
ACADEMY OF SCIENCES OF MOLDOVA

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE

By way of manuscript
U.D.C: 510.58+519.712.5

ALHAZOV ARTIOM

SMALL ABSTRACT COMPUTERS

SPECIALTY: 01.05.01

COMPUTER SCIENCE FUNDAMENTALS;

COMPUTER PROGRAMMING

Habilitation Thesis in Computer Science

Scientific Consultant: Yurii ROGOZHIN

Ph.D. in Habilitation,
Principal Scientific Researcher

Author:

CHIŞINĂU, 2013

ACADEMIA DE ŞTIINŢE A MOLDOVEI

INSTITUTUL DE MATEMATICĂ ŞI INFORMATICĂ

Cu titlu de manuscris
C.Z.U: 510.58+519.712.5

ALHAZOV ARTIOM

SMALL ABSTRACT COMPUTERS

(MAŞINI ABSTRACTE MICI)

SPECIALITATEA: 01.05.01

BAZELE TEORETICE ALE INFORMATICII;

PROGRAMAREA CALCULATOARELOR

Teza de Doctor Habilitat in Informatică

Consultant Ştiinţific: Iurie ROGOJIN

Doctor Habilitat,
Cercetător Ştiinţific Principal

Autorul:

CHIŞINĂU, 2013

c© ALHAZOV ARTIOM, 2013

3

Acknowledgements

I would like to thank my family for making this work possible and for their precious support,
in particular, my parents for sharing their academic experience and for encouraging all my
efforts. I would like to express my gratitude to all my co-authors for their ideas, efforts
and time spent on producing and describing results we have obtained. I thank Chişinău,
Turku, Higashi Hiroshima and Milano for a working environment, and Prof. Ion Petre, Prof.
Kenichi Morita, Dr. Katsunobu Imai, Dr. Marco Antoniotti, Prof. Giancarlo Mauri and Dr.
Alberto Leporati for making my postdocs possible and so fruitful (and for showing me how
to be patient), and computer technology to facilitate my research in Theoretical Computer
Science.

The author1,2 is very much indebted to Prof. Yurii Rogozhin, who brought me to the
field of theoretical computer science and continuously provided his expertise, resulting also
in (but by far not only) over 60 joint publications, and to Dr. hab. Sergey Verlan for valuable
advices in research and life, in particular yielding over 25 joint works. I thank Dr. Rudolf
Freund, an incredible colleague who coauthored over 30 of my publications. I thank Dr.
Vladimir Rogojin and Sergiu Ivanov for long and exciting hours of fruitful joint research.
Many thanks are addressed to Acad. Gheorghe Păun for research experience and writing
skills and for having started membrane computing. I thank the professors and colleagues of
the State University of Moldova, for having contributed much to my mathematical education.

A special acknowledgment is due to the management of IMI, and in particular to Prof.
Svetlana Cojocaru, Dr. Constantin Ciubotaru, Corr. memb. Constantin Gaindric, for their
assistance through the years, and to the present and former workers of IMI (and especially
to the Laboratory of Programming Systems for being wonderful work colleagues), and the
whole P systems community, for their moral support.

1 Institute of Mathematics and Computer Science (IMI), Academy of Sciences of Moldova. Str. Academiei
5, Chişinău, MD 2028, Moldova. E-mail: artiom@math.md

2 This work was facilitated by the support of project IST-2001-32008 “MolCoNet” from the European
Commission under FP5 programme, project MM2-3034 from the Moldovan Research and Development
Association (MRDA) and the U.S. Civilian Research and Development Foundation (CRDF), project 203667
from the Academy of Finland, project and Grant-in-Aid for Scientific Research 20·08364 from the Japan
Society for the Promotion of Science, project RetroNet from the Lombardy Region of Italy under the ASTIL
Program (regional decree 6119, 20100618), projects STCU-4032 “Power and efficiency of natural computing:
neural-like P (membrane) systems” and STCU-5384 “Models of high performance computations based on
biological and quantum approaches” from the Science and Technology Center in Ukraine, and projects
06.411.03.04P and 12.819.18.09A “Development of IT support for interoperability of electronic linguistic
resources” from the Supreme Council for Science and Technological Development, Academy of Sciences of
Moldova.

4

Contents

Annotations . 8
Abbreviations and Selected Notations . 11

INTRODUCTION 12
Unconventional Computing . 12
The Topics . 13
What is New? . 14
Theory and Applications . 15
The Structure . 17

1 PREREQUISITES AND OVERVIEW 20
1.1 Formal Language Prerequisites . 20

1.1.1 Grammars 21

1.1.2 Matrix grammars 22

1.1.3 Finite automata 23

1.1.4 Counter automata 23

1.1.5 Register machines 24

1.1.6 Circular Post machines 29

1.2 Networks of Evolutionary Processors . 29
1.3 P Systems with Symbol-Objects . 33

1.3.1 Multiset rewriting 33

1.3.2 Transitional P systems 36

1.3.3 Symport/antiport 38

1.3.4 Active membranes 40

1.3.5 Energy assigned to membranes 42

1.3.6 Energy-based P systems 44

1.3.7 Polymorphism 46

1.4 String-objects. String Replication . 47
1.4.1 Active membranes 48

1.4.2 Insertion/deletion 49

1.5 Computing with P Systems . 53
1.5.1 Decisional framework 53

1.5.2 Minimal parallelism 55

1.6 Conclusions to Chapter 1 . 57

2 MULTISET REWRITING. PROPERTIES 58
2.1 The P Systems Language Family . 59

2.1.1 Comparison with known families 61

2.1.2 Closure properties 63

2.1.3 A difficult language 63

2.1.4 Parsability 64

2.2 Deterministic Non-Cooperative Systems . 67

5

2.2.1 Lower bounds 67

2.2.2 Upper bounds and characterizations 68

2.2.3 Sequential systems 70

2.2.4 Asynchronous and maximally parallel systems 71

2.3 Determinism and Reversibility . 72
2.3.1 Sequential multiset rewriting 73

2.3.2 Reversible sequential rewriting 74

2.3.3 Strong reversibility 75

2.3.4 Deterministic sequential rewriting 76

2.3.5 Strong determinism 77

2.3.6 Maximally parallel multiset rewriting 78

2.3.7 Reversible parallel rewriting 79

2.3.8 Strong reversibility 79

2.3.9 Strongly deterministic parallel rewriting 81

2.4 Self-stabilization . 85
2.4.1 Self-stabilization and related properties 86

2.4.2 Accepting systems 87

2.4.3 Generating systems 88

2.5 Membrane Creation . 90
2.6 Conclusions to Chapter 2 . 96

3 SYMPORT/ANTIPORT 98
3.1 Universality with Small Number of Rules . 98
3.2 State of the Art . 101

3.2.1 Computational completeness 103

3.2.2 Minimal antiport and minimal symport 105

3.2.3 Number of symbols 106

3.2.4 Number of rules 107

3.2.5 Efficiency 107

3.3 Recent Symport Developments . 110
3.3.1 Unbounded weight 111

3.3.2 Few-element sets 112

3.3.3 Straightforward regularity 112

3.3.4 Improved universality 113

3.3.5 Symport of weight at most 4 114

3.3.6 Sequential mode 116

3.4 Conclusions to Chapter 3 . 116

4 ACTIVE MEMBRANES. ENERGY 118
4.1 Simulating Turing Machines . 120
4.2 Universality . 123

4.2.1 One polarization 123

4.2.2 Two polarizations 125

4.3 Efficiency with Two Polarizations . 127
4.3.1 Using global rules 128

4.4 Beyond NP and co-NP . 132
4.4.1 Permanent of a matrix 132

4.4.2 Attacking PP complexity class 133

4.5 Attacking PSPACE . 134
4.6 Minimal Parallelism . 140

6

4.6.1 With sequential polarization-changing evolution 141

4.7 Energy Assigned to Membranes . 146
4.8 Energy Assigned to Regions . 148
4.9 Conclusions to Chapter 4 . 155

5 STRING-OBJECT MODELS 158
5.1 Networks of Evolutionary Processors . 159

5.1.1 NEPs with two nodes 163

5.1.2 HNEPs with one node 165

5.1.3 HNEPs with 7 nodes 166

5.1.4 Obligatory HNEPs 170

5.2 Insertion-Deletion P Systems . 172
5.2.1 Minimal insertion-deletion P systems 173

5.2.2 Small contextual insertion-deletion P systems 178

5.3 (Exo) Insertion-Deletion Operations . 179
5.3.1 P systems with priority of exo-deletion 181

5.3.2 One-sided insertion/deletion without priorities 181

5.4 Splicing . 183
5.5 Conclusions to Chapter 5 . 185

6 APPLICATIONS 187
6.1 Inflections . 188
6.2 Dictionary . 192

6.2.1 Dictionary search 193

6.2.2 Search with fail 194

6.2.3 Dictionary update 196

6.3 Synchronization . 197
6.3.1 Deterministic case 198

6.4 Polymorphism . 201
6.4.1 The power of polymorphism 205

6.5 Other Applications . 212
6.6 Conclusions to Chapter 6 . 213

GENERAL CONCLUSIONS AND RECOMMENDATIONS 215
Bibliography . 220

APPENDICES 236

A1Context-free grammars and time-yield 237

A2Advanced control in one region 240

A3A new variant of circular Post machines 243

A4Two polarizations - “normal form” 245

A5Computing the Permanent 247

A6Minimal parallelism - 6 polarizations 250

A7Sequential UREM P systems 254

A8List of selected results in formulas 256
List of Tables . 257
List of Figures . 258

DECLARATION OF ASSUMING RESPONSIBILITY 259

CURRICULUM VITAE 260

7

Annotations
Adnotare la teza de doctor habilitat “Small Abstract Computers” (Maşini Abstracte
Mici), prezentată de către Artiom Alhazov pentru obţinerea titlului de doctor habilitat ı̂n
informatică la specialitatea 01.05.01 – Bazele teoretice ale informaticii; programarea calcu-
latoarelor. Teza a fost perfectată ı̂n cadrul Institutului de Matematică şi Informatică al
Academiei de Ştiinţe a Republicii Moldova, ı̂n anul 2013; este scrisă ı̂n limba engleză şi
constă din Introducere, 6 capitole, concluzii generale şi recomandări şi 8 anexe. Textul de
bază constituie 219 de pagini. Bibliografia constă din 291 de titluri. Teza include: 25 de
figuri, 9 tabele, 22 de definiţii, 19 leme, 77 de teoreme, 47 de consecinţe, 9 remarci, 24 de
exemple şi 54 de formule. Rezultatele obţinute ŝınt publicate ı̂n 120 de lucrări ştiinţifice.

Cuvintele-cheie: informatică teoretică, modele de calcul neconvenţional, computabi-
litate Turing, complexitate descriptivă, sisteme universale mici, P sisteme, procesare par-
alelă distribuită de şiruri/multiseturi, promotori/inhibitori/priorităţi, membrane active, po-
larizări, symport/antiport, determinism, reversibilitate, inserţie-deleţie-substituire, reţele hi-
bride de procesoare evolutive, paralelism maxim şi minim.

Domeniul de studiu ı̂l constituie sistemele membranare şi alte modele formale de calcul,
ı̂n special procesarea distribuită şi paralelă de multiseturi/şiruri, de ex., reţele de procesoare
evolutive, sisteme IDP, CPM, etc.

De r̂ınd cu scopul principal de determinare a puterii de calcul a modelelor restr̂ınse,
lucrarea ı̂şi propune şi următoarele objective: depistarea solvabilităţii problemelor ı̂n
timp polinomial cu modele restr̂ınse, cercetarea complexităţii temporale ale problemelor
ı̂n dependenţă de caracteristicile modelelor. Restricţii tipice: complexitatea descriptivă
mărginită, modalităţile de interacţiune ale obiectelor, o submulţime de obiecte cu caracteris-
tici restr̂ınse, proprietăţi (de ex., determinism, reversibilitate, auto-stabilizare, confluenţă).

Noutatea şţiinţifică. Noţiuni noi: derivări temporale ı̂n CFG, limitarea multiseturilor,
determinism/reversibilitate tare, auto-stabilizare ı̂n P sisteme, noi reguli cu membrane ac-
tive, OHNEP, NCPM5, polimorfism. Strategii noi: reprezentarea datelor prin membrane,
minimizarea avansată a regulilor, noi combinaţii ale parametrilor complexităţii descriptive,
nedeterminismul extrem ı̂n membrane active, un nou mod de interacţiune membrană-obiect,
mai mult de 3 polarizări, o nouă tehnică de control regulat pentru operaţii pe 1 simbol din şir.
Probleme/modele noi: probleme nedecizionale computaţional dificile, flexionarea cunivntelor
ı̂n limba Română, module de dicţionar.

Problemele ştiinţifice soluţionate includ: 1)Stabilirea puterii de calcul a P sistemelor
a)tranziţionale cu creare şi dizolvare de membrane, b)cu membrane active fără polarizări,
c)deterministe controlate necooperatiste, d)cu energie. 2)Caracterizarea a)clasei problemelor
rezolvabile ı̂n timp polinomial cu P sisteme cu membrane active fără polarizări, b)puterii
exacte a HNEPs cu 1 nod.

Rezultatele principale. Universalitate: FsMPMRS cu 23 de reguli, P sisteme
tranziţionale cu creare/dizolvare de membrane, AM0, IDP cu priorităţi. Tablou de rezul-
tate: determinism/reversibilitate, NEP, HNEP, OHNEP, rezolvarea problemelor PSPACE
cu AM0. Caracterizări: sisteme deterministe necooperatiste controlate, sisteme cu energie.

Semnificaţia teoretică. Probleme fundamentale de procesare distribuită paralelă de
multiseturi/şiruri. Cele mai bune rezultate obţinute la moment pentru LOP (ncoo, tar), reg-
uli ı̂n MPMRS, NOP1(sym3), noduri ı̂n HNEP, polarizări ı̂n P sisteme minpar eficiente,
sincronizare. Caracterizări importante: DMR(ncoo, control). Proprietăţi fundamentale ale
MR: variante ale determinismului, reversibilităţii, auto-stabilizării, pentru procesarea mul-
tiseturilor cu diverse caracteristici/moduri. Completitudinea de calcul a sistemelor cu coop-
erare slabă ı̂ntre elemente: OP (ncoo, tar, δ,mcre) şi OP (a0, b0, c0, d0, e0). Rezultate optime
pentru probleme cunoscute formulate pentru: P sisteme cu symport/antiport, P sisteme cu
AM0, noduri ı̂n NEP computaţional complete.

Aplicaţii: Polimorfism. Module de dicţionare. Flexionarea şi marcarea afixelor ı̂n cu-
vintele limbii române. Impact OHNEP - o direcţie de cercetare de perspectivă, IDP -
dezvoltare importantă ı̂n continuare, AM0 - salt ı̂n teoria complexităţii P sistemelor.

8

Аннотация диссертации доктора хабилитат “Small Abstract Computers” (Малые
универсальные вычислители), представленной Артёмом Алхазовым на соискание учёной
степени доктора наук (доктора хабилитат) в информатике по специальности 01.05.01
– Теоретические основы информатики; компьютерное программирование. Диссертация
написана в Институте математики и информатики при Академии наук Молдовы
(Кишинёв) в 2013 году на английском языке и состоит из: введения, 6 глав, общих
заключений и рекоммендаций, библиографии из 291 наименований и 8 приложений.
Основной текст насчитывает 219 страниц. Работа содержит: 25 рисунков, 9 таблиц, 22
определения, 19 лемм, 77 теорем, 47 следствий, 9 замечаний, 24 примеров, и 54 формул.
Полученные результаты опубликованы в 120 научных статьях.

Ключевые слова: теоретическая информатика и неклассические вычисления, вы-
числимость по Тьюрингу, вычислительная сложность и малые универсальные систе-
мы, P системы как параллельные дистрибутивные системы обработки многомножеств и
строк, промоторы/ингибиторы и приоритеты, активные мембраны и поляризации, сим-
порт/антипорт, детерминизм/обратимость, удаление-вставка-подстановка и [гибрид-
ные] сети эволюционных процессоров, максимальный и минимальный параллелизм и
асинхронный режим. Область исследований: мембранные системы и другие формаль-
ные модели вычислений, в основном дистрибутивной параллельной перезаписи много-
множеств и строк: сети эволюционных процессоров, системы IDP, CPM, и пр.

Помимо основной цели определения вычислительной силы ограниченных вычисли-
тельных моделей, наши задачи – нахождение разрешимости задач в полиномиальное
время и временнóй сложности задач в зависимости от ингредиентов систем. Наиболее
типичны такие ограничения как: ограниченная описательная сложность, способ взаи-
модействия объектов, подмножество объектов с ограниченными возможностями, свой-
ства (такие как детерминизм, обратимость, само-стабилизация, конфлуэнтность).

Научная новизна. Ввели: временнóй результат CFG, сильный детерминизм/обра-
тимость, само-стабилизацию в P системах, новые правила для активных мембран,
OHNEP, NCPM5, полиморфизм. Новые стратегии: представление данных мембранами,
сложные методы минимизации правил, новые комбинации параметров описательной
сложности, крайний недетерминизм с активными мембранами, новая тактика взаимо-
действия мембрана-объект, > 3 поляризаций, новая техника регулярного управления
строковыми операциями с 1 символом. Новые задачи/модели: сложные небинарные
вычислительные задачи, флексии румынского языка, словарные модули.

Решённые задачи в работе включают: 1)Нахождение вычислительной мощности
P систем a)транзициональных с созданием и расстворением мембран, b)с активными
мембранами без поляризаций, c)детерминированных некооперативных, d)с энергией.
2)Вычисление a)класса задач разрешимых в полиномиальное время P системами с
активными мембранами без поляризаций, b)точной мощности HNEPs с 1 узлом.
Главные результаты. Универсальность: FsMPMRS с 23 правилами, P системы с
созданием/расстворением мембран, AM0, IDP с приоритетами. Картины результа-
тов: детерминизм/обратимость, NEP, HNEP, OHNEP, решение PSPACE-задач с AM0.
Характеризации: детерминированных управляемых некооперативных систем, систем
с энергией. Теоретическая значимость. Фундаментальные задачи дистрибутивной
параллельной обработки многомножеств/строк. Лучшие известные результаты для
LOP (ncoo, tar), количества правил в MPMRS, NOP1(sym3), узлов в HNEP, поляризаций
эффективных P систем с minpar, синхронизация. Важная характеризация: DMR
(ncoo, control). фундаментальные свойства MR: виды детерминизма, обратимости, са-
мо-стабилизации, для обработки многомножеств с разными особенностями/режимами.
Вычислительная полнота систем со слабыми взаимодействиями их элементов: OP (ncoo,
tar, δ, mcre) и OP (a0, b0, c0, d0, e0). Оптимальные результаты известных задач для:
P систем с симпортом/антипортом, с AM0, узлы в вычислительно полных NEP. При-
менения: полиморфизм, словарные модули, флексии и аннотирование аффиксов в
румынском языке. Влияние OHNEP: новое перспективное направление исследований,
IDP: привело к важному развитию, AM0: прорывы в теории сложности P систем.

9

Annotation of the habilitation thesis “Small Abstract Computers”, submitted by
Artiom Alhazov, for fulfillment of the requirements for the Ph.D. in habilitation degree,
specialty 01.05.01 – Theoretical foundations of computer science; computer programming.
The thesis was elaborated at the Institute of Mathematics and Computer Science of the
Academy of Sciences of Moldova, Chişinău, in 2013. The thesis is written in English and
contains Introduction, 6 chapters, general conclusions and recommendations, bibliography
of 291 titles and 8 appendices. The main text amounts to 219 pages. This work includes:
25 figures, 9 tables, 22 definitions, 19 lemmas, 77 theorems, 47 corollaries, 9 remarks, 24
examples, and 54 formulas. The results are published in 120 scientific papers.

Keywords: Theoretical computer science and unconventional computing, Models of
computation and Turing computability, Descriptional complexity and small universal sys-
tems, P systems as parallel distributed multiset and string processing, Promoters/inhibitors
and priorities, Active membranes and polarizations, Symport and antiport, Determinism and
reversibility, Insertion-deletion-substitution and [hybrid] networks of evolutionary processors,
Maximal and minimal parallelism and asynchronous mode.

The area of the present studies is membrane systems and other formal computational
models, mainly distributed parallel rewriting of multisets and strings, e.g., networks of evo-
lutionary processors, IDP systems, CPMs, etc. Besides the main goal of determining the
computational power of restricted computing models, our objectives are identifying the
polynomial-time problem solvability by a restricted model, and the Time complexity of
problems depending on the features. The most typical restrictions are: Bounded descrip-
tional complexity, The way of object interaction, A subset of objects with restricted features,
Property (e.g., determinism, reversibility, self-stabilization, confluence).

Scientific novelty. We introduced: CFG time-yield, multiset bounding, strong deter-
minism/reversibility, self-stablization in P systems, new active membrane rules, OHNEPs,
NCPM5, polymorphism. New strategies: encoding data by membranes, advanced rule min-
imization, new descriptional complexity parameter combinations, extreme non-determinism
in active membranes, a new membrane-object interaction, more than 3 polarizations, a new
regular control technique for 1-symbol string operations. New problems/models: intractable
non-decisional computational problems, Romanian language inflections, dictionary modules.

Solved scientific problems include: 1)Finding the computational power of P systems
a)transitional with membrane creation and division, b)with active membranes without polar-
izations, c)deterministic controlled non-cooperative, d)with energy. 2)Characterizing a)the
class of problems polynomial-time solvable by P systems with active membranes without
polarizations, b)exact power of HNEPs with 1 node.

Most important results. Universality: 23-rule FsMPMRS, transitional P systems
with membrane creation/dissolution, AM0, IDPs with priorities. Studies: determin-
ism/reversibility, NEPs, HNEPs, OHNEPs, Solving PSPACE problems with AM0. Charac-
terizations: deterministic controlled non-cooperative systems, energy systems.

Theoretical significance. Fundamental problems of distributed parallel processing of
multisets/strings. Best known results for LOP (ncoo, tar), rules in MPMRSs, NOP1(sym3),
nodes in HNEPs, polarizations of efficient minpar P systems, synchronization. Impor-
tant characterizations: DMR(ncoo, control). Fundamental properties of MR: variants
of determinism, reversibility, self-stabilizations, for multiset processing with different fea-
tures/modes. Computational completeness of systems with very weak cooperation between
their elements: OP (ncoo, tar, δ,mcre) and OP (a0, b0, c0, d0, e0). Optimal results for known
problems for: symport/antiport P systems, P systems with AM0, nodes in computationally
complete NEPs. Applications: Polymorphism. Dictionary modules. Inflections and an-
notating affixes in Romanian. Impact OHNEPs: a new perspective research area, IDPs:
further important development, AM0: P systems complexity theory breakthroughs.

10

Abbreviations and Selected Notations

(e)IDP – P systems with (exo) insertion and deletion
(N)CPM(5) – (Non-deterministic) circular Post machines (of variant 5)
CF(G) – Context-free (grammar)
(O)(H)NEP – (Obligatory) (hybrid) networks of evolutionary processors
(Fs)(MP)MPMR – (Finite-state) (maximally parallel) multiset rewriting
UREM P system – P system with unit rules and energy assigned to membranes
TVDH system – Time-varied distributed H system
TM – Turing machine
RLEM – Reversible logical element with memory
(co-)(N)P – Class of (complements of) problems, decidable by (non-)deterministic Turing
machines in polynomial time
SAT – The known NP-complete problem of satisfiability of a boolean formula
#P – Class of problems, related to computing the number of solutions for a problem in NP
PP – Probabilistic polynomial time complexity class
PSPACE – Class of problems, decidable by Turing machines in polynomial space
QSAT – The problem of satisfiability of a quantified boolean formula
(Ps)RE – The family of (Parikh images of) recursively enumerable languages
CS – The family of context-sensitive languages
(Ps)MAT – The family of (Parikh images of) languages generated by matrix grammars
without appearance checking (possibly with erasing productions)
SLIN – Semilinear languages
(co-)NFIN – (Complements of) finite sets of numbers
REG•Perm(REG) – Regular languages concatenated with permutation of regular languages
NkFIN(m) – all finite sets of numbers not less than k (and not exceeding m + k)
NkREG(m) – sets of numbers accepted by finite automata (with m states), plus k
N(k)RE – recursively enumerable sets of numbers (not less than k)
(ncoo, coo, pro, inh, Pri) – no cooperation, cooperation, promoters, inhibitors, priorities
NaDsOP1 – Sets of numbers accepted by strongly deterministic P systems with symbol ob-
jects with 1 membrane (maximal parallelism is assumed by default)
NRMR – Sets of numbers generated by reversible (sequential) multiset rewriting systems
AM0 – Active membranes without polarizations
PMC – Polynomial-time complexity class, e.g., for membrane systems specified by subscript
LOP (ncoo, tar) – Languages generated by non-cooperative transitional P systems
NOP1(sym3) – Number sets generated by P systems with symport rules of weight at most 3
OP sequ

1 (syms) – Sequential P systems with symport of weight at most s
minpar – Working in the minimally parallel mode
DMR(ncoo, control) – Deterministic multiset rewriting systems with non-cooperative rewrit-
ing and control (promoters, inhibitors and/or priorities)
OP (ncoo, tar, δ,mcre) – Transitional P systems with membrane dissolution and creation
OP (a0, b0, c0, d0, e0) – P systems with polarizationless active membranes
DPsaOP1,1,1(active2, a, c) – Sets of vectors deterministically accepted by P systems with 1
active membrane and 2 polarizations, using evolution and send-out rules
OtP – Tissue P systems (graph instead of tree, with sequential channels)
ELSP (ins0,0

1 , del0,0
1) – Languages generated modulo terminal alphabet by P systems with

string-objects and insertion and deletion rules of 1 symbol without context
ELSP (e − ins0,0

1 , e − del0,0
1) – Languages generated by extended P systems with insertion

and deletion rules of 1 symbol at the ends of the string without context

11

INTRODUCTION

Unconventional Computing

The concept of unconventional computing has caught the attention of many minds, and many

researchers consider it a breakthrough in theory of processing information. It is a timely

and very dynamic domain of research. For instance, the Institute for Scientific Information,

ISI, has mentioned in February 2003 the paper introducing membrane computing, [249], first

circulated as [250], as fast breaking in the area of computer science; in under 15 years there

over 1400 papers by over 200 researchers in membrane computing).

The most popular motivations explaining the importance of unconventional computing

are the miniaturization (a starting point for massive parallelism or storage), and the Moore’s

law. It is, however, possible to imagine a number of other reasons to focus on unconventional

computing, without directly having applications in mind. For instance, 1) developing new

methods of algorithm design for conventional computers (recall, e.g., the success of genetic

algorithms and neural networks, both being inspired by nature/life and implemented in

silicon), 2) new perspective insights into the fundamental Physics laws, e.g., determinism,

reversibility, conservation laws, 3) new measures of information, since we are dealing with

non-standard data structures, 4) new methods of data encryption, due to different ways of

representing information, 5) the interdisciplinary research bridging Classical computability,

Information theory, Number theory, Biology, Physics, etc. Unconventional computing is

already successful as fundamental research.

One can consider numerous variants of a number of models, looking for adequacy with

respect to the biochemical origins of the idea or for elegance of definitions, strength of results,

or similarity with other areas of Theoretical computer science. Most research described in

this habilitation thesis belongs to membrane computing, we now briefly introduce this field.

Membrane computing Membrane systems, also called P systems, are a framework of dis-

tributed parallel computing models, inspired by some basic features of biological membranes.

In membrane systems, objects are placed in regions, defined by a membrane structure, and

are evolving by means of “reaction rules”, associated with regions or with membranes. The

rules are applied non-deterministically, and (in most models) in a maximally parallel manner

(no rules are applicable to the remaining objects). Objects can also pass through membranes.

Many other features are considered. These notions are used to define the transitions between

the configurations of the membrane system, and its evolution is used to define the compu-

tation.

Three ways of computing were studied: computing functions (data processing), generat-

12

ing and accepting sets (of strings, numbers or vectors). Many different classes of P systems

have been investigated, and most of them turned out to be computationally complete with

respect to the Turing-Church thesis (i.e., equal in power to Turing machines).

It is quite convenient for a researcher in the domain that a comprehensive bibliogra-

phy of membrane computing (over 1400 titles) can be found on the P systems web page,

[284]. There one can also find many articles available for download, including pre-print ver-

sions and preliminary proceedings of the meetings; Table 1 contains some of the meetings

(downloadable from [284]) where the author has multiple publications. Journal articles are

sometimes made available online by the publisher, freely or for the subscribed users. The

post-proceedings of the Workshop/Conference on Membrane Computing are published in

Lecture Notes in Computer Science Series by Springer.

The list of author’s articles and links to full articles, abstracts and/or publisher pages

can be found at the author’s publication webpage, [285].

Table 1: Selected references of Membrane Computing Meetings
Meeting First time

Conference/Workshop on Membrane Computing 2000

Brainstorming Week on Membrane Computing 2003

ESF Exploratory Workshop on Cellular Computing

(Complexity Aspects) 2005

The Topics

The goal of the present thesis is investigating membrane systems as well as a number

of other formal computational models, mainly distributed parallel rewriting of multisets and

strings, such as networks of evolutionary processors, reversible logical elements with memory,

number-conservative cellular automata, circular Post systems, insertion-deletion systems,

splicing systems, and gene assembly in ciliates. Most of the above mentioned models permit

(or inherently have) parallelism and biological inspiration. We underline, however, that we

are speaking about formal abstract models of computation. The thesis covers a survey and

the authors’s research in the fields mentioned above.

The models of membrane systems we consider here are: maximally parallel multiset

rewriting, without and with cooperation, without and with promoters/inhibitors/priorities,

deterministic or not, reversible or not; P systems with symport/antiport; P systems with

active membranes; P systems with insertion-deletion; P systems with ciliate operations; P

systems with energy, etc.

The main objectives are related to the following questions:

• What restrictions can be placed on a model/variant such that it is still computationally

complete?

13

• What is the computational power of a given computing model with certain restrictions

(e.g., when maximally parallel object cooperation is not enough for the computational

completeness)?

• Can particular problems be solved in a polynomial number of steps by some model

with certain restrictions (or what is the time complexity of some problem depending

on the features and restrictions of the model)?

The most typical restrictions are bounding the descriptional complexity (e.g., the number

of membranes or the number of objects), restricting the way of object interaction (e.g., the

number of objects involved in a rule, or the way in which they are involved), distinguishing

a subset of objects with restricted features (e.g., catalysts, bi-stable catalysts, protons) and

considering P systems with some property (e.g., determinism, reversibility, self-stabilization,

confluence, ultimate confluence, always halting).

The methods typically used are comparison with (e.g., simulation of) known computa-

tional devices (finite automata, context-free grammars, regulated grammars, register ma-

chines, 0L systems, grammar systems, other classes of P systems).

What is New?

Below we highlight a few manifestation of scientific novelty in the author’s research reflected

in this habilitation thesis.

By introducing time-yield of context-free grammars, we gave a new perspective to the

P systems language family; we also improved the estimates of their power. Defining the

bounding operation for multisets, we showed that determinism is critical for the power of

non-cooperative controlled multiset rewriting, precisely characterizing the restricted case.

Introducing stronger variants of determinism and reversibility, we brought the research of

these properties for membrane systems closer to the more classical computing models, also

giving some syntactic characterization of the properties; we characterized the power of most

cases of sequential and maximally parallel multiset rewriting systems. We were the first to

define (variants of) the self-stabilization property for membrane systems, also characterizing

the power of most cases.

By encoding data in the multiplicity of membranes rather than the multiplicity of the ob-

jects, we solved the open problem of the power of non-cooperative P systems with membrane

creation and division, showing their computational completeness. With additional ideas, we

also adapted this technique for P systems with active membranes without polarizations. By

inventing advanced minimization techniques, we showed that 23 rules suffice for a universal

maximally parallel multiset rewriting system. We improved a number of results for sym-

port/antiport P systems, reaching new “corners” of the space of combination of descriptional

complexity parameters.

Using a new technique with extreme non-determinism, we simulated Turing machines

working in exponential space, by P systems with polynomial alphabet. A new look at register

machines let us construct computational complete P systems with active membranes with 2

polarizations with a single membrane – this is, clearly, one of the optimal results.

14

Not only have we decreased the known number of polarizations of efficient P systems

with active membranes from three to two, but also we were the first ones to consider exact

solutions to intractable computational problems that go beyond deciding. As for showing the

characterization of PSPACE by P systems with non-elementary division (the upper bound

of their power has been known) without polarizations, we have invented a new membrane-

to-object interaction technique, checking the time of membrane dissolution. For P systems

work in the minimally parallel way, we established their efficiency; for this we were the first

to consider more than three polarizations, and we invented new variants of active membrane

rules, to accomplish the intermediate result; we invented a way of simulating the new rules

with the standard ones to answer the original question.

We proceed by describing what is new here for the string-object computational models.

We invented a regular control technique making it possible to force the computation by

one-symbol operations in the needed direction, yielding the computational completeness of

the networks of evolutionary processors (NEPs) already with two nodes. Not only have we

improved the state of the art for the hybrid NEPs, but we also introduced the obligatory

hybrid ones (OHNEPs), opening quite a perspective research direction. For both OHNEPs

and exo insertion-deletion P systems, we have introduced and used a tool, variant 5 of

circular Post machines, leading to surprising results.

We proposed a new implementation of the inflection model for the Romanian language by

P systems. We constructed dictionary modules from P systems, proposing a new meaning of

computations. New ideas and rule types were needed to improve the synchronization time on

P systems. Finally, we should mention that we have introduced a new feature of membrane

system, that is motivated by the cell nucleus – the polymorphism.

This is only a partial description of the novelties reflected in this work.

Theory and Applications

Scientific problems solved in this thesis include: 1)Finding the computational power

of a)transitional P systems with membrane creation and division, b)P systems with active

membranes without polarizations, c)deterministic controlled non-cooperative P systems, d)P

systems with energy. 2)Characterizing a)the class of problems polynomial-time solvable by

P systems with active membranes without polarizations, b)exact power of hybrid networks

of evolutionary processors with 1 node.

In the following the reader can see the manifestations of theoretical significance and

applied value of the research reflected in the present habilitation thesis. We have addressed

a number of fundamental problems of distributed parallel processing of multisets and strings,

and we proved the best known bounds, e.g., for the membrane systems language family and

for the number of rules in maximally parallel multiset rewriting systems.

We have proved the best known results for the optimization problems considered by

different authors, e.g., the power of symport-3 in one membrane, the number of nodes in

the hybrid networks of evolutionary processors, the number of polarizations of efficient P

systems with minimal parallelism, and synchronization time of P systems.

We obtained important characterizations of rewriting systems, e.g., deterministic con-

15

trolled non-cooperative multiset rewriting systems.

We produced a landscape of results for the fundamental properties of multiset rewriting,

such as variants of determinism, reversibility, and self-stabilizations, for multiset processing

with different features (e.g., kinds of cooperation and control) working in different modes.

We showed the computational completeness of systems with very weak forms of coopera-

tion between the elements of these systems, e.g., non-cooperative transitional P systems with

membrane creation and dissolution, and P systems with polarizationless active membranes.

We obtained the optimal results for some problems studied by multiple groups of authors,

e.g., different problems for P systems with symport/antiport, different problems for P sys-

tems with polarizationless active membranes, the number of nodes in the computationally

complete networks of evolutionary processors.

Impact We only mention a few cases where further investigation by other authors emerges

from the publications reflected here. We defined a perspective research direction, that of

obligatory hybrid networks of evolutionary processors. Out of the results reflected here,

those on insertion-deletion systems, have been further developed answering the original open

problem. Our research for P systems with active membranes computing the permanent of a

binary matrix has lead to a few subsequent breakthroughs in complexity theory of P systems.

Applications One of the applications is polymorphic P systems. Its use is providing a

framework where rules can dynamically change during the computation, which is important

for problems of symbolic computation and computer algebra.

Other applications deal with linguistics. We proposed an efficient implementation of

dictionaries by membrane systems, using membrane (tree) structure to represent the prefix

tree of the dictionary. We discovered suitability of P systems for performing inflections of

words in the Romanian language. We also proposed P systems annotating affixes of the

Romanian language, also elaborating a model that accounts for complex derivation steps

that may consist of multiple affixes, changing terminations and/or alternations in the root.

Main conferences of presentation of the results reflected in the present habilita-

tion thesis: 13th Conference on Membrane Computing, Budapest, Hungary; 10th, 8th,

7th and 4th Brainstorming Week on Membrane Computing, Sevilla, Spain; 12th Con-

ference on Membrane Computing, Fontainebleau, France; 11th Conference on Mem-

brane Computing, Jena, Germany; LA Symposium 2010, Kyoto, Japan; Unconventional

Computing 2010, Tokyo, Japan; 10th Workshop on Membrane Computing, Curtea de

Argeş, Romania; Languages and Automata Theory and Applications 2007, Tarragona,

Spain; Machines, Computations and Universality 2007, Orléans, France; 7th Workshop

on Membrane Computing, Leiden, Netherlands. Other conferences with results of the-

sis: ICTCS2012/Varese, IWANN2011/Málaga, RIMS2011/Kyoto, BWMC9/Sevilla, Theori-

etag2010/Kassel, RC2010/Bremen, IWNC2009/Himeji, LATA2008/Tarragona, DCFS2008/

Ontario, WMC9/Edinburgh, DNA13/Memphis TN, WMC8/Thessaloniki, BWMC5/Sevilla.

The author has published over 160 papers. Besides having written about 20 single-author

publications, he has also collaborated with over 50 coauthors from 14 countries. The author

16

has publications in the most prestigious journals in Theoretical computer science, e.g., Theo-

retical Computer Science and Information Processing Letters by Elsevier, Natural Computing

and Acta Informatica by Springer, Fundamenta Informaticae by the Polish Mathematical So-

ciety, International Journal of Foundations of Computer Science by World Scientific, and

New Generation Computing by Ohmsha Ltd. and Springer Japan. He has over 30 articles

in Lecture Notes of Computer Science published by Springer, and chapters in monographs

by the Oxford University Press, by the Cambridge Scholars Publishing, and in the Natural

Computing Series by Springer.

By the completion of this thesis, DBLP has showed 37 journal papers and 37 conference

ones, and Google Scholar has reported the author’s h-index of 16 and i10-index of 30, hav-

ing registered over 880 citations. Out of over 200 researchers working in the areas mentioned

below, the author is one of the main contributors to, e.g., the following research: maximally

parallel multiset rewriting, non-cooperative P systems with/without control, transitional

P systems, symport/antiport, evolution-communication P systems, active membranes, re-

versibility in membrane computing, and the networks of evolutionary processors. The author

has produced a number of applied results, e.g., on the multicriterial bottleneck transporta-

tion problem, sorting, synchronization, chaining in logic, polymorphism, inflections in the

Romanian language, and annotating affixes in the Romanian language.

The Structure

Following the present introductory chapter, Chapter 1 introduces the prerequisites needed to

understand the topics, and tools used for obtaining the results, as well as the basic definitions

for the corresponding models of computation. We also analyze the situation in the associated

fields of study, as the basis for presenting the results in the subsequent chapters.

We define preliminaries of the Formal Language Theory, Grammars, and Automata.

We describe the work of networks of evolutionary processors, and then we continue with

membrane systems. In case of symbol-objects, we start with multiset rewriting, maximal

parallelism, and define a few properties of interest. Then we introduce transitional P systems,

symport/antiport rules, P systems with active membranes, and two energy models. In case of

string-objects, we introduce rules replicating strings and the framework of active membrane

for this case; we define insertion-deletion P systems. Finally, we define the framework of

solving decisional problems with P systems, and introduce the minimally parallel mode.

Chapter 2 mainly discusses multiset rewriting. First, we consider sequentializing the

output of maximally parallel non-cooperative multiset rewriting, and the problem of charac-

terizing the associated family of languages, fundamental for the domain. Second, we add to

multiset processing such features of control (of rule applicability) as promoters, inhibitors and

priorities, and discuss the critical role of determinism for non-cooperative systems, looking

also at different computational modes. Third, we consider cooperative systems, in frame-

work of determinism, reversibility and the strong version of these properties, establishing

how such properties influence the computational power of multiset rewriting systems, both

for parallel and sequential mode. Fourth, we consider variants of self-stabilization property,

and proceed with characterization of the corresponding systems. Finally, we look at the role

17

of distributivity, by switching directly to the transitional membrane systems, enriched with

possibility of membrane creation and membrane dissolution (yielding dynamically changing

underlying tree structures for the distributed computations).

In Chapter 3 we consider static membrane structure and rules moving objects between

the neighboring regions, without even changing them. It is well known that this setting

already yields computational completeness, provided that we have a region with unbounded

supply of some objects.

First, we present a concrete small universal P system with 23 antiport rules, explaining

the minimization strategies used to construct it. Second, we present the state-of-the-art of

symport/antiport P systems containing our recent results, paying special attention to the

descriptional complexity parameters, Finally, we present the latest study of P systems with

one membrane and symport only, aiming to improve the characterization of their power.

