
The emergence of patterns is one of
the world’s most durable mysteries.

Some patterns—clouds, snowflakes—
form in space. Others—the ebb and
flow of tides, seasonal wet and dry
spells—are patterns that form in time.
Natural patterns are mysterious be-
cause they are complex, organized and
interconnected, even though the laws of
physics on which they rest—Newton’s
classical laws of motion—are simple.

The living world presents the ulti-
mate examples of pattern formation.
The patterns in biological systems are
the most stunningly complex of any

we encounter. Consider: In order to
form a complex organism from an ini-
tial featureless collection of identical
cells, a system must undergo myriad
transitions that break its spatial sym-
metries and trigger the differentiation
of cells at selected sites. How are these
sites selected? How complex and con-
trolled must a growth process be to di-
rect that particular things happen in se-
quence and at the right sites?

It is difficult to imagine how the im-
personal interactions of atoms can
lead to the growth of a plant or an an-
imal from inanimate matter. Yet in fact

this is what happens with the birth
and development of every living
thing. Some of the simplest features of
biological shapes can be explained by
basic physical laws. We will describe
here an elegant example: the edges of
flowers and leaves, where complex
rippled shapes give the impressions of
ruffles and frills. We suspected that
very simple growth processes might
provide the mechanism that shapes
thin membranes and sheets into com-
plex shapes in space, and indeed we
have found that they do. By them-
selves, these processes do not break
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Figure 1. Nature’s geometries include wavy edges that sometimes assume the complex shapes called fractals, where a pattern repeats on
different scales. One family of such patterns includes the complex wavy structures that are found along the edges of thin living tissues.
The origin of this complexity turns out to be one of the more tractable problems in biological pattern formation. By applying simple
growth laws and principles from physics and geometry and testing their ideas with flexible synthetic membranes, the authors have found

Kjell Sandved/PhotoResearchers, Inc.



any symmetry. Instead, the complex
patterns emerge from the elastic and
geometric properties of the thin mem-
branes of which the flowers and
leaves are constructed. 

Spontaneous Symmetry Breaking
One of the main concepts used to ex-
plain how complex patterns can be
teased from simple laws is spontaneous
symmetry breaking. Symmetry breaking
is significant in almost every field of
physics, but it is especially important
in searching for the origin of patterns.

To define spontaneous symmetry
breaking, we first must define symme-
try. A two-dimensional object is sym-
metrical if you can pick it up, move it
or rotate it and place it in a new loca-
tion, and then find that the resulting
pattern is a perfect overlay of the pat-
tern that was present before you began.
An example appears in Figure 2.

The most symmetrical pattern of all
is one that is featureless and uni-
form—a void. Empty space is sym-
metrical in this way, and the equations
of physics are too. The equations are
indifferent to where objects are located
in space. Objects can be anywhere or
nowhere, and the laws of physics will
apply to them.

Spontaneous symmetry breaking
happens whenever equations that are
featureless and uniform have solutions

that are not. More generally, sponta-
neous symmetry breaking describes
any case where the solutions of equa-
tions have less symmetry than the
equations themselves.

Here is an example. Imagine that
you have picked up a thin plastic ruler.
Ignoring the marks and labels on the
ruler, you can think of it as uniform
and featureless in the horizontal direc-
tion. Now grab the ruler at its two ends
and gently press inward. The stresses
within the ruler are distributed uni-
formly within it, and it is still uniform
and featureless in the horizontal direc-
tion. However, as you compress the
ruler more and more, it will eventually
give way and buckle.

This buckling is a spontaneous break-
ing of symmetry. At all interior points
away from your fingers, the ruler used
to be flat and patternless. Under com-
pression, a solitary half of a horizontal
wave suddenly emerges; the symmetry
in the direction perpendicular to the
ruler’s original plane has been broken.

