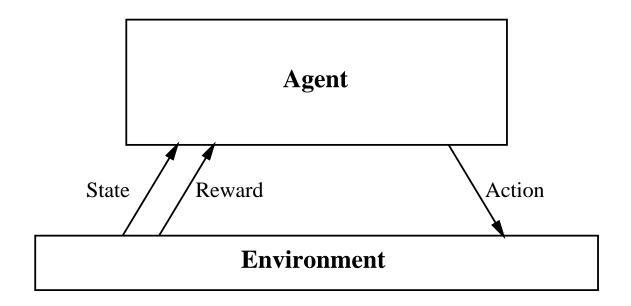
Reinforcement Learning Problem



$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$

Markov Decision Processes

Assume

- \bullet finite set of states S
- set of actions A
- ullet at each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- ullet then receives immediate reward r_t
- ullet and state changes to s_{t+1}
- ullet Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - i.e., r_t and s_{t+1} depend only on $\emph{current}$ state and action
 - functions δ and r may be nondeterministic
 - functions δ and r not necessarily known to agent

Agent's Learning Task

Execute actions in environment, observe results, and

 $\bullet \ \mbox{learn}$ action policy $\pi:S\to A$ that maximizes

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

from any starting state in S

 $\bullet \ \ \mbox{here} \ 0 \leq \gamma < 1$ is the discount factor for future rewards

Different from supervised learning:

- ullet Target function is $\pi:S \to A$
- but we have no training examples of form $\langle s, a \rangle$
- ullet training examples are of form $\langle\langle s,a\rangle,r\rangle$

Value Function

To begin, consider deterministic worlds...

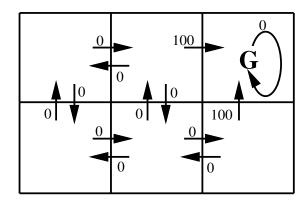
For each possible policy π the agent might adopt, we can define an evaluation function over states

$$\begin{split} V^{\pi}(s) & \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots \\ & \equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i} \end{split}$$

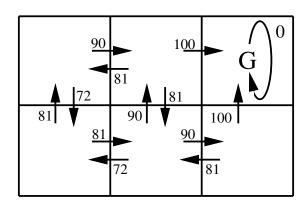
where r_t, r_{t+1}, \ldots are generated by following policy π starting at state s

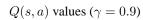
Restated, the task is to learn the optimal policy π^{\ast}

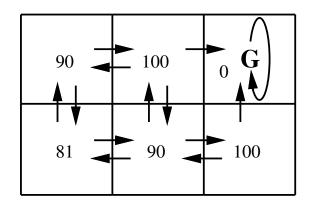
$$\pi^* \equiv \operatorname*{argmax}_{\pi} V^{\pi}(s), (\forall s)$$



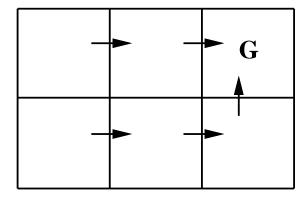
r(s,a) (immediate reward) values







 $V^*(s)$ values ($\gamma=0.9$)



One optimal policy

What to Learn

We might try to have agent learn the evaluation function V^{π^*} (which we write as V^*)

It could then do a lookahead search to choose best action from any state s because

$$\pi^*(s) = \operatorname*{argmax}_{a}[r(s,a) + \gamma V^*(\delta(s,a))]$$

A problem:

- ullet This works well if agent knows $\delta:S imes A o S$, and $r:S imes A o \Re$
- But when it doesn't, it can't choose actions this way

Q Function

Define new function very similar to V^{\ast}

$$Q(s, a) \equiv r(s, a) + \gamma V^*(\delta(s, a))$$

If agent learns Q, it can choose optimal action even without knowing $\delta!$

$$\pi^*(s) = \operatorname*{argmax}_a[r(s,a) + \gamma V^*(\delta(s,a))]$$

$$\pi^*(s) = \operatorname*{argmax}_a Q(s, a)$$

 ${\cal Q}$ is the evaluation function the agent will learn

Training Rule to Learn Q

Note Q and V^* closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

Nice! Let \hat{Q} denote learner's current approximation to Q. Consider training rule

