetary Habitability (relative) against
the Earth Similarity Index (ESI) as the x-axis. This is just a little awkward, since the first datatable
has 27 rows, but the second has 23 rows, in a slightly different order. I found that the simplest
thing to do was to edit the first table to remove the 4 ‘extra’ rows, and then proceed as follows:
a good revision of the R command order(). This gives Figure 27.1: you can probably improve the
presentation here.

x <- read.table("redtable1", header=T) ; y <- read.table("edtable3", header=T)
# each of x and y has 23 rows, since I’ve removed 4 rows from the first table.
attach(x) ; attach(y)
i <- order(Planet) ; Planet[i]
j <- order(Body) ; Body[j]
Y <- PHIrel[j] ; X <- GlobESI[i]
name <- Planet[i]
plot(X,Y,type="n", xlab="Earth Similarity (ESI)", ylab= "Planetary Habitability (PHIrel)")
text(X,Y, label=name)
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Chapter 28

A 4-dimensional contingency
table, revisited

This is a new analysis of a 24 table, formed from the dataset given as Table 28.1 on the incidence
of schizophrenia in one or both members of sib-pairs hospitalized for mental disorder. I first
encountered this dataset in 1975, through the visit of Professor Joel E. Cohen to the Statistical
Laboratory. He published a paper using the dataset as an example in 1976: that paper is ‘The
distribution of the chi-squared statistic under clustered sampling from contingency tables’ J. Amer
Statist. Ass. 1976, 71 665-670, and the dataset itself comes from a paper by M-T. Tsuang ‘A
study of pairs of sibs both hospitalized for mental disorder” Brit. J. Of Psychiatry’ 113 (1967),
283-300.
When I encountered the dataset in 1975, I was completely unaware of the possibilities of modelling
the four-way table which are so easily achieved in R via glm, and I do think that the modelling
approach given below is more enlightening than the 1976 emphasis on hypothesis-testing.
Here is the dataset, which we may first view as a 4× 4 contingency table, Table 28.1. Each person
of each pair is classified into one of 4 categories, namely SM, SM, NM, NF, respectively, where
S/N refers to schizophrenic/ non-schizophrenic, and
M/F refers to male/female.

SM SF NM NF
elder sib SM 13 5 1 3
elder sib SF 4 6 1 1
elder sib NM 1 1 2 4
elder sib NF 3 8 3 15

Table 28.1: The dataset used by Joel E. Cohen; the columns are the status of the younger sibs

n = scan("JoelCohendata")
n
13 5 1 3 4 6 1 1 1 1 2 4 3 8 3 15

a <- matrix(n, nrow=T, byrow=T)
chisq.test(a) ; fisher.test(a, simulate.p.value=T)
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This confirms what we can see at a glance from Table 28.1: that the (schizophrenia, sex) status
of the younger sib is NOT independent of the (schizophrenia, sex) status of his/her elder sib. In
particular there is an excess of sib-pairs which are (SM,SM) and likewise an excess of sib-pairs
which are (NF,NF). We can in fact model this dependence more informatively, using the four 2-
level variables
elder sib schizophrenic (yes/no)
elder sib sex (Male/Female)
younger sib schizophrenic (yes/no)
younger sib sex (Male/Female).

elderschiz <- gl(2,8, length=16, labels= c("S", "N"))
eldersex <- gl(2,4, length=16, labels= c("M", "F"))
youngerschiz<- gl(2,2, length=16, labels= c("S", "N"))
youngersex <- gl(2,1, length=16, labels= c("M", "F"))
library(MASS)
big.glm <- glm(n ~ (elderschiz+eldersex+youngerschiz+youngersex)^3, poisson)
summary(big.glm)
stepAIC(big.glm)

At this stage I tried out various models, with my preferred final model as one with just 3 pairwise
interactions, namely

Last.glm <- glm(n ~ elderschiz + eldersex + youngerschiz + youngersex +
+ eldersex:youngersex + elderschiz:eldersex +
+elderschiz:youngerschiz, family = poisson)
summary(Last.glm)

This model has residual deviance 7.7091 on 8 degrees of freedom.
How can we interpret this model? For convenience, let us write the 4 factors elderschiz, elder-
sex, youngerschiz, youngersex as A,B,C,D respectively, and pABCD as the corresponding cell
probability. Then with our final model

pABCD = αABβACγBD

for some positive αAB , βAC , γBD such that
∑
pABCD = 1. Thus we can derive the following 3

2× 2 tables as the sufficient statistics for the data.

tapply(n,list(elderschiz, eldersex), sum)
M F

S 22 12
N 8 29

tapply(n,list(elderschiz,youngerschiz),sum)
S N

S 28 6
N 13 24

tapply(n,list(eldersex,youngersex), sum)
M F

M 17 13
F 11 30
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Hence, for example, in this sample of 71 hospitalized sib-pairs, there are 13 sib-pairs in which the
elder is male and the younger is female.
Each of the 3 tables given above shows marked positive dependence.
Further, our final model tells us the following about the conditional probabilities of the younger
sibling being (C,D), given that the elder sibling was (A,B):

p(CD|AB) =
βACγBD∑

C′ βAC′
∑

D′ γBD′
.

