Monte Carlo integration

integrals and averages

integral of a function over a domain

$$
\int_{\mathrm{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}}
$$

"size" of a domain

$$
A_{D}=\int_{\mathrm{x} \in D} d A_{\mathrm{x}}
$$

$\begin{gathered}\text { average of a function } \\ \text { over a domain }\end{gathered} \frac{\int_{\mathbf{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}}}{\int_{\mathbf{x} \in D} d A_{\mathbf{x}}}=\frac{\int_{\mathbf{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}}}{A_{D}}$

integrals and averages examples

- average "daily" snowfall in Hanover last year
- domain: year - time interval (ID)
- integration variable:"day" of the year
- function: snowfall of "day"

$$
\frac{\int_{d a y \in \text { year }} s(\text { day }) \text { dlength }(\text { day })}{\text { lenght }(\text { year })}
$$

integrals and averages examples

- "today" average snowfall in New Hampshire
- domain: New Hamshire - surface (2D)
- integration variable:"location" in New Hampshire
- function: snowfall of "location"

$$
\frac{\left.\int_{\text {locationeNewHampshire }} s(\text { location }) \text { darea(location) }\right)}{\text { area(location) }}
$$

integrals and averages examples

- "today" average snowfall in New Hampshire
- domain: New Hamshire x year - area x time (3D)
- integration variables:"location" and "day" in New Hampshire this year
- function: snowfall of "location" and "day"
$\int_{\text {day } \in \text { year }} \int_{l o c \in \text { NewHampshire }} s(l o c$, day $)$ darea(loc)dlength(day)
area(loc)length(day)

discreet random variable

- random variable: x
- values: $\quad x_{0}, x_{1}, \ldots, x_{n}$
- probabilities: $\quad p_{0}, p_{1}, \ldots, p_{n} \quad \sum_{j=1}^{n} p_{j}=1$
- example: tossing a die
- values:

$$
x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4, x_{5}=5, x_{6}=6
$$

- probabilities:

$$
p_{1}=1 / 6, p_{2}=1 / 6, p_{3}=1 / 6, p_{4}=1 / 6, p_{5}=1 / 6, p_{6}=1 / 6
$$

expected value and variance

- expected value:

$$
E[x]=\sum_{j=1}^{n} v_{j} p_{j}
$$

- average value of the variable
- variance:

$$
\sigma^{2}[x]=E\left[(x-E[x])^{2}\right]
$$

- how much different from the average
- property:

$$
\sigma^{2}[x]=E\left[x^{2}\right]-E[x]^{2}
$$

- example: tossing a die
- expected value:
- variance:

$$
\begin{gathered}
E[x]=(1+2+3+4+5+6) / 6=3.5 \\
\sigma^{2}[x]=\ldots=0.916
\end{gathered}
$$

estimating expected values

- to estimate the expected value of a variable
- choose a set of random values based on the prob.
- average their results

$$
E[x] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- larger N give better estimate
- example: rolling a die
- roll 3 times:
- roll 9 times: $\quad\{3,1,6\} \rightarrow E[x] \approx(3+1+6) / 3=3.33$

$$
\{3,1,6,2,5,3,4,6,2\} \rightarrow E[x] \approx 3.51
$$

law of large numbers

- by taking infinitely many samples, the error between the estimate and the expected value is statistically zero
- the estimate will converge to the right value

$$
\text { probability }\left[E[x]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i}\right]=1
$$

continuous random variable

- random variable: x
- values: $x \in[a, b]$
- probability density function: $x \sim p$
- property:

$$
\int_{a}^{b} p(x) d x=1
$$

- probability that var. has value $x: \quad p(x) d x$

uniformly distributed random variable

- p is the same everywhere in the interval

$$
\begin{aligned}
& p(x)=\text { const and } \int_{a}^{b} p(x) d x=1 \text { implies } \\
& p(x)=1 /(b-a)
\end{aligned}
$$

expected value and variance

- expected value: $E[x]=\int_{a}^{b} x p(x) d x$

$$
E[g(x)]=\int_{a}^{b} g(x) p(x) d x
$$

- variance:

$$
\begin{aligned}
& \sigma^{2}[x]=\int_{a}^{b}(x-E[x])^{2} p(x) d x \\
& \sigma^{2}[g(x)]=\int_{a}^{b}(g(x)-E[g(x)])^{2} p(x) d x
\end{aligned}
$$