In Chapter 4 we describe the results for the models where membranes play an active

role in the rules: they inhibit local parallelism of all rules except rewriting, and they may

control the applicability of rules via their polarization (the dynamic information stored on

the membrane). It is particularly interesting to see complex interactions, even leading to

unpredictable behavior, also in case of one polarization (i.e., when the membrane itself cannot

change, except being created or destroyed).

We show the universality without polarizations and unboundedly many membranes, and

the universality with two polarizations (i.e., storing as little as possible information) already

with two membranes. We show that with two polarizations P systems with active membranes

can efficiently solve NP-complete problems, then we show how to compute even more. Next,

we consider non-elementary membrane division, and show solutions of a PSPACE-complete

problem, even without polarizations. After that, we look at a less synchronized computa-

tional mode, the minimal parallelism, where maximality of parallelism by definition is not

enforced locally, but only globally. Surprisingly, in this case P systems are still efficient, but

they seem to require more polarizations than traditionally considered.

Then we proceed to the energy models. The first one can be viewed as having infinitely

many numeric membrane polarizations, but only modifying their value by adding or sub-

tracting, only being able to check the value by applicability of subtraction with non-negative

result. The second model associates energy to objects and regions instead of membranes.

Both models are computationally complete if and only if parallelism is forced by the mode.

In Chapter 5 we switch to string-objects, i.e., instead of only having a finite set of different

symbols as objects and tracking just their multiplicity in the nodes of the underlying dis-

tributed structure, we now have strings of symbols as objects. Not incidentally, in some cases

for computational completeness it suffices to only have one object during the computation,

or have no interaction (even indirectly) between different strings.

First, we consider the framework of the networks of evolutionary processors (NEPs),

where the nodes of the computational structure only have such elementary operations as

inserting one symbol, deleting one symbol, or substituting one symbol by one symbol. With

the help of regular expressions serving as filters for entering and leaving the nodes, compu-

tational completeness is obtained already with two nodes. In the hybrid models, the place

of applying the elementary operations mentioned above may be restricted to the left or right

18

end of the string, but now the filters may only verify presence/absence of some symbols in the

string. We present subregular characterization of NEPs with one nodes and computational

completeness with seven nodes. Then we study the recently defined obligatory operations.

Second, we look at the first two of the elementary operations mentioned above. In general,

there are defined insertion and deletion of substrings not restricted to one symbol, and their

applicability may be controlled by left and right context. However, the most interesting

questions concern insertion and deletion of single symbols, without context. In order for

such systems to yield non-trivial computation, we let the process be controlled by the nodes

of the distributed structure, thus returning to the framework of P systems. We note that

if the strings evolve independently, their behavior is a just union of behaviors of systems

with one string, which are non-deterministic string-processing systems with states (compare

being in node j with being in state j). Particularly, we focus on possibilities to restrict the

associated control structure to be a tree.

After considering P systems with insertion and deletion anywhere in the strings, we take

the recently introduced case where the insertion and deletion are only applicable in the left

or right ends of the string. We prove similar results, using a tool that we have recently

introduced, specifically for obtaining these kinds of results for string processing systems.

Finally, we recall that another interesting operation on string is splicing. We mention a

number of our results, without describing them in detail.

Chapter 6 is devoted to the applications of areas of our research. First, we look at the task

of generating inflections of words in the Romanian language. We also mention the problem of

annotating affixes in Romanian words. One of the reasons why it was interesting to consider

Romanian language is that it is considerably more flective than, e.g., English. Second, we

present P systems describing a few operations with dictionaries. We found the membrane

structure very suitable for representing and working with the prefix tree of a dictionary. One

interesting point is that the constructions we present are reusable models, in contrast to the

typical approach that the role of a computation of a membrane system is limited to giving

a result. Third, we present a solution to the problem of synchronizing activity of nodes of

a tree. Our deterministic solution works in time 3h + 3, where h is the depth of the tree.

Fourth, we present a new feature of P system: the polymorphism. Polymorphic systems can

change the applicable rules during the computation. A special aspect of polymorphism is

that this is the first model of P systems, where the set of possible rules is not restricted to

be finite by the initial description of the system. Polymorphic P systems exhibit cases of

different behavior from the standard ones; they should be useful in a number of problems

requiring this. Finally, we list a few other applicative directions of our recent research that

we decided not to describe in detail in this habilitation thesis.

Following the applications, we give general conclusions, particularly discussing the most

important results. Following the bibliography, we present appendices containing some in-

formation of local scope, namely, relationships of membrane systems with the time-yield of

context-free grammars, definitions of generalized promoter-inhibitor-priority conditions, the

definition of variant 5 of the circular Post machines used for the proofs, and two technical

proofs: one for the minimally parallel P systems with standard rule types and six polar-

ization, and the other one for the sequential case of P systems with unit rules and energy

assigned to membranes.

19

1. PREREQUISITES AND OVERVIEW

1.1 Formal Language Prerequisites

An alphabet is a finite non-empty set V of abstract symbols. The set of all words over V

(the free monoid generated by V under the operation of concatenation) is denoted by V ∗, we

denote the concatenation operation by • (which is written only when necessary), the empty

word is denoted by λ, and V ∗ \ {λ} is denoted by V +. Any set L ⊆ V ∗ is called a (formal)

language (over V), and a set F of formal languages may be called a family of languages. We

write F(k) to mean all languages of F over (at most) k-symbol alphabet.

For a word w ∈ V ∗ and a symbol a ∈ V , the number of occurrences of a in w is written

as |w|a. Similarly, the number of occurrences of symbols from a set S in w is written as

|w|S. The set of all symbols appearing in w is denoted by alph(w). The permutations of

a word w ∈ V ∗ are Perm(w) = {x ∈ V ∗ : |x|a = |w|a ∀a ∈ V }. We denote the set of

all permutations of the words in L by Perm(L), and we extend this notation to families of

languages. We use FIN , REG, LIN , CF , MAT , CS, RE to denote finite, regular, linear,

context-free, matrix without appearance checking and with erasing rules, context-sensitive

and recursively enumerable families of languages, respectively. The family of languages

generated by extended (tabled) interactionless L systems is denoted by E(T)0L. We also

refer the reader to [269] and [193].

For a finite set V , a (finite) multiset over V is a mapping from V into N; we say that M ′

is a submultiset of M if M ′(a) ≤M(a) for all a ∈ V . In the following, we will use ⊆ both for

the subset as well as the submultiset relation. We also write |x| and |M | to denote the length

of a word x ∈ V ∗ and the weight (i.e., sum of multiplicities M(a) of all symbols a ∈ V) of a

multiset M , respectively. We use notations of set difference for multisets, meaning that the

multiplicity of each symbol is the difference of corresponding multiplicities, assuming it is

non-negative. It is common to write 〈m1, a1〉 · · · 〈mn, an〉 to denote a multiset M such that

M(ai) = mi, 1 ≤ i ≤ n. Whenever it is clear from the context, M can be represented as any

string x the Parikh vector of which with respect to a1, · · · , an is (m1, · · · ,mn).

We often use string notation to denote the multisets. When speaking about membrane

systems, keep in mind that the order in which symbols are written is irrelevant, unless we

speak about the symbols sent to the environment. In particular, speaking about the contents

of some membrane, when we write an1
1 · · · a

nm
m (or any permutation of it), we mean a multiset

consisting of ni instances of symbol ai, 1 ≤ i ≤ m.

The set of non-negative integers is denoted by N; a set S of non-negative integers is called

co-finite if N \ S is finite. The family of all finite (co-finite) sets of non-negative integers is

denoted by NFIN (coNFIN , respectively). The family of all recursively enumerable sets

20

of non-negative integers is denoted by NRE. Throughout the thesis, by “number” we will

mean a non-negative integer. We write SEG1 to denote finite consecutive numeric segments

and SEG2 to denote all elements of SEG1 with the same parity:

SEG1 = {{j | m ≤ j ≤ n} | m,n ∈ N},

SEG2 = {{i + 2j | 0 ≤ j ≤ m} | i,m ∈ N}.

We write NjFINk to denote the family of all sets of numbers each not smaller than j, of

cardinality k.

A linear number set of non-negative is a set S that can be defined by numbers p0, p1,

· · · , pk as S = {p0 +
∑k

i=1 nipi | ni ≥ 0, 1 ≤ i ≤ k}. Linear sets are a subclass of NREG.

We call a class of sets sublinear if it is a proper subclass of linear sets.

Let {a1, · · · , an} be an arbitrary alphabet; the Parikh vector associated with x with

respect to a1, · · · , an is (|x|a1 , · · · , |x|an). The Parikh image of a language L over a1, · · · , an

is the set of all Parikh vectors of strings in L. For a family of languages F, the family of

Parikh images of languages in F is denoted by PsF. A length set of a language L is a set

{|x| | x ∈ L} denoted by N(L), and notation NF means {N(L) | L ∈ F}.

For a word u ∈ V ∗, we define the sets of proper prefixes, proper suffixes and non-empty

suffixes of u by

PPref(u) = {x | u = xy, |y| ≥ 1},

PSuf(u) = {y | u = xy, |x| ≥ 1},

NSuf(u) = {y | u = xy, |y| ≥ 1}, respectively.

We use symbol ⊔⊔ to denote the shuffle operation on words, u⊔⊔λ = λ⊔⊔u = {u}, u ∈ V ∗;

au⊔⊔bv = a(u⊔⊔bv) ∪ b(au⊔⊔v).

The shuffle operation is defined on two words x, y ∈ V ∗ by

⊔⊔(x, y) = {x1y1x2y2 . . . xnyn | n ≥ 1, xi, yj ∈ V ∗,

x = x1x2 . . . xn, y = y1y2 . . . yn}.

Let L1, L2 ∈ V ∗ be two languages. Then

⊔⊔ (L1, L2) =
⋃

x∈L1,y∈L2

⊔⊔ (x, y).

The shuffle of regular languages is known to be regular.

1.1.1 Grammars

A type-0 generative grammar is a quadruple G = (N, T, S, P), where N and T are disjoint

alphabets, called the nonterminal and terminal alphabet, respectively, S ∈ N is the start

symbol or the axiom, and P is a finite set of productions or rewriting rules of the form u→ v,

where u ∈ (N ∪ T)∗N(N ∪ T)∗ and v ∈ (N ∪ T)∗. For two strings x and y in (N ∪ T)∗,

we say that x directly derives y in G, denoted by x =⇒G v, if there is a production u → v

in P such that x = x1ux2 and y = x1vx2, x1, x2 ∈ (N ∪ T)∗ holds. The transitive and

reflexive closure of =⇒G is denoted by =⇒∗
G. The language L(G) generated by G is defined

by L(G) = {w ∈ T ∗ | S =⇒∗
G w}.

21

A grammar is called context-sensitive or type-1 if |u| ≤ |v| for all u → v in P , except

possibly S → λ, provided that S never appears at the right side of any production. A

grammar is called context-free or type-2 if u ∈ N for all u→ v in P . A context-free grammar

is called linear if |v|N = 1. We say that a context-free grammar is regular or type-3 if

v ∈ NT ∗∪T ∗ for all u→ v in P . Without restricting generality, we can additionally require

that v ∈ NT ∪ T , except possibly S → λ, provided that S never appears at the right side of

any production.

We recall now a concept dual to a type-0 generative grammar, called a type-0 analytic

grammar [270]. A type-0 analytic grammar G = (N, T, S, P) is a quadruple, where N, T, S

are defined in the same way as for a generative grammar, and P is a finite set of productions

of the form u → v, where u ∈ (N ∪ T)∗ and v ∈ (N ∪ T)∗N(N ∪ T)∗. The derivation

relation is defined for a type-0 analytic grammar analogously to the derivation relation for a

type-0 generative grammar. The language L(G) recognized or accepted by a type-0 analytic

grammar G = (N, T, S, P) is defined as L(G) = {w ∈ T ∗ | w =⇒∗
G S}.

It is well-known that for the type-0 analytic grammar G′ obtained from a type-0 gener-

ative grammar G with interchanging the left and the right hand sides of the productions in

G, it holds that L(G′) = L(G).

A type-0 generative grammar G = (N, T, S, P) is in Kuroda normal form if every rule

in P is one of the following forms: A −→ a, A −→ λ, A −→ BC, AB −→ CD, where

A,B,C,D ∈ N and a ∈ T .

Analogously, we can say that a type-0 analytic grammar G = (N, T, S, P) is in Kuroda-

like normal form if every production in P is one of the following forms: a −→ A, λ −→ A,

AB −→ C, AB −→ CD, where A,B,C,D ∈ N and a ∈ T .

It is well-known that the type-0 generative grammars in Kuroda normal form determine

the class of recursively enumerable languages and it can immediately be seen that the same

statement holds for the type-0 analytic grammars in Kuroda-like normal form.

1.1.2 Matrix grammars

A context-free matrix grammar (without appearance checking) is a construct G =

(N, T, S,M) where N and T are sets of non-terminal and terminal symbols, respectively, with

N ∩ T = ∅, S ∈ N is the start symbol, M is a finite set of matrices, M = {mi | 1 ≤ i ≤ n},

where the matrices mi are sequences of the form mi = (mi,1, · · · ,mi,ni
), ni ≥ 1, 1 ≤ i ≤ n,

and mi,j, 1 ≤ j ≤ ni, 1 ≤ i ≤ n, are context-free productions over (N, T).

For mi = (mi,1, · · · ,mi,ni
) and v, w ∈ (N ∪ T)∗ we define v =⇒mi

w if and only if there

are w0, w1, · · · , wni
∈ (N ∪ T)∗ such that w0 = v, wni

= w, and for each j, 1 ≤ j ≤ ni, wj is

the result of the application of mi,j to wj−1. The language generated by G is L(G) =

{w ∈ T ∗ | S =⇒mi1
w1 · · · =⇒mik

wk = w,

wj ∈ (N ∪ T)∗, mij ∈M for 1 ≤ j ≤ k, k ≥ 1}.

According to the definitions given in [162], the last matrix can already finish with a

terminal word without having applied the whole sequence of productions.

The family of languages generated by matrix grammars without appearance checking is

denoted by MAT . It is known that for the family of Parikh sets of languages generated

by matrix grammars PsMAT we have PsCF ⊂ PsMAT ⊂ PsRE. Further details about

22

matrix grammars can be found in [162] and in [269]. We only mention that the power of

matrix grammars is not decreased if we only work with matrix grammars in the f-binary

normal form where N is the disjoint union of N1, N2, and {S, f}, and M contains rules of

the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2;

2. (X → Y,A→ x), with X ∈ N1, Y ∈ N1 ∪ {f} ,

A ∈ N2, and x ∈ (N2 ∪ T)∗, |x| ≤ 2;

3. (f → λ).

Moreover, there is only one matrix of type 1 and only one matrix of type 3, which is only

used in the last step of a derivation yielding a terminal result.

1.1.3 Finite automata

Definition 1.1 A finite automaton is a tuple A = (Σ, Q, q0, δ, F), where Σ is an input

alphabet, Q is the set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states,

and δ : Q× Σ −→ 2Q is the transition mapping.

The function δ is naturally extended from symbols to strings. The language accepted by A

is the set L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}.

We also say that a set M of numbers is accepted by a finite automaton A if M = {|w| |

w ∈ L(A), i.e., M is the length set of the language accepted by A. By NjREGk we denote

the family of all sets M of numbers each not smaller than j, such that {x − j | x ∈ M}

is accepted by some finite automaton with k states, with at least one transition from every

non-final state.

1.1.4 Counter automata

In the universality proofs we will use counter automata with conflicting counters. The

meaning of the conflicting counters varies slightly for each result, so it is explained locally.

Definition 1.2 A non-deterministic counter automaton is a tuple M = (Q, q0, qf , P, C),

where

• Q is the set of states,

• q0 ∈ Q is the initial state,

• qf ∈ Q is the final state,

• P is the set of instructions of types (q → q′, i+), (q → q′, i−) and (q → q′, i = 0),

modifying the state and incrementing or decrementing counter i by one, or verifying

whether the value of the counter is zero,

• C is the set of counters.

23

A computation of M consists of transitions between the states from Q with updat-

ing/checking the counters. Attempting to decrement a counter with value zero, or to zero-test

a counter with a non-zero value leads to aborting a computation without producing a re-

sult. Without restricting generality, we assume that for every state, there is at least one

instruction from it. Counter automata are known to be computationally complete: for ev-

ery recursively enumerable set U of non-negative integers there exists a counter automaton

generating precisely elements of U in the first counter, all others having zero value.

The computation starts in state q0 with all counters being zero, and the result (here, a

set of numbers) is the set of all values of a dedicated counter reached by all computations of

M in state qf .

1.1.5 Register machines

The most common way of establishing computational completeness of some variant of a com-

putational model is simulating register machines. Here we briefly recall their definition and

some of their computational properties. A register machine is a tuple M = (m,Q, I, q0, qf)

where m is the number of registers, I is the set of instructions bijectively labeled by elements

of Q, q0 ∈ Q is the initial label, and qf ∈ Q is the final label. The instructions of M can be

of the following forms:

• (q1, [RjP], q2, q3), with q1 ∈ Q \ {qf}, q2, q3 ∈ Q, 1 ≤ j ≤ m.

Increase the value of register j by one, and non-deterministically jump to instruction

q2 or q3. This instruction is usually called increment.

• (q1, 〈RjZM〉, q2, q3), with q1 ∈ Q \ {qf}, q2, q3 ∈ Q, 1 ≤ j ≤ m.

If the value of register j is zero then jump to instruction q3, otherwise decrease the

value of register j by one and jump to instruction q2. The two cases of this instruction

are usually called zero-test and decrement, respectively.

• (qf : HALT). Stop the execution of the register machine.

A register machine is deterministic if q2 = q3 in all its [RjP] instructions. A configuration

of a register machine is described by the contents of each register and by the value of the

program counter, which indicates the next instruction to be executed. Computations start

by executing the first instruction of I (labeled with q0), and terminate with reaching a

HALT -instruction.

Register machines provide a simple universal computational model [233]. We here con-

sider register machines used as accepting or as generating devices. In accepting register

machines, a vector of non-negative integers is accepted if and only if the register machine

halts having it as input. Usually, without loss of generality, we may assume that the instruc-

tion qf : HALT always appears exactly once in I, with label qf . In the generative case, we

start with empty registers and take the results of all possible halting computations.

Reversible register machines

We now consider an equivalent definition, suited for reversibility. Register machines now

have increment, unconditional decrement and test instructions, [236], see also [233]. An

24

m-register machine is defined by a tuple M = (m,Q, I, q0, qf), where m is the number of

registers, I is a set of instructions bijectively labeled by elements of Q, q0 ∈ Q is the initial

label, and qf ∈ Q is the final label. The allowed instructions are:

• (q1, 〈Rj〉, q2, q3) - jump to instruction q2 if the contents of register j is zero, otherwise

proceed to instruction q3;

• (q1, [RjP], q2, q3) - add one to the contents of register j and proceed to either instruction

q2 or q3, non-deterministically;

• (q1, [RjM], q2, q3) - subtract one from the contents of register i and proceed to either

instruction q2 or q3, non-deterministically;

• (qf : HALT) - terminate; it is a unique instruction with label qf .

As for subtract instructions, the computation is blocked if the contents of the corresponding

register is zero. Without restricting generality, we assume that a test of a register always

precedes its subtraction. (In the previous model with addition and conditional subtraction

instructions, reversibility would be more difficult to describe.) A configuration of a register

machine is defined by the current instruction and the contents of all registers, which are

non-negative integers.

If q2 = q3 for any instruction (q1, [RjP], q2, q3) and for any instruction (q1, [RjM], q2, q3),

then the machine is called deterministic. Clearly, this is necessary and sufficient for the

global transition (partial) mapping not to be multi-valued.

A register machine is called reversible if in the case that there is more than one instruction

leading to some instruction q, then exactly two exist, they test the same register, one leads to

q if the register is zero and the other one leads to q if the register is positive. It is not difficult

to check that this requirement is a necessary and sufficient condition for the global transition

mapping to be injective. Let us formally state the reversibility of a register machine: for

any two different instructions (q1, OP1, q3, q4) and (q2, OP2, q5, q6), it holds that q3 6= q5 and

q4 6= q6. Moreover,

if q3 = q6 or q4 = q5, then OP1 = OP2 = 〈RkZ〉 for some 1 ≤ k ≤ m.

It has been shown ([236]) that reversible register machines are universal (a straightforward

simulation of, e.g., reversible Turing Machines [143], would not be reversible). It follows

that non-deterministic reversible register machines can generate any recursively enumerable

set of non-negative integers as a value of the first register by all its possible computations

starting from all registers having zero value.

Being used as decision devices, register machines may halt in an accepting state with

label qyes or in a rejecting state qno, respectively. In the following, we shall call a specific

model of P systems computationally complete if and only if for any register machine M we

can effectively construct an equivalent P system Π of that type simulating each step of M

in a bounded number of steps and yielding the same results.

25

Korec register machines

A deterministic register machine is the following construction:

M = (m,Q, I, q0, qf),

where Q is a set of states, R = {R1, . . . , Rm} is the set of registers, q0 ∈ Q is the initial state,

qf ∈ Q is the final state and I is a set of instructions (called also rules) of the following form:

1. (q1, [RjP], q2) ∈ I, q1, q2 ∈ Q, q1 6= q2, Rj ∈ R (being in state q1, increase register Rj

and go to state q2).

2. (q1, [RjM], q2) ∈ I, q1, q2 ∈ Q, q1 6= q2, Rj ∈ R (being in state q1, decrease register Rj

and go to state q2).

3. (q1, 〈Rj〉, q2, q3) ∈ I, q1, q2, q3 ∈ Q,Rj ∈ R (being in state q1, go to q2 if register Rj is

not zero or to q3 otherwise).

4. (q1, 〈RjZM〉, q2, q3) ∈ I, q1, q2, q3 ∈ Q, Rj ∈ R (being in state q1, decrease register Rj

and go to q2 if successful or to q3 otherwise).

5. (qf , HALT) (may be associated only to the final state qf).

We note that for each state q1 there is only one instruction of the types above.

A configuration of a register machine is given by the (k + 1)-tuple (q, n1, · · · , nm), where

q ∈ Q and ni ∈ N, 1 ≤ i ≤ k, describing the current state of the machine as well as the

contents of all registers. A transition of the register machine consists in updating/checking

the value of a register according to an instruction of one of types above and by changing

the current state to another one. We say that the machine stops if it reaches the state qf .

We say that M computes a value y ∈ N on the input x ∈ N if, starting from the initial

configuration (q0, x, 0, · · · , 0), it reaches the final configuration (qf , y, 0, · · · , 0).

It is well-known that register machines compute all partial recursive functions and only

them, [233]. For every m ∈ N, with every register machine M having m registers, an m-

ary partial recursive function Φm
M is associated. Let Φ0, Φ1, Φ2, · · · , be a fixed admissible

enumeration of the set of unary partial recursive functions. Then, a register machine M

is said to be strongly universal if there exists a recursive function g such that Φx(y) =

Φ2
M(g(x), y) holds for all x, y ∈ N.

We also note that the power and the efficiency of a register machine M depends on the

set of instructions that are used. In [207] several sets of instructions are investigated. In

particular, it is shown that there are strongly universal register machines with 22 instructions

of form [RjP] and 〈RjZM〉. Moreover, these machines can be effectively constructed.

Figure 1.1 shows this special universal register machine (more precisely in [207] only

a machine with 32 instructions of type [RjP], [RjM] and 〈RjZ〉 is constructed, and the

machine below may be simply obtained from that one).

Here is the list of rules of this machine.

26

Figure 1.1: Flowchart of the strongly universal machine

(q1, 〈R1ZM〉, q3, q6) (q3, [R7P], q1) (q4, 〈R5ZM〉, q6, q7)

(q6, [R6P], q4) (q7, 〈R6ZM〉, q9, q4) (q9, [R5P], q10)

(q10, 〈R7ZM〉, q12, q13) (q12, [R1P], q7) (q13, 〈R6ZM〉, q33, q1)

(q33, [R6P], q14) (q14, 〈R4ZM〉, q1, q16) (q16, 〈R5ZM〉, q18, q23)

(q18, 〈R5ZM〉, q20, q27) (q20, 〈R5ZM〉, q22, q30) (q22, [R4P], q16)

(q23, 〈R2ZM〉, q32, q25) (q25, 〈R0ZM〉, q1, q32) (q27, 〈R3ZM〉, q32, q1)

(q29, [R0P], q1) (q30, [R2P], q31) (q31, [R3P], q32)

(q32, 〈R4ZM〉, q1, qf)

Computational completeness

Register machines provide a simple universal computational model [233]. The results proved

in [174] (based on the results established in [233]) as well as in [181] and [179] immediately

lead to the following results:

Proposition 1.1 For any partial recursive function f : Nα → Nβ (α > 0, β > 0) there

exists a deterministic register machine M with (max{α, β}+2) registers computing f in such

a way that, when starting with n1 to nα in registers 1 to α, M has computed f(n1, · · · , nα) =

(r1, · · · , rβ) if it halts in the final label qf with registers 1 to β containing r1 to rβ, and

27

all other registers being empty; if the final label cannot be reached, f(n1, · · · , nα) remains

undefined.

Register machines can also be used as accepting or as generating devices. In accepting

register machines, a vector of non-negative integers is accepted if and only if the register

machine halts. The following Proposition is a direct consequence of Proposition 1.1.

Proposition 1.2 For any recursively enumerable set L ⊆ Ps (α) RE of vectors of non-

negative integers there exists a deterministic register machine M with (α + 2) registers ac-

cepting L in such a way that, when starting with n1 to nα in registers 1 to α, M has accepted

(n1, . . . , nα) ∈ L if and only if it halts in the final label qf with all registers being empty.

To generate vectors of non-negative integers we have to use non-deterministic register

machines. The following Proposition is also a direct consequence of Proposition 1.1.

Proposition 1.3 For any recursively enumerable set L ⊆ Ps (β) RE of vectors of non-

negative integers there exists a non-deterministic register machine M with (β + 2) registers

generating L in such a way that, when starting with all registers being empty, M has generated

(r1, . . . , rβ) ∈ L if it halts in the final label qf with registers 1 to β containing r1 to rβ, and

all other registers being empty.

A direct consequence of the results exposed in [233] is that in Propositions 1.1 and 1.3

we may assume without loss of generality that only [RjP] instructions are applied to the

output registers. This fact will be used to decrease the number of membranes of energy-

based P systems simulating register machines; in particular, for each output register one

membrane will suffice, whereas to simulate the behavior of the other registers we will need

two membranes.

A register machine is called partially blind if performing a zero-test blocks the computa-

tion, thus leading to no result. We can reflect this situation by omitting l3 from all 〈RjZM〉

instructions, turning them into [RjM] instructions. However, unless all non-output regis-

ters have value zero at halting, the result of a computation is discarded; note that this is

an implicit final zero-test, imposed by the definition and not affecting the power of regis-

ter machines in the general case. It is known [170] that partially blind register machines

characterize PsMAT .

Tape output

When considering the generation of languages, we use the model of a register machine with

output tape, which also uses a tape operation:

– (q1 : [SaW], qa)

Write symbol a on the output tape and go to q2.

We then also specify the output alphabet T in the description of the register machine with

output tape, i.e., we write M = (m,T,Q, I, q0, qf).

The following result is also folklore (e.g., see [233]):

Proposition 1.4 Let L ⊆ V ∗ be a recursively enumerable language. Then L can be gener-

ated by a register machine with output tape with 2 registers.

28

Table 1.1: Variants of circular Post machines
CPM0 CPM1 CPM2 CPM3 CPM4 CPM5

px→ q px→ q px→ q px→ q px→ q px→ q

px→ yq px→ yq px→ yq px→ yq px→ yq

p0→ yq0 px→ xq0 px→ yq0 px→ yzq px→ yxq p→ yq

1.1.6 Circular Post machines

The following model (CPMs) has been introduced in [214], where it was shown that all

introduced variants of CPMs (CPM0-CPM4, see Table 1.1) are computationally complete,

and moreover, the same statement holds for CPMs with two symbols.

In [213], [91] several universal CPMs of variant 0 (CPM0) having small size were con-

structed, among them in [91] a universal CPM0 with 6 states and 6 symbols. We only

consider the deterministic variant of CPM0s.

Definition 1.3 A circular Post machine (of type 0) is a tuple (Σ, Q,q1,qf , R) with a finite

alphabet Σ where 0 ∈ Σ is the blank, a finite set of states Q, the initial state q1 ∈ Q, the

final state qf ∈ Q, and a finite set of instructions R with all instructions having one of the

forms px → q (erasing the symbol read by deleting a symbol), px → yq (overwriting and

moving to the right), p0 → yq0 (overwriting and inserting a blank symbol), where x, y ∈ Σ

and p,q ∈ Q, p 6= qf . We also refer to all instructions with qf in the left hand side as halt

instructions.

We also refer to all instructions with qf in the right hand side as halt instructions. The

storage of this machine is a circular tape, the read and write head moves only in one direction

(to the right), and with the possibility to delete a cell or to create and insert a new cell with

a blank.

Notice that a circular tape can be thought of as a finite string of symbols (from the one

following the state to the one preceding the state in the circular representation). In this

way, CPM0 is a finite-state machine, which reads the leftmost symbol of the string, possibly

consuming it, and uses the symbol+state information to change the state, possibly writing

a symbol on the right.

Table 1.1 summarizes the difference between the variants of CPMs, [214] (we also include

CPM5 in Appendix A3). The difference between CPMk, 0 ≤ k ≤ 4, is only in the way

the lengthening instruction works: whether it applies to any symbol or only to the blank,

whether it introduces one of the two new symbols after the state, and whether one of the new

symbols equals the one read. Although all variants are computationally equivalent, these

distinctions can affect the size of the smallest universal machines.

1.2 Networks of Evolutionary Processors

Evolutionary processors For an alphabet V, we say that a rule a→ b, with a, b ∈ V ∪{λ}

is a substitution rule if both a and b are different from λ; it is a deletion rule if a 6= λ and

b = λ; and, it is an insertion rule if a = λ and b 6= λ. The set of all substitution rules,

29

deletion rules, and insertion rules over an alphabet V is denoted by SubV , DelV , and InsV ,

respectively. Given such rules π, ρ, σ, and a word w ∈ V ∗, we define the following actions of

σ on w: If π ≡ a→ b ∈ SubV , ρ ≡ a→ λ ∈ DelV , and σ ≡ λ→ a ∈ InsV , then

π∗(w) =

{
{ubv : ∃u, v ∈ V ∗(w = uav)},

{w}, otherwise
(1.1)

ρ∗(w) =

{
{uv : ∃u, v ∈ V ∗(w = uav)},

{w}, otherwise
(1.2)

ρr(w) =

{
{u : w = ua},

{w}, otherwise
(1.3)

ρl(w) =

{
{v : w = av},

{w}, otherwise
(1.4)

σ∗(w) = {uav : ∃u, v,∈ V ∗(w = uv)}, (1.5)

σr(w) = {wa}, σl(w) = {aw}. (1.6)

Symbol α ∈ {∗, l, r} denotes the way of applying an insertion or a deletion rule to a

word, namely, at any position (a = ∗), in the left-hand end (a = l), or in the right-hand

end (a = r) of the word, respectively. Note that a substitution rule can be applied at any

position. For every rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define the α− action of σ on

L by σα(L) =
⋃

w∈L σα(w). For a given finite set of rules M , we define the α− action of M

on a word w and on a language L by Mα(w) =
⋃

σ∈M σα(w) and Mα(L) =
⋃

w∈L Mα(w),

respectively.

An evolutionary processor consists of a set of evolutionary operations and a filtering

mechanism.

For two disjoint subsets P and F of an alphabet V and a word over V , predicates ϕ(1)

and ϕ(2) are defined as follows:

ϕ(1)(w; P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅ and

ϕ(2)(w; P, F) ≡ alph(w) ∩ P 6= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions defined by the

two sets P (permitting contexts) and F (forbidding contexts).

For every language L ⊆ V ∗ we define ϕi(L, P, F) = {w ∈ L | ϕi(w; P, F)}, i = 1, 2.

An evolutionary processor over V is a 5-tuple (M,PI, FI, PO, FO), where:

- Either M ⊆ SubV or M ⊆ DelV or M ⊆ InsV . The set M represents the set of

evolutionary rules of the processor. Notice that every processor is dedicated to only one

type of the evolutionary operations.

- PI, FI ⊆ V are the input permitting/forbidding contexts of the processor, while

PO,FO ⊆ V are the output permitting/forbidding contexts of the processor.

The set of evolutionary processors over V is denoted by EPV .

Hybrid networks

Definition 1.4 A hybrid network of evolutionary processors (an HNEP, shortly) is a 7-tuple

Γ = (V,H,N , C0, α, β, i0), where the following conditions hold:

30

- V is the alphabet of the network.

- H = (XH , EH) is an undirected graph with set of vertices or nodes XH and set of edges

EH . H is called the underlying graph of the network.

- N : XH −→ EPV is a mapping which associates the evolutionary processor N (x) =

(Mx, P Ix, F Ix, POx, FOx) with each node x ∈ XH .

- C0 : XH −→ 2V ∗

is a mapping which identifies the initial configuration of the network.

It associates a finite set of words with each node of the graph H.

- α : XH −→ {∗, l, r}; α(x) defines the action mode of the rules performed in node x on

the words occurring in that node.

- β : XH −→ {(1), (2)} defines the type of the input/output filters of a node. More

precisely, for every node, x ∈ XH , we define the following filters: the input filter is given as

µx(·) = ϕβ(x)(·; PIx, F Ix), and the output filter is defined as τx(·) = ϕβ(x)(·, POx, FOx). That

is, µx(w) (resp.τx) indicates whether or not the word w can pass the input (resp. output)

filter of x. More generally, µx(L) (resp. τx(L)) is the set of words of L that can pass the

input (resp. output) filter of x.

- i0 ∈ XH is the output node of Γ.

We say that card(XH) is the size of Γ. An HNEP is said to be a complete HNEP, if its

underlying graph is a complete graph.

A configuration of an HNEP Γ, as above, is a mapping C : XH −→ 2V ∗

which associates

a set of words with each node of the graph. A component C(x) of a configuration C is the

set of words that can be found in the node x in this configuration, hence a configuration can

be considered as the sets of words which are present in the nodes of the network at a given

moment.

A configuration can change either by an evolutionary step or by a communication step.

When it changes by an evolutionary step, then each component C(x) of the configura-

tion C is altered in accordance with the set of evolutionary rules Mx associated with

the node x and the way of applying these rules, α(x). Formally, the configuration C ′

is obtained in one evolutionary step from the configuration C, written as C =⇒ C ′, iff

C ′(x) = M
α(x)
x (C(x)) for all x ∈ XH .

When the configuration changes by a communication step, then each language processor

N (x), where x ∈ XH , sends a copy of its each word to every node processor, where the

node is connected with x, provided that this word is able to pass the output filter of x,

and receives all the words which are sent by processors of nodes connected with x, provided

that these words are able to pass the input filter of x. Those words which are not able to

pass the respective output filter, remain at the node. Formally, we say that configuration

C ′ is obtained in one communication step from configuration C, written as C ⊢ C ′, iff

C ′(x) = (C(x)− τx(C(x)))
⋃

{x,y}∈EH
(τy(C(y)) ∩ µx(C(y))) holds for all x ∈ XH .

Computation and result For an HNEP Γ, the computation in Γ is a sequence of con-

figurations C0, C1,C2, . . . , where C0 is the initial configuration of Γ, C2i =⇒ C2i+1 and

C2i+1 ⊢ C2i+2, for all i ≥ 0.

HNEPs can be considered both language generating devices (generating hybrid networks

of evolutionary processors or GHNEPs) and language accepting devices (accepting hybrid

networks of evolutionary processors or AHNEPs).

31

In the case of GHNEPs we define the generated language as the set of all words which

appear in the output node at some step of the computation. Formally, the language generated

by a generating hybrid network of evolutionary processors Γ is L(Γ) =
⋃

s≥0 Cs(i0).

In the case of AHNEPs, in addition to the components above, we distinguish an in-

put alphabet and a network alphabet, V and U, where V ⊆ U, and instead of an initial

configuration, we indicate an input node iI . Thus, for an AHNEP, we use the notation

Γ = (V, U,H,N , iI , α, β, i0).

The computation by an AHNEP Γ for an input word w ∈ V ∗ is a sequence of configura-

tions C
(w)
0 , C

(w)
1 ,C

(w)
2 , . . . , where C

(w)
0 is the initial configuration of Γ, with C

(w)
0 (iI) = {w}

and C
(w)
0 (x) = ∅, for x ∈ G, x 6= iI , and C

(w)
2i =⇒ C

(w)
2i+1, C

(w)
2i+1 ⊢ C

(w)
2i+2, for all i > 0.

A computation as above is said to be accepting if there exists a configuration in which the

set of words that can be found in the output node io is non-empty. The language accepted

by Γ is defined by

L(Γ) = {w ∈ V ∗ | the computation by Γ on w is an accepting one}.

Obligatory networks The model of OHNEPs is obtained from the model of HNEPs by

excluding the second case, i.e., “{w},otherwise”, from (1)-(4). Hence, for a string to remain

in a node, it is obligatory for it to evolve via some rule from SubV , DelV or InsV .

Notice that the definition of OHNEPs is thus simpler and more uniform than that of

HNEPs. In the same time, using the power of the underlying graph, it makes it possible

to even reach the computational completeness with nodes only having one operation, and

without filters, [29].

Basic model of NEPs The concept of NEPs is simpler than that of HNEPs. We find it

suitable here to define the former in terms of the latter, by modifying the following:

• Only the ∗ mode exists for evolutionary processors.

• A permitting filter and a forbidden filter are combined into one filter, which may be

any regular language. A string passes the filter iff it belongs to the corresponding

regular language. The filtering mode β loses its meaning.

The power of NEPs Insertion, deletion, and substitution are fundamental operations

in formal language theory, their power and limits have obtained much attention during the

years. Due to their simplicity, language generating mechanisms based on these operations

are of particular interest. Networks of evolutionary processors (NEPs, for short), introduced

in [148], are proper examples for distributed variants of these constructs. Motivated by some

models of massively parallel computer architectures, networks of language processors have

been introduced in [160]. Inspired by biological processes, a special type of networks of

language processors was introduced in [148], called networks with evolutionary processors,

because the allowed productions model the point mutation known from biology. Results on

networks of evolutionary processors can be found e. g. in [148], [147], [146]. In [147] it

was shown that networks of evolutionary processors are universal in that sense that they

can generate any recursively enumerable language, and that networks with six nodes are

32

sufficient to get all recursively enumerable languages. The notion of an HNEP, as a language

generating device, was introduced in [229] and the concept of an AHNEP was defined in

[224]. In [159] it was shown that, for an alphabet V , GHNEPs with 27 + 3 · card(V) nodes

are computationally complete. For accepting HNEPs, in [222] it was shown that for any

recursively enumerable language there exists a recognizing AHNEP with 31 nodes; the result

was improved in [221] where the number of necessary nodes was reduced to 24. Furthermore,

in [221] the authors demonstrated a method to construct for any NP-language L an AHNEP

with 24 nodes which decides L in polynomial time. A significant improvement is presented

in Section 5.1.

1.3 P Systems with Symbol-Objects

Membrane computing is a theoretical framework of parallel distributed multiset processing.

It has been introduced by Gheorghe Păun in 1998, and has been an active research area; see

[284] for the comprehensive bibliography and [252],[257] for a systematic survey. Membrane

systems are also called P systems.

1.3.1 Multiset rewriting

Consider a finite alphabet O.

A multiset rewriting rule is given by r : u → v, where u ∈ O+, v ∈ O∗. This rule

can be applied to a multiset w if |w|a ≥ |u|a for all a ∈ O, and the result is w′, denoted

w ⇒ w′, if |wv|a = |w′u|a for a ∈ O. If a rule has a promoter a, we write it as u → v|a. If

a rule has an inhibitor a, we write it as u → v|¬a. The priority relationship is denoted by

>. We also refer to u and v as lhs(r) and rhs(r) if r : u → v (even if it has a promoter or

an inhibitor). Applicability of rules with additional control depends on the corresponding

condition (presence of symbol a, absence of symbol a, or inapplicability of rules with higher

priority, respectively). In the following we will not speak about promoters in the sequential

case, as rules u → v|a and ua → va then are equivalent. The relation ⇒ is defined as the

union of relations corresponding to the application of all rules.

A multiset rewriting system is a tuple (O, T, w0, R), where O is the alphabet, T is the

terminal alphabet (it may be omitted if T = O), w0 is the initial multiset, and R is a

(non-empty) finite set of rules. In the accepting case, T is the input alphabet, and the

computation starts when an arbitrary multiset over T is added to w0. Consider a multiset

rewriting system Π with alphabet O. A configuration is a multiset u. The space C of

configurations (i.e., of multisets over O) is essentially an |O|-dimensional space with non-

negative integer coordinates. The relation ⇒ induces an infinite labeled graph on C (with

each configuration labeling a node and each set of rules whose application leads from a

configuration C to a configuration C ′ labeling an edge leading from C to C ′). The halting

configurations (and only these) have out-degree zero.