So, conditional on (A,B), the variables C,D are independent, with C only depending on A and D
only depending on B.



Chapter 29

World Oil: proved reserves for 53
countries

Having seen many newspaper references to ‘World Energy’, I was curious to see what datasets are
publicly available.
From the BP website, http://www.bp.com/, ‘Statistical Review of World Energy’ I was able to
download relevant data as a .xls file, namely

Statistical_Review_of_World_Energy_2010.xls

from which I saved the subset given below, as a .csv file, which can therefore be read directly into
R.
But: WARNING: other websites refer to ‘World Oil Reserves: The Problem of Reliable Data’, so
it is very likely that more research on the web is needed for better data.
Here is the BP table of ‘Oil:Proved Reserves’ as slightly edited by me.
First, an explanation of the column headings. There are 53 countries in all, and the last row of
the dataset is ‘Total World’, presented here as a check. So you will need to delete this row before
you carry out plots, summaries, regressions etc.
The columns ‘end1989’,‘end1999’,‘end2008’, ‘barrels09’ give the Proved reserves of oil, in Thousand
million barrels, at the ends of 1989, 1999, 2008, 2009 respectively, while ‘tonnes09’ gives the the
amount of oil in Thousand million tonnes, at the end of 2009.
The penultimate column, ‘share’ is the share of the total proved reserve for each country, as a
percentage of the Total World proved reserves at the end of 2009.
The final column, ‘R.to.P ratio’, is the Reserves to Production ratio. Thus ‘If the reserves remaining
at the end of any year are divided by the production in that year, the result is the length of time
that those remaining reserves would last if production were to continue at that rate’.
So the US Reserves to Production ratio of 10.8 means at the current production rate, the oil
reserves of the US will run out in 10.8 years time.
Venezuela, Iraq, Kuwait and the United Arab Emirates all give a Reserves to Production ratio
which exceeds 100 years, in these cases I have just written 100 as the corresponding entry, so this
is not quite correct.
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"Country","end1989","end1999","end2008","tonnes09","barrels09", "share",
"R.to.P ratio"
"US",34.3,29.7,28.4,3.4,28.4,2.1 ,10.8
"Canada",11.6,18.3,33.2,5.2,33.2,2.5 ,28.3
"Mexico",52.0,21.5,11.9,1.6,11.7,0.9 ,10.8
"Argentina",2.2,3.1,2.5,0.3,2.5,0.2 ,10.2
"Brazil",2.8,8.2,12.8,1.8,12.9,1.0 ,17.4
"Colombia",2.0,2.3,1.4,0.2,1.4,0.1 ,5.4
"Ecuador",1.4,4.4,6.5,0.9,6.5,0.5 ,36.1
"Peru",0.8,0.9,1.1,0.2,1.1,0.1 ,21.1
"Trinidad & Tobago",0.6,0.8,0.8,0.1,0.8,0.1 ,15.1
"Venezuela",59.0,76.8,172.3,24.8,172.3,12.9 ,100
"Other S. & Cent. America",0.6,1.3,1.4,0.2,1.4,0.1 ,26.8
"Azerbaijan",NA,1.2,7.0,1.0,7.0,0.5 ,18.6
"Denmark",0.6,0.9,0.8,0.1,0.9,0.1 ,9.5
"Italy",0.8,0.9,1.0,0.1,0.9,0.1 ,27.2
"Kazakhstan",NA,25.0,39.8,5.3,39.8,3.0 ,64.9
"Norway",8.4,10.9,7.5,0.9,7.1,0.5 ,8.3
"Romania",1.2,1.2,0.5,0.1,0.5,0,14.2
"Russian Federation",NA,59.2,74.3,10.2,74.2,5.6 ,20.3
"Turkmenistan",NA,0.5,0.6,0.1,0.6,0,8.0
"United Kingdom",3.8,5.0,3.1,0.4,3.1,0.2 ,5.8
"Uzbekistan",NA,0.6,0.6,0.1,0.6,0,15.2
"Other Europe & Eurasia",69.4,2.3,2.1,0.3,2.2,0.2 ,14.9
"Iran",92.9,93.1,137.6,18.9,137.6,10.3 ,89.4
"Iraq",100.0,112.5,115.0,15.5,115.0,8.6 ,100
"Kuwait",97.1,96.5,101.5,14.0,101.5,7.6 ,100
"Oman",4.3,5.7,5.6,0.8,5.6,0.4 ,18.9
"Qatar",4.5,13.1,26.8,2.8,26.8,2.0 ,54.7
"Saudi Arabia",260.1,262.8,264.1,36.3,264.6,19.8 ,74.6
"Syria",2.0,2.3,2.5,0.3,2.5,0.2 ,18.2
"United Arab Emirates",98.1,97.8,97.8,13.0,97.8,7.3 ,100
"Yemen",2.0,1.9,2.7,0.3,2.7,0.2 ,24.5
"Other Middle East",0.1,0.2,0.1,0,0.1,0,9.4
"Algeria",9.2,11.3,12.2,1.5,12.2,0.9 ,18.5
"Angola",2.1,5.1,13.5,1.8,13.5,1.0 ,20.7
"Chad",NA,NA,0.9,0.1,0.9,0.1 ,20.9
"Rep. of Congo (Brazzaville)",0.7,1.7,1.9,0.3,1.9,0.1 ,19.4
"Egypt",4.3,3.8,4.2,0.6,4.4,0.3 ,16.2
"Equatorial Guinea",NA,0.6,1.7,0.2,1.7,0.1 ,15.2
"Gabon",1.0,2.6,3.7,0.5,3.7,0.3 ,44.1
"Libya",22.8,29.5,44.3,5.8,44.3,3.3 ,73.4
"Nigeria",16.0,29.0,37.2,5.0,37.2,2.8 ,49.5
"Sudan",0.3,0.3,6.7,0.9,6.7,0.5 ,37.5
"Tunisia",1.8,0.3,0.6,0.1,0.6,0,18.4
"Other Africa",0.9,0.7,0.6,0.1,0.6,0,11.0
"Australia",3.1,4.7,4.2,0.5,4.2,0.3 ,20.7
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"Brunei",1.2,1.3,1.1,0.1,1.1,0.1 ,17.6
"China",16.0,15.1,14.8,2.0,14.8,1.1 ,10.7
"India",4.3,5.0,5.8,0.8,5.8,0.4 ,21.1
"Indonesia",5.1,5.2,3.7,0.6,4.4,0.3 ,11.8
"Malaysia",3.7,5.0,5.5,0.7,5.5,0.4 ,20.4
"Thailand",0.2,0.4,0.5,0.1,0.5,0,3.8
"Vietnam",0.1,1.8,4.7,0.6,4.5,0.3 ,35.7
"Other Asia Pacific",0.9,1.4,1.4,0.2,1.3,0.1 ,11.2
"Total World",1006.4,1085.6,1332.4,181.7,1333.1,100.0 ,45.7