- estimating expected values: $E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g\left(x_{i}\right)$

multidimensional random variables

- everything works fine in multiple dimensions
- but it is often hard to precisely define domain
- except in simple cases

$$
E[g(\mathbf{x})]=\int_{\mathbf{x} \in D} g(\mathbf{x}) p(\mathbf{x}) d A_{\mathbf{x}}
$$

deterministic numerical integration

- split domain in set of fixed segments
- sum function values times size of segments

$$
I=\int_{a}^{b} f(x) d x
$$

$$
I \approx \sum_{j} f\left(x_{j}\right) \Delta x
$$

Monte Carlo numerical integration

- need to evaluate $I=\int_{a}^{b} f(x) d x$
- by definition
$E[g(x)]=\int_{a}^{b} g(x) p(x) d x$
- can be estimated as
$E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g\left(x_{i}\right)$
- by substituting
$g(x)=f(x) / p(x)$

$$
I=\int_{a}^{b} \frac{f(x)}{p(x)} p(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

Monte Carlo numerical integration

- intuition: compute the area randomly and average the results

Monte Carlo numerical integration

- formally, we can prove that

$$
\bar{I}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \Rightarrow E[\bar{I}]=E[g(x)]
$$

- meaning that if we were to try multiple times to evaluate the integral using our new procedure, we would get, on average, the same result
- variance of the estimate:

$$
\sigma^{2}[\bar{I}]=\frac{1}{N} \sigma^{2}[g(x)]
$$

example: integral of constant function

- analytic integration

$$
I=\int_{a}^{b} f(x) d x=\int_{a}^{b} k d x=k(b-a)
$$

- Monte Carlo integration

$$
\begin{aligned}
I & =\int_{a}^{b} f(x) d x=\int_{a}^{b} k d x \approx \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} k(b-a)= \\
& =\frac{N}{N} k(b-a)=k(b-a)
\end{aligned}
$$

example: computing pi

- take the square $[0,1]^{2}$, with a quarter-circle in it

$$
A_{\text {circle }}=\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \quad f(x, y)= \begin{cases}1 & (x, y) \in \text { circle } \\ 0 & \text { otherwise }\end{cases}
$$

example: computing pi

- estimate area of circle by tossing point in the plane and evaluating f

$$
A_{\text {circle }} \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}\right)
$$

example: computing pi

- by definition $\quad A_{\text {circle }}=\pi / 4$
- numerical estimation of pi

$$
\pi \approx \frac{4}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}\right)
$$

Monte Carlo numerical integration

- works in any dimension!
- need to carefully pick the points
- need to properly define the pdf
- hard for complex domain shapes
- e.g. how to uniformly sample a sphere?

$$
I=\int_{\mathbf{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{x})}{p(\mathbf{x})}
$$

- works for badly-behaving functions!

Monte Carlo numerical integration

- expected value of the error is $O(1 / \sqrt{N})$
- convergence does not depend on dimensionality
- deterministic integration is hard in high dimensions

importance sampling principle

- how to minimize the noise?
- pick samples in area where function is large

$$
I \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{x})}{p(\mathbf{x})}
$$

- pick a distribution similar to the function

$$
p_{\text {optimal }} \propto f(\mathbf{x})
$$

ID interval - uniform sampling

- call random function in $[0, \mathrm{I})$, rescale if necessary
- in reality only pseudorandom
- relies on good generator

$$
r=\operatorname{rand}() \Rightarrow x=r
$$

2D square - uniform sampling

- pick two independent random values in $[0, \mathrm{I})$

$$
\mathbf{r}=[\operatorname{rand}() \operatorname{rand}()] \Rightarrow \mathbf{x}=\mathbf{r}
$$

2D square - stratified sampling

- divide domain in smaller domains, then pick random points in each
- better variance than normal sampling

$$
\mathbf{x}=\left[\begin{array}{cc}
\frac{i+r_{x}}{n_{i}} & \frac{j+r_{y}}{n_{j}}
\end{array}\right]^{T}
$$

2D circle - rejection sampling

- pick random points in the uniform square and discard the ones outside the domain

$$
\left\{\begin{array}{c}
\mathbf{r} \in[0,1]^{2} \\
\mathbf{r} \sim 1
\end{array} \Rightarrow \mathbf{x}=\left\{\begin{array}{cc}
2 \mathbf{r}-1 & |2 \mathbf{r}-1| \leq 1 \\
\text { discard } & \text { otherwise }
\end{array}\right.\right.
$$