33

Maximal Parallelism

We now consider the case that instead of applying one rule at each step, a multiset of rules

may be applied. Moreover, it is required that the chosen multiset of rules is not extendable;

this is the usual definition of maximally parallel transitions ([252]). We refer to this variant

as P systems for short, see Note 1.1.

Features Maximal parallelism is the most common computation mode in membrane com-

puting, see also Definition 4.8 in [185].

Priorities are subsumed by conditional contexts. This statement is valid even when the

rules are not restricted to non-cooperative ones, and when determinism is not required, in

either derivation mode (also see [172]). From [172] we already know that in the case of rules

without context conditions, the context conditions in the new rules are only sets of atomic

inhibitors, which also follows from the construction given above. If a fixed enumeration

of the elements of the alphabet is assumed, then multisets are isomorphic to vectors. In

that sense, sequential multiset processing corresponds to vector addition systems (see, e.g.,

[170]). The most famous membrane computing model where determinism is a criterion of

universality versus decidability is the model of catalytic P systems, see [171] and [197]. It

is also known that non-cooperative rewriting P systems with either promoters or inhibitors

are computationally complete, [133], [134], [135]. It is natural to ask a question about the

deterministic case, addressed in Section 2.2.

Note 1.1 In fact, there exists a large variety of models and variants of P systems, including

the ones with sequential mutliset rewriting. Yet, maximal parallelism remains by far the most

studied transition mode, so the maximal parallelism is the default mode of P systems, and it

is assumed unless stated otherwise.

Reversibility and Determinism

Reversibility is an important property of computational systems. It has been well studied

for circuits of logical elements ([165]), circuits of memory elements ([234]), cellular automata

([235]), Turing machines ([143], [237]), register machines ([236]). Sequential reversible P

systems have been considered in [216], in the energy-based model, simulating Fredkin gates

and thus reversible circuits. It is known that (see, e.g, [170]) the generative power of sequen-

tial multiset rewriting systems equals PsMAT , even without requiring additional properties

like reversibility. In connection with reachability issues, we would also like to mention the

connection with temporal logic [164]. Self-stabilization is a known concept in conventional

distributed computing, introduced by E. Dijkstra in [163], as well as in systems biology.

Studying all these properties is quite important for multiset processing; this direction is

presented in Sections 2.3 and 2.4.

Throughout this thesis, and in particular in this section, by reachable we mean reachable

from the initial configuration(s). We now define two properties; extending the requirement

from reachable configurations to all configurations, we obtain their strong variants (in case

of accepting systems, the initial configurations are obtained by adding arbitrary multisets

over a fixed subalphabet to a fixed initial multiset).

34

Definition 1.5 We call a multiset rewriting system Π strongly reversible if every config-

uration has in-degree at most one; Π is called reversible if every reachable configuration has

in-degree at most one. We call Π strongly deterministic if every configuration has out-

degree at most one; Π is called deterministic if every reachable configuration has out-degree

at most one.

Note that for strong reversibility it is crucial that in-degree is the number of transitions

from all preimages, not only from the reachable ones, and that for strong determinism the

out-degree of all configurations, not only of the reachable ones, is at most one. On the other

hand, the properties reversibility and determinism only refer to the configurations in the

actual computation of the system.

Result of Computations

We now proceed by defining a computation as a sequence of transitions, starting in the

initial configuration, and ending in some halting configuration if it is finite. The result of

a halting computation is the number of terminal objects inside the system when it halts

(or the number of input objects when the system starts, in the accepting case). The set

N(Π) of numbers generated by a multiset processing system Π is the set of results of all its

computations. The family of number sets generated by reversible multiset rewriting systems

with features α is denoted by NRMR(α)T , where α ⊆ {ncoo, coo, pro, inh, Pri} and the

braces of the set notation are omitted, with ncoo, coo, pro, inh, and Pri meaning that

we use non-cooperative rules, cooperative rules, promoters, inhibitors, and priorities on the

rules, respectively. Subscript T means that only terminal objects contribute to the result of

computations; if T = O, we omit specifying it in the description and we then also omit the

subscript T in the notation. In the case of accepting systems, we write Na instead of N ,

and subscript T has no meaning. For strongly reversible systems, we replace R by Rs. For

deterministic (strongly deterministic) systems, we replace R by D (Ds, respectively). In the

maximally parallel case, we replace MR by OP in the notation.

We say that a class of systems generating or accepting NRE is universal.

Representing words Words may be represented by string-objects, for both theoretical

research and applications, see Chapter 7 of [257]. Represent a word may be represented by

a single symbol object, or by a few objects of the form (letter,position) as in, e.g., [131],

[132]. Positions of the letters in a word may be represented by nested membranes. The

corresponding letters can be then encoded by objects in the associated regions, membrane

types or membrane labels. Working with such a representation, even implementing a rule

a → bc requires sophisticated types of rules, like creating a membrane around existing

membrane, as defined in [144]. In accepting mode, linear order is induced by the order in

which the system brings the input symbols inside, see, e.g., [155]. The model of languages

generated by systems with parallel applications of non-cooperative rules that rewrite symbol

objects and/or send them between the regions has been introduced already in 2000, [258].

35

1.3.2 Transitional P systems

In the following we consider multiset processing distributed over a tree structure. A mem-

brane system is defined by a construct

Π = (O, µ,w1, · · · , wm, R1, · · · , Rm, i0), where

O is a finite set of objects,

µ is a hierarchical structure of membranes, bijectively labeled by

1, · · · ,m, (see Note 1.2), the interior of each membrane defines

a region; the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

Note 1.2 For specific purposes, it may be convenient to use different symbols as membrane

labels. In that case, the role of 1, · · · ,m is played by the order in which multisets wi and sets

Ri are listed.

The rules of a membrane systems have the form u→ v, where u ∈ O+, v ∈ (O × Tar)∗.

The target indications from Tar = {here, out}∪{inj | 1 ≤ j ≤ m} are written as a subscript,

and target here is typically omitted. In case of non-cooperative rules, u ∈ O. We also use

the target in!, meaning that the corresponding object is sent to all inner membranes; a

necessary number of copies is made. (This last case is used for synchronization in P systems,

when the rules are specified without even knowing the number of inner membranes).

The rules are applied in maximally parallel way: no further rule should be applicable to

the idle objects. In case of non-cooperative systems, the concept of maximal parallelism is

the same as in L systems: all objects evolve by the associated rules in the corresponding

regions (except objects a in regions i such that Ri does not contain any rule a → u, but

these objects do not contribute to the result). The choice of rules is non-deterministic.

A configuration of a P system is a construct which contains the information about the

hierarchical structure of membranes as well as the contents of every membrane at a definite

moment of time. The process of applying all rules which are applicable in the current

configuration and thus obtaining a new configuration is called a transition. A sequence of

transitions is called a computation. The computation halts when such a configuration is

reached that no rules are applicable. The result of a (halting) computation is the sequence

of objects sent to the environment (all the permutations of the symbols sent out in the

same time are considered). The language L(Π) generated by a P system Π is the union

of the results of all computations. The family of languages generated by non-cooperative

transitional P systems with at most m membranes is denoted by LOPm(ncoo, tar). If the

number of membranes is not bounded, m is replaced by ∗ or omitted. If the target indications

of the form inj are not used, tar is replaced by out.

36

Membrane creation

The transitional model can be enhanced with membrane creation (mcre) and membrane

dissolution (δ) possibilities. In the notation we then add H (the set of labels for membranes,

say, of cardinality n) after O, and we specify n sets of rules instead of m ones.

These rules can be of the forms (1) a → v and (2) a → [b]
i
, where a, b ∈ O, i ∈ H,

and either v ∈ (O × tar)∗ or v ∈ (O × tar)∗{δ}, with tar = {here, out} ∪ {inj | j ∈ H}.

The presence of δ on the right-hand side of a rule means that the application of the rule

leads to the dissolution of the membrane (and all its contents, objects and membranes alike,

become elements of the surrounding region). The skin membrane is never dissolved. A rule

a→ [b] i of type (2) means that object a produces a new membrane, with label i, containing

the object b.

We also mention restricted membrane creation (denoted mcrer): in region i it is only

possible to create membranes with label i.

Knowing the label of the membrane, we also know the rules associated with it. We

recall that the number of membrane labels (i.e., kinds of membranes) is n and the rules are

associated to the membrane labels, while the number of membranes initially is m and can

change during the computation. The rules are used in the non-deterministic (the objects

and the rules are chosen non-deterministically) maximally parallel way (no further object

can evolve after having chosen the objects for the rules), thus obtaining transitions between

a configuration of the system to another one.

Computing power of the transitional model Almost all known characterizations and

even bounds for generative power of different variants of membrane systems with various

ingredients and different descriptional complexity bounds are expressed in terms of REG,

MAT , ET0L and RE, their length sets and Parikh sets (and much less often in terms of FIN

or other subregular families, or CF or CS, or those accepted by log-tape bounded Turing

machines, [158], [196]). The known technique of flattening the structure (this is “folklore” in

membrane computing; see, e.g., [266], [185]). It is known (see, e.g., [7]) that computing all

transitions from a configuration with k objects takes polynomial time with respect to k. The

regularity of It has been shown already in [258] that non-cooperative transitional P systems

generate at least all regular languages. It is a natural to ask the question about their exact

power, addressed in Section 2.1.

Another important question was to determine the computational power of non-cooperative

P systems with dynamic membrane structure (e.g., with membrane dissolution and creation);

this research direction is presented in Section 2.5. An even more difficult question, about

the power of P systems with active membranes without polarization, has been formulated

and solved, see Section 4.2.

37

1.3.3 Symport/antiport

Definition 1.6 A P system (of degree d ≥ 1) with antiport and/or symport rules (in this

section called P system for short) is a construct

Π = (O, T,E, µ, w1, · · · , wd, R1, · · · , Rd, i0), where

O is the alphabet of objects;

T ⊆ O is the alphabet of terminal objects;

E ⊆ O is the set of objects occurring unboundedly in the environment;

µ is a membrane structure consisting of d membranes

(usually labeled i and represented by corresponding

brackets [and] i, 1 ≤ i ≤ d);

wi, 1 ≤ i ≤ d, are strings over O associated with the regions

1, 2, · · · , d of µ; they represent multisets of objects initially

present in the regions of µ;

Ri, 1 ≤ i ≤ d, are finite sets of rules of the form (u, out; v, in), with

u 6= λ and v 6= λ(antiport rule), and (x, out) or (x, in), with

x 6= λ(symport rule);

i0, 1 ≤ i0 ≤ d, specifies the output membrane of Π.

The antiport rule (u, out; v, in) in Ri exchanges the multiset u inside membrane i with

the multiset v outside membrane i; the symport rule (x, out) sends the multiset x out of

membrane i and (x, in) takes x in from the region surrounding membrane i (if i is the skin

membrane, then x has to contain at least one symbol not in E). The membrane structure µ

and the multisets represented by wi, 1 ≤ i ≤ d, in Π constitute the initial configuration of

the system.

In the maximally parallel mode, a transition from one configuration to another one is

obtained by the application of a maximal multiset of rules. The system continues maximally

parallel transition steps until there remain no applicable rules in any region of Π; then the

system halts. We consider the vector of multiplicities of objects from T contained in the

output membrane i0 at the moment when the system halts as the result of the underlying

computation of Π; observe that here we do not count the non-terminal objects present in the

output membrane. The set of results of all halting computations possible in Π is denoted by

Ps(Π), respectively. The family of all sets of vectors of natural numbers computable by P

systems with d membranes and using rules of type α is denoted by PsOEPd(α). When the

parameter d is not bounded, it is replaced by ∗.

We consider variants of P systems using only rules of very restricted types α: antik
indicates that only antiport rules of weight at most k are used, where the weight of an

antiport rule (u, out; v, in) is defined as max{|u|, |v|}; symk indicates that only symport

rules of weight at most k are used, where the weight of a symport rule (x, out) or (x, in) is

defined as |x|. For an antiport rule (u, out; v, in), we may refine the weight by also considering

the total number of symbols specified in the rule – the size of an antiport rule is defined

as |u| + |v|; then antisk indicates that only antiport rules of weight at most k and size

38

at most s are used. For example, anti32 allows antiport rules of the forms (a, out; b, in),

(ab, out; c, in), and (c, out; ab, in), whereas anti2 (coinciding with anti42) also allows rules of

the form (ab, out; cd, in), with a, b, c, d being single objects. The size of a symport rule equals

its weight, hence, we do not need additional notions.

When using the minimally parallel mode (amin), in each transition step we choose a

multiset of rules from R in such a way that this chosen multiset includes at least one rule

from every set of rules (in this chapter we only consider the partitioning of the rules according

to the given membrane structure) containing applicable rules. In the asynchronous (asyn)

and the sequential mode (sequ), in each transition step we apply an arbitrary number of

rules/exactly one rule, respectively. The corresponding families of sets of vectors of natural

numbers generated by P systems with d membranes and using rules of type α in the transition

mode X are denoted by PsOEP
(X)
d (α), X ∈ {amin, asyn, sequ}.

If at the end of a computation only a bounded number of at most k nonterminal objects

remains in the output membrane, we replace the subscript E by −k; if we do not distinguish

between terminal and nonterminal symbols, then we simply omit the subscript E.

All these variants of P systems with antiport and/or symport rules can also be considered

as accepting devices, the input being given as the numbers of objects in the distinguished

membrane i0. In that case we write Psa instead of Ps; in the accepting case, the subscripts E

and −k to O are of no meaning and therefore omitted. The families specified by deterministic

systems are denoted by adding D in front of O.

When we are only interested in the number of symbols in the output/input membrane,

we replace Ps by N .

In the case that only m objects are needed to generate/accept a set of natural numbers,

for all X ∈ {max, amin, asyn, sequ} we obtain the families NOmP
(X)
d (α) and NaOmP

(X)
d (α),

respectively. We usually omit superscript (max).

The power of communication P systems with antiport and symport rules were intro-

duced in [247] where the first results concerning computational completeness were estab-

lished: NRE = NOP2(anti2, sym2) = NOP5(anti1, sym2). The computational complete-

ness with one membrane independently was shown in [189] and [178] as well as in [175],

where this result was obtained based on a more general model with channels through mem-

branes. A deterministic simulation of register machines by P systems with antiport rules

of weight two first was established in [180]. Tissue P systems were introduced in [230],

and tissue-like P systems with channel states were investigated in [182]. P systems with

minimal symport and antiport rules first were investigated in [142], where nine membranes

were used to achieve computational completeness. A deterministic proof using three cells

for the tissue case first was presented in [280]. The descriptional complexity of P systems

with respect to the number of objects first was considered in [254], where three objects were

shown to be sufficient for obtaining computational completeness in four membranes. and

for tissue P systems even with only one object computational completeness was established

in [177]. universal P systems with a small number of antiport rules were described in [157],

[176]. published in [198]. NtOP1 (sym2) ⊆ NFIN from was shown in [188], respectively.

Evolution-communication P systems were introduced in [149]. The minimally parallel mode

was introduced in [152], yet the concept was already considered in [252], p. 84, and called

39

minimal synchronization there. A formal framework for P systems was developed in [185].

The first universal P system with symbol-objects has been reported in [157]: it had

73 symport/antiport rules. Together with some optimizations the authors decreased this

number to 30, at a price of increasing the size of rules. A very interesting direction is

decreasing this number; a significant improvement is described in Section 3.1.

Membrane division rules were added to (tissue) P systems with symport and antiport,

to solve SAT in a uniform way, [255]. Decisional framework for active membranes has been

formally described in [253]. The original definition of separation can be found in [80].

Symport rules move predefined groups objects to a neighboring region [247]. With

symport-3 (i.e., symport rules only, of weight up to 3), one proved in [188] that 13 extra

objects suffice for computational completeness. One naturally asks about characterization

of the computational power of symport-3 with fewer superfluous objects. This direction is

reported in Section 3.3.

Tissue

In tissue P systems, the role of membranes is played by membrane channels between cells as

well as between the cells and the environment. In contrast to tree-like P systems, in tissue

P systems every cell may have connection with the environment and every cell may have

connection with any other cell, so the underlying topology may be any graph. We assume

that we speak about the model where rules are assigned to membranes or channels.

In the tuple description of a P system, d (the number of cells) is added before O, µ is

removed, ch (the set of edges over {0, 1, · · · , d}) is added after wd, and the sets of rules are

defined for each channel in ch.

To denote (the results of computation of) all tissue P systems, we take the notation for

tree-like P systems and replace P by tP .

For tissue P systems with antiport rules (here symport can be considered a particular

case of antiport), a rule in R(i,j) is written as x/y (xy 6= λ) and its application means moving

the objects specified by x from cell i (from the environment, if i = 0) to cell j, at the same

time moving the objects specified by y in the opposite direction.

1.3.4 Active membranes

A P system with active membranes (of degree m ≥ 1) is a construct of the form

Π = (O,H,E, µ, w1, · · · , wm, R),

where O is the alphabet of objects, E = {0, · · · , n − 1} with n ≥ 1 is the set of electrical

charges (polarizations), µ is the membrane structure (with m membranes, bijectively labeled

with 1, 2, · · · ,m and with initial polarization specified; by H we denote the set of labels

{1, 2, · · · ,m}), w1, · · · , wm are strings over O indicating the multisets of objects at the

beginning present in the m regions of µ, and R is a finite set of rules of the following forms:

(a) [a→ v] i
h
, a ∈ O, v ∈ O∗, h ∈ H, i ∈ E

(evolution rules, used in parallel in the region of membrane h, provided that the po-

larization of the membrane is i);

40

(b) a[] i
h
→ [b]j

h
, a, b ∈ O, h ∈ H, i, j ∈ E

(communication rules, sending an object into a membrane, possibly changing the po-

larization of the membrane);

(c) [a] i
h
→ []j

h
b, a, b ∈ O, h ∈ H, i, j ∈ E

(communication rules, sending an object out of a membrane, possibly changing the

polarization of the membrane);

(d) [a] i
h
→ b, a, b ∈ O, h ∈ H, i ∈ E

(membrane dissolution rules; in reaction with an object, the membrane is dissolved);

(e) [a] i
h
→ [b]j

h
[c]k

h
, a, b, c ∈ O, h ∈ H, i, j, k ∈ E

(division rules for elementary membranes; in reaction with an object, the membrane

is divided into two membranes with the same label, possibly of different polarizations,

and the object specified in the rule is replaced in the two new membranes by possibly

new objects).

(f0) [[]
h1

[]
h2

]
h0
→ [[]

h1
]
h0

[[]
h2

]
h0

, h0, h1, h2 ∈ H

(polarizationless division rules for non–elementary membranes. If the membrane with

label h0 contains other membranes than those with labels h1, h2, these membranes and

their contents are duplicated and placed in both new copies of the membrane h0; all

membranes and objects placed inside membranes h1, h2, as well as the objects from

membrane h0 placed outside membranes h1 and h2, are reproduced in the new copies

of membrane h0).

An output is associated with a halting computation – and only with halting computations

– in the form of the objects sent into the environment during the computation. When using

a P system Π for decision problems, we also specify an input membrane i0, where we put

the input to be analyzed is put in addition to the axiom wi0 .

The rules of type (a) are considered to only involve objects, while all other rules are as-

sumed to involve objects and membranes mentioned in their left-hand side. An application of

a rule consists in subtracting a multiset described in the left-hand side from a corresponding

region (i.e., associated to a membrane with label h and polarization i for rules of types (a),

(c), (d) and (e), or immediately outer of such a membrane for rules of type (b)), adding a

multiset described in the right-hand side of the rule to the corresponding region (that can

be the same as the region from where the left-hand side multiset was subtracted, immedi-

ately inner or immediately outer, depending on the rule type), and updating the membrane

structure accordingly if needed (changing membrane polarization, dividing or dissolving a

membrane).

The rules can only be applied simultaneously if they involve different objects and mem-

branes (we repeat that rules of type (a) are not considered to involve a membrane), and such

parallelism is maximal if no further rules are applicable to objects and membranes that were

not involved.

The power of active membranes P systems with active membranes [253] are parallel

computation devices inspired by the internal working of biological cells. It is already known

41

that polynomial-space P systems and polynomial-space Turing machines are equal in com-

puting power [263], but the proof of this result does not generalize to larger space bounds.

The exponential-space case is considered in Section 4.1.

The first efficient semi–uniform solution to SAT was given by Gh. Păun in [253], using

division for non–elementary membranes and three electrical charges. This result was im-

proved by Gh. Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [260] using only division

for elementary membranes. The probabilistic polynomial complexity class PP, also called

Majority-P, has been introduced in [191]. Naturally, it is interesting to consider only two

charges (polarizations, or states of membranes), as reported in Section 4.3 and in Section 4.2.

The question about the power of P systems with active membranes without non-elementary

membrane division beyond NP ∪ co−NP is considered in Section 4.4.

P. Sośık in [272] provides an efficient semi–uniform solution to QSAT (quantified satisfia-

bility problem), a well known PSPACE–complete problem, in the framework of P systems

with active membranes but using cell division rules for non–elementary membranes. It is

well known that QSAT is a PSPACE–complete problem [246]. An interesting question is

the role of polarizations. In Section 4.5 it is shown that QSAT can be solved even without

polarizations.

Solving SAT in a minimally parallel way, using non-elementary membrane division

(replicating both objects and inner membranes), [152]. However, non-elementary membrane

division allows to rely on the synchronization via the global parallelism. A natural question is

whether it could be avoided, shedding more light on the nature of minimal parallelism itself.

This question is addressed in Section 4.6, using more polarizations and/or non-standard

rules.

Active membranes - rule variants

If all rules do not depend on the membrane polarizations and do not modify them, we denote

them as (a0)–(f0), and we omit the polarizations in the specification of rules.

Generally, rules of type (a) are executed in parallel, while at most one rule out of all

rules of types (b), (c), (d), (e) can be applied to the same membrane in the same step. We

also speak about the sequential version

(a′′
s) [a]e

h
→ [u]e

′

h
for a ∈ O, u ∈ O∗, h ∈ H and e, e′ ∈ E.

of rules (a) (let us use ′′ to indicate that the rule is allowed to change the polarization

of the membrane) and their modifications (b0), (c0), (d0), (e0), (a′
0s), (b′0), (c

′
0), (e

′
0) (here, 0

represents that the rules neither distinguish polarization nor change it, while ′ means that

the rule is allowed to change membrane label).

1.3.5 Energy assigned to membranes

Considering the energy balancing of processes in a cell first was investigated in [259] and then

in [166]. There the energies of all rules to be used in a given step in a membrane are summed

up; if the total amount of energies is positive ([259]) or within a given range ([166]), then

this multiset of rules can be applied if it is maximal with this property. membrane systems

42

where the rules are directly assigned to the membranes (as, for example, in [175]). For

sequential variants of P systems see, for example, [167] and [168]. In the sequential mode as

this was originally defined for P systems with unit rules and energy assigned to membranes

in [173]. Energy-based P systems, [259], [217, 216, 215], are a model of computation in

the framework of Membrane Computing in which a given amount of energy is associated

to each object, and the energy manipulated during computations is taken into account by

means of conservative rules. In [217, 216] energy-based P systems are used to simulate

Fredkin gates and Fredkin circuits, respectively. In [215] it is proved that energy-based P

systems working in the sequential way and using a form of local priorities associated to

the rules are computationally complete. However, in [215] the precise characterization of

the computational power of energy-based P systems without priorities is left open. This

question is considered in Section 4.8.

A P system of degree d+1 with unit rules and energy assigned to membranes is a construct

Π of the form

Π = (O, µ, e1, · · · , ed, w0, w1, · · · , wd, R1, · · · , Rd), where

• O is an alphabet of objects ;

• µ is a membrane structure (with the membranes labeled by numbers 0, · · · , d in a

one-to-one manner);

• e1, · · · , ed ∈ N are the initial energy values assigned to the membranes 1, · · · , d;

• w0, · · · , wd are multisets over V associated with the membrane regions 0, · · · , d of µ;

• R1, · · · , Rd are finite sets of unit rules associated with the membranes 1, · · · , d, which

are of the form (α : a, ∆e, b), where α ∈ {in, out}, a, b ∈ O, and |∆e| is the amount of

energy that, for ∆e ≥ 0, is added to or, for ∆e < 0, is subtracted from ei (the energy

assigned to membrane i) by the application of the rule.

Instead of R1, · · · , Rd, we can specify only one set of rules R with

R := {(αi : a, ∆e, b) | (α : a, ∆e, b) ∈ Ri, 1 ≤ i ≤ d}.

In each step, only one rule may be applied to each membrane. This renames the object,

moves it across membrane i in the direction specified by α, and changes its energy from

ei to ei + ∆e (the new value must be non-negative in order for the rule to be applicable).

Moreover, we consider some sort of priorities: out of the applicable rules to a membrane,

one of the rules with max |∆e| has to be used.

A sequence of transitions is called a computation; it is successful if and only if it halts.

The result of a successful computation is considered to be the distribution of energy values

assigned to the membranes (a non-halting computation does not produce a result). The set

of Parikh vectors generated by Π (in the representation as multisets over {ei | 1 ≤ i ≤ d}) is

denoted by L(Π). Observe that in this model we do not take into account the environment

and the energy assigned to the skin membrane.

43

1.3.6 Energy-based P systems

In the following model the energy may be present in regions rather than being associated to

membranes. We now recall the definition of energy-based P systems as given in [216].

An energy-based P system of degree m ≥ 1 is a tuple

Π = (A, ε, µ, e, w1, · · · , wm, R1, · · · , Rm, iin, iout), where:

• A is a finite set of objects called the alphabet;

• ε : A → N is a mapping that associates to each object a ∈ A the value ε(a) (also

denoted by εa), which can be viewed as the “energy value of a”. If ε(a) = ℓ, we also

say that object a embeds ℓ units of energy;

• µ is a description of a tree structure consisting of m membranes, injectively labeled

with elements from the set {1, · · · ,m};

• e /∈ A is a special symbol denoting one free energy unit;

• wi, for 1 ≤ i ≤ m, specifies multisets (over A ∪ {e}) of objects initially present in

region i. We will sometimes assume that the number of e’s (but not of objects from

A) in some regions of the system is unbounded;

• Ri, for 1 ≤ i ≤ m, is a finite set of multiset rewriting rules over A ∪ {e} associated

with region i. Rules can be of the following types:

aek → (b, p) and b→ (a, p)ek (1.7)

where a, b ∈ A, p ∈ {here, in(j), out | 1 ≤ j ≤ m}, and k is a non-negative integer.

We also omit target here, together with a comma and parentheses. Rules satisfy the

conservativeness condition ε(a) + k = ε(b);

• iin ∈ {1, 2, · · · ,m} specifies the input region of Π;

• iout ∈ {0, 1, · · · ,m} specifies the output region of Π (iout = 0 corresponds to the

environment).

Remark 1.1 In the above definition we excluded rules of types e→ (e, p), originally included

in [216]. It is easy to see that this does not influence the computational power of energy-based

P systems.

When a rule of the type aek → (b, p) is applied, the object a, in presence of k free

energy units, is allowed to be transformed into object b (note that εa + k = εb, for the

conservativeness condition). If p = here, then the new object b remains in the same region;

if p = out, then b exits from the current membrane. Finally, if p = in(j), then b enters

into the membrane labeled with j, which must be directly contained inside the membrane

associated to the region where the rule is applied. The meaning of rule b→ (a, p)ek, where k

is a positive integer number, is similar: the object b is allowed to be transformed into object

a by releasing k units of free energy (also here, εb = εa +k). As above, the new object a may

44

optionally move one level up or down into the membrane structure. The k free energy units

might then be used by another rule to produce “more energetic” objects from “less energetic”

ones. When k = 0 the rule aek → (b, p), also written as a → (b, p), transforms the object

a into the object b (note that in this case εb = εa) and moves it (if p 6= here) upward or

downward into the membrane hierarchy, without acquiring or releasing any free energy unit.

A similar observation applies to rules b→ (a, p)ek when k = 0.

Rules can be applied either in the sequential or in the maximally parallel mode. When

working in the sequential mode, at each computation step (a global clock is assumed) exactly

one enabled rule is non-deterministically chosen and applied in the whole system. When

working in the maximally parallel mode, instead, at each computation step in each region

of the system a maximal multiset of applicable rules is selected, and then all those rules

are applied in parallel. Here maximal means that no further rule is applicable to objects

that are “idle”, that is, not already used by some other rule. If two or more maximal sets of

applicable rules exist, then one of them is non-deterministically chosen.

A configuration of Π is the tuple (M1, · · · ,Mm) of multisets (over A ∪ {e}) of objects

contained in each region of the system; (w1, · · · , wm) is the initial configuration. A con-

figuration where no rule can be further applied on is said to be final. A computation is a

sequence of transitions between configurations of Π, starting from the initial one. A compu-

tation is successful if and only if it reaches a final configuration or, in other words, it halts.

The multiset wiin of objects occurring inside the input membrane is the input for the com-

putation, whereas the multiset of objects occurring inside the output membrane (or ejected

from the skin, if iout = 0) in the final configuration is the output of the computation. A

non-halting computation produces no output. As an alternative, we can consider the Parikh

vectors associated with the multisets, and see energy-based P systems as computing devices

that transform (input) Parikh vectors to (output) Parikh vectors. We may also assume that

energy-based P systems have α ≥ 1 input membranes and β ≥ 1 output membranes, instead

of one. This modification does not increase the computational power of energy-based P sys-

tems, since for any fixed value of α ≥ 1 (resp., β ≥ 1), the set Nα (resp., Nβ) is isomorphic

to N, as it is easily shown by using the well known Cantor mapping.

In what follows sometimes we will use energy-based P systems as generating devices:

we will disregard the input membrane, and will consider the multisets (or Parikh vectors)

produced in the output membrane at the end of the (halting) non-deterministic computations

of the system. In particular, in the output multisets we will only count the number of free

energy units contained in the β output regions in the final configuration. We will denote the

family of β-dimensional vectors generated in this way by energy-based P systems with at most

m membranes and unbounded energy by Ps(β)OPm(energy∗). The union of all these classes

for β ranging through the set of all non-negative integers is denoted by PsOPm(energy∗).

When β = 1, the class Ps(β)OPm(energy∗) will be written as NOPm(energy∗). In all cases

we will replace the subscript m by ∗ if no bound is placed on the number of membranes.

If instead of maximal parallelism we assume that the P system evolves sequentially, we will

add the superscript sequ to P in the notation.

45

1.3.7 Polymorphism

The biological idea that different actions are carried out by different objects, which too can

be acted upon. (This last idea was also considered in, e.g., [167] and [2]. Suppose we want to

be able to manipulate the rules of the system during its computation. A number of papers

has been written in this direction (see, e.g., GP systems [167], rule creation [140], activators

[2], inhibiting/deinhibiting rules [151] and symport/antiport of rules [150]), but in most of

them the rules are predefined in the description of the system. a problem informally stated

by Gh. Păun in Section “Where Is the Nucleus?” of [248] by proposing a computational vari-

ant based on one simple difference: the rules are taken from the current configuration rather

than from the description of the P system itself. The idea of a nucleus was also considered in

[274], but such a presentation had the following drawbacks. First, one described the dynam-

ics of the rules in a high-level programming language (good for simulators, but otherwise

too powerful extension having the power of conventional computers directly built into the

definition). Second, this dynamics of the rules did not depend on the actual configuration of

the membrane system (no direct feedback from objects to rules). In the polymorphic model,

the dynamics of rules is defined by exactly the same mechanism as the standard dynamics

of objects.

We define a polymorphic P system as a tuple

Π = (O, T, µ, ws, w1L, w1R, · · · , wmL, wmR, ϕ, iout),

where O is a finite alphabet, µ is a tree structure consisting of 2m+1 membranes, bijectively

labeled by elements of H = {s} ∪ {iL, iR | 1 ≤ i ≤ m} (the skin membrane is labeled by

s; we also require for 1 ≤ i ≤ m that the parent membrane of iL is the same as the parent

membrane of iR), wi is a string describing the contents of region i, 1 ≤ i ≤ m, and ϕ is

a mapping from {1, · · · ,m} to the features of the rules described below. The set T ⊆ O

describes the output objects, while iout ∈ H ∪{0} is the output region (0 corresponds to the

environment).

Notice that the rules of a P system are not explicitly given in its description. Essentially,

such a system has m rules, and these rules change as the contents of regions other than skin

changes. Initially, for 1 ≤ i ≤ m rule i : wiL → (wiR, ϕ(i)) belongs to the region defined by

the parent membrane of iL and iR. If wiL is empty, then the rule is considered disabled.

For every step of the computation each rule is defined in the same way, taking the current

contents of iL and iR instead of initial ones.

In what follows we mainly consider a single feature, i.e., target indications. In this case,

the range of ϕ is Tar = {ini | i ∈ H} ∪ {here, out}. We denote the class of all polymorphic

P systems with cooperative rules and target indications and at most k membranes by

OPk(polym+d(coo), tar).

In the notation above, the number k is replaced by ∗ or omitted if no bound is specified.

The subscript +d means that the rules can be disabled; we write −d instead, if wiL is never

empty for 1 ≤ i ≤ m during any computation. We prefix this notation with D if we restrict

the class to the deterministic systems (for every input if it is specified, see below).

A computation is a sequence of configurations starting in the initial configuration, cor-

responding to the transitions induced by non-deterministic maximally parallel application

46

of rules; it is called halting if no rules are applicable to the last configuration. In the latter

case the multiset of objects from T in region iout is called the result.

If we want to compute instead of generating, we extend the tuple Π by the description of

the input as follows. In the definition of the P system, we insert the input alphabet Σ ⊂ O

after O and we insert the input region iin after ϕ. In this case, the input multiset over Σ is

added to wiin before the computation starts. If we want to accept instead of computing, we

remove T and iout from the description of the P system; the input is considered accepted if

and only if the system may halt. If we want to decide instead of computing, we construct a

system that always halts with either yes or no in the output region, such that this answer

uniquely depends on the input; the input is accepted if and only if the answer is yes.

The class of polymorphic P systems with cooperative rules and target indications, allow-

ing disabled rules, with at most k membranes, defines a family of sets of numbers, of sets of

vectors or of functions, respectively denoted by

NOPk(polym+d(coo), tar), PsOPk(polym+d(coo), tar),

fDOPk(polym+d(coo), tar).

In a similar way it is possible to replace cooperative rules with a more restricted set, remove

target indications or add more features to the polymorphic P systems, modifying the notation

accordingly.

1.4 String-objects. String Replication

Let us recall the basics of P systems with string objects and input. The membrane structure

µ is defined as a rooted tree with nodes labeled 1, · · · , p. The objects of the system are

strings (or words) over a finite alphabet O. A sub-alphabet Σ ⊆ O is specified, as well as the

input region i0, 1 ≤ i0 ≤ p. We now define the model with cooperative rewriting rules (i.e.

string rewriting rules, not limited by context-free ones) with string replication and target

indications.

A rule a→ u1, where a ∈ O+ and u1 ∈ O∗, can transform any string of the form w1aw2

into w1u1w2. Application of a rule a → u1||u2|| · · · ||uk transforms any string of the form

w1aw2 into the multiset of strings w1u1w2, w1u2w2, · · · , w1ukw2. If in the right side of the

rule (ui, t) is written instead of some ui, 1 ≤ i ≤ k, t ∈ {out} ∪ {inj | 1 ≤ j ≤ p}, then the

corresponding string would be sent to the region specified by t.

Hence, such a P system is formally defined as follows:

Π = (O, Σ, µ,M1, · · · ,Mp, R1, · · · , Rp, i0), where

Mi is the multiset of strings initially present in region i, 1 ≤ i ≤ p,

Ri is the set of rules of region i, 1 ≤ i ≤ p,

and O, Σ, µ, i0 are described above.

The initial configuration contains the input string(s) over Σ in region i0 and strings Mi

in regions i. Rules of the system are applied in parallel to all strings in the system. The

computation consists in non-deterministic application of the rules in a region to a string

47

in that region. The computation halts when no rules are applicable. The result of the

computation is the set of all words sent out of the outermost region (called skin).

1.4.1 Active membranes

Definition 1.7 A P system with string-objects and input is a tuple

Π =
(
O, Σ, H,E, µ,M1, · · · ,Mp, R, i0

)
, where:

• O is the working alphabet of the system (the objects are strings over O),

• Σ is an input alphabet,

• H is an alphabet whose elements are called labels, i0 identifies the input region,

• E is the set of polarizations,

• µ is a membrane structure (a rooted tree) consisting of p membranes injectively labeled

by elements of H,

• Mi is an initial multiset of strings over O associated with membrane i, 1 ≤ i ≤ p,

• R is a finite set of rules defining the behavior of objects from O∗ and of membranes

labeled by elements of H.

A configuration of a P system is its “snapshot”, i.e., the current membrane structure and

the multisets of string-objects present in regions of the system. The initial configuration

is C0 = (µ,M1, · · · ,Mp). Each subsequent configuration C ′ is obtained from the previous

configuration C by maximally parallel application of rules to objects and membranes. This

is denoted by C ⇒ C ′ (no further rules are applicable together with the rules that transform

C into C ′). A computation is thus a sequence of configurations starting from C0, respecting

relation⇒ and ending in a halting configuration (i.e., such one that no rules are applicable).

If M is a multiset of strings over the input alphabet Σ ⊆ O, then the initial configuration of a

P system Π with an input M over alphabet Σ and input region i0 is (µ,M1, . . . ,Mi0−1,Mi0 ∪

M,Mi0+1, . . . ,Mp).

To speak about P systems with active membranes, we need to specify the rules, i.e., the

elements of the set R in the description of a P system. Due to the nature of the problem of

the applications that we consider, the standard model was generalized in the following:

• Cooperative rules: a rule operates on a substring of an object (otherwise, the system

cannot even distinguish different permutations of a string); this feature is represented

by a superscript * in the rule types;

• String replication (to return the result without removing it from the dictionary);

• Membrane creation (to add words to the dictionary).

Hence, the rules can be of the following forms:

48

(a∗) [a→ b]e
h

for h ∈ H, e ∈ E, a, b ∈ O∗- evolution rules

(associated with membranes and depending on the label and the polarization of the

membranes, but not directly involving the membranes: the membranes are neither

taking part in the application of these rules nor are they modified by them);

(a∗
r) [a→ b||c]eh for h ∈ H, e ∈ E, a, b, c ∈ O∗ (as above, but with string replication);

(b∗) a[]e1

h
→ [b]e2

h
for h ∈ H, e1, e2 ∈ E, a, b ∈ O∗ - communication rules

(an object is introduced into the membrane, possibly modified; the polarization of the

membrane can be modified, but not its label);

(c∗) [a]e1

h → []e2

h b for h ∈ H, e1, e2 ∈ E, a, b ∈ O∗ - communication rules

(an object is sent out of the membrane, possibly modified; also the polarization of the

membrane can be modified, but not its label);

(d∗) [a]e
h
→ b for h ∈ H, e ∈ E, a, b ∈ O∗ - dissolving rules

(in reaction with an object, a membrane can be dissolved, while the object specified

in the rule can be modified);

(g∗) [a → [b]e2

g
]e1

h
for g, h ∈ H, e1, e2 ∈ E, a, b ∈ O∗ - membrane creation rules

(an object is moved into a newly created membrane, possibly modified).

Additionally, we will write ∅ in place of some strings on the right-hand side of the rules,

meaning that the entire string is deleted.

The rules of types (a∗), (a∗
r) and (g∗) are considered to only involve objects, while all

other rules are assumed to involve objects and membranes mentioned in their left-hand side.

An application of a rule consists in replacing a substring described in the left-hand side

of a string in the corresponding region (i.e., associated to a membrane with label h and

polarization e for rules of types (a∗), (a∗
r) and (d∗), or associated to a membrane with label

h and polarization e1 for rules of type (c∗), or immediately outer of such a membrane for

rules of type (b∗)), by a string described in the right-hand side of the rule, moving the string

to the corresponding region (that can be the same as the source region immediately inner

or immediately outer, depending on the rule type), and updating the membrane structure

accordingly if needed (changing membrane polarization, creating or dissolving a membrane).

Only the rules involving different objects and membranes can only be applied in parallel;

such parallelism is maximal if no further rules are applicable in parallel.

1.4.2 Insertion/deletion

An insertion-deletion system is a grammar-like string-processing formal computational

model, making sense even without the distributed structure. We will, however, skip the

definitions and notations that are different from insertion-deletion P systems, and most of

the presentation for the non-distributed model, referring the interested reader to, e.g., [88],

proceeding with the P systems framework.