Exercise: read in the dataset into a table, and set up

rrx

as a data frame, being the original dataset with the Countries as the row names, and omitting
the redundant Tonnes column, and also omitting the final ‘Total world’ row, thus providing a
dataframe with 53 rows in total. Now summarise the data in any way that seems suitable. You
might for example like to provide a starsplot, such as the one I have given as Figure 29.1 for the
first 9 rows of the dataframe. (If you also include Venezuela, it tends to dominate the picture, no
doubt appropriately.)

stars(rrx[1:9,],ncol=4, len = 0.7, key.loc = c(8,2.5), draw.segments = TRUE)

You might also like to do a simple ‘time tracks’ plot, as in Figure 29.2. Here’s one way to proceed.

z <- as.matrix(rrx[1:9, 1:4]) ; z <- t(z) ; Year <-c(1989,1999,2008,2009)
matplot(Year, z, type="b",ylim=c(0,70), ylab="proved reserves of oil,
in thousand million barrels")
# the ‘type="b" option means that we get Both lines and points together

It is not clear that formal statistical modelling, eg regressions, tests etc, would be relevant to this
dataset, but you could try including the Oil consumption figures (available also on BP website)
and see where that gets you.

May 2012. Here is another topical data set, from the BBC Business news, May 4, 2012. (I
downloaded the data as an .xls file and converted it to a .csv file, using my Desktop machine.) It’s
easy to read it into R as follows

x <- read.table("eurozone_gdp.csv", header=T, sep=",")

Here is the financial data: you should start by plotting the timetrack for each row (ie country)

#GDP at market prices for the eurozone and the UK
#Annual figures - percentage change from previous period
#
"Country","1999","2000","2001","2002","2003","2004","2005","2006","2007","2008","2009","2010","2011"
"Belgium",3.5,3.7,0.8,1.4,0.8,3.3,1.7,2.7,2.9,1.0,-2.8,2.3,1.9
"Germany",1.9,3.1,1.5,0.0,-0.4,1.2,0.7,3.7,3.3,1.1,-5.1,3.7,3.0
"Estonia",-0.3,9.7,6.3,6.6,7.8,6.3,8.9,10.1,7.5,-3.7,-14.3,2.3,7.6



P.M.E.Altham, University of Cambridge 153

US Canada Mexico Argentina

Brazil Colombia Ecuador Peru

Trinidad & Tobago

end1989

end1999

end2008

barrels09

share

R.to.P.ratio

Figure 29.1: A stars plot for the Proved Oil Reserves of the first 9 countries in the Americas