Because buckling will be very im-
portant for understanding the shapes
we will discuss later, we should de-
scribe it in a bit more detail. As you
press the ruler inward from its two
ends by a given amount, it must decide
between deforming in two different
ways. It can deform simply by com-
pressing in the horizontal direction—

squeezing, like a spring—without
breaking any symmetry (see Figure 3).
In this configuration the energy of the
ruler is proportional to its thickness,
which we’ll denote as t.

When buckling sets in, the ruler de-
forms mainly by bending. In this type
of deformation, the ruler breaks the or-
thogonal symmetry. It uses the third
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that a leaf or flower—just like a torn sheet of plastic—can use an enhanced, uniform growth at its margins to generate such complex pat-
terns. Examples of wavy edges in nature include, from left to right, some lichens (shown, Sticta limbata), orchids (shown, Schomborgkia
beysiana), sea slugs (represented by Glossodoris hikuerensis) and ornamental cabbage. (Lichen photograph courtesy of Stephen Sharnoff;
sea slug photograph courtesy of Jeff Jeffords.)
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dimension to fulfill the displacement
on its boundaries, while preserving its
length, L, along its center plane. In this
case its energy is proportional to t3. If
we consider rulers of smaller and
smaller thickness, we note that “t3” de-
creases much faster than does “t.”
Physical objects follow the path of low-
est energy; thus, at a small enough

thickness, the buckled state becomes
energetically favorable. Indeed, when
considering very thin objects such as
the sheets of paper bound together to
make this magazine, it becomes clear
that under compression the sheet
“must” buckle, while hardly changing
its length.

Permanent Buckling 
A bent plastic ruler is not much like a
leaf or a flower. As soon as you let go
of it, the ruler snaps back to its original
flat shape. But it is easy to carry out an-
other simple household experiment
where spontaneous symmetry break-
ing leads to a permanent and much
richer pattern.

Take a garbage bag or other thin
sheet of plastic. Cut out a square 15
centimeters (six inches) on a side. Cut a
slit into one side, about one centimeter
long. Now grab the plastic on either
side of the slit and pull it apart, slowly
ripping the plastic into two pieces. You
should see the torn edge begin to curl
up into a pattern of waves upon
waves. It is tempting to think that the
complex wavy pattern results from
small variations in the pull your hands
exert in ripping apart the plastic. How-
ever, this is not the case.

Figure 5 shows a close-up of a piece
of plastic while it is being ripped in a
carefully controlled laboratory setting.
Our ruler was made of a rigid material,
but the garbage bag is a flexible mem-
brane. The plastic stretches permanent-
ly in the vicinity of the point where it

tears. But if you keep the tip of the
crack at the center of your field of view,
you will see that the amount of defor-
mation is constant as the tear moves
through the plastic. Along the direction
of the tear’s progress, the plastic de-
forms in a completely symmetrical way.
The rippled pattern that emerges is a
new example of spontaneous symme-
try breaking. The symmetry is broken
in the perpendicular direction, as in the
ruler’s buckling, but there is a new, ad-
ditional symmetry breaking in the di-
rection of the propagation of the crack.

Let’s look at the pattern more close-
ly. Figure 6 shows photographs of the
edge of a piece of plastic. This particu-
lar piece of plastic was 0.12 millimeter
(8 one-thousandths of an inch) thick,
and because it was so thin, it was high-
ly susceptible to buckling. The top im-
age shows a region 30 millimeters (a
little over an inch) across. Now take
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Figure 2. Physical laws are symmetrical; they are indifferent to where objects are located in space. In order for a physical process to produce a
complex pattern, symmetry breaking must take place. Symmetry is illustrated by the example above: The object at left is symmetric under ro-
tations by 120 degrees. When it is rotated through 120 degrees and laid down on itself, the original object and rotated object match perfectly
(right). Symmetry is spontaneously broken whenever equations that are featureless and uniform produce solutions that are not symmetrical.

pure compression

pure bending

length

Figure 3. Buckling is an example of symmetry
breaking. When a ruler is pressed inward
from the ends, it first absorbs the displace-
ment by compressing in its plane. Then it
gives way, breaks the up-down symmetry and
buckles, while hardly changing its length. Un-
der in-plane compression, the elastic energy
of the ruler is proportional to its thickness.
The bending energy is different: It is propor-
tional to the cube of the thickness. Very thin
objects such as the pages in this magazine
therefore must buckle under compression,
rather than significantly alter their length.