Let V be and alphabet and let I,D be finite sets of triples of strings (over V) of the form

(u, α, v), α 6= λ. An insertion rule (u, α, v) ∈ I indicates that the string α can be inserted

in between u and v, while a deletion rule (u, α, v) ∈ D indicates that α can be removed

49

from the context (u, v). As stated otherwise, (u, α, v) ∈ I corresponds to the rewriting rule

uv → uαv, and (u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. We refer by =⇒

to the relation defined by an insertion or deletion rule. The complexity of sets of insertion

and deletion rules I, D is described by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},

m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},

m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

An insertion-deletion P system is the construct

Π = (O, T, µ,M1, · · · ,Mn, R1, · · · , Rn), where

• O is a finite alphabet,

• T ⊆ O is the terminal alphabet,

• µ is the membrane (tree) structure of the system which has n membranes (nodes)

and it can be represented by a word over the alphabet of correctly nested marked

parentheses,

• Mi, for each 1 ≤ i ≤ n is a finite language associated to the membrane i,

• Ri, for each 1 ≤ i ≤ n is a set of rules associated to membrane i, of the following forms:

(u, x, v; tar)a, where (u, x, v) is an insertion rule, and (u, x, v; tar)e, where (u, x, v) is a

deletion rule, and the target indicator tar is from the set {here, inj, out | 1 ≤ j ≤ n},

where j is a label of immediately inner membrane of membrane i.

An n-tuple (N1, · · · , Nn) of finite languages over O is called a configuration of Π. The

transition between the configurations consists of applying the insertion and deletion rules

in parallel to all possible strings, non-deterministically, and following the target indications

associated with the rules.

A sequence of transitions between configurations of a given insertion-deletion P system

Π starting from the initial configuration is called a computation with respect to Π. We say

that Π generates L(Π), the result of its computations. It consists of all strings over T ever

sent out of the system during its computations.

Insertion-deletion tissue P systems are defined in an analogous manner, however the

membranes are not necessarily arranged in a tree structure; insertion and deletion rules

sending strings between any regions i and j are allowed. This means that the rules have the

same form except the set used for tar, which becomes {j | 1 ≤ j ≤ n}.

We denote by ELSPk(insm,m′

p , delq,q′

p) the family of languages L(Π) generated by

insertion-deletion P systems with k ≥ 1 membranes and insertion and deletion rules

of size at most (n,m,m′; p, q, q′). We omit the letter E if T = O and replace k by

∗ if k is not fixed. In this thesis we also consider insertion-deletion P systems where

deletion rules have a priority over insertion rules; the corresponding class is denoted as

(E)LSPk(insm,m′

p < delq,q′

p). Letter “t” is inserted before P to denote classes for the tissue P

systems case, e.g., ELStPk(insm,m′

p , delq,q′

p).

50

Sometimes we are only interested in the multiplicities of each symbol in the output

words, i.e., in the Parikh image of the languages described above. In this case we say that

a family of sets of vectors is generated and we replace L by Ps in the notation above,

e.g., PsStPk(insm,m′

p , delq,q′

p). In case of exo-operations introduced below, we replace ins by

e− ins and del by e− del.

Exo Insertion and Deletion

We say that insertion or deletion is applied at the left (right) end of the string if the place

of insertion or deletion is restricted accordingly. In particular, for the rules without context,

the operations can be written as

x =⇒insl(α) αx, x =⇒insr(α) xα, αx =⇒dell(α) x, xα =⇒delr(α) x.

In transitional P systems, we write the target indication in parentheses after α.

For example, if rule insl(x, out) is applied to string w then the string xw will be sent to

the outer region.

Let us illustrate the difference between IDPs and eIDPs by a simple example. A system

Π = ({a, b}, {a, b}, []
1
, {babbab}, {del(b), ins(a)}) generates language L(Π) = {w ∈ {a, b}∗ |

|w|b ≤ 4}. However, a system Π′ = ({a, b}, {a, b}, []
1
, {babbab}, {dell(b), insr(a)}) generates

language L(Π′) = ({λ} ∪ {b}){abbab}{a}∗.

We assume that every string represented in the region has arbitrary many copies. Hence,

all rules applicable to a string are applied in the same step, the original string remains, and

the multiplicities are not tracked.

The power of insertion and deletion Insertion systems, without using the deletion

operation, were first considered in [190], however the idea of the context adjoining was

exploited long before by [223]. Both insertion and deletion operations were first considered

together in [206] and related formal language investigations can be found in several places;

we mention only [204], [231] and [251]. In the last few years, the study of these operations

has received a new motivation from molecular computing, see, for example, [161], [205], [256],

[275], because, from the biological point of view, insertion-deletion operations correspond to

mismatched annealing of DNA sequences. As it was shown in [225], the context dependency

may be replaced by insertion and deletion of strings of sufficient length, in a context-free

manner. If the length is not sufficient (less than two) then such systems are decidable

and a characterization of them was shown in [278]. Similar investigations were continued

in [232] and [210] on insertion-deletion systems with one-sided contexts, i.e. where the

context dependency is present only from the left (right) side of all insertion and deletion

rules. These articles also give some combinations of rule parameters that lead to systems

which are not computationally complete. However, if these systems are combined with the

distributed computing framework of P systems [252], then their computational power may

strictly increase, see [211], [209]. It is not difficult to see that dropping the requirement of

the uniqueness of the instructions with the same label, the power of partially blind register

machines does not change, see, e.g., [170].

51

Insertion and deletion are fundamental string operations, introduced in the formal lan-

guage theory mainly with linguistic motivation. The biological motivation is that these

operations correspond to mismatched annealing of DNA sequences. They are also present

in the evolution processes as point mutations as well as in RNA editing, see [141], [271]

and [256]. It was shown that such additional control permits to increase the computational

power up to computationally completeness results for all four cases, improving the results

from [211] and [209]. However, the framework of P systems cannot increase the computa-

tional power to such extent in all cases, namely it was shown that if context-free insertion and

deletion rules using at most two symbols are considered, i.e. systems of size (2, 0, 0; 2, 0, 0),

then the corresponding P systems are still not computationally complete [208], [278]. It

is thus interesting to consider conditions that would allow such systems to reach computa-

tional completeness. We should also mention the research in [203]: one considers insertion

at one end of a string coupled with deletion at the other end. Even when the pairing is not

prescribed, the universality is still achieved. However, the size of the inserted and deleted

substrings is not bounded. It has been shown in [214] that any Turing machine can be

simulated by a CPM0.

Splicing Head splicing systems (H systems) [194] were one of the first theoretical models of

biomolecular computing (DNA-computing). From the formal language theory point of view,

the computational power of the obtained model is rather limited, only regular languages can

be generated. Various additional control mechanisms were proposed in order to “overcome”

this obstacle and to generate all recursively enumerable languages. An overview of such

mechanisms can be found in [256]. The number of rules is a measure of the size of the

system. This approach is coherent with investigations related to small universal Turing

machines, e.g. [267]. Test tube systems based on splicing, introduced in [156], communicate

through redistribution of the contents of the test tubes via filters that are simply sets of

letters (in a similar way to the separate operation of Lipton-Adleman [218], [1]). After a

series of results, the number of tubes sufficient to achieve this result was established to be

3 [264]. The computational power of splicing test tube systems with two tubes is still an open

question. A simple possibility to turn splicing-based systems into computationally complete

devices are time-varying distributed H systems (TVDH systems). Such systems work like

H systems, but on each computational step the set of active rules is changed in a cycle.

These sets are called components. It was shown [256] that 7 components are enough for the

computational completeness; further this number was reduced to 1 [226], [227]. This last

result shows a fine difference between the definitions of a computational step in H systems.

If one iterates the splicing operation while keeping all generated strings, then such systems

are regular. If only the result of each splicing step is kept, then the resulting systems are

computationally complete. An overview of results on TVDH systems may be found in [228].

Like for small universal Turing machines, we are interested in such universal systems that

have a small number of rules. A first result was obtained in [265] where a universal splicing

P system with 8 rules was shown. We also consider a class of H systems which can be viewed

as a counterpart of the matrix grammars in the regulated rewriting area. These systems are

called double splicing extended H systems [256].

52

1.5 Computing with P Systems

When a configuration is reached where no rule can be applied, the computation stops, and the

multiplicity of objects sent into environment during the computation is said to be computed

by the system along that computation. We denote by Ps(Π) the set of vectors generated in

this way (by means of all computations) by a system Π. If we take into account the sequence

of symbols as they are sent out into the environment (when two or more objects leave the

system at the same moment, then all permutations of these objects are considered), then we

obtain the string language generated by Π which is denoted by L (Π) . When considering Π

as an accepting system for set of vectors, we put the input multiset into the skin membrane

and accept by halting computations.

We denote the resulting families generated by such P systems by XOn1,n2,n3Pn4,n5,n6F

where (1) X is either L for languages or Ps for sets of vectors of non-negative integers; we

add the subscript a when considering accepting systems; (2) F is the list of features used

in the model (e.g., we consider (ncoo, tar,mcre, δ), (ncoo, tar,mcrer, δ), (active1, a, b, c, d, e),

and (active2, a, c)); (3) the numbers n4, n5, n6 represent the bounds on the starting number

of membranes, the maximal number of membranes in any computation, and the number of

membrane labels, ∗ representing the absence of a bound (if all three numbers are ∗, then we

simply omit them); (4) the numbers n1, n2, n3 have the same meaning, but for the objects

inside the system; the middle parameter, n2 or n5, can be replaced by n′
2/n2 or n′

5/n5 where

the primed numbers indicate the bounds on the number of objects or membranes ever present

in the system during halting computations only, thus refining this complexity measure.

1.5.1 Decisional framework

The P systems of interest here are those for which all computations give the same result.

This is because it is enough to consider one computation to obtain all information about

the result.

Definition 1.8 A P system with output is confluent if (a) all computations halt; and (b)

at the end of all computations of the system, region i0 contains the same multiset of objects

from T .

In this case one can say that the multiset mentioned in (b) is the result given by a P system,

so this property is already sufficient for convenient usage of P systems for computation.

However, one can still speak about a stronger property: a P system is strongly confluent

if not only the result of all computation is the same, but the entire halting configuration is

the same. A yet stronger property is determinism: a P system is called deterministic if it

only has one computation.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a language over a

finite alphabet (whose elements are called instances) and θX is a total Boolean function over

IX . To solve this kind of problems, we consider P systems as recognizer languages devices.

Definition 1.9 A recognizer P system is a P system with external output such that: (a) the

working alphabet contains two distinguished elements yes and no; (b) all computations halt;

53

and (c) if C is a computation of the system, then either object yes or object no (but not both)

must have been released into the environment, and only in the last step of the computation.

In recognizer P systems, we say that a computation C is an accepting computation (resp.

rejecting computation) if the object yes (resp. no) appears in the environment associated

with the corresponding halting configuration of C.

Now, we deal with recognizer membrane systems with an input membrane solving decision

problems in a uniform way in the following sense: all instances of a decision problem with

the same size (according to a previously fixed polynomial time computable criterion) are

processed by the same system, on which an appropriate input, representing the specific

instance, is supplied.

Definition 1.10 A P system with an input membrane is a tuple (Π, Σ, iΠ), where: (a) Π

is a P system with external output; with the working alphabet O; (b) Σ ⊂ O is an (input)

subalphabet, and the initial multisets are over O \ Σ; (c) iΠ is the label of a distinguished

(input) membrane.

Definition 1.11 Let X = (IX , θX) be a decision problem. We say that X is solvable in

polynomial time by a family Π = (Π(n))n∈N of recognizer membrane systems with an input

membrane, and we denote it by X ∈ PMCR, if

• The family Π is polynomially uniform by TM: some deterministic TM constructs in

polynomial time the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions whose domain is

IX , such that for each u ∈ IX , s(u) is a natural number and cod(u) is an input multiset

of the system Π(s(u)), verifying the following:

• The family Π is polynomially bounded with regard (X, cod, s); that is, there exists a

polynomial function p(n) such that for each u ∈ IX every computation of the system

Π(s(u)) with input cod(u) halts in at most p(|u|) steps.

• The family Π is sound with regard to (X, cod, s); that is, for each instance of the

problem u ∈ IX such that there exists an accepting computation of Π(s(u)) with input

cod(u), we have θX(u) = 1.

• The family Π is complete with regard to (X, cod, s); that is, for each instance of the

problem u ∈ IX such that θX(u) = 1, every computation of Π(s(u)) with input cod(u)

is an accepting one.

We say that the family Π is a uniform solution to the problem X. The complexity classes

PMCR are closed under complement and closed under polynomial time reduction, in the

classical sense.

We denote by AM0(α, β), where α ∈ {−d, +d} and β ∈ {−ne, +ne}, the class of all

recognizer P systems with polarizationless active membranes such that: −d forbids rules

(d0), and −ne forbids rules (f0).

A conjecture known in the membrane computing area under the name of the P–conjecture

(proposed by Gh. Păun in 2005) is that P = PMCAM0(+d,−ne).

54

Theorem 1.1 The following statements hold:

(1) P = PMCAM0(−d,β) = PMC∗
AM0(−d,β), for each β ∈ {−ne, +ne}.

(2) NP ⊆ PMC∗
AM0(+d,+ne).

1.5.2 Minimal parallelism

In [185], the minimal parallelism has been formalized as follows (we assume each set Rj is

associated to a membrane):

App(Π, C,min) = { R′ ∈ App(Π, C, asyn) | there is no

R′′ ∈ App(Π, C, asyn) such that

(R′′ −R′) ∩Rj 6= ∅ for some j with R′ ∩Rj = ∅, 1 ≤ j ≤ h }.

We are not going to define all notations used here. In our context, this definition means

that minimally parallel application of rules to a configuration consists of all applicable mul-

tisets R′ that cannot be extended by a rule corresponding to a membrane for which no rule

appears in R′.

There exist different interpretations of minimal parallelism. For instance, the original

definition of maximal parallelism introduced in [152] is formalized in [279] and called there

base vector minimal parallelism:

App(Π, C,minG) = { R′′′ ∈ App(Π, C, asyn) | there is

R′ ∈ App(Π, C, asyn), such that R′ ⊆ R′′′,

|R′ ∩Rj| ≤ 1 for all j, 1 ≤ j ≤ h, and

there is no R′′ ∈ App(Π, C, asyn) such that

(R′′ −R′) ∩Rj 6= ∅ for some j with R′ ∩Rj = ∅, 1 ≤ j ≤ h }.

Without discussing all technicalities, we point out that base vector minimally parallel appli-

cation of rules consists of all extensions of multisets R′, which represent maximally parallel

choice of sets Rj used sequentially. Hence, the latter mode is identical to the following:

{ R′′′ ∈ App(Π, C, asyn) | ∃R′ ∈ App(Π, C, seqset), R
′ ⊆ R′′′

and 6 ∃R′′ ∈ App(Π, C, seqset) : R′ ⊆ R′′ }, where |R′ ∩Rj| ≤ 1 for all j, 1 ≤ j ≤ h.}

In this way, one can first restrict applicable multisets to those having at most one rule

corresponding to a membrane, then take maximally parallel ones from them (i.e., those

whose extensions do not belong to the same restriction), and finally take their unrestricted

extensions.

Luckily, if a P system with active membranes does not use rules of type (b) or its modifi-

cations, then it works equally well for both definitions of minimal parallelism. Indeed, in one

step a membrane reacts only with objects in the associated region. This means that selection

of rules for each membrane is done independently, so different membranes do not compete

for objects and the system behaves identically in both modes. Hence, we can simply follow

55

the basic idea introduced already in [152]: for every membrane, at least one rule - if possible

- has to be used.

The following remarks describe applicability, maximal applicability and applying rules,

respectively.

• The rules of type (a) may be applied in parallel. At one step, a membrane can be the

subject of only one rule of types (a′
0s), (a

′′
s) and (b), (c), (d), (e) with their modifications.

• In one step, one object of a membrane can be used by only one rule (non-

deterministically chosen), but for every membrane at least one object that can

evolve by one rule of any form, must evolve (no rules associated to a membrane are

applied only if none are applicable for the objects that do not evolve).

• If at the same time a membrane is divided by a rule of type (e) and there are objects

in this membrane which evolve by means of rules of type (a), then we suppose that

first the evolution rules of type (a) are used, and then the division is produced. Of

course, this process takes only one step.

Particular problems

The detailed overview of membrane P systems with replication can be found in [252]. In

Section 6.1, cooperative rules are used in this framework, addressing the problem of inflec-

tions in words of Romanian language, assuming that the inflection group is known, [219].

The question of determining the inflection group is addressed in [154], [153].

Synchronization The synchronization problem is well known for cellular automata, where

it was intensively studied under the name of the firing squad synchronization problem (FSSP):

a line of soldiers have to fire at the same time after the appropriate order of a general which

stands at one end of the line, see, e.g., references in [97], [98]. The first solution of the

problem was found by Goto, see [192]. It works on any cellular automaton on the line with n

cells in the minimal time, 2n−2 steps, and requiring several thousands of states. A bit later,

Minsky found his famous solution which works in 3n, see [233] with a much smaller number

of states, 13 states. Then, a race to find a cellular automaton with the smallest number of

states which synchronizes in 3n started. See the above papers for references and for the best

results and for generalizations to the planar case, see [276] for results and references. Many

studies have been dedicated to general synchronization principles occurring during the cell

cycle; although some results are still controversial, it is widely recognized that these aspects

might lead to an understanding of general biological principles used to study the normal cell

cycle, see [273]. The synchronization problem as defined above was studied in [145] for two

classes of P systems: transitional P systems and P systems with priorities and polarizations.

In the first case, a non-deterministic solution to FSSP was presented and for the second case

a deterministic solution was found. These solutions need time 3h and 4n + 2h respectively,

where n is the number of membranes and h is the depth of the membrane tree. Improving

these solutions is an interesting task, addressed in Section 6.3.

56

1.6 Conclusions to Chapter 1

This chapter introduces basic prerequisites of formal language theory, grammars, automata

and machines. It presents the variants of matrix grammars, finite automata, counter au-

tomata, register machines and circular Post machines needed for the proofs given in this

thesis. The models of networks of evolutionary processors (NEPs), hybrid NEPs and oblig-

atory hybrid NEPs are introduced.

A number of models of membrane systems with symbol-objects is defined, such as multiset

rewriting, transitional P systems (together with membrane creation and dissolution), P

systems with symport and antiport (and tissue P systems), P systems with active membranes

(and their rule variants), energy models of P systems, and polymorphic P systems. The

concepts of maximal parallelism, result of computation, reversibility and determinism are

introduced.

In the case of P systems with string-objects, the rewriting model with string replication

is defined, as well as P systems with active membranes. Yet another model presented is

that of P systems with insertion and deletion (and its variant with exo-operations). Splicing

operation is mentioned.

Next, general definitions for computing with P systems are given, including the decisional

framework and minimal parallelism.

The existing results in the area are recalled, formulating and motivating a number of

problems that have been unsolved, giving the basis for the underlying research of this thesis.

Some of these topics are decreasing the known number of nodes in the universal networks

of hybrid networks of evolutionary processors, investigating the power of deterministic con-

trolled multiset rewriting, effect of reversibility, determinism and self-stabilization, exact

power of non-cooperative transitional P systems, with or without membrane creation and

dissolution, decreasing the total number of rules in P systems known to be universal, the

exact power of one-membrane P systems with symport only, the power of active membranes

without polarizations, the power of P systems working in exponential space, a number of

computational complexity questions for P systems with active membranes, including the

case of minimal parallelism, characterization of energy models, etc.

57

2. MULTISET REWRITING. PROPERTIES

This chapter is devoted to the heart of membrane computing, i.e., multiset rewriting. It can

be cooperative or non-cooperative, it happens sequentially, asynchronously, or maximally

parallel, it can be controlled by promoters, inhibitors or priorities. A number of general

properties is studied. Languages are obtained as sequences of symbols sent out. Section 2.5

considers multiset processing enhanced by the distributivity of the system, and even by the

dynamic modification of the underlying tree structure.

In Section 2.1 we present a study of the family of languages generated by the transitional

membrane systems without cooperation and without additional ingredients. The fundamen-

tal nature of these basic systems makes it possible to also define the corresponding family

of languages in terms of derivation trees of context-free grammars. We also compare this

family to the well-known language families and discuss its properties. We give an example

of a language considerably more “difficult” than the currently established lower bounds.

All the processing is done by multisets, and one considers the order of sending the objects

in the environment as their order in the output word. Informally, the family of languages

we are interested in is the family generated by systems with parallel applications of non-

cooperative rules that rewrite symbol objects and/or send them between the regions. This

model has been introduced already in 2000, [258]. The nature of LOP∗(ncoo, tar) is quite

fundamental, and in the same time it is not characterized in terms of well-studied families.

This is why we refer to it here as the membrane systems language family.

Non-cooperative P systems with either promoters or inhibitors (of weight not restricted

to one) are known to be computationally complete. In Section 2.2 we show that the power

of the deterministic subclass of such systems is subregular in the asynchronous mode and in

the maximally parallel mode. This provides the second case known in membrane comput-

ing where determinism is a criterion of universality versus decidability, after the model of

catalytic P systems.

In Section 2.3 we study reversibility and determinism aspects and the strong versions of

these properties of sequential multiset processing systems and of maximally parallel systems,

from the computability point of view. In the sequential case, syntactic criteria are established

for both strong determinism and strong reversibility. In the parallel case, a criterion is

established for strong determinism, whereas strong reversibility is shown to be decidable.

In the sequential case, without control all four classes – deterministic, strongly deter-

ministic, reversible, strongly reversible – are not universal, whereas in the parallel case

deterministic systems are universal. When allowing inhibitors, the first and the third class

become universal in both models, whereas with priorities all of them are universal. In the

maximally parallel case, strongly deterministic systems with both promoters and inhibitors

58

are universal. We also present a few more specific results and conjectures.

In Section 2.4 we discuss a notion of self-stabilization, inspired from biology and engi-

neering. Multiple variants of formalization of this notion are considered, and we discuss how

such properties affect the computational power of multiset rewriting systems.

In Section 2.5, it is essential that not only multiset rewriting is distributed over a tree

structure, but also that such a structure is dynamic. We present quite surprising results that

non-cooperative rewriting reaches computational completeness when equipped with mem-

brane creation and membrane dissolution. Intuitively, this is possible due to the cooperation

between an object and a fact of existence of a membrane.

2.1 The P Systems Language Family

We start by presenting a study of the family of languages generated by the transitional

membrane systems without cooperation and without additional ingredients. The fundamen-

tal nature of these basic systems makes it possible to also define the corresponding family of

languages in terms of derivation trees of context-free grammars. We also compare this family

to the well-known language families and discuss its properties. We also give an example of a

language which is considerably more “difficult” than the currently established lower bounds.

The word “difficult” informally refers to two kinds of non-context-freeness needed to describe

the language. The internal one can be captured by permutations, while the external one can

be captured by an intersection of linear languages.

We recall that the configurations of membrane systems (with symbol objects) consist of

multisets over a finite alphabet, distributed across a tree structure. Therefore, even such a

relatively simple structure as a word (i.e., a sequence of symbols) is not explicitly present

in the system. To speak of languages as sets of words, one first needs to represent them in

membrane systems, and there are a few ways to do it.

Represent words by string objects. Rather many papers take this approach, see Chapter

7 of [257], but only few consider parallel operations on words. Moreover, a tuple of sets or

multisets of words is already a quite complicated structure. The third drawback is that it

is very difficult to define an elegant way of interactions between strings. Polarizations and

splicing are examples of that; however, these are difficult to use in applications. In this

subsection we focus on symbol objects.

Represent a word by a single symbol object, or by a few objects of the form (let-

ter,position) as in, e.g., [131], [132]. This only works for words of bounded length, i.e.,

one can speak about at most finite languages.

Represent positions of the letters in a word by nested membranes. The corresponding

letters can be then encoded by objects in the associated regions, membrane types or mem-

brane labels. Working with such a representation, even implementing a rule a→ bc requires

sophisticated types of rules, like creating a membrane around existing membrane, as defined

in [144].

Consider letters as digits and then view words as numbers, or use some other encoding

of words into numbers or multisets. Clearly, the concept of words ceases to be direct with

59

such encoding. Moreover, implementing basic word operations in this way requires a lot of

number processing, not to speak of parallel word operations.

Work in accepting mode, see, e.g., [155]. It is necessary to remark that in this section we

are mainly speaking of non-cooperative P systems, and working in accepting mode without

cooperation yields rather trivial subregular results. More exactly, such systems would accept

either the empty language or only the empty word, or all the words over some subalphabet.

Consider traces of objects across membranes. This is an unusual approach in the sense

that the result is not obtained from the final configuration, but rather from the behavior of

a specific object during the computation. This makes it necessary to introduce an observer,

complicating the model.

Do all the processing by multisets, and regard the order of sending the objects in the

environment as their order in the output word. In case of ejecting multiple symbols in the

same step, the output word is formed from any of their permutations. One can say that

this approach also needs an implicit observer, but at least this observer only inspects the

environment and it is “the simplest possible”. This section is devoted to this concept.

Informally, the family of languages we are interested in is the family generated by systems

with parallel applications of non-cooperative rules that rewrite symbol objects and/or send

them between the regions. This model has been introduced already in 2000, [258]. Sur-

prisingly, this language family did not yet receive enough attention of researchers. Almost

all known characterizations and even bounds for generative power of different variants of

membrane systems with various ingredients and different descriptional complexity bounds

are expressed in terms of REG, MAT , ET0L and RE, their length sets and Parikh sets (and

much less often in terms of FIN or other subregular families, or CF or CS, or those accepted

by log-tape bounded Turing machines, [158], [196]). The membrane systems language family

presents interest since we show it lies between regular and context-sensitive families, being

incomparable with well-studied intermediate ones. As we show in this section, the nature of

LOP∗(ncoo, tar) is quite fundamental, and in the same time it is not characterized in terms

of well-studied families. This is why we refer to it here as the membrane systems language

family.

a

bcc

bcc

bcc

bcc

a

bcc

bcc

bcc

a

bcc

bcc

a

λ

a

a

λ

bcc

bcc

bcc

bcc

⇒

⇒

⇒

⇒

.

Result

Perm(bccbcc)•

Perm(bcc)•

Perm(bcc).

Figure 2.1: A computation and a word generated by a P system from Example 2.1

Example 2.1 To illustrate generating languages, consider the following P system:

Π = ({a, b, c}, []
1
, a2, {a→ λ, a→ a boutc

2
out}, 0).

60

Each of the two symbols a has a non-deterministic choice whether to be erased or to reproduce

itself while sending a copy of b and two copies of c into the environment. Therefore, the

contents of region 1 can remain a2 for an arbitrary number m ≥ 0 of steps, and after that

at least one copy of a is erased. The other copy of a can reproduce itself for another n ≥ 0

steps before being erased. Each of the first m steps, two copies of b and four copies of c are

sent out, while in each of the next n steps, only one copy of b and two copies of c are ejected.

Therefore, L(Π) = (Perm(bccbcc))∗(Perm(bcc))∗. A computation is illustrated in Figure 2.1;

the lines are only used to hint how the rules are applied.

We first show that for every membrane system without cooperation, there is a system from

the same class with one membrane, generating the same language.

Lemma 2.1 LOP∗(ncoo, tar) = LOP1(ncoo, out).

Proof. Consider an arbitrary transitional membrane system Π (without cooperation or ad-

ditional ingredients). The known technique of flattening the structure (this is “folklore”

in membrane computing; see, e.g., [266], [185]) consists of transforming Π in the following

way. Object a in region associated to membrane i is transformed into object (a, i) in the

region associated to the single membrane. The alphabet, initial configuration and rules are

transformed accordingly. Clearly, the configurations of both systems are bisimilar, and the

environment output is the same. �

The following exposition uses the definitions of time-yield of context-free grammars and its

relation to P systems. These definitions and results can be found in the Appendix A1.

2.1.1 Comparison with known families

Theorem 2.1 [258] LOP (ncoo, tar) ⊇ REG.

Proof. Consider an arbitrary regular language. Then there exists a complete finite automa-

ton M = (Q, Σ, q0, F, δ) accepting it. We construct a context-free grammar G = (Q, Σ, q0, P),

where P = δ ∪ {q → λ | q ∈ F}. The order of symbols accepted by M corresponds to the

order of symbols generated by G, and the derivation can only finish when the final state is

reached. Hence, Lt(G) = L(M), and the theorem statement follows. �

Theorem 2.2 LOP (ncoo, tar) ⊆ CS.

Proof. Consider a context-free grammar G = (N, T, S, P) in the First normal form. We

construct a grammar G′ = (N ∪ {#1, L,R, F, #2}, T, S ′, P ′):

P ′ = {S ′ → #1LS#2, L#2 → R#2, #1R→ #1L, #1R→ F, F#2 → λ}

∪ {LA→ uL | (A→ u) ∈ P} ∪ {La→ aL, Fa→ aF | a ∈ T}

∪ {aR→ Ra | a ∈ N ∪ T}.

The symbols #1, #2 mark the edges, the role of symbol L is to apply productions P to all

non-terminals, left-to-right, while skipping the terminals. While reaching the end marker,

symbol L changes into R and returns to the beginning marker, where it either changes back

61

to L to iterate the process, or to F to check whether the derivation is finished. Hence,

L(G′) = Lt(G). Note that the length of sentential forms in any derivation (of some word

with n symbols in G′) is at most n+3, because the only shortening productions are the ones

removing #1, #2 and F , and each should be applied just once. Therefore, Lt(G) ∈ CS. �

We now proceed to showing that the membrane systems language family does not contain

the family of linear languages. To show this, we first define the notions of unbounded yield

and unbounded time of a non-terminal.

Definition 2.1 Consider a grammar G = (N, T, S, P). We say that A ∈ N has an un-

bounded yield if Lt(GA) is an infinite language, i.e., there is no upper bound on the length

of words generated from A.

It is easy to see that Lt(GA) is infinite if and only if L(GA) is infinite; decidability of this

property is well-known from the theory of CF grammars.

Definition 2.2 Consider a grammar G = (N, T, S, P). We say that A ∈ N has unbounded

time if the set of all derivation trees (for terminated derivations) in GA is infinite, i.e., there

is no upper bound on the number of parallel steps of terminated derivations in GA.

It is easy to see that A has unbounded time if L(GA) 6= ∅ and A ⇒+ A, so decidability of

this property is well-known from the CF grammar theory.

Lemma 2.2 Let G = (N, T, P, S) be a context-free grammar in the Third normal form. If

for every rule (A→ BC) ∈ P , symbol B does not have unbounded time, than Lt(G) ∈ REG.

The proof can be found in [43].

Lemma 2.3 L = {anbn | n ≥ 1} /∈ LOP (ncoo, tar).

Once again, the proof can be found in [43].

Corollary 2.1 LIN 6⊆ LOP (ncoo, tar).

Lemma 2.4 The family LOP (ncoo, tar) is closed under permutations.

Proof. Transform a given grammar G = (N, T, S, P). Replace the terminal symbols a are by

non-terminals aN throughout the description of G, and then add rules aN → aN , aN → a,

a ∈ T to P . Like in the first example, the order of generating terminals is arbitrary. �

Corollary 2.2 Perm(REG) ⊆ LOP (ncoo, tar).

Proof. Follows from regularity theorem 2.1 and permutation closure lemma 2.4. �

The results of comparison of the membrane system family with the well-known language

families can be summarized as follows:

Theorem 2.3 LOP (ncoo, tar) strictly contains REG and Perm(REG), is strictly contained

in CS, and is incomparable with LIN and CF .

62

Proof. All inclusions and incomparabilities have been shown in or directly follow from The-

orem 2.1, Corollary 2.2, Theorem 2.2, Corollary 2.1 and Corollary A1.1 with Theorem A1.1.

The strictness of the first inclusions follows from the fact that REG and Perm(REG) are

incomparable, while the strictness of the latter inclusion holds since LOP (ncoo, tar) only

contains semilinear languages. �

The lower bound can be strengthened as follows:

Theorem 2.4 LOP (ncoo, tar) ⊇ REG • Perm(REG).

Proof. Indeed, consider the construction from the regularity theorem. Instead of erasing the

symbol corresponding to the final state, rewrite it into the axiom of the grammar generating

the second regular language, to which the permutation technique is applied. �

Example 2.2 LOP (ncoo, tar) ∋ L2 =
⋃

m,n≥1(abc)mPerm((def)n).

2.1.2 Closure properties

It has been shown above that the family of languages generated by basic membrane systems

is closed under permutations. We now recall a few other closure properties (see [43] for the

proofs).

Lemma 2.5 The family LOP (ncoo, tar) is closed under erasing/renaming morphisms.

Corollary 2.3 {anbncn | n ≥ 1} /∈ LOP (ncoo, tar).

Corollary 2.4 LOP (ncoo, tar) is not closed under intersection with regular languages.

Theorem 2.5 LOP (ncoo, tar) is closed under union and not closed under intersection or

complement.

Lemma 2.6 L =
⋃

m,n≥1 Perm((ab)m)cn /∈ LOP (ncoo, tar).

Corollary 2.5 LOP (ncoo, tar) is not closed under concatenation or taking the mirror im-

age.

2.1.3 A difficult language

In this section we give an example of a language in LOP (ncoo, tar) which is considerably

more “difficult” than languages in REG • Perm(REG), in the sense informally explained

below. Besides permutations of symbols sent out in the same time, it exhibits another kind

of non-context-freeness. This second source of “difficulty” alone can, however, be captured

as an intersection of two linear languages.

ΠD = ({D,D′, a, b, c, a′, b′, c′}, []
1
, D2, R),

R = {D → (abc)outD
′D′, D → (abc)out, D′ → (a′b′c′)outDD, D′ → (a′b′c′)out}.

The contents of region 1 is a population of objects D, initially 2, which are primed if the

step is odd. Assume that there are k objects inside the system. At every step, every symbol

63

D is either erased or doubled (and primed or de-primed), so the next step the number of

objects inside the system will be any even number between 0 and 2k. In addition to that,

the output during that step is Perm((abc)k), primed if the step is odd. Hence, the generated

language can be described as

L(ΠD) = { Perm((abc)2k0)Perm((a′b′c′)2k1) · · · Perm((abc)2k2t)Perm((a′b′c′)2k2t+1)

| k0 = 1, 0 ≤ ki ≤ 2ki−1, 1 ≤ i ≤ 2t + 1, t ≥ 0}.

For an idea of how complex a language generated by some non-cooperative membrane system

be, imagine that the skin may contain populations of multiple symbols that can (like D in

the example above) be erased or multiplied (with different periods), and also rewritten into

each other. The same, of course, happens in usual context-free grammars, but since the

terminal symbols are collected from the derivation tree level by level instead of left to right,

the effect is quite different.

Another upper bound has been recently proved.

2.1.4 Parsability

We first recall a few existing results.

Lemma 2.7 Random access machines can be simulated by Turing machines with polynomial

slowdown.

This result will lead to a much simpler proof of the parsability result.

From Section A1 and the relationship between the result of non-cooperative P systems

and the time-yield of context-free grammars, we have the following: one membrane is enough

(Lemma 2.1), and the following two results hold:

Lemma 2.8 [43] Any non-cooperative P system can be transformed into an equivalent one

such that objects having no rules to evolve them are never produced.

This condition means that the evolution of any object inside the system eventually leads to

some number (possibly zero) of objects in the environment.

Lemma 2.9 ([43]) Any non-cooperative P system can be transformed into an equivalent one

such that the initial contents is w1 = {S}, and

• S does not appear in the right-hand side of any rule, and

• R1 has no erasing rules, except possibly {S} → ∅.

This result means that no object can be erased, except the axiom which may only be erased

immediately.

We now proceed to the parsability result.

Theorem 2.6 LOP∗(ncoo, tar) ⊆ P.

64

Proof. The proof consists of three parts. First, a few known results are used to simplify

the statement of the theorem. Second, a finite-state automaton (with transitions labeled

by multisets of terminals) of polynomial size is constructed. Third, acceptance problem is

reduced to a search problem in a graph of a polynomial size.

Thanks to Lemma 2.7, the rest of the proof can be explained at the level of random access

machines. Due to Lemma 2.1, we assume that an arbitrary membrane system language L is

given by a one-membrane system Π = ([]
1
, O, w1, R1). It is known from Lemma 2.8 that

the condition specified in it does not restrict the generality. Hence, from now we assume that

every object A inside the system corresponds to at least one rule that rewrites A. Without

restricting generality, we also assume the normal form specified in Lemma 2.9. In this case,

it is clear that if w ∈ T n, then during any computation of Π generating w, the number of

objects inside the system can never exceed max(n, 1).

We now build a finite automaton A = (Q, Σ, q0, δ, F) such that any word w′ ∈ T≤n is

accepted by A if and only if w′ ∈ L(Π). Accepting by an automaton with transitions labeled

by multisets is understood as follows: a transition labeled by a multiset of weight k can be

followed if the multiset composed of the next k input symbols equals the transition label; in

this case these input symbols are read.

We define Q as the set of multisets of at most max(n, 1) objects, Σ as the set of multisets

of at most n objects, q0 is the singleton multiset {S}, and F = {∅}. It only remains to define

the transition mapping δ of A. We say that q′ ∈ δ(q, s) if [q]
1
⇒ [q′]

1
s. It is known (see,

e.g., [7]) that computing all transitions from a configuration with k objects takes polynomial

time with respect to k; here, k ≤ max(n, 1) (the degree of such a polynomial does not exceed

|R1|), and, moreover, the number of configurations reachable in one step is also polynomial.

Note that |Q| is polynomial with respect to n (and the degree of such a polynomial does

not exceed |O|+1).1 Hence, A can be built from n and Π in polynomial time, and, moreover,

the size of the description of A is also polynomial. Of course, it suffices to only examine the

reachable states of A.

Running each transition q′ ∈ δ(q, s) of A on w can be actually done in time O(|s|);

however, there are two problems. Firstly, A is non-deterministic, and secondly, A may have

transitions labeled by an empty multiset, and removing empty multiset transitions or non-

determinism might need too much time or space, or even increase its size too much. Instead,

we reduce parsing by A to a graph reachability problem.

Consider a graph Γ = (V, U), where V = {0, · · · , n}×Q and U consists of such transitions

((i, q), (j, q′)) that i ≤ j and q′ ∈ δ(q, s), where s equals the multiset consisting of w[i +

1], · · · , w[j]. Finally, w ∈ L = Lt(G) if and only if w ∈ L(A), and w ∈ L(A) if and only if

there is a path from (0, q0) to (n, e) in Γ. Note: alternatively, search in A incrementally by

prefixes of w. �

It is known from [43] that membrane systems language family is included in the family of

context-sensitive languages, see also Lemma 2.9. In [43] one also claims that membrane

systems language family is semilinear. No formal proof is given, but there is an almost im-

mediate observation that such language is letter-equivalent to that generated by the context-

1 Indeed, multisets of size ≤ n over O bijectively correspond to multisets of size exactly n over O ∪ {λ}.

Let |O| = m. Moreover, multisets of size n over O ∪ {λ} correspond to n-combinations of m + 1 possible

elements with repetition. For n > 0, their number is |Q| =
(
n+m

n

)
≤ nm+1.

65

free language with the same rules (languages are letter-equivalent if for every word in one of

them there is a word in the other one with the same multiplicities of all symbols; indeed, the

difference is only in the order of output). Semilinearity thus follows from Parikh theorem.

By Theorem 2.6, we improve the upper bound:

Corollary 2.6 LOP∗(ncoo, tar) ⊆ CS ∩ SLIN ∩P.

An Example Consider a word w = babbaa and a P system

Π = ([]
1
, {S ′, S, a, b}, {S ′}, R), where

R = {p : {S ′} → {S}, q : {S} → {S2}, r : {S} → {a, b}out}.

Only objects S, S ′ are productive inside the system, and only objects a, b may be sent outside.

Since |w| = 6, we only need to examine (28) multisets over S, S ′ of size up to 6 elements.

However, out of them only {S ′}, {S}, ∅, {S2}, {S4}, {S6} are reachable. The automaton

would look as in Figure 2.2 (to simplify the picture, we wrote i instead of {ai, bi} as labels):

// WVUTPQRS{S ′}

0
��

?>=<89:;76540123∅ WVUTPQRS{S6}
6oo

5

uullllllllllllllllllll

4

||yy
yy

yy
yy

yy
3

XX

ONMLHIJK{S}
0

//

1

<<yyyyyyyyyyy WVUTPQRS{S2}
0

//

2

OO

1
XX

WVUTPQRS{S4}
1

<<yyyyyyyyyy3oo

4

bbEEEEEEEEEEE

2
XX

Figure 2.2: Bounded transition graph as a finite automaton

We now check the word w:

• states after reading λ: {S ′}, {S}, {S2}, {S4};

• states after reading ba: ∅, {S2}, {S4}, {S6};

• states after reading babbaa: ∅, {S4}. The input is accepted.

This result means that membrane systems languages can be parsed in polynomial time.

However, the degree of such polynomials in the algorithm deciding membership problem

presented in [41] depends on the number of rules and the size of the alphabet in the underlying

P system.

Conclusions In this section we have reconsidered the family of languages generated by

transitional P systems without cooperation and without additional control. It was shown

that one membrane is enough, and a characterization of this family was given via derivation

trees of context-free grammars. Next, three normal forms were given for the corresponding

grammars. It was than shown that the membrane systems language family lies between

regular and context-sensitive families of languages, and it is incomparable with linear and

with context-free languages. Then, the lower bound was strengthened to REG•Perm(REG).