"Ireland",9.9,9.3,4.8,5.9,4.2,4.5,5.3,5.3,5.2,-3.0,-7.0,-0.4,0.7
"Greece",3.4,3.5,4.2,3.4,5.9,4.4,2.3,5.5,3.0,-0.2,-3.3,-3.5,-6.9
"Spain",4.7,5.0,3.7,2.7,3.1,3.3,3.6,4.1,3.5,0.9,-3.7,-0.1,0.7
"Spain",4.7,5.0,3.7,2.7,3.1,3.3,3.6,4.1,3.5,0.9,-3.7,-0.1,0.7
"France",3.3,3.7,1.8,0.9,0.9,2.5,1.8,2.5,2.3,-0.1,-2.7,1.5,1.7
"Italy",1.5,3.7,1.9,0.5,0.0,1.7,0.9,2.2,1.7,-1.2,-5.5,1.8,0.4
"Cyprus",4.8,5.0,4.0,2.1,1.9,4.2,3.9,4.1,5.1,3.6,-1.9,1.1,0.5
"Luxembourg",8.4,8.4,2.5,4.1,1.5,4.4,5.4,5.0,6.6,0.8,-5.3,2.7,1.6
"Malta",NA,NA,-1.5,2.8,0.1,-0.5,3.7,2.9,4.3,4.1,-2.7,2.3,2.1
"Netherlands",4.7,3.9,1.9,0.1,0.3,2.2,2.0,3.4,3.9,1.8,-3.5,1.7,1.2
"Austria",3.5,3.7,0.9,1.7,0.9,2.6,2.4,3.7,3.7,1.4,-3.8,2.3,3.1
"Portugal",4.1,3.9,2.0,0.8,-0.9,1.6,0.8,1.4,2.4,0.0,-2.9,1.4,-1.6
"Slovenia",5.3,4.3,2.9,3.8,2.9,4.4,4.0,5.8,6.9,3.6,-8.0,1.4,-0.2
"Slovakia",0.0,1.4,3.5,4.6,4.8,5.1,6.7,8.3,10.5,5.8,-4.9,4.2,3.3
"Finland",3.9,5.3,2.3,1.8,2.0,4.1,2.9,4.4,5.3,0.3,-8.4,3.7,2.9
"United Kingdom",3.7,4.5,3.2,2.7,3.5,3.0,2.1,2.6,3.5,-1.1,-4.4,2.1,0.7
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Figure 29.2: A ‘time tracks’ plot for the Proved Oil Reserves of the first 9 countries in the Americas



Chapter 30

A multiplicative generalization of
the binomial distribution

In his book ‘Discrete Distributions: Applications in the Health Sciences’ (Wiley 2004) Daniel
Zelterman discusses the ‘Altham distribution’, which I introduced in 1978 as an extension of the
binomial distribution which could allow for under- or over-dispersion relative to the binomial.
First some motivation. Let Yn be the number of affected individuals in a family of size n, so that
we can take

Yn = X1 + · · ·+Xn

where Xi has values 0 or 1, and is the response of the ith member of the family of size n. We
assume thatX1, . . . , Xn have a joint distribution which is symmetrical, but we allow for dependence
between the X ′

is by taking the log-linear model

logPr(X1 = x1, . . . Xn = xn) =
∑

αxi,xj

where αij = αji and the summation extending over 1 ≤ i, j ≤ n.
Then it can be shown (see Altham (1978)) that the frequency function of Yn has the form

Pr(Yn = i) ∝
(
n

i

)
pi(1− p)n−i exp[−i(n− i)θ]

for parameters θ > 0 and p, where 0 < p < 1. Thus if θ = 0 we recover the usual binomial Bi(n, p),
while θ > 0, θ < 0 corresponds respectively to the X ′

is being positively, negatively co-dependent.
Positive dependence will result in the over-dispersion of the distribution of Yn relative to the pure
binomial.
(This uses Zelterman’s notation: see his equation (7.3) on p175 of his book).
From the point of view of fitting this model, the fact that the normalization constant can only be
written in terms of a sum presents no problem. This follows from the convenient connection with
glm() and the Poisson distribution with a log-linear model: see for example Altham and Lindsey
(1998).
In June 2011, Daniel Zelterman kindly sent me his Sastry Brazilian Families data: this dataset on
deaths of children in northeast Brazil was reported by N.Sastry in 1997.
I was able to fit multiplicative binomials, one for each family size, using the R commands shown
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below.
Zelterman actually fitted the “Altham” distribution with the same θ parameter to all family sizes
(see for example his p222). However for a given family size n, the θ parameter has an interpretation
in terms of conditional crossratios. These are derived from

Pr(x1, x2|x3, . . . , xn).

Thus his use of a model with the same θ for all family sizes does not make sense.
Note that simple calculations for this dataset show that the probability that an individual in a
family is affected varies with the family size, rising from .045 for families of size 1 to .292 for
families of size 8. The extent to which individuals in a family are co-dependent also changes with
the family size, so that for example individuals in a family of size 2 are more closely associated
than individuals in a family of size 8.
Here is the Sastry data set.

famsize i y
1 0 255
1 1 12
2 0 239
2 1 44
2 2 2
3 0 143
3 1 41
3 2 15
3 3 3
4 0 69
4 1 30
4 2 9
4 3 2
4 4 0
5 0 43
5 1 34
5 2 15
5 3 9
5 4 3
5 5 0
6 0 15
6 1 18
6 2 8
6 3 5
6 4 3
6 5 0
6 6 1
7 0 4
7 1 4
7 2 7
7 3 4
7 4 2
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7 5 0
7 6 0
7 7 0
8 0 1
8 1 2
8 2 4
8 3 3
8 4 1
8 5 1
8 6 0
8 7 0
8 8 0

Thus for example there are 30 families of size 4 in which exactly 1 of the siblings is affected.

Here is a program to fit multiplicative binomial models simultaneously to all family sizes (ie with
one pair of parameters for each family size from 1, . . . , 8).