Figure 4. Buckling cascades can easily be pro-
duced with household garbage bags. Here a
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approximately one-third of the image,
the part enclosed in a box on the left-
hand side, and magnify it by a factor of
3.2. The result is printed just below the
original. Remarkably, the magnified
image looks nearly identical to the
original edge. But the process does not
end there. The magnified image can be
magnified again, and the result again,
and again, and again, and again, each
time producing essentially the same
pattern. This property of the pattern—
the fact that it looks the same after suc-
cessive magnifications—means that the
edge of the piece of plastic can be
called a fractal.

The Role of Metrics
The deformation of the plastic in our
experiment was uniform and symmet-
rical, yet it led to something with an
extra dimension of complexity beyond
normal buckling—a fractal pattern.
What is the key feature of the deforma-
tion that leads to the pattern? The an-
swer is the metric.

When the metric on a sheet changes,
this means that distances on the sheet
change. The way this happens is illus-
trated in Figure 5. The violet arrow
shows the distance between two points
on the plastic before the crack arrives.
Beyond the point where the sheet rips,
the distance between these same two
points increases, because of stretching,
to the value indicated by the red arrow.
This increase in length is permanent
and remains after the pulling process
stops and the sheet is laid down. We
say that the metric of the sheet in the
tearing direction has increased. 

Notice also in the picture that if you
keep an eye on the material at the loca-
tions of the blue and green arrows, you
see that the stretching farther from the
tear is less. Apparently, the increase in
the metric is not uniform. To quantify
this we plot f(y), a function showing
how the metric increases as a function
of y, the distance from the edge. Far
from the edge, where no irreversible de-
formation occurred, the metric was not

changed, so f =1. Within the zone of ir-
reversible deformation, though, f(y) in-
creases at an accelerating pace ap-
proaching the edge. The tearing process
has provided the sheet with a new
metric. This metric reflects the fact that
the sheet’s edge is now “too long.”
Like the thin ruler, it has buckled out of
the plane—but here the compression
comes from the expansion of a flexible
membrane, the material’s ability to
change its metric. We suggest that the
observed fractal cascade of waves
upon waves upon waves is the config-
uration that minimizes the energy of
the elongated sheet.

The metric describes distances on a
surface, but it does much more. In one of
the most fundamental theorems of dif-
ferential geometry—the so-called Theo-
rema Egregium—Carl Friedrich Gauss
showed that the metric of a surface de-
fines its shape in space. The shape of the
function f(y) defines the Gaussian curva-
ture of the surface, which determines
whether the local topography at y will
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Figure 5. Buckling similar to that seen in biological membranes is observed at the edge of a plastic sheet as it is torn (Figure 4 ). To understand this
buckling, the authors printed a grid of dots on a plastic sheet and measured the distances between the dots after tearing (above left, crack prop-
agating upward). The distance between dots in the direction in which the crack was propagating changed in an irreversible way as the sheet was
tearing. This elongation, demonstrated by the lengths of the colored arrows, was found to depend only on the distance from the edge and to in-
crease at a steeper and steeper rate approaching the edge. In the graph at right, the function that describes the elongation expresses the new met-
ric of the sheet. This metric requires a new geometry; it cannot be accommodated within the sheet’s Euclidean (flat) geometry but only on a sur-
face with a negative Gaussian curvature, on which every point is a saddle-like point. (Photograph courtesy of the authors.)