66

An example of a considerably more “difficult” language was given than the lower bound

mentioned above. We also mention another upper bound result, i.e., membrane systems

languages can be parsed in polynomial time.

The membrane systems language family was shown to be closed under union, permu-

tations, erasing/renaming morphisms. It is not closed under intersection, intersection with

regular languages, complement, concatenation or taking the mirror image.

The following are examples of questions that are still not answered.

• Clearly, LOP (ncoo, tar) 6⊇MAT . What about LOP (ncoo, tar) ⊆MAT?

• Is LOP (ncoo, tar) closed under arbitrary morphisms? Conjecture: no. The difficulty

is to handle h(a) = bc if many symbols a can be produced in the same step.

• Look for sharper lower and upper bounds.

2.2 Deterministic Non-Cooperative Systems

Non-cooperative P systems with either promoters or inhibitors (of weight not restricted to

one) are known to be computationally complete. In this section we show that the power

of the deterministic subclass of such systems is computationally complete in the sequential

mode, but only subregular in the asynchronous mode and in the maximally parallel mode.

The most famous membrane computing model where determinism is a criterion of uni-

versality versus decidability is the model of catalytic P systems, see [171] and [197].

It is also known that non-cooperative rewriting P systems with either promoters or in-

hibitors are computationally complete, [133], [134], [135]. Moreover, the proof satisfies some

additional properties:

• Either promoters of weight 2 or inhibitors of weight 2 are enough.

• The system is non-deterministic, but it restores the previous configuration if the guess

is wrong, which leads to correct simulations with probability 1.

The purpose of this section is to show that computational completeness cannot be achieved

by deterministic systems when working in the asynchronous or in the maximally parallel

mode. The definitions of one-region P systems with advanced control are mainly needed for

this section only; they are given in the Appendix A2.

2.2.1 Lower bounds

Example 2.3 Let H be an arbitrary finite set of numbers and K = max (H) + 1; then we

construct the following deterministic accepting P system with promoters and inhibitors:

Π = (O, {a} , s0f0 · · · fK , R′, R) ,

O = {a} ∪ {si, fi | 0 ≤ i ≤ K} ,

R′ = {si → si+1 | 0 ≤ i ≤ K − 1} ∪ {fi → fi | 0 ≤ i ≤ K} ,

R = {si → si+1|ai+1 , | 0 ≤ i ≤ K − 1}

∪
{
fi → fi|si,¬ai+1 , | 0 ≤ i < K, i /∈ H

}
∪ {fK → fK |sK

} .

67

The system step by step, by the application of the rule si → si+1|ai+1 , 0 ≤ i < K, checks if

(at least) i + 1 copies of the symbol a are present. If the computation stops after i steps,

i.e., if the input has consisted of exactly i copies of a, then this input is accepted if and

only if i ∈ H, as exactly in this case the system does not start an infinite loop with using

fi → fi|si,¬ai+1 . If the input has contained more than max (H) copies of a, then the system

arrives in the state sK and will loop forever with fK → fK |sK
. Therefore, exactly H is

accepted. To accept the complement of H instead, we simply change i /∈ H to i ∈ H and

as well omit the rule fK → fK |sK
. It is easy to see that for the maximally parallel mode,

we can replace each rule fi → fi|si,¬ai+1 by the corresponding rule fi → fi|si
; in this case,

this rule may be applied with still some a being present while the system passes through the

state si, but it will not get into an infinite loop in that case.

In sum, we have shown that

NaDOP asyn
1

(
ncoo, (pro1,∗, inh1,∗)1

)
⊇ FIN ∪ coNFIN and

NaDOPmaxpar
1 (ncoo, pro1,∗) ⊇ FIN ∪ coNFIN.

Example 2.4 For P systems working in the maximally parallel way we can even construct

a system with inhibitors only:

Π = (O, {a} , tsK , R′, R) ,

O = {a, t} ∪ {si | 0 ≤ i ≤ K} ,

R′ = {si → tsi−1, si → si | 1 ≤ i ≤ K} ∪ {t→ λ, s0 → s0} ,

R = {si → tsi−1|¬ai | 1 ≤ i ≤ K}

∪ {t→ λ} ∪ {si → si|¬t | 0 ≤ i ≤ K, i /∈ H} .

This construction does not carry over to the case of the asynchronous mode, as the rule

t → λ is applied in parallel to the rules si → tsi−1|¬ai until the input ai is reached. In this

case, the system cannot change the state si anymore, and then it starts to loop if and only

if i /∈ H. To accept the complement of H instead, change i ∈ H to i /∈ H, i.e., in sum, we

have proved that

NaDOPmaxpar
1 (ncoo, inh1,∗) ⊇ FIN ∪ coNFIN.

As we shall show later, all the inclusions stated in Example 2.3 and Example 2.4 are equal-

ities.

2.2.2 Upper bounds and characterizations

In this section we mainly investigate deterministic accepting P systems with context con-

ditions and priorities on the rules (deterministic P systems for short) using only non-

cooperative rules and working in the sequential, the asynchronous, and the maximally parallel

mode.

Remark 2.1 We first notice that maximal parallelism in systems with non-cooperative rules

means the total parallelism for all symbols to which at least one rule is applicable, and

68

determinism guarantees that “at least one” is “exactly one” for all reachable configurations

and objects. Determinism in the sequential mode requires that at most one symbol has an

associated applicable rule for all reachable configurations. Surprisingly enough, in the case

of the asynchronous mode we face an even worse situation than in the case of maximal

parallelism – if more than one copy of a specific symbol is present in the configuration, then

no rule can be applicable to such a symbol in order not to violate the condition of determinism.

We now define the bounding operation over multisets, with a parameter k ∈ N as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.

The mapping bk “crops” the multisets by removing copies of every object a present in more

than k copies until exactly k remain. For two multisets u, u′, bk (u) = bk (u′) if for every

a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k and |u′|a ≥ k. Mapping bk induces an equivalence

relation, mapping O∗ into (k + 1)|O| equivalence classes. Each equivalence class corresponds

to specifying, for each a ∈ O∗, whether no copy, one copy, or · · · k − 1 copies, or “k copies

or more” are present. We denote the range of bk by {0, · · · , k}O.

Lemma 2.10 Context conditions are equivalent to predicates defined on boundings.

Proof. We start by representing context conditions by predicates on boundings. Consider a

rule with a simple context condition (r, p,Q), and let the current configuration be C. Then, it

suffices to take k ≥ max (|p| , max{|q| | q ∈ Q}) and C ′ = bk (C). The applicability condition

for (r, p,Q) may be expressed as p ⊆ C ′ ∧
(
∧

q∈Q q 6⊆ C ′
)

. Indeed, x ⊆ C ←→ x ⊆ C ′ for

every multiset x with |x| ≤ k, because for every a ∈ O, |x|a ≤ |C|a ←→ |x|a ≤ min (|C|a , k)

holds if |x|a ≤ k. Finally, we notice that context conditions which are not simple can be

represented by a disjunction of the corresponding predicates.

Conversely, we show that any predicate E ⊆ {0, · · · , k}O for the bounding mapping bk for

rule r can be represented by some context conditions. For each multiset c ∈ E, we construct

a simple context condition to the effect of “contains c, but, for each a contained in c for less

than k times, not more than |c|a symbols a”:

{(
r, c,

{
a|c|a+1

∣
∣ |c|a < k

})
| c ∈ E

}
.

Joining multiple simple context conditions over the same rule into one rule with context

conditions concludes the proof. �

The following theorem is valid even when the rules are not restricted to non-cooperative

ones, and when determinism is not required, in either derivation mode (also see [172]).

Theorem 2.7 Priorities are subsumed by conditional contexts.

Proof. A rule is prohibited from being applicable due to a priority relation if and only if at

least one of the rules with higher priority might be applied. Let r be a rule of a P system

(O, Σ, w,R′, R,>), and let r1 > r, · · · , rn > r. Hence, the rule r is not blocked by the rules

r1, · · · , rn if and only if the left-hand sides of the rules r1, · · · , rn, i.e., lhs (r1) , · · · , lhs (rn),

are not present in the current configuration or the context conditions given in these rules

are not fulfilled. According to Lemma 2.10, these context conditions can be formulated as

69

predicates on the bounding bk where k is the maximum of weights of all left-hand sides, pro-

moters, and inhibitors in the rules with higher priority r1, · · · , rn. Together with the context

conditions from r itself, we finally get context conditions for a new rule r′ simulating r, but

also incorporating the conditions of the priority relation. Performing this transformation for

all rules r concludes the proof. �

Remark 2.2 From [172] we already know that in the case of rules without context condi-

tions, the context conditions in the new rules are only sets of atomic inhibitors, which also

follows from the construction given above. A careful investigation of the construction given

in the proof of Theorem 2.7 reveals the fact that the maximal weights for the promoters and

inhibitors to be used in the new system are bounded by the number k in the bounding bk.

Remark 2.3 As in a P system (O, Σ, w,R′, R,>) the set of rules R′ can easily be deduced

from the set of rules with context conditions R, in the following we omit R′ in the de-

scription of the P system. Moreover, for systems having only rules with a simple context

condition, we omit d in the description of the families of sets of numbers and simply write

NδOP α
1 (β, prok,l, inhk′,l′ , pri). Moreover, each control mechanism not used can be omitted,

e.g., if no priorities and only promoters are used, we only write NδOP α
1 (β, prok,l).

2.2.3 Sequential systems

The proof of the following theorem gives some intuition why, for deterministic non-

cooperative systems, there are severe differences between the sequential mode and the asyn-

chronous or the maximally parallel mode (throughout the rest of the section we do not deal

with sequential systems anymore).

Theorem 2.8 NaDOP sequ
1 (ncoo, pro1,1, inh1,1) = NRE.

Proof. Let M = (m,Q, I, q0, qf) be an arbitrary deterministic register machine. We simulate

M by a deterministic P system Π = (O, {a1} , l0, R):

O = {aj | 1 ≤ j ≤ m} ∪ {q, q1, q2 | q ∈ Q} ,

R = {q → ajq
′ | (q : [RjP], q′) ∈ I}

∪ {q → q1|aj
, aj → a′

j|q1,¬a′

j
, q1 → q2|a′

j
, a′

j → λ|q2 , q2 → q′|¬a′

j
,

q → q′′|¬aj
| (q : 〈RjZM〉, q′, q′′) ∈ I}.

Π is deterministic, non-cooperative, and it accepts the same set as M . �

In the construction of the deterministic P system in the proof above, the rule aj → a′
j|q1,¬a′

j

used in the sequential mode can be applied exactly once, priming exactly one symbol aj to

be deleted afterwards. Intuitively, in the asynchronous or the maximally parallel mode, it is

impossible to choose only one symbol out of an unbounded number of copies to be deleted.

The bounding operation defined above will help to formalize this intuition.

70

2.2.4 Asynchronous and maximally parallel systems

Fix an arbitrary deterministic controlled non-cooperative P system. Take k as the maximum

of size of all multisets in all context conditions. Then, the bounding does not influence

applicability of rules, and bk (u) is halting if and only if u is halting. We proceed by showing

that bounding induces equivalence classes preserved by any computation.

Lemma 2.11 Assume u⇒ x and v ⇒ y. Then bk (u) = bk (v) implies bk (x) = bk (y).

Proof. Equality bk (u) = bk (v) means that for every symbol a ∈ O, if |u|a 6= |va| then

|u|a ≥ k and |v|a ≥ k, and we have a few cases to be considered. If no rule is applicable

to a, then the inequality of symbols a will be indistinguishable after bounding also in the

next step (both with at least k copies of a). Otherwise, exactly one rule r is applicable to

a (by determinism, and bounding does not affect applicability), then the difference of the

multiplicities of the symbol a may only lead to differences of the multiplicities of symbols

b for all b ∈ rhs (r). However, either all copies of a are erased by the rule a → λ or else

at least one copy of a symbol b will be generated from each copy of a by this rule alone, so

|x|b ≥ |u|a ≥ k and |y|b ≥ |v|a ≥ k; hence, all differences of multiplicities of an object b in u

and v will be indistinguishable after bounding in this case, too. �

Corollary 2.7 If bk (u) = bk (v), then u is accepted if and only if v is accepted.

Proof. Let w be the fixed part of the initial configuration. Then we consider computations

from uw and from vw. Clearly, bk (uw) = bk (vw). Equality of boundings is preserved by

one computation step, and hence, by any number of computation steps.

Assume the contrary of the claim: one of the computations halts after s steps, while

the other one does not, i.e., let uw ⇒s u′ and vw ⇒s v′. By the previous paragraph,

bk (u′) = bk (v′). Since bounding does not affect applicability of rules, either both u′ and v′

are halting, or none of them. The contradiction proves the claim. �

We should like to notice that the arguments in the proofs of Lemma 2.11 and Corollary 2.7

are given for the maximal parallel mode; following the observation stated at the end of

Remark 2.1, these two results can also be argued for the asynchronous mode.

Theorem 2.9 For deterministic P systems working in the asynchronous or in the maximally

parallel mode, we have the following characterization:

NFIN ∪ coNFIN = NaDOP asyn
1 (ncoo, pro1,∗, inh1,∗)

= NaDOPmaxpar
1 (ncoo, pro1,∗) = NaDOPmaxpar

1 (ncoo, inh1,∗)

= NaDOP asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
= NaDOPmaxpar

1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
.

Proof. Each equivalence class induced by bounding is completely accepted or completely

rejected. If no infinite equivalence class is accepted, then the accepted set is finite (containing

numbers not exceeding (k − 1) · |O|). If at least one infinite equivalence class is accepted,

then the rejected set is finite (containing numbers not exceeding (k − 1) · |O|). This proves

the “at most NFIN ∪ coNFIN ” part.

71

In Examples 2.3 and 2.4 we have already shown that

NaDOP α
1 (ncoo, pro1,∗, inh1,∗) ⊇ FIN ∪ coNFIN, α ∈ {asyn,maxpar} ,

NaDOPmaxpar
1 (ncoo, γ1,∗) ⊇ FIN ∪ coNFIN, γ ∈ {pro, inh} .

This observation concludes the proof. �

There are several questions remaining open, for instance, whether only inhibitors in the rules

or only priorities in the rules are sufficient to yield FIN ∪ coNFIN with the asynchronous

mode, too.

Conclusions We have shown that, like in case of catalytic P systems, for non-cooperative

P systems with promoters and/or inhibitors (with or without priorities), determinism is

a criterion drawing a borderline between universality and decidability. In fact, for non-

cooperative P systems working in the maximally parallel or the asynchronous mode, we

have computational completeness in the unrestricted case, and only all finite number sets

and their complements in the deterministic case.

2.3 Determinism and Reversibility

We study reversibility and determinism aspects and the strong versions of these properties

of sequential multiset processing systems and of maximally parallel systems, from the com-

putability point of view. In the sequential case, syntactic criteria are established for both

strong determinism and strong reversibility. In the parallel case, a criterion is established

for strong determinism, whereas strong reversibility is shown to be decidable.

In the sequential case, without control all four classes – deterministic, strongly deter-

ministic, reversible, strongly reversible – are not universal, whereas in the parallel case

deterministic systems are universal. When allowing inhibitors, the first and the third class

become universal in both models, whereas with priorities all of them are universal. In the

maximally parallel case, strongly deterministic systems with both promoters and inhibitors

are universal. We also present a few more specific results and conjectures.

If a fixed enumeration of the elements of the alphabet is assumed, then multisets are

isomorphic to vectors. In that sense, sequential multiset processing corresponds to vector

addition systems (see, e.g., [170]). Alternatively, adding and removing symbols can be viewed

as incrementing and decrementing counters, i.e., vector addition systems may be viewed as

a variant of stateless counter machines (as multitape non-writing Turing machines), where

for every instruction it is specified for each counter which integer is to be added to it, yet

not restricted to -1, 0 or 1; such a variant is also equivalent to multiset processing systems

(in this case, testing for zero corresponds to using inhibitors).

The aim of this section is to consider such properties of multiset rewriting systems as

reversibility and determinism as well as their strong versions.

Reversibility is an important property of computational systems. It has been well studied

for circuits of logical elements ([165]), circuits of memory elements ([234]), cellular automata

([235]), Turing machines ([143], [237]), register machines ([236]). Reversibility as a syntacti-

cal property is closely related to the microscopic physical reversibility, and thus it assumes

72

better miniaturization possibilities for potential implementation. Moreover, reversibility es-

sentially is backward determinism.

Sequential reversible P systems have been considered in [216], in the energy-based model,

simulating Fredkin gates and thus reversible circuits. The maximally parallel case of re-

versible multiset rewriting systems has been considered in [106], [105]; such systems are

universal with priorities or inhibitors; it follows that reversibility is undecidable in these

cases. In [106], [105] also strong reversibility is considered, extending the requirement for

reversibility in such a way that it does not depend on the initial configuration, and a char-

acterization of strongly reversible systems without control is given. In [195] one shows that

even for parallel multiset rewriting systems strong reversibility is decidable. Moreover, in

[106], [105] strong determinism is defined, and a syntactic criterion for it is given showing

that the power of strongly deterministic systems is weaker than that of deterministic systems.

Naturally, similar questions were asked for sequential multiset rewriting systems, [64].

Most results on sequential systems are first obtained in [64]; we here compare the results

obtained for sequential systems obtained in [64] with the results obtained for maximally par-

allel systems in [105]. While revisiting the results from [105] we also answer a few questions

left open there. The structure of the presentation is as follows: we first give the relevant

definitions and then illustrate reversibility and strong reversibility for the case of sequential

multiset rewriting systems by some examples. We continue with elaborating the results for

the computational power of these sequential multiset rewriting systems as well as with the

results for determinism and strong determinism. We proceed with investigating the same

questions for the maximally parallel case. We conclude with a summary of the results shown

in this section and with the discussion of some open problems.

2.3.1 Sequential multiset rewriting

Most of the corresponding results have first been shown in [105] and [106], where the pre-

sentation has been done in terms of one-membrane symport/antiport P systems, with the

environment containing an unbounded supply of all objects2.

Due to the arguments above, we can lead the exposition of the definitions and results in

this section in terms of multiset rewriting systems only, keeping in mind that the results are

equivalent both to those of the one-membrane symport/antiport model as well as even to

those of multi-region systems.

We now present a few examples to illustrate the definitions.

Example 2.5 Any multiset rewriting system Π1 = (O,w0, {u → v}) with only one rule is

strongly deterministic: there is no choice. Moreover, Π1 is strongly reversible: there is at

2 It is well-known that rules in symport/antiport systems can be represented as cooperative rewriting

rules on objects of the form (object,region). It is also known that, in case the environment contains an

unbounded supply of all objects, any symport/antiport rule u/v (meaning u goes out and v comes in) is

equivalent to a multiset rewriting rule u → v (clearly, symport-in rules are not allowed). Therefore, such

one-membrane systems with complete environment are a normal form for symport/antiport P systems, and

they are behaviorally equivalent (bisimulation) to multiset rewriting systems. Moreover, these systems and

the related transitions preserve such properties we consider later as determinism, reversibility and self-

stabilization.

73

most one incoming transition (to obtain the preimage, remove v and add u). If both w0 and

v contain u, then no halting configuration is reachable, i.e., ∅ ∈ NRsMR(coo). Otherwise,

a singleton is generated; if w0 does not contain u, the computation immediately halts, hence,

the singleton w0 is generated, i.e., {n} ∈ NRsMR(coo) for n ∈ N.

Example 2.6 Consider the system Π2 = ({a, b, c}, a, {a → ab, a → c}). It generates the

set of positive integers since the reachable halting configurations are cb∗, and it is reversible:

there is at most one incoming transition into any reachable configuration (for the preimage,

replace c with a or ab with a), but not strongly reversible (e.g., aab ⇒ cab and ca ⇒ cab).

Hence, N+ ∈ NRMR(coo).

Example 2.7 Any multiset rewriting system containing some erasing rule u → λ is not

reversible, unless other rules are never applicable.

Example 2.8 Any system containing two rules of the form x1 → y and x2 → y that may

apply at least one of them in some computation is not reversible.

2.3.2 Reversible sequential rewriting

Reversible multiset rewriting systems with either inhibitors or priorities are universal.

Theorem 2.10 NRMR(coo, Pri)T = NRMR(coo, inh)T = NRE.

Proof. We reduce the statement of the theorem to the claim that such multiset rewriting

systems can simulate the work of any reversible register machine M = (m,Q, I, q0, qf).

Consider the multiset rewriting system

Π = (O, {r1}, q0, R), where O = {rj | 1 ≤ j ≤ m} ∪Q,

R = {q → q′rj, q → q′′rj | (q : [RjP], q′, q′′) ∈ I}

∪ {qrj → q′, qrj → q′′ | (q : [RjM], q′, q′′) ∈ I} ∪Rt,

Rt = {q → q′′|¬rj
, qrj → q′rj | (q : 〈RjZ〉, q′, q′′) ∈ I}.

Inhibitors can be replaced by priorities, redefining Rt as follows:

Rt = {qrj → q′rj > q → q′′ | (q : 〈RjZ〉, q′, q′′) ∈ I}.

The configurations of Π with one symbol from Q are in a bijection to configurations of M ,

so reversibility of Π follows from the correctness of the simulation, the reversibility of M and

preservation of the number of symbols from Q by the transitions of Π. �

The universality in Theorem 2.10 leads to the following undecidability.

Corollary 2.8 It is undecidable whether a system from the class of multiset rewriting sys-

tems with either inhibitors or priorities is reversible.

Proof. Recall that the halting problem for register machines is undecidable. Add instruc-

tions qf → F1, qf → F2, F1 → F , F2 → F to the construction presented above (F1, F2, F are

new objects); the system now is reversible if and only if some configuration containing F is

reachable, i.e., if the underlying register machine does not halt, which is undecidable. �

74

2.3.3 Strong reversibility

Deciding strong reversibility is much easier: it is necessary and sufficient that no two different

rules are applicable to any configuration. Without restricting generality we only consider

systems without useless rules, i.e., no rule is inhibited by some of its reactants.

Consider the case that inhibitors may be used, and let r1 : x1 → y1v and r2 : x2 → y2v

be two rules of the system (possibly controlled by inhibitors), where v is the largest common

submultiset of the right-hand sides of r1 and r2. Then both rules can be reversely applied

to some configuration C if and only if it contains y1v and y2v and none of these two rules

is inhibited. Now writing C as y1y2vw, we get the two possible transitions x1y2w ⇒ y1vy2w

and x2y1w ⇒ y2vy1w. The inhibitors should in particular forbid one of these transitions in

the case w = λ (from that, the general case for w follows immediately). Therefore, either r1

should be inhibited by some object from y2, or r2 should be inhibited by some object from

y1. Clearly, this criterion is also sufficient, since for any two rules the competition for the

backwards applicability is solved by inhibitors. We have just proved the following statement:

Theorem 2.11 A sequential multiset rewriting system with inhibitors is strongly reversible

if for any two rules r1 and r2, either r1 is inhibited by rhs(r2) \ rhs(r1) or r2 is inhibited by

rhs(r1) \ rhs(r2).

The case of priorities is slightly more involved. Let r1 : x1 → y1v and r2 : x2 → y2v be two

rules of the system, where v is the largest common submultiset of the right sides of r1 and r2.

Then both rules can be reversely applied to some configuration C if and only if it contains

y1y2v and none of these two rules is made inapplicable by rules of higher priority. Writing

C as y1y2vw, we get the possible transitions x1y2w ⇒ y1vy2w and x2y1w ⇒ y2vy1w. The

priorities should in particular forbid one of these transitions in the case w = λ (from that,

the general case for w follows immediately). Therefore, either r1 should be made inapplicable

by some rule r > r1 with left-hand side contained in x1y2, or r2 should be made inapplicable

by some rule r > r2 with left-hand side contained in x1y2. Clearly, this criterion is also

sufficient since the competition for reverse applicability between any two rules is eliminated.

We have just proved the following result:

Theorem 2.12 A sequential multiset rewriting system with priorities is strongly reversible

if for any two rules r1, r2 there exists a rule r such that either r > r1 and lhs(r) ⊆

lhs(r1)(rhs(r2) \ rhs(r1)) or r > r2 and lhs(r) ⊆ lhs(r2)(rhs(r1) \ rhs(r2)).

It is not difficult to see that the criterion of strong reversibility for systems that may use

both inhibitors and priorities is obtained as a disjunction of the requirements from Theorem

2.11 and Theorem 2.12 for any two rules r1 and r2.

Corollary 2.9 A sequential multiset rewriting system with priorities is strongly reversible

if for any two rules r1 and r2 at least one of the following conditions holds:

• r1 is inhibited by rhs(r2) \ rhs(r1),

• r2 is inhibited by rhs(r1) \ rhs(r2),

75

• there exists a rule r > r1 such that lhs(r) ⊆ lhs(r1)(rhs(r2) \ rhs(r1)),

• there exists a rule r > r2 such that lhs(r) ⊆ lhs(r2)(rhs(r1) \ rhs(r2)).

Corollary 2.10 A multiset rewriting system without control is strongly reversible if and only

if it only has exactly one rule.

NRsMR(coo)T = {∅} ∪ {{n} | n ∈ N}.

It is known that (see, e.g, [170]) the generative power of sequential multiset rewriting systems

equals PsMAT , even without requiring additional properties like reversibility.

Corollary 2.11 Reversible multiset rewriting systems without priorities and without in-

hibitors are not universal.

It is an open problem to specify the exact generative power of this class.

We now return to controlled systems. Surprisingly, adding priorities turns degenerate

computational systems into universal ones.

Theorem 2.13 NRsMR(coo, Pri)T = NRE.

Proof. Take the construction from Theorem 2.10, the case of priorities, and add rules Rd

(q and q′ may also be the same): Rd = {qq′ → qq′ | q, q′ ∈ Q}. Finally, extend the priority

relation to a total order relation in such a way that every rule from Rd has priority over

every rule not from Rd. The system remains universal, because throughout the simulation

of register machines, exactly one object from Q is present, and rules from Rd are not ap-

plicable; for the same reason, rules with different states in the left side are never applicable

simultaneously, so the extension of the priority relation has no effect on the simulation.

Obtained system is also strongly reversible. Indeed, all rules preserve the number of

objects from Q. All configurations without objects from Q are immediately halting and

have no preimage. Any configuration with multiple objects from Q evolves into itself (by

applying a rule with the highest priority possible, trivially rewriting two state symbols), and

its preimage is the configuration itself, with the incoming transition corresponding to the

applicable rule with the highest priority. In case of one object from Q, the property follows

from the strong reversibility of the simulated register machine. �

2.3.4 Deterministic sequential rewriting

The concept of determinism common to multiset rewriting systems as considered in the

area of membrane computing essentially means that such a system, starting from any fixed

configuration, has a unique computation. As it will be obvious later, this property is often

not decidable. Of course, this section only deals with accepting systems.

First, it is well known that deterministic multiset rewriting systems with either priorities

or inhibitors are universal, by simulating of any (deterministic accepting) register machine

M . In fact, in this case the construction of Theorem 2.10 is both deterministic and reversible.

Corollary 2.12 NaDsMR(coo, Pri)T = NRE.

76

Proof. For a strongly deterministic system, it suffices to take the construction with priorities

in Theorem 2.10 (simulating any deterministic accepting register machine) and to extend the

priorities to a total order. The total order relation can be defined by the relation specified by

taking the union of Rt and the relation induced by an arbitrary fixed (e.g., lexicographical)

order on the objects from Q as they appear in the left sides of rules. �

In general, if a certain class of non-deterministic systems is universal even in a deterministic

way, then the determinism is undecidable for that class. This applies to multiset rewriting

systems, similarly to Corollary 2.8.

Corollary 2.13 It is undecidable whether a system from the class of multiset rewriting sys-

tems with either inhibitors or priorities is deterministic.

Proof. For an arbitrary register machine M , there is a deterministic multiset rewriting

system Π with either inhibitors or priorities simulating M . Without restricting generality

we assume that an object qf appears in the configuration of Π if and only if it halts. Add

instructions qf → F1 and qf → F2 to the set of rules (F1, F2 are new objects); the system is

now deterministic if and only if some configuration with qf is reachable, i.e., when M does

not halt, which is undecidable. �

2.3.5 Strong determinism

On the contrary, the strong determinism we now consider means that a system has no choice

of transitions from any configuration. We now claim that this is a syntactic property.

Theorem 2.14 A multiset rewriting system is strongly deterministic if and only if any two

rules are either mutually excluded by an inhibitor (of one rule appearing on the left-hand side

of another rule), or are in a priority relation.

Proof. Any multiset rewriting system with exactly one rule is strongly deterministic.

The forward implication of the theorem holds true because mutually excluding reac-

tant/inhibitor conditions eliminate all competing rules except one, and so does the priority

relation. In the result, for any configuration at most one rule is applicable.

Conversely, assume that rules p and p′ of the system are not in a priority, and are not

mutually excluded by the reactant/inhibitor conditions. Let x and x′ be the multisets of

objects consumed by the rules p and p′, respectively. Then, to the configuration C = xx′, it

is possible to apply either rule, contradicting the condition of strong determinism. �

Corollary 2.14 A multiset rewriting system without inhibitors and without priority is not

strongly deterministic, unless it only has exactly one rule.

We now characterize the power of strongly deterministic multiset rewriting systems without

additional control: any multiset rewriting system without inhibitors or priorities accepts

either the set of all non-negative integers, or the set of all numbers bounded by some number.

Theorem 2.15 NaDsMR(coo) = {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N}.

77

Proof. Any strongly deterministic system is of the form (O, T, w0, {u → v}). If u is

not contained in v, then the system accepts all numbers. Otherwise, if v contains u, the

computation starting from an initial configuration C is not accepting if and only if u is

contained in both C and v. Hence, the system accepts all numbers k for which there exists

an x ∈ Σk such that w0x does not contain the multiset u. The converse of the latter condition

is monotone with respect to k, i.e., it is either never satisfied, or always satisfied, or there

exists a number n ∈ N such that it holds if and only if k > n.

• System ({a}, {a}, a, {a→ a}) accepts the empty set ∅, because the computation from

any configuration aw with w ∈ {a}∗ is an infinite loop;

• system ({a}, {a}, λ, {a → λ}) accepts N, i.e., any natural number, because it halts

after erasing everything in n steps when starting with an, for any n ∈ N; and

• for any n ∈ N there is a system ({a}, {a}, λ, {an+1 → an+1}) accepting {k | 0 ≤ k ≤ n},

because the system immediately halts in the initial configuration if and only if the input

does not exceed n, and enters an infinite loop otherwise.

These examples show the converse implication of the theorem. �

Theorem 2.15 shows that the computational power of strongly deterministic seqential mul-

tiset rewriting systems without additional control is, in a certain sense, degenerate (it is

sublinear). We now strengthen Theorem 2.15 from strongly deterministic systems to all

deterministic ones.

Corollary 2.15 NaDMR(coo) = {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N}.

Proof. Like in Theorem 2.15, the system accepts all numbers k for which there exists

x ∈ Σk such that the computation starting from w0x halts. It suffices to recall that if

C ⊆ C ′ and a computation starting with C ′ halts, then a computation starting with C also

halts. Indeed, since the computation starting from C ′ is deterministic, if it applies rule r

in step s, then the computation starting from C cannot apply any other rule in the same

step. The corresponding configurations of the two computations preserve any ⊆ relation of

the initial configurations. �

2.3.6 Maximally parallel multiset rewriting

We give a few examples to illustrate the definitions when the rules are applied in parallel.

Example 2.9 Consider the P system Π0 = ({a, b}, a, {a → ab}). It is strongly reversible:

there is at most one incoming transition (for a preimage, remove as many copies of b as

there are copies of a, in case it is possible and there is at least one copy of a), but no halting

configuration is reachable. Therefore, ∅ ∈ NRsOP1(ncoo).

Example 2.10 Consider the P system Π2 = ({a, b, c}, a, {a → ab, a → c}). As the corre-

sponding sequential multiset rewriting system, it generates the set of positive integers since

the reachable halting configurations are cb∗, and it is reversible because there is at most one

incoming transition into any reachable configuration (for the preimage, replace c with a or ab

with b), but not strongly reversible (e.g., aa⇒ cc and ac⇒ cc). Hence, N+ ∈ NROP (ncoo).

78

Example 2.11 Consider the P system Π2 = ({a, b}, aa, {aa → ab, ab → bbb}). It is

reversible (the configuration aa has in-degree 0, while the configurations ab and bbb have

in-degree 1, and no other configuration is reachable), but not strongly reversible (e.g., aab⇒

abbb and aabb⇒ abbb).

Example 2.12 Any P system containing a rule x→ λ is not reversible. Therefore, erasing

rules cannot be used in reversible P systems.

Example 2.13 Any P system containing two rules x1 → y and x2 → y such that at least

one of them can be applied in some computation is not reversible.

2.3.7 Reversible parallel rewriting

The next result is obtained by a construction identical to that in Theorem 2.10. Indeed,

notice that every rule uses some symbol associated to Q, and there is exactly one such symbol

present in the system all the time, so multiple rules are never applied in the same step.

Theorem 2.16 NROP1(coo, Pri)T = NROP1(coo, inh)T = NRE.

These universality results lead to the following undecidability results (by a construction

identical to that in Corollary 2.8):

Corollary 2.16 It is undecidable whether a system from the class of P systems with either

inhibitors or priorities is reversible.

The construction in Theorem 2.10 uses both cooperation and additional control. It is natural

to ask whether both inhibitors and priorities can be avoided. Yet, consider the following

situation: let (p : i?, s, q′′), (q : i?, q′, s) ∈ I. It is not unusual for reversible register machines

to have this, since the preimage of a configuration containing a representation of instruction s

depends on register i. Nevertheless, P systems with maximal parallelism without additional

control can only implement a zero-test by a try-and-wait-then-check strategy. In this case,

the object containing the information about the register p finds out the result of checking

after a possible action of the object related to the register. Therefore, when the instruction

represented in the configuration of the system changes to s, it obtains an erroneous preimage

representing instruction q. This leads us to the following

Conjecture 2.1 Reversible P systems without priorities and without inhibitors are not uni-

versal.

2.3.8 Strong reversibility

Unlike reversibility itself, the more restricted property of strong reversibility is decidable,

see [195], since checking that at most one incoming transition exists for any configuration is

no longer related to reachability. However, the following theorem establishes a very serious

limitation on such systems if no additional control is used.

Theorem 2.17 In strongly reversible P systems without inhibitors and without priorities,

every configuration is either halting or induces only infinite computation(s).

79

Proof. If the right-hand side of every rule contains the left-hand side of some rule, then

the claim obviously holds (only infinite computations if at least one rule is applicable to the

initial configuration, otherwise no transition is possible and the computation immediately

halts). On the other hand, assume x → y to be a rule of the system such that y does not

contain the left-hand side of any rule (hence, x 6= y , too). Then x ⇒ y and y is a halting

configuration. It is not difficult to see that then two different preimages of yy exist, i.e.,

xy ⇒ yy (the objects in y are idle) and xx⇒ yy (the rule can be applied twice). Therefore,

such a system is not strongly reversible, which proves the theorem. �

Thus, the strongly reversible systems without additional control can only generate singletons,

and only in a degenerate way, i.e., without doing any transition step:

Corollary 2.17 NRsOP1(coo)T = {{n} | n ∈ N}.

It turns out that the theorem above does not hold if inhibitors are used: consider th system

Π4 = ({q, f, a}, q, {q → qaa|¬f}, {q → f |¬f}). If at least one object f is present or no

objects q are present, a configuration of Π4 is a halting one. Otherwise, all objects q are

used by the rules of the system. Therefore, the only possible transitions in the space of all

configurations are of the form qm+nap−2m ⇒ qmfnap, m + n > 0, p ≥ 2m and the system is

strongly reversible. Notice that N(Π4) = {2k+1 | k ≥ 0}, since, in any halting computation,

starting from q we apply the first rule for k ≥ 0 steps and finally the second rule.

We now consider the controlled case. Once again, priorities change degenerate computa-

tional systems into universal ones.

Theorem 2.18 NRsOP1(coo, Pri)T = NRE.

Proof. Consider the construction from Theorem 2.13. We recall that every rule uses at

least one object from Q and preserves the number of objects from Q. When there are no

multiple objects from Q in the system, multiple rules cannot be applied simultaneously, so the

behavior is identical for the maximally parallel case, and the simulation is correct. Otherwise,

due to the total priority, only the rule with the highest possible priority (rewriting two state

symbols into themselves) will be applied, as many times as possible, yielding the same

configuration. Hence, the only preimage of a configuration in this case is the configuration

itself (and the only incoming transition consists of the maximal application of the rule with

the highest priority among the applicable ones), hence, the same system is reversible in the

maximally parallel case, too. �

Remark 2.4 Notice that universality may still be obtained by simulating priorities, if the

concept of inhibitors is generalized as follows: typically, inhibitors are defined as single ob-

jects. Occasionally, we may consider inhibitors that are multisets, in the sense that the rule

is applicable if the inhibiting multiset is not a submultiset of the current configuration. A

further possible generalization would be for a rule to have multiple inhibiting multisets, in

the sense that the rule is applicable if it is not inhibited by any of these multisets, i.e., if

none of them is a submultiset of the current configuration.

For instance, a rule a→ b|¬cd,¬ce would be applicable to an object a if the current config-

uration does not simultaneously contain c and d, and also does not simultaneously contain

80

c and e. Indeed, priorities can then be simulated by including as inhibiting multisets the

left-hand sides of all rules with higher priorities.

We conjecture that strongly reversible universality is impossible using just one singleton

inhibitor in any rule. This remark also holds for the sequential case.

2.3.9 Strongly deterministic parallel rewriting

The concept of determinism common to membrane computing essentially means that such

a system, starting from the fixed configuration, has a unique computation. This property

often turns out undecidable. Of course, this subsection only deals with accepting systems.

First, we recall that if deterministic accepting register machines are simulated in Theorem

2.16, then the construction is both deterministic and reversible. The following corollary is

obtained similarly to Corollary 2.12, i.e., by extending the priority relation to a total order.

Corollary 2.18 NaDsMR(coo, Pri)T = NRE.

In general, if a certain class of non-deterministic P systems is universal even in a deterministic

way, then the determinism is undecidable for that class. This also applies to the special model

of P systems considered in this section (the proof is similar to that of Corollary 2.13).

Corollary 2.19 It is undecidable if a given P system is deterministic.

On the contrary, the strong determinism we now consider means that a system has no choice

of transitions from any configuration. We claim that it is a syntactic property; to formulate

the claim, we need the notion of the domain of a rule x→ y, x→ y|a or x→ y|¬a is the set

of objects in x (the multiplicities of objects in x are not relevant for the results here). We

say that two rules are mutually excluded by promoter/inhibitor conditions if the inhibitor

of one is either the promoter of the other rule, or is in the domain of the other rule.

Theorem 2.19 A P system is strongly deterministic if and only if any two rules with in-

tersecting domains are either mutually excluded by promoter/ inhibitor conditions, or are in

a priority relation.

Proof. Clearly, any P system with only one rule is strongly deterministic, because the

degree of parallelism is defined by exhausting the objects from the domain of this rule.

The forward implication of the theorem holds because the rules with non-intersecting

domains do not compete for the objects, while mutually excluding promoter/inhibitor con-

ditions eliminate all competing rules except one, and so does the priority relation. As a result,

for any configuration the set of objects is partitioned in disjoint domains of applicable rules,

and the number of applications of different rules can be computed independently.

We now proceed with the converse implication. Assume that two rules p and p′ of the

system intersect in the domain, but are not in a priority relation and are not mutually

excluded by the promoter/inhibitor conditions. Let x and x′ be the multisets of objects to

be rewritten by rules the rules p and p′, respectively. Then consider the multiset C which is

the minimal multiset including x and x′, and the configuration C ′, defined as the minimal

multiset including C ′ and the promoters of p and p′, if any.

81

Starting from C ′, there are enough objects for applying either p or p′. Since the rules

neither are mutually excluded nor are in a priority relation, both rules are applicable. How-

ever, both cannot be applied together because the rules intersect in the domain and thus

the multiset C is strictly included in xx′ (and C ′ is only different from C if a promoter of p

or p′ does not belong to C). In that way we get a contradiction to the definition of strong

determinism and therefore proves the sufficiency of the condition stated in the theorem. �

Corollary 2.20 A P system without promoters, inhibitors, and without priority is strongly

deterministic if and only if the domains of all rules are disjoint.

We now show an interesting property of strongly deterministic P systems without additional

control. To define it, we use the following notion for deterministic P systems: let C ⇒ρ1

C1 ⇒
ρ2 C2 · · · ⇒

ρn Cn, where ρi are multisets of applied rules, 1 ≤ i ≤ n. We define the

multiset of rules applied starting from configuration C in n steps as m(C, n) =
⋃n

i=1 ρi.

We write lhs(x→ y) = x and rhs(x→ y) = y, and extend this notation to the multiset

of rules by taking the union of the corresponding multisets. For instance, if C ⇒ρ C1, then

C1 = (C \ lhs(ρ)) ∪ rhs(ρ).