Z.data = read.table("zelterman.data", header=T)
attach(Z.data)
Off = lchoose(famsize,i) # to set up the term we will use as offset
x2 = i*(famsize-i)
Famsize = factor(famsize)

First we fit a binomial distribution, with the same parameter p, to all 8 family sizes, as a baseline.

> first.glm = glm(y ~ i + Famsize + offset(Off), poisson) ; summary(first.glm)

Note that including the additive term “Famsize”, which is a factor, ensures that we get perfect
agreement between the sum of observed and the sum of fitted for each family size.
We don’t expect this baseline model to fit, and indeed as Zelterman shows (p222) we get a deviance
of 152.10 with 35 df.
Now we’ll gradually increase the complexity of the model.

next.glm = glm(y ~ i + x2 + Famsize + offset(Off), poisson) ; summary(next.glm)
fv1 = first.glm$fitted.values
fv2 = next.glm$fitted.values
nnext.glm = glm(y ~ i*Famsize + x2*Famsize + Famsize + offset(Off), poisson)
summary(nnext.glm)

This fits a different Altham distribution for each of the 8 family sizes, so this model fits very well,
as we might expect. The residual deviance is 10.599 with 21 df.
As we might expect, the families of size 1, 2 are not actually contributing to this final model (we
would get a perfect fit for each frequency in family size 1, 2 ) and this you can check by

subnnext.glm = glm(y ~ i*Famsize + x2*Famsize + Famsize + offset(Off),
poisson, subset= (famsize>2))

and in particular, this final model will have exactly the same residual deviance, namely 10.599
with 21 df.
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fv3 = nnext.glm$fitted.values

Now we verify that the observed and expected values of the sufficient statistics agree exactly for
each family size, as the theory (for maximum likelihood estimation in exponential families) tells
us.

tapply(i*fv3, Famsize, sum)
1 2 3 4 5 6 7 8
12 48 80 54 103 66 38 28

tapply(i*y, Famsize, sum)
1 2 3 4 5 6 7 8
12 48 80 54 103 66 38 28

tapply(i*i*fv3, Famsize, sum)
1 2 3 4 5 6 7 8
12 52 128 84 223 168 100 86

tapply(i*i*y, Famsize, sum)
1 2 3 4 5 6 7 8
12 52 128 84 223 168 100 86



Chapter 31

Fitting a Bivariate multiplicative
binomial probability distribution

This example illustrates the paper by Altham and Hankin
“Multivariate generalizations of the multiplicative binomial distribution: Introducing the MM Pack-
age”. This paper has been accepted for publication in the J. of Statistical Software.
For the draft version, see http://www.statslab.cam.ac.uk/~pat/Gianfranco.pdf.

Here I extend the multiplicative binomial, which was introduced in Altham (1978) to a bivariate
version. Consider (X1, X2) as non-negative integers, where

P (X1 = x1, X2 = x2) = p(x1, x2)

for 0 ≤ x1 ≤ k1 and 0 ≤ x2 ≤ k2. (In the example below, k1 = 7 and k2 = 3.)
We define a distribution which is of exponential family form, and contains the following possibilities
as special cases
i) (X1, X2) independent, each of multiplicative binomial form,
ii) (X1, X2) independent, each of binomial form.
We introduce a 5-parameter distribution, which has the property that at the maximum likelihood
values of these parameters, the observed and fitted values of the means of X1 will agree exactly,
similarly for X2, similarly for the observed and fitted values of the covariance matrix of X1, X2.
This distribution is extremely easy to fit to frequency data (using the Lindsey Poisson device), and
the distribution has some nice properties, but there are no simple formulae for its moments.
Here is the proposed frequency function.

p(x1, x2) = C−1

(
k1

x1

)
px1
1 qk1−x1

1

(
k2

x2

)
px2
2 qk2−x2

2 φx1x2θ
x1(k1−x1)
1 θ

x2(k2−x2)
2 ,

where p1 + q1 = 1, p2 + q2 = 1, and all parameters are strictly positive.
Remarks.
1. C is the normalization constant, and has to be evaluated as a sum over x1, x2.
2. X1, X2 are independent if and only if φ = 1.
3. Furthermore, if φ = 1, then θ1 = 1 and θ2 = 1 corresponds to X1, X2 independent Binomial
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Bi(k1, p1), Bi(k2, p2) respectively.
4. It seems impossible to write down simpled closed form expressions for the expectations of X1, X2

etc, but a little progress can be made for certain special cases, eg θ1 = 1 and θ2 = 1, φ = 1 + δ,
where δ is small.
Although it is not possible to give a simple expression say for the correlation between X1, X2, it is
easily seen that φ controls their interdependence in a likelihood ratio fashion, thus

p(x1, x2)p(x1 + 1, x2 + 1)
p(x1 + 1, x2)p(x1, x2 + 1)

= φ.

If φ > 1, then X1, X2 are positive likelihood ratio dependent, if φ < 1 they are negative likelihood
ratio dependent. For the properties of likelihood ratio dependence, see Lehmann (1966) who
introduced this concept.
5. The conditional distribution say X1|X2 = x2 will again be of multiplicative binomial form, since
we can write

p(x1|x2) ∝
(
k1

x1

)
(p1φ

x2)x1qk1−x1
1 θ

x1(k1−x1)
1 .