thin plastic bag has been torn. Its edges are far from featureless; they exhibit a rich pattern of waves within waves within waves. What is the prin-
ciple that forces the sheet to select such a complex pattern—waves at various scales—as its energy minimum? (Photograph by Eran Sharon.)
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be flat (zero Gaussian curvature),
curved like a top of a hill (positive
Gaussian curvature) or will have a sad-
dle-like shape (negative Gaussian cur-
vature). We find that whenever f gets
steeper toward the edge, the sheet cannot
be flat! It must have a saddle-like shape
at every point within the entire de-
formed region close to the edge. We now
understand why these sheets buckle
spontaneously and permanently: Their
new metric is not flat, and so their shape
must include curves. The distances be-
tween the dots on the surface after tear-

ing cannot be met if the sheet is flat.
Then, to avoid the expensive compres-
sion energy, the sheet happily pays
cheap bending energy, as it buckles out
of the plane, while trying to generate
saddle points everywhere.

But where does the complexity ex-
pressed in the fractal patterns come
from? Why would a sheet with such a
featureless metric adopt such a com-
plex shape? Can’t it find a simpler one?
Is it the best it can do? Apparently it is!

We live in ordinary Euclidean space,
described by three linear dimensions.
This geometry places severe limitations
on the possible shapes that can live
within it. In Euclidean space, it is very
difficult and in fact impossible to find a
simple surface, connected to the flat
part of the sheet, that has saddle-like
points everywhere. If our sheets were
placed in another space—say, one with
four dimensions—they might have
adopted a featureless shape. But in our
ordinary world they are “compressed”
by space itself; they are forced to break
the symmetry again and again and to
form complex structure. Actually, with-
out the ability to do experiments with
sheets, which minimize energy while
using their floppiness, it would be very
difficult to guess that surfaces with such
simple metrics must be so complicated.

Time to Leave
In nature, the edge of a plant leaf can be
either smooth or wavy. If you look at
the edge of a wavy leaf, you might no-
tice that there are visual similarities be-
tween the leaf edge and the edges of
torn plastic sheets. This suggested to
our group that the reasons for the buck-
ling of leaf edges might be similar. We
carried out experiments in order to dis-
cern whether the shape similarities are
coincidental—or whether, by changing
the metric of a leaf near its edge, we
might create buckling patterns as we
did in plastic.

Fortunately biologists know enough
about plant growth that we could en-
list the plant’s own chemistry in
demonstrating how physical and
mathematical laws might apply to leaf-
edge buckling. Rather than creating
new metrics in plants by tearing them,
we created new metrics in plants using
the growth of cells. Eggplant leaves are
normally flat and smooth. We found
that we could create wavy-edged
leaves by applying the growth-regulat-
ing plant hormone auxin (indoleacetic
acid). We applied auxin along a thin

strip to the edges of the leaves to in-
crease the rate of tissue growth, expect-
ing the leaves to grow more along their
edges where the auxin had been
placed. We waited to see: What shape
would the leaf adopt?

Indeed, after few days of treatment
with auxin, waviness appeared along
the edges of the leaves. The waviness
had nothing to do with the leaves’ vein
structures. The amplitudes of the
waves increased continuously over the
course of the experiment. We were able
to show that a symmetrical pattern of
growth, one that is nearly uniform at
the edge of the leaf, can lead to short-
wavelength buckling.

Of course, in our experiment the
growth rate was not the same across
the entire leaf. Gauss’s rules tell us that
whenever there is a difference in
growth rates between a leaf’s edge and
center, buckling should be expected. 

In fact, given the opportunities for
buckling, it is much more puzzling that
leaves could be flat than that they
might display rippled edges. The ex-
pression of genes in plant growth ap-
pears to serve as a powerful regulator
of the proliferation and then expansion
of cells during leaf growth.

Utpal Nath (now at the University
of Bombay) and his colleagues at the
John Innes Centre in Norwich, U.K.,
demonstrated that the distribution of
growth regions is genetically regulat-
ed across leaves. When this regulation
mechanism is interrupted, leaves that
would otherwise be flat grow and form
curved surfaces. So genetic coding
does affect leaf shape by controlling
growth rates along the edges of the leaf
but does not necessarily provide a map
of sites where symmetry should be
broken by the growth law.