Lemma 2.12 Consider a strongly deterministic P system Π without promoters, inhibitors

and without priorities as well as two configurations C,C ′ with C (C ′ and a number n; then

m(C, n) ⊆ m(C ′, n).

Proof. We prove the statement by induction. It holds for n = 1 step because strongly

deterministic systems are deterministic, and if the statement did not hold, then the system

even would not be deterministic.

Assume the statement holds for n− 1 steps, and

C ⇒ρ1 C1 ⇒
ρ2 C2 · · · ⇒

ρn Cn,

C ′ ⇒ρ′1 C ′
1 ⇒

ρ′2 C ′
2 · · · ⇒

ρ′n C ′
n.

Then, after n−1 steps the difference between the configurations can be described by C ′
n−1 =

(Cn−1 \D0) ∪D1 ∪D2, where

D0 = lhs(m(C ′, n− 1) \m(C, n− 1)),

D1 = rhs(m(C ′, n− 1) \m(C, n− 1)),

D2 = C ′ \ C.

Therefore, C ′
n−1 \Cn−1 (D0. By the strong determinism property, these objects will either

be consumed by some rules from m(C ′, n − 1) \ m(C, n − 1), or remain idle. Therefore,

m(Cn−1, 1) ⊆ m(C ′
n−1, 1) ∪ (m(C ′, n− 1) \m(C, n− 1)), so m(C, n) ⊆ m(C ′, n). �

Example 2.14 Let Π = ({a}, a, {p : a3 → a}). Then m(C ′, n) = p6 ⊂ p7 = m(C, n):

C = a15 ⇒p5

a5 ⇒p a4 ⇒p a,

C ′ = a14 ⇒p4

a6 ⇒p2

a2.

82

We now characterize the power of strongly deterministic P systems without additional con-

trol: any P system without promoters, inhibitors or priorities accepts either the set of all

non-negative integers, or a finite set of all numbers bounded by some number.

Theorem 2.20 NaDsOP1(coo) = {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N}.

Proof. A computation starting from a configuration C is not accepting if it does not halt,

i.e., if limn→∞ m(C, n) = ∞. Due to Lemma 2.12, if the computation starting from C is

accepting, then any computation starting from a submultiset C ′ ⊆ C is accepting, too.

This also implies that if the computation starting from C is not accepting, then neither

is any computation starting from a multiset containing C. Therefore, the set of numbers

accepted by a strongly deterministic P system without additional control can be identified

by the largest number of input objects leading to acceptance, unless the system accepts all

numbers or none.

The converse can be shown by the following P systems.

• System ({a}, {a}, a, {a→ a}) accepts ∅, because with any input the only computation

is an infinite loop;

• system ({a}, {a}, λ, {a→ λ}) accepts N, i.e., anything, because with any input it halts

after erasing everything in one step; and

• for any n ∈ N there is a system ({a}, {a}, λ, {an+1 → an+1}) accepting {k | 0 ≤ k ≤ n},

because the system halts with the initial configuration if and only if the input does not

exceed n, and enters an infinite loop otherwise. �

Theorem 2.20 shows that the computational power of strongly deterministic P systems with-

out additional control is, in a certain sense, degenerate (it is subregular). We now show that

the use of promoters and inhibitors leads to universality of even the strongly deterministic

P systems.

Theorem 2.21 NaDsOP1(coo, pro, inh) = NRE.

Proof. We reduce the statement of the theorem to the claim that such P systems simulate

the work of any deterministic register machine M = (m,Q, I, q0, qf). Without restricting

generality, we assume that every subtracting instruction is preceded by the corresponding

testing instruction. Consider a P system

Π = (O, {r1}, q0, R), where

O = {rj, dj | 1 ≤ j ≤ n} ∪ {q, q1 | q ∈ Q},

R = {q → q′rj | (q : [RjP], q′, q′) ∈ I}

∪ {q → q1dj, q1 → q′, djrj → λ | (q : [RjM], q′, q′) ∈ I}

∪ {q → q′|rj
, q → q′′|¬rj

| (q : 〈RjZ〉, q′, q′′) ∈ I}.

All rules using objects q and q′ have disjoint domains, except the ones in the last line,

simulating the zero/non-zero test. However, they exclude each other by the same object

which serves as promoter and inhibitor, respectively. Subtraction of register j is handled by

83

producing object dj, which will “annihilate” (i.e., be deleted together with) rj. Therefore,

different instructions subtracting the same rj are implemented by the same rule djrj → λ,

hence all rules using objects dj and rj have different domains. It follows from Theorem 2.19

that the system is strongly deterministic. �

Remark 2.5 In the theorem stated above, both promoters and inhibitors were used to elim-

inate conflicts between the rules for the zero test and for the positive test. By the reasons

already explained in Remark 2.4, universality may be obtained by simulating priorities, if the

inhibitors are generalized to multiple multisets.

Notice that, since (unlike in the case of strong reversibility) no inhibiting multiset contains

multiple copies of the same symbol, the condition of applicability is a function defined on the

signature of the configuration, i.e., it does not depend on the multiplicities; it is a conjunction

of disjunctions of effects of atomic inhibitors (e.g., for a rule a→ b|¬cd,¬ce, such a condition

is (¬c ∨ ¬d) ∧ (¬c ∨ ¬e)).

We conjecture that strongly deterministic universality is impossible using just one sin-

gleton inhibitor in any rule (with or without promoters). This remark also holds for the

sequential case.

Conclusions We have outlined the concepts of reversibility, strong reversibility, determin-

ism, and strong determinism for sequential and maximally parallel multiset rewriting systems

and established the results for the computational power of such systems, see Table 2.1 (U -

universal, N - non-universal, L - sublinear, C - conjectured to be non-universal.):

Table 2.1: Properties of sequential(top) and maximally parallel (bottom) rewriting
Seq. pure Pri inh pro, inh

D(acc) L(Cor.2.15) U(Th.2.10) U(Th.2.10)

Ds(acc) L(Th.2.15) U(Cor.2.12) C(Rem.2.5)

R(gen) N(Cor.2.11) U(Th.2.10) U(Th.2.10)

Rs(gen) L(Cor.2.10) U(Th.2.13) C(Rem.2.4)

Max.par. pure Pri inh pro, inh

D(acc) U U U U

Ds(acc) L(Th.2.20) U(Cor.2.18) C(Rem.2.5) U(Th.2.21)

R(gen) C(Conj.2.1) U(Th.2.16) U(Th.2.16) U(Th.2.16)

Rs(gen) L(Cor.2.17) U(Th.2.18) C(Rem.2.4) C(Rem.2.4)

Sequential and maximally parallel multiset rewriting systems with priorities have shown

to be universal for all four properties, i.e., for reversibility, strong reversibility, determinism,

and strong determinism, whereas without control only deterministic maximally parallel sys-

tems are universal and all others are even sublinear except for the reversible classes (in the

case of sequential systems, we have shown non-universality, for maximally parallel systems

we have not been able to prove such a conjecture yet).

With inhibitors, deterministic and reversible systems are universal in both cases, too,

whereas for strong determinism universality could only be shown for maximally parallel

systems with inhibitors and promoters (which are of no use in the sequential case). All other

remaining classes are conjectured to be non-universal.

84

Strongly reversible sequential multiset rewriting systems without control do not halt un-

less the starting configuration is halting, but this is no longer true with inhibitors. For

systems with inhibitors or priorities, strong reversibility has also been characterized syn-

tactically; moreover, we have given a syntactic characterization for the property of strong

determinism. For sequential systems without control, the power of deterministic systems

coincides with that of strongly deterministic systems: such a system without control either

accepts all natural numbers, or a finite set of numbers; a similar result holds for strongly

deterministic maximally parallel systems.

Note some interesting differences of the sequential case with respect to the parallel one:

• promoters are useless;

• the criterion of strong determinism is different;

• the criterion of strong reversibility is not only decidable, but has a concrete description

and thus is easily testable;

• the power of deterministic uncontrolled systems is radically different: sublinear instead

of universal.

The author has also investigated determinism and reversibility in circuits of reversible logic

elements with memory, [239], [238], [240], [241], [242], and number-conservation in cellular

automata, [200]. However, these computational models are rather different from multiset

processing and string processing, so we skip the presentation of these results in order to keep

the size and the scope of this thesis reasonable.

2.4 Self-stabilization

In this section we discuss a notion of self-stabilization, inspired from biology and engineering.

Multiple variants of formalization of this notion are considered, and we discuss how such

properties affect the computational power of multiset rewriting systems.

We will call a property dynamic if it depends on the behavior of a system and cannot

be easily derived from its description (as opposed to syntactic properties). Given any finite

computation, we assume that the property is easily verifiable. The two usual sources of

undecidability are a) that we do not always know whether we are dealing with finite or infinite

computations, and b) that some properties are defined on infinite number of computations

(due to non-determinism, to the initial input or to some other parameter). In the case of this

concept, another source of potential undecidability is the finite set to be reached as given in

the definitions below. Since in this section we will deal with reachability issues, we would

also like to mention the connection with temporal logic [164].

Self-stabilization is a known concept in conventional distributed computing, introduced

by E. Dijkstra in [163], as well as in systems biology, but only considered in the framework

of membrane computing in [22] and [21]. It has been recalled by Jacob Beal during the

Twelfth Conference in Membrane Computing, CMC12, and an attempt to formalize it in the

membrane computing framework has been done in [18]. The underlying idea is the tolerance

85

of natural and engineering systems to perturbations. The formulation from [290], says that

A system is self-stabilizing if and only if:

1. Starting from any state, it is guaranteed that the system will eventually reach a correct

state (convergence).

2. Given that the system is in a correct state, it is guaranteed to stay in a correct state,

provided that no fault happens (closure).

In case of inherently non-deterministic systems, “with probability 1” should be added.

Based on this concept, we propose a few formal properties, following the discussion below.

In this section we consider fully cooperative multiset rewriting, possibly with promot-

ers/inhibitors/priorities, operating either in the maximally parallel or the sequential mode.

We consider a single working region only, for two reasons. First, the properties of interest

are unaffected by flattening the static membrane structure. Second, we would currently like

to avoid the discussion about reachability related to “arbitrary configurations” with dynamic

membrane structure.

2.4.1 Self-stabilization and related properties

Clearly, “a correct state” should be rephrased as “a configuration in the set of correct con-

figurations”. Moreover, we would like to eliminate the set of correct states, let us denote

it by S, as a parameter. We say that our property holds if there exists some finite set S

of configurations satisfying the conditions 1 and 2 above. Since membrane systems are in-

herently non-deterministic, we additionally propose two weaker degrees of such a property:

possible (there exists a computation satisfying the conditions), almost sure (the conditions

are satisfied with probability 1 with respect to non-determinism). Finally, if condition 2

is not required, we call the corresponding property (finite) set-convergence instead of self-

stabilization. We now give the formal definitions from [18].

Definition 2.3 A P system Π is possibly converging to a finite set S of configurations iff

for every configuration C of Π there exists a configuration C ′ ∈ S such that C ⇒∗ C ′.

Definition 2.4 A P system Π is (almost surely) converging to a finite set S of configurations

iff for every configuration C of Π the computations starting in C reach some configuration

in S (with probability 1, respectively).

Definition 2.5 A P system Π is possibly closed with respect to a finite set S iff for every

non-halting configuration C ∈ S there exists a configuration C ′ ∈ S such that C ⇒ C ′.

Definition 2.6 A P system Π is closed with respect to a finite set S iff for every non-halting

configuration C ∈ S C ⇒ C ′ implies C ′ ∈ S.

We say that a system is (possibly, almost surely) set-converging if it is (possibly, almost

surely, respectively) converging to some finite set of configurations.

We say that a system is possibly self-stabilizing if it is possibly converging to some

finite set S of configurations and if it is possibly closed with respect to S.

86

We say that a system is (almost surely) self-stabilizing if it is (almost surely, respec-

tively) converging to some finite set S of configurations and if it is closed with respect to S.

Examination of computational aspects of these properties motivates us to add “weakly”

to the properties proposed in [18] – (possibly, almost surely) converging, (possibly) closed,

(possibly, almost surely) set-converging, (possibly, almost surely) self-stabilizing – if the cor-

responding conditions over configurations C only span the reachable non-halting ones.

Another comment we can make on “almost sure” is that such a property may depend

on how exactly the transition probability is defined. The easiest way is to assign equal

probabilities to all transitions from a given configuration. Alternatively, to a transition

via a multiset of rules rn1
1 · · · r

nm
m we may assign the weight of a multinomial coefficient

(
n1+···+nm

n1,··· ,nm

)
= (n1+···+nm)!

n1!···nm!
, which will make the corner cases less probable than the average

ones. There can be other ways to define transition probabilities, but we would like to discuss

the properties of interest without fixing a specific way. We assume the transition probabilities

in an independent subsystem are the same as if it were the entire system.

An important assumption we impose on the probability distribution is that the probability

of each transition is uniquely determined by the associated multiset of rules and by the set

of all applicable multisets of rules, yet it does not depend on the objects that cannot react,

or by the previous history of the computation.

2.4.2 Accepting systems

For the following theorem we consider any computationally complete model of P systems as

defined above, e.g., a model with maximally parallel multiset rewriting or with controlled

sequential multiset rewriting.

Theorem 2.22 If a model of P systems yields a computationally complete class, then the

weakly self-stabilizing subclass accepts exactly NREC.

The proof can be found in [21].

Strengthening this result by removing “weakly” is problematic, even if more powerful

P systems are used. Indeed, self-stabilization also from unreachable configurations would

need to handle not only the configurations without any state or with multiple states (which

could be handled with the joint power of maximal parallelism and priorities), but also con-

figurations representing a situation with only one state which is not the initial state of the

underlying register machine. We have to leave this question open.

Theorem 2.23 If a model of P systems yields a computationally complete class, then the

weakly almost surely self-stabilizing P systems of this class accept exactly NRE.

The proof can be found in [21].

Theorem 2.24 If a model of P systems yields a computationally complete class, then the

class of all almost surely self-stabilizing maximally parallel/sequential P systems with prior-

ities accepts exactly NRE.

87

Proof. Given a set L from NRE, we first construct a P system Π simulating a register

machine M accepting L and then extend Π to a P system Π′ even fulfilling the condition of

almost surely self-stabilizing.

Let M = (m,Q, I, q0, qf) a deterministic register machine accepting L. We now construct

the P system Π = (O, q0, R,>) with priorities accepting L:

O = Q ∪ {aj | 1 ≤ j ≤ m} ,

R = {q1 → ajq2 | (q1 : [RjP], q2) ∈ I}

∪ {ajq1 → q2, q1 → q3 | (q1 : 〈RjZM〉, q2, q3) ∈ I}

> = {ajq1 → q2 > q1 → q3 | (q1 : 〈RjZM〉, q2, q3) ∈ I} .

The contents of a register j, 1 ≤ j ≤ m, is represented by the number of symbols aj in Π.

The state q of the register machine is represented by the corresponding symbol q in Π, too.

When M halts in qf with all registers being empty, Π also halts with the configuration {qf}.

Obviously, Π accepts L, both in the sequential as well as in the maximally parallel mode.

To strengthen the result to even non-weak almost sure self-stabilization, we have to take

into account the non-reachable configurations, too. The almost surely self-stabilizing P

system Π′ = (O′, q0, R
′, >′) with priorities accepting L is constructed as follows:

O′ = Q ∪ {aj | 1 ≤ j ≤ m} ∪ {e} ,

R′ = {q1 → ajq2 | (q1 : [RjP], q2) ∈ I}

∪ {ajq1 → q2, q1 → q3 | (q1 : 〈RjZM〉, q2, q3) ∈ I}

∪ {aj → e | 1 ≤ j ≤ m} ∪ {ex→ e | x ∈ O′} ∪ {e→ e}

∪ {q → e | q ∈ Q \ {qf}} ∪ {qq
′ → e | q, q′ ∈ Q} ,

>′ = {ajq1 → q2 > q1 → q3 | (q1 : 〈RjZM〉, q2, q3) ∈ I}

∪ {ex→ e > r, qq′ → e > r | q, q′ ∈ Q, x ∈ O′, r ∈ R}

∪ {q → e > aj → e | q ∈ B \ {qf} , 1 ≤ i ≤ m}

∪ {r > e→ e | r ∈ R′ \ {e→ e}} .

In addition to the idea of the construction in the proof of Theorem 2.23 using the exit e by

applying a rule q → e, q ∈ Q \ {qf}, it suffices to self-stabilize from the configurations with

no state and from the configurations with multiple states of the register machine. Multiple

states can be reduced by the rules qq′ → e, q, q′ ∈ Q. If no state symbol is present, then we

may exit with one of the rules aj → e, 1 ≤ j ≤ m. All remaining cases can be captured by

the rules ex → e, x ∈ O′. By construction, the self-stabilizing set S equals {{qf} , {e} , ∅}.

The whole construction again is valid for both sequential and maximally parallel mode. �

It is open whether priorities in Theorem 2.24 can be replaced by promoters or inhibitors.

2.4.3 Generating systems

Theorem 2.25 Any finite set M of numbers can be generated by some self-stabilizing mem-

brane system without control.

88

Proof. Consider a P system Π = ({s, a}, s, R), where

R = {s→ an | n ∈M} ∪ {amax(M)+1 → λ, ss→ s}.

It is not difficult to see that Π generates M and (taking S = {an | n ≤ max(M)} ∪ {s}) it

is self-stabilizing. �

Since self-stabilization implies set-convergence and closure, and relaxing either property (to

possibly, almost surely and/or weakly) does not compromise the construction of the P system

described in the proof of Theorem 2.25, the lower bound on the generative power of associated

systems restricted to any property we have defined, is at least NFIN .

Lemma 2.13 A possibly finite set-converging system only generates finite sets.

Proof. By Definition 2.3, for a system possibly converging to a set S, S contains all halting

configurations. Since S is finite, so is the set of all the halting configurations. Hence, at

most NFIN is generated. �

Theorem 2.26 Any of the following classes dpOPm(c) generate exactly NFIN :

d is possibly/almost surely/ -

p is self-stabilizing/finite set-converging

m is maximally parallel/sequential

c is uncontrolled/with promoters/with inhibitors/with priorities.

Proof. The claims directly follow from Theorems 2.25 and 2.26. �

We now proceed to weak properties of generative systems.

Theorem 2.27 Weakly almost surely self-stabilizing P systems generate exactly NFIN .

Proof. The lower bound is shown by Theorem 2.25. Now take a weakly self-stabilizing P

system Π, and its associated set S from the definition of the property. Consider an arbitrary

halting computation of Π. Let C be the configuration of Π one step before the halting.

Interpreting finite set-convergence for C implies that the halting configuration belongs to S.

Since the halting computation has been arbitrarily chosen, the set of all halting configurations

is a subset of S, and hence it is finite. Therefore, the set generated by Π is finite, too. �

Theorem 2.28 If a model of P system yields a computationally complete class, then weakly

possibly self-stabilizing subclass generates NRE.

Proof. Consider the construction from Theorem 2.23, but for a generative P system. The

simulation of the underlying register machine is carried out until some point. Unless the P

system has already halted, it always has a choice to self-stabilize and loop. �

89

Table 2.2: Results (letter F stands for “generate exactly NFIN ”)
Property comput. (sequ/maxpar) Thm

complete +pri

self stabilizing acc. ?/F -/2.26

almost surely s.s. acc. ?/F acc. NRE/F 2.24/2.26

possibly s.s. acc. ?/F acc. NRE/F 2.24/2.26

weakly s.s. acc. NREC/F 2.22/2.27

weakly almost surely s.s. acc. NRE/F 2.23/2.27

weakly possibly s.s. acc. NRE/gen. NRE 2.23/2.28

Conclusions We have presented some results (some of them summarized in Table 2.2)

concerning the notion of self-stabilization, recently proposed for membrane computing. Its

essence is reachability and closure of a finite set.

One of the questions we proposed is whether priorities may be replaced by promoters

or inhibitors in Theorem 2.24. Another open question is the power of accepting with unre-

stricted self-stabilization, even if maximal parallelism is combined with priorities (a comment

after Theorem 2.22 and the first question mark in the table above). The other open questions

are also marked with question marks in the table above. Any system in the corresponding

classes must (besides doing the actual computation) converge (definitely, in probability or

possibly) to some finite set from anywhere, without using the joint power of maximal paral-

lelism and control.

2.5 Membrane Creation

In this section, it is essential that not only multiset rewriting is distributed over a tree struc-

ture, but also that such a structure is dynamic. We present quite surprising results that

non-cooperative rewriting reaches computational completeness when equipped with mem-

brane creation and membrane dissolution. Intuitively, this is possible due to the cooperation

between an object and a fact of existence of a membrane.

The aim of this section is to present the improvements of descriptive complexity param-

eters or properties of a few universality results. More precisely, we shall speak about object

complexity (bounds in the starting configuration, in any configuration, in the alphabet) and

also about membrane complexity.

It was shown in [17] that P systems with membrane creation generate PsRE, even when

every region (except the environment) contains at most one object of every kind, but using

unbounded membrane labels. We will show that they generate all recursively enumerable

languages, and two membrane labels are sufficient (the same result holds for accepting all

recursively enumerable vectors of non-negative integers). Moreover, at most two objects are

present inside the system at any time in the generative case. On the other hand, using an

unbounded membrane alphabet we can bound the symbol alphabet by 10+m objects, where

m is the size of the output alphabet.

Finally, we show that P systems with restricted membrane creation (only of the same

kind as parent) generate at least matrix languages, and so do P systems with membrane

90

creation having at most one object in the configuration (except the environment). Remarks

and open questions are presented.

Figure 2.3 describes the membrane structure used in the theorems.

Th.2.29 1��1
�2 @2· · ·︸︷︷︸
n1

HH2
�2 @2· · ·︸︷︷︸
n2

Th.2.301��2
�2 @2· · ·︸︷︷︸
n1

HH1��2
�2 @2· · ·︸︷︷︸
n2

. . . 1�� HH12
�2 @2· · ·︸︷︷︸
ndTh. 2.31

s
�@· · ·︸︷︷︸

non-terminals

Th. 2.32,2.33s����1
�

�1· · ·︸︷︷︸
n1

@
@2

HHHH2· · ·︸︷︷︸
n2

������l
l′

Figure 2.3: Membrane structures for membrane creation proofs

Generating The first theorem shows how recursively enumerable languages can be gener-

ated by P systems with a small number of objects inside the system and a small number of

membrane labels.

Theorem 2.29 LO1,2,∗P1,∗,2(ncoo, tar,mcre, δ) = RE.

Proof. Due to Proposition 1.4, we construct a P system simulating a register machine

M = (2, T,Q, I, q0, qf); I− denotes the set of all SUB instruction labels.

Π = (O,H, []
1
, w1, R1, R2),

O = T ∪ {a1, a2, C1, C2, g0, g1, g2, t} ∪ P ∪ {qi | q ∈ I−, 1 ≤ i ≤ 7},

H = {1, 2}, w1 = g0,

R1 = R1,I ∪R1,A ∪R1,S ∪R1,D ∪R1,Z ∪R1,O,

R2 = R2,I ∪R2,A ∪R2,S ∪R2,D ∪R2,Z .

For clarity, the rules are grouped in categories (initialization, add, subtract, decrement case,

zero case, output).

R1,I = {g0 → [g0]2, g1 → [g2]1, g2 → (l0)out},

R2,I = {g0 → (g1)out},

R1,O = {q → q′aout | a ∈ T, (q : [SaW], q′) ∈ I},

R1,A = {q → q′(C2)inj
, q → q′′(C2)inj

| (q : [RjP], q′, q′′) ∈ I, j ∈ {1, 2}}

∪ {C2 → [t]2, t→ λ},

R2,A = {C2 → [t]
2
, t→ λ},

R1,S = {q → (q1C1)inj
| (q : 〈RjZM〉, q′, q′′) ∈ I, j ∈ {1, 2}}

∪ {C1 → [t]1} ∪ {q1 → (q2)in2 | (q : 〈R1ZM〉, q′, q′′) ∈ I},

R2,S = {C1 → [1t]
1
} ∪ {q1 → (q2)in2 | (l : 〈R2ZM〉, l′, l′′) ∈ I},

91

R1,D = {q4 → q5δ | q ∈ I−}

∪ {q3 → (q4)in1 , q5 → (q′)out | (q : 〈R1ZM〉, q′, q′′) ∈ I)},

R2,D = {q2 → q3δ | q ∈ I−}

∪ {q3 → (q4)in1 , q5 → (q′)out | (q : 〈R2ZM〉, q′, q′′) ∈ I},

R1,Z = {q6 → q7δ | q ∈ I−}

∪ {q1 → (q6)in1 , q7 → (q′′)out | (q : 〈R1ZM〉, q′, q′′) ∈ I},

R2,Z = {q1 → (q6)in1 , q7 → (q′′)out | (q : 〈R2ZM〉, q′, q′′) ∈ I}.

Initially, by means of the auxiliary objects gj, we create two membranes inside the skin

region, labeled by 1 and 2, respectively. These membranes will be referred to as cluster-

membranes (because they will contain inside them a number of elementary membranes). We

finish the initialization phase by generating an object q0 in the skin region.

The values of the two registers j, j ∈ {1, 2}, are represented by the number of elementary

membranes labeled by 2 that occur inside the corresponding cluster-membrane i. The duty

of the object Cj is to create membrane j. Object t is not needed for the computation, it is

only used to keep the usual form of membrane creation rules and is immediately erased.

Writing an output symbol a ∈ T is done by a non-cooperative rule changing the instruc-

tion label and producing a symbol a that is immediately sent out. To increment a register,

a membrane labeled 2 is created in the corresponding cluster-membrane.

To simulate a subtraction of register j we send objects q1 and C1 into cluster-membrane

j and then proceed as follows: while creating a membrane with label 1, object q1 tries to

enter some membrane with label 2 as q2. If such a membrane exists (i.e., register j is not

empty), then q2 changes to q3 and dissolves the membrane, thus being spilled back into the

cluster-membrane. Before proceeding to the next label, we have to get rid of the auxiliary

membrane 1 created inside the cluster-membrane by C1. To this aim, q3 enters membrane

1 as q4 and dissolves it, thereby changing to q5. Finally, q5 sends object q′ out to the

skin region. Overall, q has been replaced by q′ and the number of membranes with label 2

inside the cluster-membrane j has been reduced by 1. If, on the other hand, no membrane

with label 2 exists in the cluster membrane, then q1 waits for one step and then enters the

newly created membrane 1 as q6. Immediately afterwards, it changes to q7 and dissolves the

membrane. Finally, q7 sends out object q′′ into the skin region. Overall, in the absence of

membranes with label 2 inside the cluster-membrane j, q has been replaced by q′′.

Note that inside the system there can never be more than one copy of the same object.

In fact, the number of objects inside the system never exceeds two (it is two after the first

step of an ADD or a SUB instruction). �

Accepting Notice that the simulation of the register machine instructions in Theorem

2.29 is deterministic (the non-determinism arises from the non-determinism of the register

machine program itself, not from the simulation).

Theorem 2.30 DPsaOP1,∗,2(ncoo, tar,mcre, δ) = PsRE.

The proof of this result can be found in [73].

92

Generating with one object Considering P systems only having one object inside the

system during the whole computation, we realize that such P systems with one object work

sequentially. Hence, the following holds:

Theorem 2.31 PsMAT is characterized by P systems Π = (O,H, µ, w1, · · · , wm, R1, · · · ,

Rn), where (a) the initial membrane structure is limited by two levels (any membrane inside

the skin is elementary) and label 1 of the skin membrane is unique, (b) exactly one of the

multisets wi consist of exactly one object, whereas all the other initial multisets are empty,

(c) the rules in R1 are of the forms a → buout, a → bini
uout, a → b, or a → [b] i with

a, b ∈ O, u ∈ O∗, and i ∈ H ′ where H ′ = H \ {s}, (d) the rules in Ri, 2 ≤ i ≤ n, are of the

forms a→ b, a→ bout, or a→ bδ.

We do not present the proof here; an interested reader can find it in [73].

We conjecture that we need not restrict the membrane structure, i.e., PsMAT =

PsO1,1,∗P∗,∗,∗(ncoo, tar,mcre, δ).

Number of Symbols The size of the alphabet in the computational completeness proofs

usually depends on the complexity parameters of the simulated device. We now show that

any recursively enumerable set of m-dimensional vectors of numbers can be generated by P

systems with membrane creation and dissolution with the alphabet of 10 + m symbols.

Theorem 2.32 L(m)O1,2,10+mP2,∗,∗(ncoo, tar,mcre, δ) = RE(m).

Proof. We simulate a register machine M = (2, T,Q, P, q0, qf) where T = {aj | 1 ≤ j ≤ m};

let P+ denote the set of all ADD instruction labels, and let P− denote the set of all SUB

instruction labels.

Π = (O,H, [[]I]s, λ, b, Rq0 , · · · , RD),

O = T ∪ {b, c, d, e} ∪ {r+, r−, r′− | r ∈ {1, 2}},

H = P ∪ {I, 1, 2, s,D},

Ri = Ri,I ∪Ri,O ∪Ri,A ∪Ri,S ∪Ri,D ∪Ri,Z ∪Ri,N , i ∈ H.

For clarity, the rules are grouped (initialization, output, add, subtract, decrement case, zero

case, next instruction).

RI,I = {b→ [d]
q0
},

Ri,I = ∅, i ∈ H \ {I},

Rq,O = a→ aout | (q : [SaW], q′), a ∈ T},

∪ {a→ aδ | a ∈ T}, q ∈ Q ∪ {I},

Rs,O = {a→ aoutb, a→ aoutc | a ∈ T},

Ri,O = ∅, i ∈ H \ (P ∪ {I, s}),

93

Rq,A = {d→ (r+)out | (q : ((qr, [R,P], qq)
′, q′′) ∈ P, r ∈ {1, 2}}

∪ {r+ → r+δ | r ∈ {1, 2}}, q ∈ P ∪ {I},

Rs,A = {r+ → [d]
r
| r ∈ {1, 2}},

Rr,A = {d→ bout, d→ cout}, r ∈ {1, 2},

RD,A = ∅,

Rq,S = {d→ (r−)out | (q : 〈RrZM〉, q′, q′′) ∈ P, r ∈ {1, 2}}

∪ {r− → r−δ | r ∈ {1, 2}}, q ∈ P ∪ {I},

Rs,S = {r− → r′−d, d→ [d]
D
| r ∈ {1, 2}},

RD,S = {d→ λ},

Ri,S = ∅, i ∈ H \ P \ {I, s,D},

Rs,D = {r′− → (r′−)inr , e→ einD
| r ∈ {1, 2}},

Rr,D = {r− → r′−d, d→ [d]
D
}, r ∈ {1, 2},

RD,D = {r′− → eout}, r ∈ {1, 2},

Ri,D = ∅, i ∈ H \ {1, 2, s,D},

Rs,Z = {r′− → (r′−)inD
} | r ∈ {1, 2}},

RD,Z = {r′− → bδ | r ∈ {1, 2}},

Ri,D = ∅, i ∈ H \ {s,D},

Rs,N = {b→ binq , c→ cinq | q ∈ P},

Rq,N = {b→ [a]
q′
, c→ [a]

q′′
| q : (OP, q′, q′′) ∈ P, OP ∈ {[RrP], 〈RrZM〉}}.

The instruction labels are encoded into membrane labels, and the values of the registers

are encoded by the number of copies of some membranes associated with them. The proof

mainly relies on the fact that the amount of information needed to be transmitted between

the instructions and the registers is “small”, i.e., the instructions tell us which operation (ADD

or SUB, represented by r+, r−, r ∈ {1, 2}) has to be applied and to which register r it has

to be applied. The objects r′−, r ∈ {1, 2}, and e are used to implement the SUB instruction,

and the object d here is used to organize a delay for the appearance checking, similar to

the technique from Theorem 2.29, whereas otherwise it is used when the membranes already

contain all the information needed.

After an operation is simulated, the next instruction is chosen from two variants, non-

deterministically chosen in the ADD case and as well in the SUB case here depending on

whether decrementing has been successful or not. These variants are represented by objects

b, c. The transition to the next instruction is done as follows: object b in membrane q

creates membrane q′, or object c in membrane q creates membrane q′′. After this, the object

“memorizes” the next register to be operated on and the operation to be performed, and

then membrane q is dissolved, leaving the newly created membrane in the skin. �

If we want to start with the simplest membrane structure, it suffices to use one more symbol,

as is exhibited in the following:

Theorem 2.33 L(m)O1,2,11+mP1,∗,∗(ncoo, tar,mcre, δ) = RE(m).

94

Proof. We again simulate a register machine M = (2, T,Q, P, q0, qf) as in the proof of the

preceding theorem, but in the P system Π′ we use an additional symbol a for an initial step

starting in the skin membrane:

Π′ = (O,H, []s, a, Rq0 , · · · , RD),

O = T ∪ {a, b, c, d, e} ∪ {r+, r−, r′− | r ∈ {1, 2}},

H = P ∪ {I, 1, 2, s,D},

Ri = Ri,I ∪Ri,O ∪Ri,A ∪Ri,S ∪Ri,D ∪Ri,Z ∪Ri,N , i ∈ H.

Rs,I = {a→ [b]
I
},

RI,I = {b→ [d]
q0
},

Ri,I = ∅, i ∈ H \ {s, I}.

Except for the initialization, the sets of rules are exactly the same as for the P system Π

constructed in the preceding proof, which observation already completes this proof. �

Restricted Membrane Creation

We now consider restricted membrane creation: in region i it is only possible to create

membranes with label i.

Theorem 2.34 PsO1,1,∗P∗,∗,∗(ncoo, tar,mcrer, δ) ⊇ PsMAT .

We do not present the proof here; an interested reader can find it in [73].

Conclusions and Open Problems We have shown that P systems with membrane cre-

ation generate RE, using two membrane labels and at most two objects present inside the

system throughout the computation. Accepting any recursively enumerable language can

also be done with two membrane labels. On the other hand, it is possible to bound the num-

ber of symbols by m+10 and still generate RE(m), provided that the number of membrane

labels is unbounded.

We also have shown that RE is generated by P systems using four membranes and three

labels or seven membranes and two labels in the initial configuration, where at most three

objects are ever present in any halting computation.

Improving any complexity parameter greater than one (especially in the case of ∗) in any

theorem is an open question. Moreover, the following questions are of interest:

• What is the power of P systems with membrane creation and one object?

• What is the power of P systems with restricted membrane creation?

• How can target indications be restricted in Theorem 2.29?

• What further restrictions cause a complexity trade-off?

95

2.6 Conclusions to Chapter 2

The family of languages generated by transitional P systems without cooperation and with-

out additional control has been reconsidered. It was shown that one membrane is enough,

and a characterization of this family was given via derivation trees of context-free grammars.

Next, three normal forms were given for the corresponding grammars. It was than shown

that the membrane systems language family lies between REG • Perm(REG) and context-

sensitive semilinear polynomially parsable languages, and it is incomparable with linear and

with context-free languages. An example of a considerably more “difficult” language was

given than the lower bound mentioned above.

The membrane systems language family was shown to be closed under union, permuta-

tions, erasing/renaming morphisms. It is not closed under intersection, intersection with

regular languages, complement, concatenation or taking the mirror image. The follow-

ing are examples of questions that are still not answered: Does LOP (ncoo, tar) ⊆ MAT

hold? Is LOP (ncoo, tar) closed under arbitrary morphisms? (Conjecture: no.) Characterize

LOP (ncoo, tar).

It has been shown that, for non-cooperative P systems with promoters and/or inhibitors

(with or without priorities), determinism is a borderline criterion between universality and

decidability. In fact, for non-cooperative P systems working in the maximally parallel or the

asynchronous mode, we have computational completeness in the unrestricted case, and only

all finite number sets and their complements in the deterministic case.

The concepts of reversibility, strong reversibility, determinism, and strong determinism

have been outlined for sequential and maximally parallel multiset rewriting systems and

established the results for the computational power of such systems, see Table 2.1.

Sequential and maximally parallel multiset rewriting systems with priorities have shown

to be universal for all four properties, i.e., for reversibility, strong reversibility, determinism,

and strong determinism, whereas without control only deterministic maximally parallel sys-

tems are universal and all others are even sublinear except for the reversible classes (in the

case of sequential systems, we have shown non-universality, for maximally parallel systems

we have not been able to prove such a conjecture yet).

With inhibitors, deterministic and reversible systems are universal in both cases, too,

whereas for strong determinism universality could only be shown for maximally parallel

systems with inhibitors and promoters (which are of no use in the sequential case). All other

remaining classes are conjectured to be non-universal.

Strongly reversible sequential multiset rewriting systems without control do not halt un-

less the starting configuration is halting, but this is no longer true with inhibitors. For

systems with inhibitors or priorities, strong reversibility has also been characterized syn-

tactically; moreover, we have given a syntactic characterization for the property of strong

determinism. For sequential systems without control, the power of deterministic systems

coincides with that of strongly deterministic systems: such a system without control either

accepts all natural numbers, or a finite set of numbers; a similar result holds for strongly

deterministic maximally parallel systems.

Note the interesting differences of the sequential case with respect to the parallel one:

promoters are useless; the strong determinism criterion is different; the strong reversibility

96

criterion is not only decidable, but is easily testable via a concrete description; the power of

deterministic uncontrolled systems is radically different: sublinear instead of universal.

Some results have been presented (some of them summarized in Table 2.2) concerning

the notion of self-stabilization, recently proposed for membrane computing. Its essence is

reachability and closure of a finite set.

One of the questions we proposed is whether priorities may be replaced by promoters

or inhibitors in Theorem 2.24. Another open question is the power of accepting with unre-

stricted self-stabilization, even if maximal parallelism is combined with priorities. The other

open questions are also marked with question marks in the table above. Any system in the

corresponding classes must (besides doing the actual computation) converge (definitely, in

probability or possibly) to some finite set from anywhere, without using the joint power of

maximal parallelism and control.

P systems with membrane creation have been shown to generate RE, using two mem-

brane labels and at most two objects present inside the system throughout the computation.

Accepting any recursively enumerable language can also be done with two membrane labels.

On the other hand, it is possible to bound the number of symbols by m+10 and still generate

RE(m), provided that the number of membrane labels is unbounded.

We also have shown that RE is generated by P systems using four membranes and three

labels or seven membranes and two labels in the initial configuration, where at most three

objects are ever present in any halting computation.

Improving any complexity parameter greater than one (especially in the case of ∗) in any

theorem is an open question. Moreover, the following issues are of interest: the power of

P systems with membrane creation and one object; the power of P systems with restricted

membrane creation; restricting target indications in Theorem 2.29; further restrictions that

cause a complexity trade-off.

Section 2.1 is based on publications [43], [41], [44], [45], [46], [42], [47]. Section 2.2 is

based on publications [56], [57], [58] (and we mention [135], [134], [133]). Section 2.3 is

based on publications [65], [63], [64], [105], [106], and [104] (and we mention [239], [238],

[240], [241], [242], [200]). Section 2.4 is based on publications [21], [22] and [18]. Section 2.5

is based on publications [73], [17], [74] and [75].

97

3. SYMPORT/ANTIPORT

This chapter is dedicated to showing the power of systems that only move objects between

the nodes of the underlying tree, without changing the objects. Of course, the power of such

systems is subregular unless there exists a region with unbounded supply of some objects.

In Section 3.1 we present a small universal antiport P system from [136], constructed by

simulating the universal register machine U22 from [207], see Figure 1.1 in Subsection 1.1.5.

In Section 3.2 we investigate the power of communication – the P systems evolving

by communicating objects between regions. Computational completeness can already be

obtained with one membrane using antiport rules (objects are communicated in different

directions) or symport rules (objects go together in the same direction) of size three, i.e.,

involving three objects. Applying the communication rules in the minimally parallel mode,

we need two membranes to achieve computational completeness. Acceptance can even be

performed by deterministic P systems with antiport or symport rules. Computational com-

pleteness can be obtained with a rather small number of objects. The author has a significant

contribution to the results covered in this state-of-the art (including, but not limited to the

publications covered in his Ph.D. thesis, see also the Bibliographic Notes in the end of the

section).

Symport rules move multiple objects to a neighboring region. It is known that for P

systems with symport rules of weight at most 3 and a single membrane, 7 superfluous

symbols are enough for computational completeness, and 1 is necessary.

In Section 3.3 we present the improvements of the lower bounds on the generative power

of P systems with symport of weight bounded by 3 and 4, in particular establishing that

6 and 2 extra symbols suffice, respectively. Besides maximally parallel P systems, we also

consider sequential ones. In fact, all presented non-universality lower bound results, together

with all upper bound results, hold also in this case, yielding the current state-of-the-art.

3.1 Universality with Small Number of Rules

In this section we present a small universal antiport P system from [136], constructed by

simulating the universal register machine U22 from [207], see Figure 1.1 in Subsection 1.1.5.

Theorem 3.1 There exists a universal antiport P system with 23 rules.

The proof has been presented in terms of maximally parallel multiset rewriting systems.

Indeed, a multiset rewriting system directly correponds to a one-membrane symport/antiport

system with environment containing an unbounded supply of all objects, and rule u → v

corresponds to rule (u, out; v, in).

