Reinforcement Learning Problem

Agent

State//eward \A\cti on

Environment

Godl: Learn to choose actions that maximize

r0+ yr1+y2r2+ .. ,Where 0<y<1

Markov Decision Processes

Assume
o finite set of state§

set of actionsA

at each discrete time agent observes state S and chooses actian € A

then receives immediate reward

and state changes 9.,

Markov assumptions; 1 = (s, a;) andr, = r(s, at)

— i.e.,r; ands, 1 depend only orcurrentstate and action
— functionsé andr may be nondeterministic

— functionsé andr not necessarily known to agent

Agent’s Learning Task

Execute actions in environment, observe results, and

e learn action policyr : S — A that maximizes
Elre + o1 + Yoo + ..
from any starting state i

e here0 < v < 1is the discount factor for future rewards

Different from supervised learning:
e Target functionigr: S — A
e but we have no training examples of for® a)

e training examples are of forfis, a),)

Value Function

To begin, consider deterministic worlds...

For each possible policy the agent might adopt, we can define an evaluation function over states

V7T(s) =71 +yree1 + 7o+ o

oo

= Z ’yiTt_H'

=0

wherer, 11, ... are generated by following policy starting at state

Restated, the task is to learn the optimal policy

7" = argmax V" (s), (Vs)

Uy

r(s,a) (immediate reward) values

81 90
Sl A~ . — —
- | 81 | 90 100
- - - o1 - -
Q(s,a) values ¢ = 0.9) V*(s) values § = 0.9)

One optimal policy

What to Learn

We might try to have agent learn the evaluation funclih (which we write ag/’*)
It could then do a lookahead search to choose best action from any sietause

7*(s) = argmax[r(s,a) + YV *(6(s, a))]

A problem:
e This works well if agentknows : S x A — S,andr: S x A — R

e But when it doesn't, it can’t choose actions this way

() Function

Define new function very similar t&'™
Q(s,a) =7(s,a) + V7 (d(s,a))
If agent learng), it can choose optimal action even without knowirg

7 (s) = argmax[r(s,a) + YV*(d(s, a))]

a

7 (s) = argmax Q(s, a)

Q is the evaluation function the agent will learn

Training Rule to Learn @)

Note@ andV* closely related:
V*(s) = max Q(s,a’)

Which allows us to writ&) recursively as

Qsp,ar) = r(sy,a) 7V (0(se,ar)))
= r(st,ar) + ’YH}IE}XQ(St-s-l, a’)
Nice! LetQ denote learner’s current approximation@o Consider training rule
Q(s,a) — 7 +ymaxQ(s',a)

wheres’ is the state resulting from applying actiarin states

() Learning for Deterministic Worlds

For eachs, « initialize table entryQ(s,a) < 0
Observe current state

Do forever:
e Select an action and execute it

Receive immediate reward

Observe the new staté

Update the table entry fc@(s, a) as follows:

Q(s.a) = r+ymaxQ(s',)

Updating Q

72 100 90 100
— —
R 163 j R
63
+81 - +81
aright
Initial state: SI Next state: s,

Q(Slvam’ght) — T""YH}IE}XQA(S%G/)
0+ 0.9 max{63,81,100}
90

T

)

notice if rewards non-negative, then A A
(Vs,a,n) Qn+1(s,a) > Qn(87a)
and R
(Vs,a,n) 0 < Qn(s,a) <Q(s,a)

10

Q converges t@). Consider case of deterministic world where see dach) visited infinitely often.

Proof. Define a full interval to be an interval during which edgha) is visited. During each full interval the largest
error in@ table is reduced by factor af

Let Qn be table aften. updates, and\,, be the maximum error i@n; that is

An = max ‘Qn(sva) - Q(Sa CL)|

For any table entry),, (s, a) updated on iteration + 1, the error in the revised estimatg, ;1 (s, a) is

Quii(s,0) = Q(s,a)] = |(r+ymaxQu(s',a"))
—(r+ymaxQ(s',a"))|

7] max Qn(s',a') — ITZE/%XQ(S/, a)

< Vma}XIQn(S',a’) —Q(s',d)|
S Vn},a)f |Q7L(S”, ll/) — Q(SH, a')\
|Qnii(s,a) — Q(s,a)| < A,

Note we used general fact that

|max fi(a) — max fo(a)] < max| fi(a) ~ f(a)

11

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefind/, @ by taking expected values

V7 (s) [re + 71 + ’YZTH_Q +..]

E
E[Z Wi?"tﬂ']
i=0

Q(s,a) = Elr(s,a) + yV"(6(s, a))]

12

Nondeterministic Case

@ learning generalizes to nondeterministic worlds

Alter training rule to R R .
Qn(s,a) — (1 = n)Qn-1(s,a) + an[r + max Q,_1(s',a)]

where
1

ap=———+
" 1 4 visits, (s, a)

Can still prove convergence ¢f to Q [Watkins and Dayan, 1992]

13

Temporal Difference Learning

Q learning: reduce discrepancy between succesgigstimates

One step time difference: R
QW (sp,a) =i + 7y max Q(st+1,a)

Why not two steps? A
QW (st,a1) = 1y + yreps + 72 max Q(5¢42,a)

Orn?
Q(n) (Stv at) =r+ YTre+1 +oF ry(nil)rt-‘rn—l + ’Yn m(?‘XQ(St-&-na Cl)

Blend all of these:

Q (st,ar) = (1 —) [Q(l)(st, ar) + AQP (s, ar) + N2Q® (s, ay) + - -]

14

Temporal Difference Learning

Qs) = (1= N) [Q(l)(st,at) + QP (51, a0) + N2QW (s, a0) + - }
Equivalent expression:
QM(star) =re+q[(1=NX) maaxQ(st, at)
A QM s141, ar41)]
TD(\) algorithm uses above training rule
e Sometimes converges faster th@earning
e converges for learninyy™ for any0 < A < 1 (Dayan, 1992)

e Tesauro's TD-Gammon uses this algorithm

15

Subtleties and Ongoing Research

° Replace@ table with neural net or other generalizer
e Handle case where state only partially observable
e Design optimal exploration strategies

e Extend to continuous action, state

¢ Relationship to dynamic programming

e leammandusé: Sx A— S

e Policy Iteration

16