2D circle－remapping from square

－pick random points in the uniform square and remap them on the circle using polar coords．

$$
\left\{\begin{array} { c }
{ \mathbf { r } \in [0 , 1] ^ { 2 } } \\
{ \mathbf { r } \sim 1 }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ \varphi = 2 \pi r _ { x } } \\
{ r = r _ { y } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\mathbf{x}=\left(r_{y} \cos \left(2 \pi r_{x}\right), r_{y} \sin \left(2 \pi r_{x}\right)\right) \\
\mathbf{x} \sim \text { non uniform }
\end{array}\right.\right.\right.
$$

2D circle－remapping from square

－make sampling uniform by computing proper pdf
－Sh．I4．4．I
$\left\{\begin{array}{c}\mathbf{r} \in[0,1]^{2} \\ \mathbf{r} \sim 1\end{array} \Rightarrow\left\{\begin{array}{c}\varphi=2 \pi r_{x} \\ r=\sqrt{r_{y}}\end{array} \Rightarrow\left\{\begin{array}{c}\mathbf{x}=\left(\sqrt{r_{y}} \cos \left(2 \pi r_{x}\right), \sqrt{r_{y}} \sin \left(2 \pi r_{x}\right),\right. \\ \mathbf{x} \sim 1 / \pi\end{array}\right.\right.\right.$

3D direction - uniform distribution

- uniformly distribution with respect to solid angle

$$
\begin{aligned}
\left\{\begin{array}{c}
\mathbf{r} \in[0,1]^{2} \\
\mathbf{r} \sim 1
\end{array}\right. & \Rightarrow\left\{\begin{array}{c}
\varphi=2 \pi r_{x} \\
\theta=\arccos \left(r_{y}\right)
\end{array} \Rightarrow\right. \\
& \Rightarrow\left\{\begin{array}{c}
\mathbf{d}=\left(\sqrt{1-r_{y}^{2}} \cos \left(2 \pi r_{x}\right), \sqrt{1-r_{y}^{2}} \sin \left(2 \pi r_{x}\right), r_{y}\right. \\
\mathbf{d} \sim \frac{1}{2 \pi}
\end{array}\right.
\end{aligned}
$$

3D direction - cosine distribution

- cosine distribution with respect to solid angle

$$
\begin{aligned}
\left\{\begin{array}{c}
\mathbf{r} \in[0,1]^{2} \\
\mathbf{r} \sim 1
\end{array}\right. & \Rightarrow\left\{\begin{array}{c}
\varphi=2 \pi r_{x} \\
\theta=\arccos \left(\sqrt{r_{y}}\right)
\end{array} \Rightarrow\right. \\
& \Rightarrow\left\{\begin{array}{r}
\mathbf{d}=\left(\sqrt{1-r_{y}} \cos \left(2 \pi r_{x}\right), \sqrt{1-r_{y}} \sin \left(2 \pi r_{x}\right), \sqrt{r_{y}},\right. \\
\mathbf{d} \sim \frac{\cos (\theta)}{\pi}
\end{array}\right.
\end{aligned}
$$

3D direction - cosine power distribution

- cosine power distribution wrt solid angle

$$
\begin{aligned}
\left\{\begin{aligned}
\mathbf{r} \in[0,1]^{2} \\
\mathbf{r} \sim 1
\end{aligned}\right. & \Rightarrow\left\{\begin{array}{c}
\varphi=2 \pi r_{x} \\
\theta=\arccos \left(r_{y}^{1 /(n+1)}\right.
\end{array}\right) \Rightarrow \\
& \Rightarrow\left\{\begin{array}{r}
\mathbf{d}=\left(\sqrt{1-r_{y}^{\frac{2}{n+1}}} \cos \left(2 \pi r_{x}\right), \sqrt{1-r_{y}^{\frac{2}{n+1}}} \sin \left(2 \pi r_{x}\right), r_{y}^{\frac{1}{n+1}}\right) \\
\mathbf{d} \sim \frac{n+1}{2 \pi} \cos ^{n}(\theta)
\end{array}\right.
\end{aligned}
$$