98

We now present the formal description of the system; the flowchart representing its finite

state transition graph is illustrated by Figure 3.2:

γ = (O,R, {R1}, I,P), where

O = R ∪ {C3, C
′
5, C

′
6} ∪ {q16, q27} ∪ {T, I, J,K, L,M,N,O, P,Q, T,X},

R = {Ri | 0 ≤ i ≤ 7},

I = LQLQJJNXXXRi0
0 · · ·R

i7
7 .

Here i0, · · · , i7 is the contents of registers 0 to 7 of U22 and LQLQJJNXXX is the encoding

of the initial state q1C1S. Table 3.1 gives the set P of rules.

Table 3.1: 23 rules of a universal antiport P system
phase : XX → XT

D0 : IJKPQR0 → LQLQJJM

D1 : LQLQJJNR1 → LPLPJJMR7

D2 : IIKPQR2 → JJKPQ

D3 : q27C3R3 → JJKPQ

D4 : JJKR4 → JJLLM

D5 : JJOR5 → C′

5

D6 : IJLR6 → C′

6

D7 : IILQLQNR7 → IJLOR1

A : ITT → JXX

B : JJMTT → JJNXX

C : LP → LQ

a : LQLQJJNTT → JJLOR6XX

b : LC′

5TT → JJLOR6XX

c : OC′

6TT → IILQLQNR5XX

d : QLQNC′

6TT → JJKQQR6XX

e : q27C3TT → LQLQJJNR0XX

f : q16JJOC′

5C′

5TT → LQLQJJNR2R3XX

g : q16C′

5C′

5C′

5TT → q16JJOJJOJJOXX

1 : JJLOTT → IJLOXX

5 : JJKQQTT → q16JJOJJOJJOXX

8 : q16JJOJJOJJOTT → IIKPQMXX

12 : q16JJOJJOC′

5TT → q27C3XX

In fact, by simulation all objects except R0, · · · , R7 appear inside the system in bounded

quantities, so the constructed system is explained by projections of configurations onto O′ =

O\{R0, · · · , R7}, yielding a finite transition graph. We refer to its nodes as finite states. The

possibility of some transitions, however, depends on the availability of objects Rj, 0 ≤ j ≤ 7.

In [136] one thus speaks about finite-state maximally parallel multiset rewriting systems

(FsMPMRSs).

Machine U22 may be simulated in a straightforward way, by rule q → Riq1 for each

instruction (q, [RkP], q1) and by rules

q → q′Cq, q′ → q′′, CqRiq → C ′
q, q′′Cq → q1, q′′C ′

q → q2

for each instruction (q, 〈RiqZM〉, q1, q2). This yields a universal P system with 73 sym-

port/antiport rules, reported already in [157] (together with some optimizations). The num-

ber of rules is then decreased at the expense of their weight. The overall behavior eventually

gets quite complicated, so flowcharts are used to describe it. A square represents a finite

state (see the previous paragraph), and a circle attached to it represents a (possibly partial)

application of rules; multiple circles may be drawn as one for simplicity.

Multiple techniques are used to decrease the number of rules. First, if one rule (e.g.,

increment) is always applied after another one, then they can be merged, eliminating an

intermediate state. A state then typically contains a checker (object C with an index, possibly

primed), verifying whether a specific register is present in the system (is non-zero); addition

instructions and renaming rules are no longer present as separate rules. This increases the

weight of rules to 5.

A very important optimization is gluing: the representation of the configurations is

changed such that the effect of multiple rules is obtained by one rule. A general scheme

99

Figure 3.1: Part of the multiset rewriting flowchart of U22: only glued rules and encoding

is the following: suppose we have rules r1 : c1 → c2 and r2 : d1 → d2. They both can

be replaced by a rule r : X → Y if we transform the representation as follows: c1 = cX,

c2 = cY , d1 = dX, d2 = dY . It is, however, needed that no state is a submultiset of another

state.

We now proceed with two simple special cases of gluing. The first case is phases. Repre-

senting states q and q′ by qS and qS ′ lets us glue all rules q → q′ (waiting while the checker

gets a chance to decrement a register) yielding a single rule S → S ′. Later, three phases help

to further optimize the other rules, but the transitions S → S ′ and S ′ → S ′′ are also glued

by substitution S = XXX, S ′ = XXT , S ′′ = XTT yielding a single rule XX → XT . This

phase rule is represented on flowcharts by a double-headed arrow.

The second simple special case of gluing is unifying the checkers that decrement the same

register. Now the state typically contains a phase, a checker, and the rest of the state is

currently a symbol q with an index, derived from U22. We now proceed to the structural

optimizations.

The first structural optimization is reducing the decoder block of U22, responsible for

dividing value of R5 by three. Instead of three conditional decrement instructions, a loop

decrementing three is replaced by one rule, and three other rules implement exits from this

loop, depending on the remainder. One further rule acts on the register by the checker; it

may be used up to 3 times in parallel.

The second structural optimization exploits the fact that registers 0, 1, 2, 3, 7 are only

decremented by one instruction. The corresponding rules may be merged with the rules that

follow them. However, rule S → S ′ is performed independently; this is solved by introducing

the third phase (re-glued as described above; the phases on flowcharts are still represented

by S, S ′ and S ′′ only for compactness), the move to the next state changes phase 3 into

phase 1. For register 1, the rule cannot be combined with the next one, but it increments

register 7 instead of the next rule.

We present the final encoding optimization: 3 rules A : ITT → JXX, B : JJMTT →

JJNXX and C : LP → LQ perform the effect of 9 rules, see Figure 3.1. This yields the

system γ defined above; its flowchart is illustrated by Figure 3.2.

100

Figure 3.2: Multiset rewriting flowchart of U22 with glued rules

As described above, γ corresponds to a universal antiport system with 23 rules. It is still

quite incredible that 23 rules are sufficient for such a simple computational model.

3.2 State of the Art

In this section we investigate the power of communication – the P systems we consider

evolve by communicating objects between regions. Computational completeness can already

be obtained with one membrane using antiport rules (objects are communicated in different

directions) or symport rules (objects go together in the same direction) of size three, i.e.,

involving three objects. Applying the communication rules in the minimally parallel mode,

we need two membranes to achieve computational completeness. Acceptance can even be

performed by deterministic P systems with antiport or symport rules. We also consider tissue

P systems, where the objects are communicated through channels between cells. Computa-

tional completeness can be obtained with a rather small number of objects and membranes

or cells, in the case of tissue P systems even with copies of only one object.

Communication P systems are inspired by the idea of communicating substances through

membrane channels of a cell. Molecules may go the same direction together – symport – or

some of them may leave while at the same time other molecules enter the cell – antiport.

Communicating objects between membrane regions is a powerful tool yielding computational

101

completeness with one membrane using antiport rules or symport rules of size three, i.e.,

involving three objects, in the maximally parallel mode. Yet even with the minimally parallel

mode, we get computational completeness with two membranes. As register machines can

be simulated deterministically, P systems with antiport rules or symport rules can accept

any recursively enumerable set of (vectors of) natural numbers in a deterministic way.

In tissue P systems, the objects are communicated through channels between cells. In

each transition step we apply only one rule for each channel, whereas at the level of the

whole system we work in the maximally parallel way. Computational completeness can be

obtained with a rather small number of objects and membranes or cells, in the case of tissue

P systems even with copies of only one object. The computational power of P systems with

antiport rules or symport rules involving copies of only one object remains as one of the

most challenging open questions.

P systems with communication rules can also be used as language generators – we take

the sequences of terminal objects sent out to the environment as the strings generated by

the system.

We elucidate the computational power of the basic model of communication P systems,

i.e., P systems using antiport and/or symport rules. Computational completeness can be

obtained with rules of size (at most) 3 in only one membrane when working in the maximally

parallel mode, whereas in the minimally parallel mode two membranes are needed. Using

the sequential or the asynchronous mode, we only obtain Parikh sets of matrix languages.

The following simple examples show that at least when considering only one single object

in one membrane, the generating power of P systems with antiport and/or symport rules

differs from the accepting power:

Example 3.1 With one object, we can only generate finite sets, i.e., NO1P1(anti∗, sym∗)

= NFIN : on the one hand, consider a P system Π = ({b}, {b}, E, []1, w1, R1, 1). Then

N(Π) is finite if E is empty, because no additional symbols can be brought in from the

environment; if E = {b}, then by definition the rules in R1 may only be of the form (bk, out)

or (bk, out; bm, in). With symport rules (bk, out) the number of objects in the skin membrane

decreases, the same happens with antiport rules (bk, out; bm, in) where k > m; yet these rules

are the only ones which do not enforce infinite computations, as antiport rules (bk, out; bm, in)

where k ≤ m remain applicable as soon as the number of objects in the skin membrane is

at least k. Hence, we conclude that in all cases N(Π) ∈ NFIN . On the other hand, any

non-empty set M ∈ NFIN is generated by the P system Π = ({b}, {b}, {b}, []
1
, bm, R1, 1),

where m = max(M) + 1 and R1 = {(bm, out; bj, in) | j ∈ M \ {0}} ∪ {(bm, out) | 0 ∈ M}.

The empty set is generated by the P system Π = ({b}, {b}, {b}, []1, b, {(b, out; b, in)}, 1).

Example 3.2 The infinite set N is accepted by the P system

Π = ({b}, {b}, {b}, []1, λ, {(b, out)}, 1).

Every computation for an input bm with m > 0 takes exactly one step in the maximally

parallel mode and at most m steps in the other modes. Hence, N ∈ NaO1P1(sym1, X) for all

X ∈ {max, amin, asyn, sequ}.

With more than one membrane, we may even accept non-semilinear sets even when using

copies of only one object:

102

Example 3.3 The non-semilinear set {2n | n ∈ N} is accepted by the P system with antiport

Π = ({b}, {b}, {b}, [[[]
3

]
2

]
1
, λ, λ, λ,R1, R2, R3, 1),

R1 = {(bb, out; b, in)},

R2 = {(b, in)},

R3 = {(bb, out), (bb, in)}.

Using the rule (bb, out; b, in) from R1 the number m of objects b put into the skin membrane

is divided by 2 in every maximally parallel transition step. If m has been of the form 2n,

then at the end of the computation the last symbol b enters membrane 2 by using (b, in).

If this rule (b, in) was chosen or had to be used before that because of the contents of the

skin membrane being an uneven number, then at the end of the computation at least two

objects are in membrane two which starts an infinite computation with the rules from R3.

Hence, we conclude {2n | n ∈ N} ∈ NaO1P3(anti32, sym2).

3.2.1 Computational completeness

The following result shows that we only need one membrane to obtain computational com-

pleteness; in the case of accepting P systems, even deterministic systems are sufficient which

contrasts the situation for catalytic P systems:

Theorem 3.2 NO−1P1(anti32) = NaDOP1(anti32) = NRE.

Proof. Let M = (3, H, I, q0, qf) be a deterministic register machine. We construct a P

system generating set Na(M) of numbers accepted by M :

Π = (O, T,O, []
1
, lI , R1, 1),

O = {p, p′, p′′, p̃, p̄ | p ∈ H} ∪ {Ai | 1 ≤ i ≤ 3} ∪ {lI , lb1 , b1},

T = {b1},

R1 = R1,I ∪R1,A ∪R1,S,

R1,I = {(lI , out; A1lb1 , in), (lb1 , out; b1lI , in)} ∪ {(lI , out; q0, in)},

R1,A = {(p, out; Arq, in) | (p : [RrP], q, q) ∈ I},

R1,S = {(p, out; p′p′′, in), (p′′Ar, out; p̄, in), (p′, out; p̃, in),

(p̃p̄, out; q, in), (p̃p′′, out; s, in) | (p : 〈RrZM〉, q, s) ∈ I}.

The contents of register r is represented by the corresponding number of symbols Ar, 1 ≤

r ≤ 3. First, we generate an arbitrary number n of symbols b1 and A1 by n times applying

the rules (lI , out; A1lb1 , in) and then (lb1 , out; b1lI , in). With applying the rule (lI , out; q0, in)

we then start the simulation of M which accepts n if and only if n ∈ Na(M). An add-

instruction p : (ADD(r), q, q) ∈ I is simulated by using the rule (p, out; Arq, in). A subtract-

instruction p : (SUB(r), q, s) ∈ I is simulated by using the rules from R1,S starting with

applying (p, out; p′p′′, in): in the next step, (p′, out; p̃, in) is applied, and only if register r is

not empty, (p′′Ar, out; p̄, in) is applied in parallel; in the succeeding step, we either continue

with (p̃p̄, out; q, in) for this non-empty case and with (p̃p′′, out; s, in) for the case that register

r has been empty. When the final label qf appears, the computation stops with the desired

103

output of n symbols b1 being found in the skin membrane together with the only additional

symbol qf .

If we consider acceptance, then the input n is given by A1
n in the skin membrane.

As the only non-determinism in the P system Π occurred in R1,I , the P system Πa =

(Oa, Ta, Oa, []
1
, q0, Ra, 1) with Oa = O \ {lI , lb1 , b1}, Ta = {A1}, and Ra = R1,A ∪ R1,S is

deterministic and accepts Na(M). �

Adding only the very simple symport rule of size one (qf , out) we can avoid the additional

symbol qf at the end of a computation of the P system Π constructed in the proof above,

i.e., we obtain:

Corollary 3.1 NOP1(anti32, sym1) = NRE.

The results established above for recursively enumerable sets of natural numbers can easily

be extended to Parikh sets – we take T = {bi | 1 ≤ i ≤ k} and add lbi
, bi, 2 ≤ i ≤ k, to O,

and in R1,I we have to take all rules with bi, 1 ≤ i ≤ k, instead of b1 only, i.e.,

R1,I = {(lI , out; Ailbi
, in), (lbi

, out; bilI , in) | 1 ≤ i ≤ k} ∪ {(lI , out; q0, in)}.

Moreover, we then have to simulate a deterministic register machine M = (k+2, H, I, q0, qf).

In sum, we obtain:

Corollary 3.2 PsO−1P1(anti32) = PsaDOP1(anti32) = PsRE.

In the results stated above we can restrict ourselves even to antiport rules of size exactly

being 3. This result is already optimal with respect to the size of the rules, because with

antiport rules of size 2, i.e., being of the form (b, out; c, in) with b and c being single objects,

the number of objects in the system cannot be changed.

We now turn our attention to P systems with only symport rules; again rules of size 3 in

one membrane are sufficient to obtain computational completeness:

Theorem 3.3 PsOEP1(sym3) = PsaDOP1(sym3) = PsRE.

Proof. Let M = (k + 2, H, I, q0, qf) be a deterministic register machine and construct the

P system

Π = (O, T,E, []1, w1, R1, 1),

O = {p, p′, p̃, p̃′, p̃′′, p̄, p̄′, p̄′′, Zp | p ∈ H} ∪ {Ai | 1 ≤ i ≤ k + 2}

∪ {X, lI , l
′
I} ∪ T,

T = {bi | 1 ≤ i ≤ k},

E = O \ ({X, lI , l
′
I} ∪ {p

′, p̃′, p̄′, Zp | p ∈ H},

w1 = {X, lI , l
′
I} ∪ {p

′, p̃′, p̄′, Zp | p ∈ H},

R1 = R1,I ∪R1,A ∪R1,S,

R1,I = {(lI l
′
IX, out), (q0l

′
IX, in), (lIX, in)} ∪ {(l′IAibi, in) | 1 ≤ i ≤ k},

R1,A = {(pp′, out), (Arp
′q, in) | (p : [RrP], q, q) ∈ I},

R1,S = {(pp′, out), (p′p̃p̄, in), (p̄p̄′Ar, out), (p̄′p̄′′, in), (p̃p̃′, out),

(p̃′p̃′′, in), (p̄′′p̃′′Zq, out), (p̄p̃′′Zs, out) | (p : 〈RrZM〉(r), q, s) ∈ I}

∪ {(Zpp, in) | p ∈ H}.

104

Using the rules (lI l
′
IX, out) as well as (lIX, in) and (l′IAibi, in) from R1,I , we are able to

generate any number of symbols Ai and the same number of symbols bi in the skin membrane.

The application of the rule (q0l
′
IX, in) after (lI l

′
IX, out) then starts the simulation of M . A

deterministic add-instruction p : (ADD(r), q, q) ∈ I is simulated by using the single copy of

p′ with the rules (pp′, out) and (Arp
′q, in). A subtract-instruction p : (SUB(r), q, s) ∈ I is

simulated by using the rules from R1,S. The symbol p takes p′ outside, which then returns

together with p̃, p̄; p̃ goes to the environment with p̃′ and returns transformed to p̃′′. At the

same time, p̄ tries to decrement register r; if this is possible, it goes out together with p̄′ and

a copy of Ar and returns back as p̄′′ together with p̄′. If p̃′′ meets p̄′′, then the new state q

has to be chosen by sending out Zq; on the other hand, if the register has been empty, i.e.,

if no symbol Ar had been present, then p̄ has remained in the skin membrane and the state

s is chosen by sending out Zs. When the final label qf appears, the computation stops, with

the garbage of symbols (w1 \ {lI}) ∪ {qf} remaining in the skin membrane.

Obviously, omitting the rules from R1,I in the generating P system Π, we obtain the

corresponding P system Πa with Ta = {Ai | 1 ≤ i ≤ k}, which is deterministic and accepts

Na(M). �

The number of garbage symbols remaining in the skin membrane at the end of a computation

in the P system Π constructed in the proof above depends on the deterministic register

machine to be simulated, yet using more sophisticated proof techniques, this number can be

bounded by a constant (as shown in [76], this constant is at most seven; the improvements

are presented in Section 3.3).

Corollary 3.3 NOEP1(sym3) = NaDOP1(sym3) = NRE.

Variants of transition

We can restrict ourselves to systems with one membrane by renaming the symbols in the

different regions, yet now also taking into account the environment as region 0. In that way,

we obtain a characterization of Parikh sets of matrix languages when using the sequential

or the asynchronous mode:

Theorem 3.4 For every X ∈ {asyn, sequ}, PsOP∗(anti∗, sym∗, X) =

PsO−1P1(anti32, X) = PsOEP1(sym3, X) = PsMAT.

We skip the results specific for tissue P systems with symport and antiport; they can be

found in [76].

In what follows we investigate the trade-off between several parameters in (tissue) P

systems with antiport and symport rules, for example, between the number of membranes

(cells) and the number of objects needed to obtain computational completeness.

3.2.2 Minimal antiport and minimal symport

When using antiport or symport rules, we needed rules of size three to obtain computational

completeness in only one membrane (see Theorem 3.2 and Corollary 3.3). These results are

already optimal for systems with only one membrane; the situation changes completely if

105

rules of size two, called minimal antiport or minimal symport rules, are considered – in one

membrane or cell, we only get finite sets:

Theorem 3.5 NO[t]P1(anti1, sym1) ∪N [t]OP1(sym2) ⊆ NFIN .

Yet with two membranes or cells, in order to get computational completeness, we may already

restrict ourselves to minimal symport and/or minimal antiport rules:

Theorem 3.6 NRE = NO[t]P2(anti1, sym1) = NO[t]P2(sym2).

The proof significantly differs if tissue or tree-like P systems are considered. In the tissue

case, the proof is based on the possibility to reach a membrane from another one by two

roads – directly or via the environment. In this way, a temporal de-synchronization of pairs of

objects is obtained and it can be used to simulate the instructions of a register machine. For

the tree-like case, the result in the previous theorem only holds true if we do not require the

output membrane to be elementary, otherwise it were inevitable that some object remains

in the output membrane at the end of a successful computation.

Moreover, in the tissue case, we have a deterministic construction for the acceptance of

recursively enumerable sets. In the tree-like case it is not possible to use a similar technique,

because only the root is connected to the environment, which considerably restricts the

accepting power of deterministic P systems:

Theorem 3.7 For any deterministic P system with rules of type sym2 and anti1, the number

of objects present in the initial configuration of the system cannot be increased during halting

computations.

However, if non-deterministic systems are considered, then it is possible to reach computa-

tional completeness for the accepting case with two membranes: an initial pumping phase

is performed to introduce a sufficient number of working objects needed to carry out the

computation (a non-deterministic guess for the number of working objects is done). After

that, the system simulates a register machine thereby consuming the number of working

objects. In sum, we obtain the following results:

Theorem 3.8

PsRE = PsO[t]P2(anti1, sym1) = PsO[t]P2(sym2) = PsaOP2(anti1, sym1)

= PsaOP2(sym2) = PsaDOtP2(anti1, sym1) = PsaDOtP2(sym2).

3.2.3 Number of symbols

Not taking care of the complexity of the rules, yet instead regarding the number of objects,

the main results for P systems with antiport (and symport) rules can be summarized in the

following table:

In Table 3.2, the class of P systems indicated by A generates exactly NFIN , the class

indicated by B generates at least NREG, in the case of C at least NREG can be generated

and at least NFIN can be accepted, while a class indicated by a number d can simulate any

d-register machine. A box around a number indicates a known computational completeness

106

Table 3.2: Families NOmPn

membranes

objects 1 2 3 4 5 m

1 A B B B B B

2 C 1 2 (U) 3 4 m− 1

3 1 2 (U) 4 6 8 2m− 2

4 2 (U) 4 6 9 12 3m− 3

5 3 6 9 12 16 4m− 4

6 4 8 12 16 20 5m− 5

s s− 2 2s− 4 3s− 6 4s− 8 5s− 10 max{m(s− 2),

(m− 1)(s− 1)}

bound, (U) indicates a known unpredictability bound, and a number in boldface shows

the diagonal where m(s − 2) equals (m − 1)(s − 1). The most interesting questions still

remaining open are to characterize the families generated or accepted by P systems with

only one symbol.

3.2.4 Number of rules

Another complexity parameter investigated in the literature is the number of rules in a

universal P system with antiport and symport rules. Such a bound can be obtained if we

simulate a universal device for which a bound on the number of rules is already known.

Since P systems with antiport and symport rules can easily simulate register machines, it is

natural to consider simulations of register machines having a small number of instructions.

An example of such a machine is the register machine U32 described in [207], which has 22

instructions (9 increment and 13 decrement instructions). The table below summarizes the

best results known on this topic, showing the trade-off between the number of antiport rules

and their size:

Table 3.3: P systems with small numbers of antiport rules

number of rules 73 56 47 43 30 23

size of rules 3 5 6 7 11 19

3.2.5 Efficiency

If P systems with symport/antiport are additionally equipped with membrane division,

then they can efficiently solve NP-complete problems. Already in [20] one constructed an

O(n) + O(log m)-time solution of SAT with n variables and m clauses by a uniform family of

deterministic P systems with communication rules (of size at most 3 and weight at most 2)

and membrane division rules (without polarization) and empty environment.

107

This was a development of [255], where membrane division rules were added to (tissue)

P systems with symport and antiport, to solve SAT in a uniform way. The improvements

were the following:

• Tissue P system was replaced by a (“usual”) P system with tree-like structure;

• The P system gives the result in time which depends on the number of clauses loga-

rithmically, not linearly;

• The computation was deterministic, not just confluent;

• The environment was empty.

• The size of communication rules was decreased from 5 to 3.

• Nothing was sent into environment except the result, just like P systems with active

membranes ([253]).

The determinism can be reached due to the massive parallelism (what could happen in

either order should happen simultaneously) and the system does not need resources (supply

of objects) from the environment because the number of objects can grow via membrane

division.

The problem about symport/antiport and membrane separation, posted in [20], has been

later answered by Sevilla group, leading to a study with a different definition of separation

than the original one ([80], see also [244], [79]). We do not go into details here.

We would like to make the following comments:

• The determinism heavily depends on the massive parallelism (not just in different

membranes corresponding to different clauses, but also in each membrane for the same

clause). Is massive parallelism of rules with respect to membranes (i.e., using for some

membrane the number of rules not bounded by a constant independent of n and m)

really needed in order to have a deterministic construction, or it is only needed for a

construction that runs in logarithmic time with respect to the number of clauses?

• We expect that the number of starting membranes can be decreased. Is such a solution

possible starting with two membranes?

We would like to mention an important observation. In the presented construction, the

environment was not used, and we only had a two-level membrane structure. It is easy to

see that this corresponds to a particular case of a tissue system (where all regions become

cells). From here, it already follows that tissue P systems with communication rules of size

at most 3 are computationally efficient. In the notation by Sevilla group, SAT ∈ PMCTDC(3),

and, since SAT is known to be NP-hard and the answer can be inverted by interchanging yes

and no, it already follows that

NP ∪ co− NP ⊆ PMCTDC(3), and even (3.1)

NP ∪ co− NP ⊆ PMC
T̂DC(3)

(3.2)

108

(and, therefore, it is no longer relevant which NP-complete problem one uses to show the

computational efficiency). The last result follows from the fact that we can avoid using

the environment. However, (3.1) has been later reproved a number of times, for different

NP-complete problems. Finally, the size of communication rules has been decreased down to

2. However, the result from [20] is still not superseded, because the communication graph

there was a tree.

Conclusion The results presented in this section have elucidated the computational power

of pure communication. P systems with antiport and/or symport rules are computationally

complete with rules of size 3 applied in the maximally parallel mode in only one membrane

or applied in the minimally parallel mode in two membranes.

Bibliographic notes

P systems with antiport and symport rules were introduced in [247] where the first results

concerning computational completeness were established: NRE = NOP2(anti2, sym2) =

NOP5(anti1, sym2).

The computational completeness with one membrane independently was shown in [189]

and [178] as well as in [175], where this result was obtained based on a more general model

with channels through membranes. A deterministic simulation of register machines by P

systems with antiport rules of weight two first was established in [180]. Tissue P systems

were introduced in [230], and tissue-like P systems with channel states were investigated in

[182]. P systems with minimal symport and antiport rules first were investigated in [142],

where nine membranes were used to achieve computational completeness. This number

was progressively decreased down and finally established to two membranes in [124]. A

deterministic proof using three cells for the tissue case first was presented in [280] and

improved to two cells in [78].

The descriptional complexity of P systems with respect to the number of objects first was

considered in [254], where three objects were shown to be sufficient for obtaining computa-

tional completeness in four membranes, then in [61] five objects in one membrane were shown

to be enough, and for tissue P systems even with only one object computational complete-

ness was established in [177]. The main results listed in Subsection 3.2.3 were established in

[67] for P systems and in [69] for tissue P systems. Based on the universal register machine

U32 in [207], universal P systems with a small number of antiport rules were described in

[157], [176], and [136].

Example 3.3 first was published in [198]. NOtP1(anti1, sym1) ⊆ NFIN and NtOP1

(sym2) ⊆ NFIN from Theorem 3.5 was shown in [130] and [188], respectively. Evolution-

communication P systems were introduced in [149] and investigated especially in [15].

In [117], the generation of languages by P systems with minimal antiport and symport

rules in two membranes was investigated.

The minimally parallel mode was introduced in [152], yet the concept was already con-

sidered in [252], p. 84, and called minimal synchronization there. A formal framework for

P systems was developed in [185].

In [76], [77], the history as well as open problems for the computational power of P

109

systems with antiport and symport rules were described. The PhD thesis [5] investigates

many variants of communication P systems, and a thorough survey is presented in [169].

3.3 Recent Symport Developments

Membrane systems (with symbol objects) are formal models of distributed parallel multiset

processing. Symport rules move multiple objects to a neighboring region. It is known that

for P systems with symport rules of weight at most 3 and a single membrane, 7 superfluous

symbols are enough for computational completeness, and 1 is necessary.

We present the improvements of the lower bounds on the generative power of P systems

with symport of weight bounded by 3 and 4, in particular establishing that 6 and 2 extra

symbols suffice, respectively. Besides maximally parallel P systems, we also consider sequen-

tial ones. In fact, all presented non-universality lower bound results, together with all upper

bound results, hold also in this case, yielding the current state-of-the-art.

Membrane systems (with symbol objects) are formal models of distributed parallel multi-

set processing. Symport rules move predefined groups objects to a neighboring region [247].

In maximally parallel mode (typical for membrane computing), this alone is sufficient to

construct a computationally universal device, as long as the environment may contain an

unbounded supply of some objects. The number of symbols specified in a symport rule is

called its weight. The result of a computation is the total number of objects when the system

halts. In some cases, however, for technical reasons the desired result may only be obtained

alongside a small number of superfluous objects in the output region.

There were multiple papers improving the results on P systems with symport/antiport

of small weight (an antiport rule moves objects between 2 regions in both directions, and its

weight is the maximum of objects per direction), see [169] for a survey of results. Compu-

tational completeness is achieved even for minimal cooperation: either symport/antiport of

weight 1, or symport of weight at most 2. This holds for 2 membranes, without superfluous

objects if the output is considered in the skin, or with 1 superfluous object under the classi-

cal assumption of the output in the elementary membrane. In the tissue case, the accepting

systems can even be made deterministic.

With cooperation of up to 3 objects, a single membrane suffices. The regions are called the

skin and the environment, the latter contains an unbounded supply of some objects, while the

contents of the former is always finite. With antiport-2/1 alone (i.e., exchanging 1 object

against 2), the computational completeness is obtained with a single superfluous object.

With symport-3 (i.e., symport rules only, of weight up to 3), one proved in [188] that 13

extra objects suffice for computational completeness. This result has been improved in [76] to

7 superfluous symbols. In the same paper it was shown that without any superfluous symbols

such systems only generate finite sets. Although one-membrane symport-only systems are,

in principle, universal, their exact characterization remains open, and narrowing the gap

between 7 objects and 1 object presents an interesting combinatorics-style problem.

The computation of a P system consists of multiple, sometimes simultaneous, actions

of two types: move objects from the skin to the environment, and move objects from the

environment into the skin. It is obvious that trying to move all objects out in the environment

110

will activate the rules of the second type. Since, clearly, rules of the first type alone cannot

generate more than finite sets, it immediately follows that the “garbage” is unavoidable. In

[123] one obtains some partial results on the power of one-membrane systems with symport-

3, concerning intermediate number of extra objects, both for maximally parallel and for

sequential mode; we start it with a simple result for unbounded symport from [119]. We also

recall the recent improvements from [120]: 6 extra objects are enough for symport of weight

at most 3, and 2 objects are enough for symport of weight at most 4.

It is known that the power of one-membrane P systems with symport of weight at most

2 is quite limited:

NOP1(sym2) ⊆ NFIN, [188]

NOP1(sym2) ⊇ SEG1 ∪ SEG2, [118]

It is not difficult to see that the proofs of both bounds remain valid also for the sequential

case, i.e., for NOP sequ
1 (sym2). We turn to symport with higher bounds on weight, e.g.,

unbounded, at most 3, and at most 4, starting from finite and regular classes, and then

proceeding with the universality results.

3.3.1 Unbounded weight

We claim a simple new result: P systems with a single membrane and unbounded symport

generate all finite sets of numbers without superfluous objects. Indeed, for an arbitrary

non-empty finite set M of non-negative integers, consider the following system:

Π∞ = (O = {s, a}, E = ∅, µ = []
1
, w = samax(M), R),

R = {(samax(M)−x, out) | x ∈M}.

Clearly, all computations halt in one step, choosing an element in M and sending out ev-

erything except that many copies of a inside. The empty set case is shown in the next

subsection.

Paying the price of one superfluous object, we can extend finite sets to regular sets of

numbers. We now proceed by constructing a P system generating the length set of a language

accepted by a finite automaton A = (Q, Σ, δ, q0, F), where Q = {qj | 0 ≤ j ≤ m}; without

loss of generality we assume A satisfies the following property: there is at least one transition

from every non-final state.

Π′
A = (O = Q ∪Q′ ∪ Σ, E = Q′ ∪ Σ, µ = []

1
, w = q0 · · · qmq′0M,R),

Q′ = {q′ | q ∈ Q},

R = {(qjq
′
jM, out) | 0 ≤ j ≤ m} ∪ {(q0 · · · qmq′j, out) | qj ∈ F}

∪ {(qjaq′kM, in) | qk ∈ δ(qj, a), a ∈ Σ}.

The computation of a finite automaton A is simulated, using object M in all rules. If the

current state is accepting, then all state objects, primed and unprimed, may be sent out,

and the computation halts with M and a correct number of objects a.

Based on the constructions in this subsection, NOP1(sym∗) ⊇ NFIN ∪ N1REG. The

constructions, however, used arbitrarily large symport rules. In the constructions in the rest

of the subsection, the weight of symport rules is bounded by 3 or 4.

111

3.3.2 Few-element sets

We start with a simple system: Π0 = (O = {a}, E = ∅, µ = []1, w = a,R =

{(a, in), (a, out)}). System Π0 perpetually moves a single object in and out, effectively

generating the emptyset. For any x ∈ N, setting R = ∅ and w = ax will lead to a system Π1

which immediately halts, generating a singleton {x}.

We now proceed to arbitrary small-cardinality sets. To generate a multi-element set, the

system must make at least one non-deterministic choice. Since we want to allow the difference

between the elements to be arbitrarily large, such choice must be persistent, i.e., the decision

information should not vanish, at least until multiple objects are moved accordingly. For

any numbers y > x, consider the following P system:

Π2 = (O = {a, b, i, p, q}, E = {q}, µ = []
1
, w = axby−x+1ip, R),

R = {(i, out), (ip, out), (pq, in), (pqb, out)}.

There are two possible computations of Π2: either i exits alone, halting with axby−x+1p,

generating y + 2, or i exits with p, leading to a sequence of applications of the last two rules

until no objects b remain in the skin, halting with axpq, generating x + 2. Therefore, Π2

generates an arbitrary 2-element set with 2 extra objects.

This construction can be improved to generate higher-cardinality sets as follows. Let

m ≥ 2; for arbitrary m + 1 distinct numbers denote the largest one by y and the others by

xj, 1 ≤ j ≤ m. We construct the following P system

Πm+1 = (O,E = {qj | 1 ≤ j ≤ m}, µ = []1, w,R),

O = {aj | 1 ≤ j ≤ y + 1} ∪ {i} ∪ {pj, qj | 1 ≤ j ≤ m},

w = ia1 · · · ay+1p1 · · · pm,

R = {(i, out)} ∪ {(ipj, out), (pjqj, in) | 1 ≤ j ≤ m}

∪ (pjqjak, out) | 1 ≤ j ≤ m, xj + 1 ≤ k ≤ y + 1, j 6= k}.

Such system behaves like Π2, except it also chooses among different objects pj to send out

symbols ak for k > xj. It halts either with a1 · · · ay+1p1 · · · pm generating y + m + 1, or

with a1 · · · axj
qjp1 · · · pm generating xj + m + 1. For m = 2, 3, 4 this leads to Π3 generating

{x1 + 3, x2 + 3, y + 3}, Π4 generating {x1 + 4, x2 + 4, x3 + 4, y + 4}, and Π5 generating

{x1 + 5, x2 + 5, x3 + 5, x4 + 5, y + 5}, i.e., any 3-, 4- or 5-element set with 3, 4 or 5 extra

objects, respectively.

3.3.3 Straightforward regularity

We now proceed by constructing a P system generating the length set of a language accepted

by a finite automaton A = (Q, Σ, δ, q0, F), where Q = {qj | 0 ≤ j ≤ m}; without loss of

generality we assume A satisfies the following property: there is at least one transition from

every non-final state.

ΠA = (O = Q ∪Q′ ∪ Σ, E = Q′ ∪ Σ, µ = []
1
, w = q0 · · · qmq′0, R),

Q′ = {q′ | q ∈ Q},

R = {(qjq
′
j, out) | 0 ≤ j ≤ m}

∪ {(qjaq′k, in) | qk ∈ δ(qj, a), a ∈ Σ} ∪ {(q′j, out) | qj ∈ F}.

112

Unfortunately, besides the needed number, the skin region at halting also contains the su-

perfluous symbols, as many as there are states in A. Therefore, we have obtained all sets

NkREGk.

The simplest examples of application of ΠA are the set of all positive numbers and the

set of all positive even numbers.

Therefore, NOP1(sym3) contains NFIN1 ∪
⋃∞

k=0(NkFINk ∪NkREGk).

3.3.4 Improved universality

We now revisit the symport-3 construction from [76]. The 7 extra objects were denoted

lh, b, d, x1, x4, x5, x6. In [120] one showed that all regular number sets can be generated

with 6 extra objects. This result has been recently superseded by generating all recursively

enumerable number sets with 6 extra objects, [120], so we recall the best known result:

Theorem 3.9 NOP1(sym3) ⊇ N6RE.

Proof. Consider an arbitrary counter automaton M . We first transform it as follows:

for each counter i, a conflicting counter ī is introduced, initially containing value zero. The

semantics of a counter machines is modified such that whenever counters i and ī are non-zero,

the computation is aborted without producing a result.

Then, all zero-test instructions for any counter i are performed by incrementing a con-

flicting counter ī, and then decrementing it. The counter automaton M ′ = (Q, q0, qf , P, C)

under the conflicting counter semantics is equivalent to the counter automaton M .

We construct a P system simulating counter automaton M ′:

Π = (O,E, []
1
, w,R, 1), where O = E ∪ alph(w),

E = Q \ {qf} ∪ {x2, x4, #} ∪ {ai | i ∈ C} ∪ {p2 | p ∈ P},

O′ = {pi | i ∈ {1, 3}, p ∈ P} ∪ {Ai | i ∈ C},

w = qfoq0x1x3x5ds, where s represents O′,

R = {1 : (x1x2, in), 2 : (x2x1x3, out), 3 : (x2d, out),

4 : (x3x4, in), 5 : (x4x3x5, out), 6 : (x4d, out)}

∪ {7 : (Aiaix5, in), 8 : (aiaīd, out) | i ∈ C}

∪ {9 : (qp1x1, out), 10 : (p1p2x1, in), 11 : (p2p3Ai, out),

12 : (p3q
′x3, in), 13 : (p3#qf , in) | p : (q → q′, i+) ∈ P}

∪ {14 : (qp1x3, out), 15 : (p1p2x3, in), 16 : (p2p3ai, out), 17 : (p2p3d, out),

18 : (p3q
′x5, in), 19 : (p3#qf , in) | p : (q → q′, i−) ∈ P}

∪ {20 : (qfbx, out) | x ∈ O′} ∪ {21 : (qfb, in),

22 : (#d, out), 23 : (#d, in), 24 : (oqf , out), 25 : (od, out)}.

We now explain the “correct” work of Π. If non-determinism allows to apply a different

multiset of rules, then one of rules from the group T = {3, 6, 8, 13, 17, 19, 25} is also applied,

and then the computation applied rules 22, 23 forever, without producing the result. Notice

that even if multiple applications of rules from T happen, this would only add further

113

objects # to the skin, and the computation would still be unable to halt. In the “correct”

computations of Π, rules from T are not applied, their role is only to ensure that symbols

x2, x4, p2, o or pair (ai, aī) are never idle in the skin, as well as that symbols p3 are never idle

in the environment.

Rule 24 is applied in the beginning of the computation, in parallel with simulation of

the first instruction of M ′. If rule 21 is applied instead, then rule 25 forces an infinite

computation. Throughout the simulation of M ′, object qf stays in the environment (available

in a single copy unlike other objects from Q).

Increment is performed by a sequence of multisets of rules 9, 1, 2, (10,4), (5,11), (7,12).

We remark that the system seems to have a choice between rules 1 and 10. However, if rule

10 is applied immediately after rule 9, then rule 11 is applied, followed by rule 13, forcing a

non-ending computation. Yet, if rule 1 is applied again immediately after rule 2, then rule

2 is no longer applicable, forcing rule 3 and a non-ending computation.

Decrement is performed by a sequence of multisets of rules 14,4,5,15,16,18. We remark

that the system seems to have a choice between rules 4 and 15. However, if rule 15 is applied

immediately after rule 14, then rule 16 or 17 is applied, followed by rule 19, forcing a non-

ending computation. Yet, if rule 4 is applied again immediately after rule 5, then rule 5 is no

longer applicable, forcing rule 6 and a non-ending computation. If decrement is attempted

on a counter with a zero value, then rule 17 is applied instead of rule 16, forcing an infinite

computation.

The conflicting counter semantics is ensured by rule 8.

Notice that once the simulation of M ′ arrives to qf , symbols x1, x3, x5, qf stay in the skin,

while symbols from Q \ {qf} stay in the environment. Hence, all the rules moving objects

p1, p3 or Ai in, i.e., rules 7,10,12,15,18 could not be applied even if objects from O′ are sent

out, which is carried out by rules 20,21. Rules 13,19 temporary become applicable, but lead

to an infinite computation; they are no longer applicable once all object from O′ are taken

out, and qf stays in the skin. The computation halts with the skin containing the result (the

desired number of copies of a1) as well as 6 extra objects: x1, x3, x5, d, qf , b. �

3.3.5 Symport of weight at most 4

We now recall another improvement from [120]. If we allow up to 4 objects to participate in

symport rules, then the number of extra objects can be decreased to 2.

Theorem 3.10 NOP1(sym4) ⊇ N2RE.

Proof. Consider an arbitrary counter automaton M . We first transform it as follows:

for each counter i, a conflicting counter ī is introduced, initially containing value zero. The

semantics of a counter machines is modified such that whenever counters i and ī are non-zero,

both are instantly decremented.