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

where s' is the state resulting from applying action a in state s

${\cal Q}$ Learning for Deterministic Worlds

For each s,a initialize table entry $\hat{Q}(s,a) \leftarrow 0$

Observe current state s

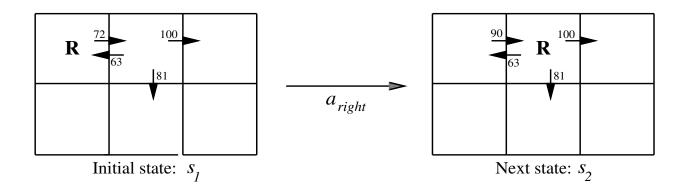
Do forever:

- Select an action a and execute it
- ullet Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s,a)$ as follows:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

• $s \leftarrow s'$

Updating \hat{Q}



$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')
\leftarrow 0 + 0.9 \max\{63, 81, 100\}
\leftarrow 90$$

notice if rewards non-negative, then

$$(\forall s, a, n) \ \hat{Q}_{n+1}(s, a) \ge \hat{Q}_n(s, a)$$

and

$$(\forall s, a, n) \ 0 \le \hat{Q}_n(s, a) \le Q(s, a)$$

 \hat{Q} converges to Q. Consider case of deterministic world where see each $\langle s,a \rangle$ visited infinitely often.

Proof: Define a full interval to be an interval during which each $\langle s,a\rangle$ is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ

Let \hat{Q}_n be table after n updates, and Δ_n be the maximum error in \hat{Q}_n ; that is

$$\Delta_n = \max_{s,a} |\hat{Q}_n(s,a) - Q(s,a)|$$

For any table entry $\hat{Q}_n(s,a)$ updated on iteration n+1, the error in the revised estimate $\hat{Q}_{n+1}(s,a)$ is

$$\begin{aligned} |\hat{Q}_{n+1}(s,a) - Q(s,a)| &= |(r + \gamma \max_{a'} \hat{Q}_n(s',a')) \\ &- (r + \gamma \max_{a'} Q(s',a'))| \\ &= \gamma |\max_{a'} \hat{Q}_n(s',a') - \max_{a'} Q(s',a')| \\ &\leq \gamma \max_{a'} |\hat{Q}_n(s',a') - Q(s',a')| \\ &\leq \gamma \max_{a'} |\hat{Q}_n(s'',a') - Q(s'',a')| \\ |\hat{Q}_{n+1}(s,a) - Q(s,a)| &\leq \gamma \Delta_n \end{aligned}$$

Note we used general fact that

$$|\max_{a} f_1(a) - \max_{a} f_2(a)| \le \max_{a} |f_1(a) - f_2(a)|$$

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V,Q by taking expected values

$$V^{\pi}(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$$
$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$

$$Q(s, a) \equiv E[r(s, a) + \gamma V^*(\delta(s, a))]$$

Nondeterministic Case

 ${\cal Q}$ learning generalizes to nondeterministic worlds

Alter training rule to

$$\hat{Q}_n(s,a) \leftarrow (1 - \alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r + \max_{a'} \hat{Q}_{n-1}(s',a')]$$

where

$$\alpha_n = \frac{1}{1 + visits_n(s, a)}$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$$

Or n?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \dots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \hat{Q}(s_{t+n}, a)$$

Blend all of these:

$$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots \right]$$

Temporal Difference Learning

$$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots \right]$$

Equivalent expression:

$$Q^{\lambda}(s_t, a_t) = r_t + \gamma [(1 - \lambda) \max_{a} \hat{Q}(s_t, a_t) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1})]$$

 $TD(\lambda)$ algorithm uses above training rule

- ullet Sometimes converges faster than Q learning
- $\bullet \,$ converges for learning V^* for any $0 \leq \lambda \leq 1$ (Dayan, 1992)
- Tesauro's TD-Gammon uses this algorithm

Subtleties and Ongoing Research

- ullet Replace \hat{Q} table with neural net or other generalizer
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Relationship to dynamic programming
- learn and use $\hat{\delta}: S \times A \to S$
- Policy Iteration