A second demonstration of the sym-
metry breaking underlying leaf-edge
buckling explores the intrinsic geometry
of naturally wavy leaves. Can their
shapes result from growth that is invari-
ant along the edge? Take a leaf and care-
fully cut thin strips parallel to its edge. To
see their geometry, flatten these strips be-
tween two glass plates. When this proce-
dure is applied to flat leaves we see no
surprises: The leaf is built of arcs whose
diameter increases as you move out-
ward. However, this is not so in the case
of wavy leaves: We find that the diame-
ter of the arcs gets smaller and smaller
as the edge is approached. When wavi-
ness is more severe, we can find arcs of
very small diameter near the edge.
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Feature 6. Photographs of a torn plastic
sheet’s deformed edge show the complexity
that characterizes its buckling cascade. Here,
the first image has a width of 30 millimeters.
In the second image, a 9.6-millimeter section
is enlarged; this and successive images, mag-
nified by a constant ratio of 3.2, show that the
same pattern is repeated at multiple scales,
an example of a pattern that is fractal. Fractal
patterns are typically produced  by dynami-
cal processes that are nonlinear. (Images cour-
tesy of the authors.)

© 2004 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.



The observed curvature of the arcs
when they are flattened is called the
geodesic curvature along these lines—
another property controlled by their
metric. An important observation is
that the geodesic curvature along the
edges of the wavy leaf in Figure 8 is
nearly constant. We do not see any big
variations in this curvature that are
correlated either with the vein struc-
ture or with the waviness of the leaf.
The tissue along the edge grew nearly
uniformly, the growth law was uni-
form, and the leaf grew as a simple
leaf. Like the plastic sheets, it should
have been a simple featureless leaf, but
because of the geometrical limitations
of space, it was forced to break the
symmetry and to adopt a wavy shape.

Wrapping Up
Flowers, like leaves, form complex
buckled shapes. Geometrically, the
main difference between the two is that

leaves form essentially from long, free-
standing strips, whereas flowers have
more complex geometries; the central
tube of a daffodil, for example, closes
on itself like a cylinder. What happens
to such a cylinder or tube when we ap-
ply to it a metric that increases toward
its edge? Just as the leaf grows from the
center, we can think about “growing”
such cylinders starting from a ring of
cells and adding rings on top of one
another. If the rings all have the same
number of cells, they will have the
same diameter and will form a cylin-
der. However, as the number of cells
that form a ring grows exponentially
upward, the metric of the cylinder in-
creases also, leading to an increasing
diameter of the cylinder in its upper
part and to a trumpet-like shape.

As the metric of the flower increases,
the edge of the flower splays outward
more and more. Eventually, it splays
out so much that the edge of the flower

is perpendicular to the direction of the
stem along which it is growing. It
forms a circle with a radius we’ll call R.
That marks the end of this phase of
flower growth. If cells continue to at-
tach to the end of the flower, causing
the metric to grow at an ever-steeper
rate as the flower grows sideways, the
perimeter of the edge will have to be
longer than 2πR. This is known to be
impossible in our Euclidean space
without breaking the axial symmetry.
The edge of the flower must buckle.

In Figure 9a we show the result of an
experimental study using thin tubes
made of polyacrylamide gel. This gel
changes its volume depending on its
environment. It swells in water, but
shrinks in acetone. We used this proper-
ty to change the metric of the tube. First,
we dipped the tube in acetone, causing
it to shrink uniformly. Next we dipped
one end of the tube in water, allowing
the water to diffuse into the tube. As a
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Figure 7. Can a leaf that is normally flat be induced to become wavy? Here the growth hormone auxin is applied to the edge of a normally flat
leaf from an eggplant, causing enhanced growth only near its margins.  This growth imposes a negative Gaussian curvature on the leaf, simi-
lar to that in the torn plastic sheets in Figures 5 and 6. After 10 days of such a treatment, waves have developed; at 12 and 14 days the waves have
grown bigger, and waves within waves become discernible. (Photographs courtesy of the authors.)

after 12 days after 14 days

before after 10 days



result, the tube swelled, its local diame-
ter dependent on the local water-to-ace-
tone ratio. This ratio was high near the
edge that was dipped into water and
decreased away from the water, leading
to a variation in the metric and to a
trumpet-like shape.