6. The minimal sufficient statistics for this distribution will essentially be the sample means of
(x1, x2) and their covariance matrix.
The exponential family form of this model has the consequence that at the mle’s of the parameters,
the observed and fitted values of these sufficient statistics will exactly match one another. (This
is a standard result for exponential families.)
7. Now we can easily see how to generalize the definition to higher dimensions, eg for a 3-variate
distribution:

p(x1, x2, x3) = C−1
∏

1≤i≤3

(
ki

xi

)
pxi

i q
ki−xi
i θ

xi(ki−xi)
i

∏
1≤i<j≤3

φ
xixj

ij

for 0 ≤ xi ≤ ki, 1 ≤ i ≤ 3.
Exercise: find the form of

p(x1, x2|X3 = x3)

and show that the conditional dependence of (x1, x2|X3 = x3) is governed by φ12. (Compare this
result with the trivariate normal distribution.)
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Practical example: fitting the new distribution to data: does having more children
under 5 years old make it harder to publish papers?
Here is our example of the new distribution showing a negative dependence between the 2 variables
of interest. Zeileis, Kleiber and Jackman in their R package



P.M.E.Altham, University of Cambridge 161

pcsl

give as an example dataset various counts for each of a total of 915 biochemistry graduate students,
from whom I selected the subsample which consisted of all males who had published 7 articles or
less, and also had 3 or less children under 5 years old. This gave a total of of 486 men. Thus in
our notation given above, we take
x1 is number of articles published (7 or under) by each man, and
x2 is number of children under 5 ( 3 or under) for each man.
(I am using the data for MEN; I tried the analysis first for women, but the negative dependence
was not significant......... contrary to my prejudice!)

R
library(pscl, lib.loc="~/Rlibs")
data(bioChemists)
attach(bioChemists)
table(art[fem=="Men"], kid5[fem=="Men"])

We use only men who have published 7 articles or less.

n=scan()
63 40 26 7
69 42 19 5
48 21 16 2
33 11 9 1
21 8 9 0
7 8 1 0
5 3 1 0
9 2 0 0

x2 <- rep(0:3, times=8)
x1 <- gl(8, 4,length= 32 , labels=1:8)
x1 <- as.numeric(x1) ; x1 = x1 -1
# x1 is number of articles published (7 or under)
# x2 is number of children under 5 ( 3 or under)
> tapply(x1*n, x2, sum)/tapply(n, x2, sum)

0 1 2 3
1.866667 1.637037 1.543210 0.800000

This shows that the MEAN number of articles produced decreases as the number of children under
5 increases.

Off <- lchoose(7,x1) + lchoose(3,x2)
y1 <- x1*(7-x1) ; y2 = x2*(3-x2)
first.glm <- glm(n ~ x1 + x2 + x1:x2 + y1 + y2 + offset(Off), poisson)
summary(first.glm)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9575 -0.8002 -0.3091 0.4648 2.4444
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.17575 0.10059 41.513 < 2e-16 ***
x1 -0.40122 0.03993 -10.049 < 2e-16 ***
x2 -0.70815 0.08282 -8.550 < 2e-16 ***
y1 -0.26094 0.01347 -19.375 < 2e-16 ***
y2 -0.37381 0.05906 -6.330 2.46e-10 ***
x1:x2 -0.08431 0.03403 -2.478 0.0132 *
---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1688.368 on 31 degrees of freedom
Residual deviance: 31.837 on 26 degrees of freedom
AIC: 155.44

Number of Fisher Scoring iterations: 5

Thus our model is not a bad fit. It shows significant negative dependence between X1, X2, since
log(φ̂) = −0.08431(0.03403), so that φ̂ = 0.9191.

fp <- first.glm$fitted.values/486

These are the fitted probabilities of the bivariate distribution.

> sum(x1*x2*n)/486
[1] 1.043210
> sum(x1*x2*fp)
[1] 1.043210

This provides a partial check of our statement that the observed and fitted values of the sufficient
statistics will agree exactly.

Fp <- matrix(fp,nrow=8, ncol=4, byrow=T))
round(Fp,3)

[,1] [,2] [,3] [,4]
[1,] 0.134 0.094 0.046 0.016
[2,] 0.131 0.084 0.038 0.012
[3,] 0.093 0.055 0.023 0.007
[4,] 0.061 0.033 0.013 0.003
[5,] 0.041 0.021 0.007 0.002
[6,] 0.028 0.013 0.004 0.001
[7,] 0.018 0.007 0.002 0.000
[8,] 0.008 0.003 0.001 0.000

Note that within each column, the fitted probability decreases with row number (and correspond-
ingly the same is true for each row).

interaction.plot(x1,x2,fp)

This provides a quick plot of the shape of the new distribution, shown in Figure 31.1.
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Figure 31.1: The fitted probabilities for the bivariate binomial, with x1, x2 as the number of
publications, number of children under 5, respectively.
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Here is a simple set of R commands to enable us to compare the effects of varying the 5
parameters of the distribution, when k1 = k2 = 20.
NB. I find that I need to type the formula in the function definition ALL ON ONE LINE, which
is not how it’s printed below (for reasons of page-width).

k=20
x1 = seq(0,20) ; x2 = x1
th1 =1 ; th2 = 1; p1 = .5 ; p2 = .5
q1 = 1- p1 ; q2 = 1 - p2 ; phi = 1
# first we generate 2 independent binomials
bivbin = function(x1,x2){
lchoose(k,x1)+ lchoose(k,x2) +x1*log(p1/q1) +x2*log(p2/q2)
+ x1*(k-x1)*log(th1)+x2*(k-x2)*log(th2)+x1*x2*log(phi)

}
z = x1%*%t(x2)
for (i in 1:21){
for (j in 1:21){
z[i,j] = exp( bivbin(x1[i],x2[j]))
}

}
N = sum(z) ; z = z/N
par(mfrow=c(3,2))
contour(x1, x2, z)
persp(x1,x2,z)
# Now we introduce dependence beween x1, x2
phi = .94
bivbin = function(x1,x2){
lchoose(k,x1)+ lchoose(k,x2) +x1*log(p1/q1) +x2*log(p2/q2)
+ x1*(k-x1)*log(th1)+x2*(k-x2)*log(th2)+x1*x2*log(phi)

}
z = x1%*%t(x2)
for (i in 1:21){
for (j in 1:21){
z[i,j] = exp( bivbin(x1[i],x2[j]))
}

}
N = sum(z) ; z = z/N
contour(x1, x2, z)
persp(x1,x2,z)
# Now set th1, th2 to be different from 1
th1 = .95; th2 = .96
bivbin = function(x1,x2){
lchoose(k,x1)+ lchoose(k,x2) +x1*log(p1/q1) +x2*log(p2/q2)
+ x1*(k-x1)*log(th1)+x2*(k-x2)*log(th2)+x1*x2*log(phi)

}
z = x1%*%t(x2)
for (i in 1:21){
for (j in 1:21){
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z[i,j] = exp( bivbin(x1[i],x2[j]))
}
}
N = sum(z) ; z = z/N
contour(x1, x2, z)
persp(x1,x2,z)

Finally, here is a ‘new’ dataset, for which a bivariate distribution in the same family fits very
well. The dataset comes from Table I , p424 of ‘Accident Statistics and the Concept of Accident-
Proneness’ by A.G.Arbous and J.E.Kerrich, Biometrics vol 7, 1951.
Table I: Accidents among 122 experienced shunters

21 18 8 2 1 0 0
13 14 10 1 4 1 0
4 5 4 2 1 0 1
2 1 3 2 0 1 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0

There are 8 rows, corresponding to x1 = 0, 1,..., 7 accidents, which took place in the years 1943-
1947. The 7 columns correspond to x2= 0,1,..,6 accidents, which took place in the years 1937-1942.
Thus you see, for example, that of the total of 122 shunters, exactly 18 had 1 accident in the first
time period and 0 accident in the second time period.
I find that fitting the full model we get a deviance of 32.209 on 50 degrees of freedom (note:
there are 56 entries in the 8 × 7 table, and we are fitting 6 parameters.) There is strong positive
association between x1, x2.



Chapter 32

Fitting a segmented line: the RAE
2008 data for Statistics and
Operational Research

The journal ‘Significance’ in December 2012 contained an interesting article by Ralph Kenna and
Bertrand Berche called ‘Statistics of Statisticians: Critical masses for research groups’. This looked
at the large online dataset from the UK Research Assessment Exercise of 2008. Here subjects were
grouped by ‘unit of assessment’, and below I have reproduced a subset of the data for Unit 22,
which is ‘Statistics and Operational Research’. According to Kenna and Berche, the RAE ‘score’
for a department is calculated as
score = X4s+ (3×X3s+X2s)/7
where for example X4s is the percentage of FTEstaff in the 4∗ category (ie the top category).
It may be seen that, roughly speaking, this score increases as the number of FTEstaff increases,
but the relationship is non-linear, and not really quadratic either. We download the R package
‘segmented’ to fit the following model. Let N = number of FTE staff. We assume
score = a1 + b1N for N ≤ Ncrit, and
score = a2 + b2N for N > Ncrit.
Here a1, b1, a2, b2, Ncrit are all parameters to be estimated, with Ncrit being of special interest: it
is the ‘critical mass’ of a research group, also referred to as the Dunbar number.
Kenna and Berche find that for this dataset, Ncrit = 17, with se = 6, and I get the same result,
using the ‘segmented’ package of Vito Muggeo.
(Note that Kenna and Berche give no details of their calculation.)
First, the dataset (which I downloaded and then converted to a .csv file) with the university names
shortened by me, for ease of plotting. This dataset was downloaded from
http://www.rae.ac.uk/results/outstore/uoa22.xls
(and then I slightly edited the various university names, to save space).