In Figure 9b we show the result of a
computer simulation of the same effect.

The computer was instructed to create a
rubber-like material and to make it ex-
pand on the left-hand side just like the
experimental gel. The model results
match the experimental observations
well. When the transition between water
and acetone happens over a short dis-
tance rather than gradually, the metric
of the cylinder changes quickly (along

y), and it is impossible for the cylinder to
respond with a symmetrical trumpet-
like shape. The edges of the cylinder
buckle (Figure 9c.) 

In 9d we display another computer
model, where now the metric has been
made to vary rapidly along the axis of
the cylinder. The simulated tube dis-
plays a rippled wavy edge that resem-
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Figure 8. Comparison of narrow strips cut from the edges of flat and wavy leaves (top) and flattened between glass plates (bottom) reveals the dif-
ference in the leaves’ intrinsic geometries. The strips cut from the flat leaf (left) show the expected pattern of arcs, with the radius of the arcs in-
creasing from the center. In contrast, strips from the edges of the wavy leaf (right) have arcs that are smaller than the inner strips. A geometry with
a decreasing radius of curvature as the edge of the leaf is approached cannot exist within a plane; it requires a negative Gaussian curvature.  the con-
stant curvature along the length of each strip indicates a uniform growth at the edge of the leaf. The two leaves were collected from the same bay
leaf bush. (Photographs courtesy of the authors.)



bles the daffodil. Thus the entire beauti-
ful, complex three-dimensional shape of
the crown of the daffodil could result
from a constant and uniform growth
law of its cells, which themselves do not
break any symmetry. It is purely as a re-
sult of geometry and elasticity that
wrinkles, of a selected wavelength, ap-
pear along the edge.

The central conclusion to draw from
the idea of spontaneous symmetry
breaking is that one hardly needs com-
plex equations or complex conditions
to produce complex shapes. We have
shown how the buckled shapes of
leaves and flowers can result from very
simple deformations of sheets and
cylinders. Uniform deformations can
produce fractals.

Biological systems do not necessarily
produce complex structures in simple
ways. Genetic coding is also capable of
producing complex structures, such as

eyes and hands, through complex, de-
tailed specification of where individual
parts are to be located. However, in the
general program relating biological
pattern formation to physical law, it is
comforting to have some cases where
the patterns can be understood in ele-
mentary terms. Physics and biology
meet at the rippled edges of leaves and
flowers to provide one of these rare
tractable problems.
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Figure 9. Tubes can deform along their edges just as sheets can. The authors modeled the growth
of a cylindrical flower part by applying to a cylinder a metric that increases toward its edge. First
they obtained thin tubes made of polyacrylamide gel, which swells in water but shrinks in ace-
tone. By dipping a tube into acetone, then dipping the edge into water, they created  a trumpet
shape (a). A computer simulation shows the shape (b). By making the acetone-to-water transition
take place over a short distance, causing the metric of the cylinder to increase steeply, they forced
the gel tube to break the circular symmetry, to buckle and to produce a wavy edge (c). This
process, simulated in the computer, produced a trumpet shape with a complex wavy edge, like
that of a daffodil (d). (Images courtesy of the authors.)

Figure 10. Daffodil trumpets’ edges display the
same buckling behavior as the polyacrylamide
tubes in Figure 9. This suggests that the entire
complex, three-dimensional shape of the daf-
fodil crown could result from a constant and
uniform growth law of its tissue. Thus geome-
try and elasticity can produce a complex shape
without need for complex genetic instructions.
(Photograph by Eran Sharon.)
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