FTEstaff X4s X3s X2s X1s unclassified
Bath 15.00 20 40 35 5 0
Bristol 23.00 25 45 30 0 0
Brunel 10.00 15 35 40 10 0
Cambridge 16.00 30 45 25 0 0
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Durham 11.60 5 45 45 5 0
Greenwich 2.00 0 40 40 20 0
ImpColl 13.90 25 50 25 0 0
Kent 12.00 20 45 30 5 0
Lancaster 21.65 15 45 35 5 0
Leeds 11.00 25 40 30 5 0
Liverpool 5.00 0 35 50 15 0
LSE 13.00 15 40 35 5 5
LondonMet 4.00 5 20 40 35 0
Manchester 10.90 20 35 30 15 0
Newcastle 13.00 10 45 40 5 0
Nottingham 9.00 20 50 30 0 0
Open 7.00 10 40 45 5 0
Oxford 24.50 40 50 10 0 0
Plymouth 4.00 0 30 45 25 0
QueenMary 8.20 10 30 45 15 0
Reading 7.70 5 30 55 10 0
Salford 9.80 0 35 55 10 0
Sheffield 10.70 10 50 30 10 0
Southampton 28.00 15 50 30 5 0
UCL 13.50 10 40 40 10 0
Warwick 24.00 25 45 30 0 0
Glasgow 13.00 15 35 40 10 0
StAndrews 7.00 10 50 35 5 0
Strathclyde 10.33 10 30 45 15 0

and here’s what I did with the data: can you do better?

set.seed(12) # to give reproducible results
x <- read.csv("Reduoa22.csv", header=T)
x[1,] # we remove the Edinburgh/Heriot-Watt joint submission
rx <- x[-27, 1:6] ; rx# this is the dataset given above
attach(rx)
score <- X4s + (3*X3s + X2s)/7 # This is the formula used for the score
N <- FTEstaff
first.lm <- lm(score ~ N) ; summary(first.lm)
plot(score~ N) ; abline(first.lm)
N <- FTEstaff ; NN <- N*N ; next.lm <- lm(score ~ N + NN) ; summary(next.lm)
points(N, next.lm$fitted.values, pch=19)
pdf("RAE2008.pdf") # to send the plot to a .pdf
plot(score~ N) ; abline(first.lm)
points(N, next.lm$fitted.values, pch=19)
dev.off()

This results in Figure 32.1, which shows the linear and the quadratic fits. Now let’s try fitting the
segmented line.

install.packages("segmented")
library(segmented)
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Figure 32.1: RAE 2008: Statistics and OR: Score against FTEstaff, linear and quadratic fits

first.glm <- glm(score ~ N)
o <- segmented(first.glm, seg.Z = ~N, psi =list(N=17))
summary(o)
slope(o) # for N above 17, the graph is FLAT
plot(N,score); plot(o, add=T,col=2,lwd=2)

You may like to see the corresponding dataset for Pure Maths (Unit of Assessment 20), again
with the joint submission Edinburgh/Heriot-Watt removed. This dataset was downloaded from
http://www.rae.ac.uk/results/outstore/uoa20.xls

FTEstaff X4s X3s X2s X1s unclassified
Bath 10.00 25 35 40 0 0
Birmingham 18.00 15 40 35 5 5
Bristol 34.53 30 40 25 5 0
Cambridge 55.00 30 45 25 0 0
Durham 15.00 20 40 35 0 5

http://www.rae.ac.uk/results/outstore/uoa20.xls
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East Anglia 7.00 15 45 35 5 0
Exeter 5.00 10 45 40 5 0
ImpCollLondon 21.80 40 45 15 0 0
Kent 6.00 0 35 55 10 0
King’sCollLondon 13.00 20 50 25 0 5
Lancaster 10.00 10 40 35 15 0
Leeds 23.20 10 45 40 5 0
Leicester 10.00 10 40 50 0 0
Liverpool 15.00 10 35 45 10 0
LSE 12.50 5 40 50 5 0
LondonMet 4.00 10 25 50 15 0
Loughborough 11.40 10 45 45 0 0
Manchester 27.00 20 40 35 5 0
Newcastle 10.00 5 30 60 5 0
Nottingham 15.00 15 35 45 5 0
Open 16.50 5 25 40 30 0
Oxford 55.16 35 40 25 0 0
Queen Mary 20.20 10 50 40 0 0
RoyalHolloway 26.60 0 25 35 20 20
Sheffield 17.25 15 40 45 0 0
Southampton 15.75 5 45 40 10 0
UCL 15.25 20 40 35 5 0
Warwick 32.00 35 45 20 0 0
York 12.34 10 35 50 5 0
Aberdeen 14.00 20 45 35 0 0
Glasgow 16.32 15 40 35 10 0
St Andrews 12.00 5 30 55 10 0
Aberystwyth 8.30 5 35 45 15 0
Cardiff 30.45 5 35 45 15 0
Swansea 20.50 5 35 50 10 0
Queen’sBelfast 8.20 5 40 50 5 0

Figure 32.2 is the pair of graphs of score against N , the number of FTE staff, for each of the
2 ‘units’ Statistics and OR, and Pure mathematics. For this second dataset the graph shows
considerable scatter, and use of

segmented()

will confirm what our eyes immediately tell us: there is no case for fitting a segmented line. If you
do fit a segmented lines model to the Pure Mathematics data, you will find that the parameter
estimates vary considerably according to the starting point of the iteration, and are then given
with very large se’s. I have shown the right-hand graph with just one of the possible solutions.
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Figure 32.2: RAE 2008: fitting segmented lines for score against department size: Statistics and
OR (left), Pure Mathematics (right)
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