Then, all zero-test instructions for any counter i are performed by incrementing a conflict-

ing counter ī, and then decrementing it. (nothing changes except the states if counter i has

value zero. Otherwise, both counters are decremented, and then the decrement of counter

ī fails. Therefore, we have transformed M into a counter automaton M ′ = (Q, q0, qf , P, C),

which is equivalent under the conflicting counter semantics.

114

We construct a P system simulating a counter automaton M ′:

Π = (O,E, []
1
, w,R, 1), where

O = E ∪O′ ∪ {T,N},

E = {ai | i ∈ C} ∪Q ∪ {p2 | p ∈ P},

O′ = {pi | i ∈ {1, 3, 4}, p ∈ P},

w = q0 T s c|O
′|−1 N, where s represents O′,

R = {1 : (qp1T, out), 2 : (p1q
′aiT, in) | p : (q → q′, i+) ∈ P}

∪ {3 : (qp1T, out), 4 : (p1p2T, in), 5 : (p2p3aiT, out), 6 : (p2p4T, out),

7 : (p2p4T, in), 8 : (p3q
′T, in) | p : (q → q′, i−) ∈ P}

∪ {9 : (aiaī, out) | i ∈ C}

∪ {10 : (qfbx, out | x ∈ O′)} ∪ {11 : (Nc, out), 12 : (qfbN, in).

The simulation of a transition in A is performed as follows:

• An increment instruction is performed by replacing q by q′ in two steps with the help

of object p1, also brining an object ai in.

• A decrement instruction is performed by replacing q by q′ in four steps with the help

of objects p1, p2, p3, also brining an object ai out. Moreover, rules 6,7 are optionally

applied an arbitrary number of steps. If ai is not present, then the computation never

exits the loop of applying rules 6,7.

• The conflicting counter semantics is implemented by rule 9.

• Once the simulation of M is finished, object qf enters the system. Each application of

the group of rules 11,10,12 leads to removal from the skin of one copy of c and one object

from O′. Notice that objects from O′ cannot reenter the skin without object T . The

first application of rule 11 actually happens in the first step of the computation, but the

rest of this process takes place after the simulation of M ′ is finished. The multiplicity

of objects c has been chosen to be |O′|− 1 so that objects qf , b stop reentering the skin

exactly when no more objects from O′ remain there. The computation halts with the

skin containing the result and objects T , N . �

Hence, the known bounds can be described as follows.

NOP1(sym2) ⊇ SEG1 ∪ SEG2. (3.3)

NOP1(sym3) ⊇ NFIN1 ∪
5⋃

k=0

(NkFINk ∪NkREGk) ∪N6RE. (3.4)

NOP1(sym4) ⊇ NFIN0 ∪NFIN1 ∪N1REG1 ∪N2RE. (3.5)

NOP1(sym∗) ⊇ NFIN ∪N1REG ∪N2RE. (3.6)

NOP1(sym2) ⊆ NFIN. (3.7)

NOP1(sym∗) ⊆ NFIN ∪N1RE. (3.8)

115

3.3.6 Sequential mode

Also for the sequential case, at least one superfluous object is unavoidable for generating

any infinite set. The argument in the end of Introduction stays valid.

It is also not difficult to see that sequential P systems with symport cannot generate

more than regular sets of numbers, because their translation in sequential multiset rewriting

systems is straightforward, and the behavior of the latter is known to characterize matrix

grammars. The claim follows from NMAT = NREG. All presented above in this section

yields NOP1(sym∗) ⊆ NFIN ∪N1REG. As we explain later, this bound is exact.

An important observation is that all non-universality results and all upper bounds also

hold for sequential systems. Indeed, in the constructions for (3.3) all rules are of type out, and

the halting computations are just one step long; this is equivalent to sequential exhausting

the contents of the skin by the same rules. Results in (3.7) and (3.8) essentially deal with

the halting condition, and also hold. The subfiniteness and subregulatity results in (3.4) and

(3.5) are based on the constructions that do not use parallelism, also for arbitrary values

of k. Similarly, parallelism is not used in unbounded symport constructions for (3.6). The

following relationships thus hold.

NFIN ⊇ NOP sequ
1 (sym2) ⊇ SEG1 ∪ SEG2. (3.9)

NOP sequ
1 (sym3) ⊇ NFIN1 ∪

∞⋃

k=0

(NkFINk ∪NkREGk) (3.10)

NOP sequ
1 (sym∗) = NFIN ∪N1REG. (3.11)

Discussion We have improved the best known lower bounds of the computational power

of one-membrane P systems with symport only. Using symport of weight at most 3, com-

putational completeness holds with 6 extra objects. With symport of weight at most 4, 2

extra objects suffice. Notice that all finite sets can be generated if the weight of symport is

not restricted. Since 1 extra object is known to be necessary to generate infinite sets by any

symport-only P system, a particularly interesting open question is whether

• one extra object is also sufficient for computational completeness (and what symport

weight bound is enough), or

• two extra objects are also necessary for computational completeness.

Another problem is to bridge or further (see (3.4)) decrease the gap between 6 and 1 extra

objects for symport of weight at most 3.

For sequential mode, it is particularly interesting whether infinitely many additional

objects are unavoidable for generation of finite or regular number sets (or if NkFIN/NkREG

belong to NOP sequ
1 (syms) for some k, s ∈ N).

3.4 Conclusions to Chapter 3

A quite remarkable result has been described: a strongly universal symport/antiport P

system with only 23 rules.

116

A general overview of the symport/antiport area has been given, containing multiple

results by the author. (Overall, this chapter is shorter than the other chapters with results,

because we do not zoom on the results already covered in the author’s Ph.D. thesis [5]).

The improved known lower bounds of the computational power of one-membrane P sys-

tems with symport have been shown. Using symport of weight at most 3, computational

completeness holds with 6 extra objects. With symport of weight at most 4, 2 extra objects

suffice. Notice that all finite sets can be generated with symport of unrestricted weight.

Since 1 extra object is known to be necessary to generate infinite sets by any symport-

only P system, a particularly interesting open question is whether one extra object is also

sufficient for computational completeness (and what symport weight bound is enough), or

two extra objects are also necessary for computational completeness. Another problem is to

bridge or further (see (3.4)) decrease the gap between 6 and 1 extra objects for symport of

weight at most 3.

For sequential mode, it is particularly interesting whether infinitely many additional

objects are unavoidable for generation of finite or regular number sets (or if NkFIN/NkREG

belong to NOP sequ
1 (syms) for some k, s ∈ N).

Section 3.1 is based on publications [136], [137], [138] and [268]. Section 3.2 is mainly

based on publications [169], [121], [122], [128], [117], [124] and [125], and contains extensive

bibliographical notes. Section 3.3 is based on publications [119], [120] and [123].

117

4. ACTIVE MEMBRANES. ENERGY

Like in Chapter 3, we consider the models where rules are associated to membranes (except

Section 4.8). However, instead of direct cooperation between objects, we now use cooperation

between one object and the information (called polarization or energy) stored in a membrane.

P systems with active membranes are parallel computation devices inspired by the in-

ternal working of biological cells. Their main features are a hierarchy of nested membranes,

partitioning the cell into regions, and multisets of symbol-objects describing the chemical en-

vironment. The system evolves by applying rules such as non-cooperative multiset rewriting

(i.e., objects are individually rewritten), communication rules that move the objects between

adjacent regions, and membrane division rules that increase the number of membranes in

the system. The membranes also possess an electrical charge that works as a local state,

regulating the set of rules applicable during each computation step. The rules, in turn, may

change the charge of the membrane where they take place.

In order to solve computational problems one usually employs polynomial-time uniform

families of P systems with active membranes, consisting of a P system Πn for each input

length n (as for Boolean circuits) and a single Turing machine constructing Πn from n in

polynomial time. The actual input is then encoded as a multiset of objects, and placed

inside an input membrane of Πn. The space required by a family of P systems (in terms

of number of membranes and objects) for solving a decision problem can then be analyzed

as a function of n. It is already known that polynomial-space P systems and polynomial-

space Turing machines are equal in computing power, but the proof of this result does not

generalize to larger space bounds. In Section 4.1 we show the key ideas needed in order

to prove the exponential-space analogue of that result by directly simulating deterministic

exponential-space Turing machines using P systems.

In Section 4.2 we present the improvements, by using register machines, of some existing

universality results for specific models of P systems. It is known that P systems with active

membranes without polarization generate PsRE, working with an unbounded number of

membranes. We show that they generate all recursively enumerable languages; 4 starting

membranes with 3 labels or 7 starting membranes with 2 labels are sufficient.

In Section 4.3 we present an algorithm for deterministically deciding SAT in linear time

by P systems with active membranes using only two polarizations and rules of types (a),

(c), and (e). Moreover, various restrictions on the general form of the rules are considered.

Several problems related to different combinations of these restrictions are also formulated.

Due to massive parallelism and exponential space in membrane systems, some intractable

computational problems can be solved by P systems with active membranes in polynomial

number of steps. In Section 4.4 we present a generalization of this approach from decisional

118

problems to the computational ones, by providing a solution of a #P-complete problem,

namely to compute the permanent of a binary matrix. The implication of this result to the

PP complexity class is discussed and compared to the known result of NP ∪ co−NP.

It is known that the satisfiability problem (SAT) can be solved with a semi-uniform family

of deterministic polarizationless P systems with active membranes with non–elementary

membrane division. In Section 4.5 we present an improvement of this result by showing that

the satisfiability of a quantified Boolean formula (QSAT) can be solved by a uniform family

of P systems of the same kind.

In Section 4.6 we study P systems with active membranes without non-elementary mem-

brane division, in minimally parallel way. The main question we address is the number of

polarizations enough for an efficient computation depending on the types of rules used. In

particular, we show that it is enough to have four polarizations, sequential evolution rules

changing polarizations, polarizationless non-elementary membrane division rules and polar-

izationless rules of sending an object out. The same problem is solved with the standard

evolution, sending an object out and polarizationless non-elementary membrane division,

with six polarizations. It is open whether these numbers are optimal.

Section 4.7 considers a different, but related model: the number of states of membranes

is now numeric and infinite; however, the rules can only increase the state and decrease

it (provided it stays non-negative). In this way, we recall a variant of membrane systems

introduced in [62], where the rules are directly assigned to membranes and, moreover, every

membrane carries an energy value that can be changed during a computation by objects

passing through the membrane. The result of a successful computation is considered to be

the distribution of energy values carried by the membranes.

We show that for systems working in the sequential mode with a kind of priority relation

on the rules we already obtain universal computational power. When omitting the priority

relation, we obtain a characterization of the family of Parikh sets of languages generated

by context-free matrix grammars. On the other hand, when using the maximally parallel

mode, we do not need a priority relation to obtain computational completeness. Finally, we

introduce the corresponding model of tissue P systems with energy assigned to the membrane

of each cell and objects moving from one cell to another one in the environment as well as

being able to change the energy of a cell when entering or leaving the cell. In each derivation

step, only one object may pass through the membrane of each cell. When using priorities

on the rules in the sequential mode (where in each derivation step only one cell is affected)

as well as without priorities in the maximally parallel mode (where in each derivation step

all cells possible are affected) we again obtain computational completeness, whereas without

priorities on the rules in the sequential mode we only get a characterization of the family of

Parikh sets of languages generated by context-free matrix grammars.

In Section 4.8 we consider the energy contained in regions, not membranes. Moreover,

a conservation law is imposed on the rules of the system. In this way, we investigate the

computational power of energy-based P systems, a model of membrane systems where a fixed

amount of energy is associated with each object and the rules transform single objects by

adding or removing energy from them. We answer recently proposed open questions about

the power of such systems without priorities associated to the rules, for both sequential and

119

maximally parallel modes. We also conjecture that deterministic energy-based P systems

are not computationally complete.

4.1 Simulating Turing Machines

P systems with active membranes [253] are parallel computation devices inspired by the in-

ternal working of biological cells. Their main features are a hierarchy of nested membranes,

partitioning the cell into regions, and multisets of symbol-objects describing the chemical en-

vironment. The system evolves by applying rules such as non-cooperative multiset rewriting

(i.e., objects are individually rewritten), communication rules that move the objects between

adjacent regions, and membrane division rules that increase the number of membranes in

the system. The membranes also possess an electrical charge that works as a local state,

regulating the set of rules applicable during each computation step. The rules, in turn, may

change the charge of the membrane where they take place.

In order to solve computational problems one usually employs polynomial-time uniform

families of P systems with active membranes, consisting of a P system Πn for each input

length n (as for Boolean circuits) and a single Turing machine constructing Πn from n in

polynomial time. The actual input is then encoded as a multiset of objects, and placed

inside an input membrane of Πn. The space required by a family of P systems (in terms of

number of membranes and objects) for solving a decision problem can then be analyzed as

a function of n. It is already known that polynomial-space P systems and polynomial-space

Turing machines are equal in computing power [263], but the proof of this result does not

generalize to larger space bounds. In this section we show the key ideas needed in order

to prove the exponential-space analogue of that result by directly simulating deterministic

exponential-space Turing machines using P systems. For the full technical details of the

results presented here we refer the reader to the paper [93].

Simulating Turing machines We describe how deterministic Turing machines working

in exponential space can be simulated by P systems by means of an example. Let M be a

Turing machine processing an input x of length n = 2 and requiring 2n = 4 auxiliary tape

cells (the total length of the tape is then 6); assume that the alphabet of M consists of the

symbols a and b. Suppose that the current configuration C of M is the one depicted on the

left of Figure 4.1, and that the transition it performs leads it to the configuration C ′ on the

right. In the figure, the tape cells of M are identified by a binary index.

q

b b a b

000 001 010 011 100 101

q′

b a a b

000 001 010 011 100 101

Figure 4.1: A transition of a Turing machine

We encode the configuration C of M as the following configuration of the P system Π

simulating it, as shown on Figure 4.2:

120

020100b
0

t
020110b

0

t
021100a

0

t
021110b

0

t
120100⊔

0

t
120110⊔

0

t

0

2

0

1

+

0
q

0

a

0

b

0

⊔

0

s

Figure 4.2: Representation of a TM by a P system

In this picture, the label of a membrane is indicated at its lower-right corner, while its

electrical charge (+, 0, or −) is at its upper-right corner. The symbols located inside the

membranes represent the objects in the configuration of Π. The P system, beside its external

membrane s, possesses 6 membranes labeled by t (called the tape-membranes) corresponding

to the tape cells of M ; each tape-membrane contains 3 subscripted bit-objects encoding the

index of the corresponding tape cell (the subscript represents the position of the bit in the

index; for instance, the presence of bit-object 10 indicates that 1 is the least significant bit).

Furthermore, each tape-membrane contains an object representing the symbol written in the

corresponding tape cell of M , where ⊔ represents a blank cell. Only one tape membrane is

part of the initial configuration of Π, as it can be at most polynomial in size; the other ones

are created by membrane division before simulating the first step of M .

A state-object q represents the current state of M ; this object will also regulate the

simulation of the next step of M . The position of the tape head is encoded in binary as

the electrical charges of the membranes 0, 1, 2 (the position-membranes); the label of each

membrane represents the position of the corresponding bit, while its charge the value of

the bit: a neutral charge represents a 0, and a positive charge a 1. In the example above,

the charges of membranes 2; 1; 0 are 0; 0;+, encoding the binary number 001 (decimal 1).

Finally, the auxiliary membranes labeled by a, b, ⊔ (the symbol-membranes) in the lower-

right corner correspond to the tape symbols of M , and are used in order to read the symbol

on the current tape cell. Figure 4.3 shows how the next step of M is simulated.

020100b
0

t
020110b

0

t
021100a

0

t
021110b

0

t
120100⊔

0

t
120110⊔

0

t

0

2

0

1

+

0
q

0

a

0

b

0

⊔

0

s

Figure 4.3: Beginning of simulation of a step of a TM by a P system

First, the object q non-deterministically guesses a tape-membrane t (all such membranes

are indistinguishable from the outside) and enters it (thick arrow in the picture) while chang-

ing the charge to positive. The change of charge enables the bit-objects inside it to move to

the corresponding position-membranes (along the thin arrows), where their values are com-

121

pared to the charges of the membranes; this allows us to check whether the tape-membrane

we guessed is indeed the one under the tape head of M . In the meantime, object a is sent

to the corresponding symbol-membrane (dashed arrow) to change the charge to positive.

Since in the example the tape-membrane that was chosen is not the correct one, an

error-object is produced by one of the mismatched position-bits, and the configuration of Π

is restored to the initial one, with the following exception: the charge of the tape-membrane

is set to negative, so it will not be chosen again. The P system then proceeds by guessing

another tape-membrane among the remaining (neutrally charged) ones. After a number of

wrong guesses, the configuration of Π will be similar to the one shown on Figure 4.4.

020100b
−

t
020110b

0

t
021100a

−

t
021110b

0

t
120100⊔

−

t
120110⊔

0

t

0

2

0

1

+

0
q

0

a

0

b

0

⊔

0

s

Figure 4.4: After some “wrong” guesses

When the tape-membrane corresponding to the current cell of M is finally guessed, we

can perform the actual simulation of the computation step (updating the position of the

head, the symbol on the tape, and the state of M). The state-object may first read the tape

symbol by looking at the only positively charged symbol-membrane; it can then update the

charges of the position-membranes (from the least to the most significant bit) in order to

increment or decrement the binary number they encode, produce the new tape symbol (b in

the example) and finally rewrite itself as the new state of M (q′ in the example). The charges

of all tape- and symbol-membranes are also reset to neutral by using auxiliary objects. The

configuration of Π corresponding to the new configuration of M thus becomes the one shown

in Figure 4.5:

020100b
0

t
020110a

0

t
021100a

0

t
021110b

0

t
120100⊔

0

t
120110⊔

0

t

0

2

+

1

0

0
q′

0

a

0

b

0

⊔

0

s

Figure 4.5: Finishing the simulation of a TM

Now the P system continues simulating the next steps of M , until an accepting (resp.,

rejecting) state is reached; when this happens, the P system produces a YES (resp., NO) object

that is sent out from the outermost membrane as the result of the computation.

122

Conclusions and open problems The simulation described above can be carried out by

a polynomial time uniform family of P systems with active membranes operating in space

O (s(n) log s(n)), where s(n) is the space required by the simulated Turing machine on inputs

of length n. Since an analogous result holds in the opposite direction ([263], Theorem 5),

the two classes of devices solve exactly the same decision problems when working withing an

exponential space limit. The techniques employed here do not carry over to the simulation

of superexponential space Turing machines, since they would require a super-polynomial

number of subscripted objects in order to encode tape positions; this amount of objects (and

their associated rules) cannot be constructed using a polynomial-time uniformity condition.

Novel techniques will be probably needed in order to prove that the equivalence of Turing

machines and P systems also holds for larger space bounds.

4.2 Universality

We present the improvements, by using register machines, of some existing universality

results for specific models of P systems. It is known from [17] that P systems with active

membranes without polarization generate PsRE, working with an unbounded number of

membranes. We show that they generate all recursively enumerable languages; 4 starting

membranes with 3 labels or 7 starting membranes with 2 labels are sufficient.

As shown in [72], [71], P systems with 2 polarizations and rules of types (a) – rewriting

– and (c) – sending an object out – generate PsRE using 2 membranes or accept PsRE

using 1 membrane. In this section we will show that deterministic systems of this kind with

1 membrane accept PsRE. Figure 4.6 depicts the membrane structures of the P systems

constructed in the succeeding proofs.

Th. 4.1 s����1
�

�1· · ·︸︷︷︸
n1 + 1

@
@2

HHHH2· · ·︸︷︷︸
n2 + 1

XXXXXXs

Th. 4.2 1��1
�2 @2· · ·︸︷︷︸
n1 + 1

HH1

HH2
�2 @2· · ·︸︷︷︸
n2 + 1

HH1

Th. 4.3
.1

(polariza-

tion 0)

Figure 4.6: Membrane structures for active membrane proofs

4.2.1 One polarization

The theorem below provides a result, similar to that of Theorem 2.29, for P systems with

active membranes with only one polarization (one usually calls them without polarizations).

The construction gives no upper bound on the number of objects present inside the system

in general, but during any halting computation the number of objects never exceeds 3.

Theorem 4.1 LO1,3/∗,∗P4,∗,3(active1, a, b, c, d, e) = RE.

Proof. In the description of the P system Π below, ws describes the initial multiset for

the skin membrane, whereas w′
s denotes the initial multiset in the elementary membrane

having the same label as the skin membrane. We now simulate a register machine M =

(2, T,Q, I, q0, qf):

123

Π = (O, µ,ws, w1, w2, w
′
s, R),

µ = [[]1[]2[]s]s,

O = T ∪ {ai | 1 ≤ i ≤ 2} ∪ {q, q1, q2 | q ∈ Q} ∪ {b1, b2, t, d, #},

ws = q0, w1 = w2 = w′
s = λ,

R = RO ∪RA ∪RS ∪RD ∪RZ .

The rules are grouped in categories: output, add, subtract, decrement case and zero case.

RO = [q → q′a]s, [q → q′′a]s, [a]s → []sa | (q : [SaW], q′), a ∈ T},

RA = {q[]
i
→ [q]

i
, [q]

i
→ [q1]

i
[t]

i
, [t→ λ]

i
, [q1]

i
→ []

i
l′,

[q1]
i
→ []

i
q′′ | (q : [RiP], q′, q′′), i ∈ {1, 2}},

RS = [q → dbiq1]
s
, bi[]

i
→ [bi]

i
, [bi]

i
→ []

i
t, [t→ λ]

s
,

[bi → #]
s
, [bi → #]

i
, [#→ #]

i
| (q : 〈RiZM〉, q′, q′′), i ∈ {1, 2}}

∪ {d[]
s
→ [t]

s
, [t→ λ]

s
, [d→ #]

s
, [#→ #]

s
},

RD = {q1[]
i
→ [q1]

i
, [q1]

i
→ q′ | (q : 〈RiZM〉, q′, q′′), i ∈ {1, 2}},

RZ = {q1[]s → [q2]s, [q2]s → []sq
′′ | q ∈ I−}.

Like in Theorem 2.29, we simulate a register machine with output tape and 2 registers; the

values of registers i ∈ {1, 2}, are represented by the multiplicities of membranes i. However,

since new membranes can only be created by dividing existing ones, one extra membrane is

needed for every register. The duty of d is to “keep busy” the elementary membrane labeled

s (otherwise # appears and the computation does not halt), and the use of the objects

bi is to “ keep busy” one membrane labeled i for two steps. Object t is not needed for the

computation, it is only used to keep the usual form of membrane division and communication

rules, it is immediately erased.

Generating an output is done by a non-cooperative rule changing the instruction label

and producing the corresponding symbol, which is then sent out. Incrementing a register

(q : [RiP], q′, q′′) is done in the following way: q enters membrane i (there is always at least

one), dividing it. The object q1 in one copy is sent to the skin as q′ or q′′, while the object t

in the other copy is erased.

Subtracting with (q : 〈RiZM〉, q′, q′′)) is done by keeping busy the elementary membrane

labeled s for one step and one membrane labeled i for two steps, while object q1 tries to

enter any membrane labeled i. If the register is not zero, then q1 immediately enters one of

the other membranes labeled i, dissolves it and changes to l′. Otherwise after waiting for

one step object q1 enters the elementary membrane labeled s and returns to the skin as q′′.

In a correct simulation of a register machine run (in particular, during any halting com-

putation) there are never > 3 objects inside the system. �

It is possible to reduce the number of membrane labels to two at the price of starting with

seven membranes.

Theorem 4.2 LO1,3/∗,∗P7,∗,2(active1, a, b, c, d, e) = RE.

124

Proof. (sketch) In a way similar to the proof of Theorem 2.29, let us start with a membrane

structure [[[]
1
[]

2
]
1
[[]

1
[]

2
]
2

]
1

(see also Figure 4.6), represent the values of a working

register i by the number of elementary membranes with label 2, inside the membranes with

labels i, minus one. The elementary membranes with label 1 will be used for delay, just

like the elementary membrane labeled by s was used in the proof of Theorem 4.1, and

the instructions are simulated accordingly. The main difference is that when simulating an

ADD or a SUB instruction we have one additional initial step at the beginning choosing the

“cluster membrane” representing the corresponding register (see the proof of Theorem 2.29).

Obviously, at the end of the simulation of the instruction in the right “cluster membrane”,

we need an additional final step for moving the instruction label back to the skin. �

4.2.2 Two polarizations

The last theorem established in this section shows that with two polarizations we need only

one membrane to simulate register machines deterministically:

Theorem 4.3 DPsaOP1,1,1(active2, a, c) = PsRE.

Proof. We will simulate the actions of a deterministic register machine M = (d,Q, I, q0, qf)

with d registers by a deterministic P system with one membrane and two polarizations. For

every instruction l, let us denote the register q acts on by r(q) and the operation q carries

out by op(q).

Π = (O,E, []0
1
, w1, R),

O = {(a, i, j) | 1 ≤ i ≤ d, 0 ≤ j ≤ d + 2}

∪ {(l, i, j) | l ∈ P, 0 ≤ i ≤ 2, 1 ≤ j ≤ d + 2} ∪ {#},

E = {0, 1}, w1 = (l0, 0, 0).

The system receives the input (a, 1, 0)n1 · · · (a, d, 0)nd in addition to w1 in the skin. The set

R contains the rules

[z]e1 → []1−e
1 z, e ∈ {0, 1}, (4.1)

[(a, i, j)→ (a, i, j + 1)]0
1
, 1 ≤ i ≤ d, 0 ≤ j ≤ d + 1, (4.2)

[(a, i, d + 2)→ (a, i, 0)]0
1
, 1 ≤ i ≤ d, (4.3)

[(a, i, j + 1)]11 → []01(a, i, j + 1), 1 ≤ i ≤ d, (4.4)

[(q, 0, j)→ (q, 0, j + 1)]0
1
, q ∈ Q, 0 ≤ j < r(q)− 1, (4.5)

[(q, i, j)→ (q, i, j + 1)]0
1
, q ∈ Q, i ∈ {1, 2}, r(q) ≤ j ≤ d + 1, (4.6)

[(q, 1, d + 2)→ (q′, 0, 0)]0
1
, q ∈ Q, (4.7)

[(q, 2, d + 2)→ (q′′, 0, 0)]0
1
, q ∈ Q, (4.8)

[(q, 0, j)→ (q, 1, j + 1)(a, j + 1, j + 1)]0
1
, q ∈ Q,

j = r(q)− 1, op(q) = [RP], (4.9)

[(q, 0, j)→ (q, 0, j + 1)z]01, q ∈ Q, j = r(q)− 1, op(q) = 〈RZM〉, (4.10)

[(q, 0, j)→ (q, 0, j + 1)]0
1
, q ∈ Q, j = r(q), op(q) = 〈RZM〉, (4.11)

125

[(q, 0, j)→ (q, 0, j + 1)]1
1
, q ∈ Q, j = r(q) + 1, op(q) = 〈RZM〉, (4.12)

[(q, 0, j)→ (q, 1, j + 1)]01, q ∈ Q, j = r(q) + 2, op(q) = 〈RZM〉, (4.13)

[(q, 0, j)→ (q, 2, j)z]1
1
, q ∈ Q, j = r(q) + 2, op(q) = 〈RZM〉, (4.14)

[(q, 2, j)→ (q, 2, j + 1)]1
1
, q ∈ Q, j = r(q), op(q) = 〈RZM〉, (4.15)

[(qf , 0, 0)]01 → []11(qf , 0, 0), 1 ≤ i ≤ d. (4.16)

The idea of this proof is similar to the one from [71], [72]: the symbols corresponding to the

registers have states (second subscript) 0, · · · , d + 2, and so do the symbols corresponding

to the instructions of the register machine. The first subscript of the instruction symbols is

0 if the instruction has not yet been applied, and it is 1 if increment or decrement has been

applied, and 2 if the decrement has failed.

Most of the time the polarization is 0; object z can reverse the polarization by (4.1).

When the polarization is 0, the register symbols cycle through the states by (4.2), (4.3).

Before the current instruction q is applied, the instruction symbols also cycle through the

states until the state becomes r(q)−1, i.e., the index of the register (the instruction operates

on) minus one. We will explain the details of the application below. After the instruction

has been applied, the first subscript of the instruction symbol changes to 1 or 2 and it cycles

through the states by (4.6), finally changing into q′ by (4.7) or into l′′ by (4.8).

Addition is done by rule (4.9). Decrement is done by a “diagonalization technique”:

polarization 1 when register i is in state i + 1 signals a decrement attempt of register i by

(4.4), and the polarization will change if and only if it has been successful. Thus, to apply

(q : 〈RiZM〉, q′, q′′), the instruction symbol in state i− 1 additionally produces a symbol z.

By the time z changes the polarization to 1 by (4.1), all other symbols reach state i + 1.

After one more step the state symbol checks whether the decrement has been successful,

(4.13), or not, (4.14). After a successful decrement all symbols continue changing states

with polarization 0 and state i+1. Otherwise, the instruction symbol additionally produces

a symbol z and after one more step all symbols continue changing states with polarization

0 and state i + 1.

After the simulation of M has reached the final label, the instruction symbol exits the

system, changing the polarization to 1. Since the register symbols are in state 1, the system

halts. �

Looking into the proof of the preceding theorem we realize that even a more general result

is shown: the multisets remaining in the skin membrane at the end of a halting computation

can be interpreted as the computation result:

Corollary 4.1 Any partially recursive function can be computed by a deterministic P system

with 1 membrane, 2 polarizations and internal output.

Conclusions and Open Problems We have shown that RE is generated by P systems

using four membranes and three labels or seven membranes and two labels in the initial

configuration, where at most three objects are ever present in any halting computation.

It is known from [72], [71] that P systems with two polarizations and rules of types (a)

and (c) generate PsRE using two membranes, or accept PsRE using one membrane. We

126

have proved in this section that deterministic systems of this kind with one membrane accept

PsRE. Moreover, in the proof of this result (Theorem 4.3), the rules are global (there is

only one membrane) and rules of type (c) are non-renaming (the contents of the environment

does not matter).

Improving any complexity parameter greater than one (especially in the case of ∗) in any

theorem is an open question. Moreover, the following questions are of interest:

• What is the power of deterministic P systems with membrane division (without polar-

izations, without changing labels, etc.)?

• How can the types of rules be restricted in Theorem 4.1?

• What further restrictions cause a complexity trade-off?

• What is the generative power of P systems without polarizations and m membranes,

m = 1, 2, 3?

• What is the generative power of one-membrane P systems with two polarizations and

external output?

4.3 Efficiency with Two Polarizations

We present an algorithm for deterministically deciding SAT in linear time by P systems with

active membranes using only two polarizations and rules of types (a), (c), and (e). Moreover,

various restrictions on the general form of the rules are considered: global, non-renaming, in-

dependent of the polarization, preserving it, changing it, producing two membranes with dif-

ferent polarizations, having exactly one or two objects in (each membrane of) the right-hand

side, thus improving results from [72]. Several problems related to different combinations of

these restrictions are formulated, too.

Membrane systems are biologically motivated theoretical models of distributed and par-

allel computing. The most interesting questions probably are completeness (solving every

solvable problem) and efficiency (solving a hard problem in feasible time). We here address

the latter problem, i.e., we shall give an algorithm how to decide SAT in linear time using

only two polarizations in P systems with active membranes.

The question of removing the polarizations (charges +,−, 0 associated with the mem-

branes) from P systems with active membranes without diminishing their computing power

or their efficiency in solving computationally hard problems in a feasible time was formu-

lated several times and was considered in various contexts (with the polarizations replaced

by various other features, such as label changing – see, e.g., [107], [108]). Here, following

[72], we present another way for improving previous results: the number of polarizations can

be decreased to two, without introducing new features.

There are numerous results of solving such (mostly NP-complete) problems as SAT, HPP,

Validity, Subset-Sum, Knapsack, Vertex Cover, Clique, QBF-SAT by P systems with active

membranes with three polarizations (see, e.g., references in [60]). The ability of the systems

to act depending on the membrane polarizations and to change them is a powerful control

127

feature, the use of which is not necessary if one pays the price of changing membrane labels.

Another result is solving SAT in a semi-uniform manner, without polarizations and with-

out changing labels, but also using membrane dissolution and non-elementary membrane

division. Here we show that two polarizations are enough even when restricting the types

of rules to (a), (c), and (e). It remains as an open question whether polarizations can be

completely removed, and we conjecture that the answer is negative.

Moreover, we consider a few restrictions on the general form of the rules, under which it

is still possible to solve SAT. The motivations of considering these restrictions are of three

kinds: bringing the construction closer to biological cells (as “realistic” as possible); building

a normal form (as restrictive as possible), for the possible future direct simulation results;

and finding out which aspects of active membranes are essential for the efficiency.

We use the following notation for instances of the SAT problem:

We consider a propositional formula in conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

i.e., n is the number of variables and m is the number of clauses, hence, to β the size (n,m)

is associated. For arbitrary (n,m) ∈ N2, we denote the family of SAT problems of size (n,m)

by SAT(n,m).

4.3.1 Using global rules

As it was shown in [72], SAT(n,m) can be decided in linear time (linear with respect to n

and m, i.e., the algorithm has time complexity O(n + m)) by a uniform family of P systems

with two polarizations, only using rules of types (a), (c), and (e). Throughout this section

we will always restrict ourselves to restricted variants of these types of rules.

We first recall the theorem from [72], giving the construction of the proof and short

explanations as well as repeating the example that illustrates the corresponding construction.

Theorem 4.4 SAT(n,m) can be deterministically decided in linear (with respect to n and

m) time by a uniform family of P systems with active membranes with two polarizations and

global rules of types (a), (c), and (e).

Proof. An instance β of the SAT(n,m) problem as described above is encoded as a multiset

over V (n,m) = {xi,j,j, x
′
i,j,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.The object xi,j,j (x′

i,j,j) represents the

variable xj appearing in the clause Ci without (with) negation. Thus, the input multiset is

w = {xi,j,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {x′
i,j,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n},

which is placed into membrane 2 in addition to the initial symbol d0 in the P system Π(n,m)

we will construct for any given (n,m) ∈ N2:

128

Π(n,m) = (O(n,m), {0, 1}, [[]
2

]
1
, t0, d0, 0, 0, R, 2),

O(n,m) = {xi,j,k, x
′
i,j,k | 1 ≤ i ≤ m, 0 ≤ k ≤ j ≤ n} ∪ {z, o, yes, no}

∪ {ci,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {ci | 0 ≤ i ≤ m}

∪ {di | 0 ≤ i ≤ n + 1} ∪ {ei | 0 ≤ i ≤ m + 1}

∪ {th | 0 ≤ h ≤ n + 2m + 4};

R contains the following rules (grouped by sub-tasks; see [72] for more explanations):

Global control in skin membrane

• [th → th+1]0, 0 ≤ h ≤ n + 2m + 2.

Generation phase

• [dj]e → [dj+1]0[dj+1]1, e ∈ {0, 1}, 0 ≤ j < n− 1;

• [xi,j,k → xi,j,k−1]e,

[x′
i,j,k → x′

i,j,k−1]e, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ k ≤ j ≤ n;

• [xi,j,0 → λ]0,

[xi,j,0 → ci,j]1,

[x′
i,j,0 → ci,j]0,

[x′
i,j,0 → λ]1, 1 ≤ i ≤ m, 1 ≤ j ≤ n;

• [ci,j → ci,j+1]e, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j < n;

• [dn → dn+1z]1,

[dn → dn+1]0.

During each of the first n steps, every elementary membrane is duplicated, in order to

examine all possible truth assignments to the variables x1, · · · , xn.

In step j of the generation phase, one of membranes resulting from the application of

rule [dj]e → [dj+1]0[dj+1]1 gets polarization 0, corresponding to assigning the truth

value false to xj (and in this case the clauses where ¬xj appears are satisfied), and the

other membrane gets polarization 1, corresponding to assigning the truth value true to xj

(and in this case those clauses where xj appears without negation are satisfied). Due to the

application of the rules [xi,j,0 → λ]0, [xi,j,0 → ci,j]1, [x′
i,j,0 → ci,j]0, [x′

i,j,0 → λ]1, only

those variables “survive” which correspond to the correct truth assignment at the moment

the last index has reached the ground level 0.

After the end of this first phase of the algorithm, 2n elementary membranes (each of

them with label 2) have been produced, each of them containing dn+1 and objects ci,n for all

clauses Ci that are satisfied. Every membrane with polarization 1 also contains an object z.

This procedure described so far in total takes n + 1 step.

Transition phase

• [z]1 → []0o;

129

• [dn+1 → e1]e, e ∈ {0, 1};

• [ci,n → ci]e, e ∈ {0, 1}, 1 ≤ i ≤ m.

By the application of the rule [z]1 → []0o the polarization of the membranes polarized by

1 is reset to zero again by passing through the surrounding membrane, thereby also yielding

the “garbage” symbol o within the skin membrane. After this single step of the transition

phase all the elementary membranes now have the polarization 0 and contain e1 as well as

ci for every satisfied clause Ci.

Checking phase

• [c1]0 → []1o;

• [ei → ei+1z]0, 1 ≤ i < m;

• [c1 → λ]1;

• [ci → ci−1]1, 2 ≤ i ≤ m;

• [em → em+1]0;

• [em+1]1 → []1 yes.

All clauses are satisfied if and only if all objects c1, · · · , cm are present in some membrane,

and at the end all objects ci, 1 ≤ i ≤ m, have been sent out into the skin membrane. While

checking the last clause, no object z (for resetting the polarization of the membrane as this is

done in the preceding steps) is produced from em by applying the rule [em → em+1]0, hence,

em+1 will be present in a membrane with polarization 1 thus allowing for the application of

rule [em+1]1 → []1 yes indicating that the corresponding elementary membrane represented

a solution of the given satisfiability problem. In total, this phase takes 2m steps.

Output phase

• [yes]0 → []1 yes;

• [tn+2m+3]0 → []1 no.

Every elementary membrane which after the first n + 1 steps had represented a solution of

the given satisfiability problem, after n+1+1+2m steps has sent a copy of yes into the skin

membrane, and in the next step one of these copies exits into the environment by using rule

[yes]0 → []1 yes, thus giving the positive result yes and changing the skin polarization to

1 in order to prevent further output. If, on the other hand, the given satisfiability problem

has no solution, after n + 2m + 3 steps the polarization of the skin membrane will still be 0,

hence, rule [tn+2m+3]0 → []1 no sends out the correct answer no. �

The construction elaborated above is illustrated by an example, see Figure 4.7.

It is worth noticing that the rules are global: the same set of rules is valid for all mem-

branes, i.e., in the rules, the labels of the membranes can be omitted. We also note that

in this construction already elaborated in [72], the membrane division rules do not depend

on the polarization (which therefore can be omitted in the meaning of “applicable for any

membrane”), and the contents of membranes after division is identical, but the polarizations

130

t0 d0x1,1,1x1,2,2x
′
2,1,1x

′
2,2,2

0

2

0

1

⇒
t1 d1x1,1,0x1,2,1x

′
2,1,0x

′
2,2,1

0

2

d1x1,1,0x1,2,1x
′
2,1,0x

′
2,2,1

1

2

0

1

⇒

t2 d2x1,2,0c2,1x
′
2,2,0

0

2

d2x1,2,0c2,1x
′
2,2,0

1

2

d2c1,1x1,2,0x
′
2,2,0

0

2

d2c1,1x1,2,0x
′
2,2,0

1

2

0

1

⇒

t3 d3c2,2c2,2
0

2

d3zc1,2c2,2
1

2

d3c1,2c2,2
0

2

d3zc1,2c1,2
1

2

0

1

⇒

t4 e1c2c2
0

2

o e1c1c2
0

2

e1c1c2
0

2

o e1c1c1
0

2

0

1

⇒

t5 e2zc2c2
0

2

oo e2zc2
1

2

o e2zc2
1

2

oo e2zc1
1

2

0

1

⇒

t6 e3zc2c2
0

2

ooo e2c1
0

2

oo e2c1
0

2

ooo e2
0

2

0

1

⇒

t7 e3zc2c2
0

2

oooo e3
1

2

ooo e3
1

2

ooo e3
0

2

0

1

⇒

t8 e3zc2c2
0

2

oooo 1
2yes

ooo 1
2yes

ooo e3
0

2

0

1

⇒

t9 e3zc2c2
0

2

oooo 1
2

ooo 1
2yes

ooo e3
0

2

1

1

yes.

Figure 4.7: A run a P system deciding solvability of γ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

are different. Finally, every rule of type (c) changes the polarization (the superscript ¬ will

be used to denote this variant).

Thus, all rules used are even of the following restricted forms (where the interpretation

of the subscripts g, g1, and g2 is explained in the Appendix A4; the superscript ¬ indicates

that the polarization is changed):

(ag) [a→ v] i,

(cg1) [a] i → []¬ b,

(eg2) [a] → [b]0[b]1,

where a, b ∈ O, v ∈ O∗, h ∈ H, i ∈ {0, 1}.

By the explanations above, we now have even proved a stronger result than that in [72]. The

subsequent discussion on restricting rules is given in the Appendix A4.

Conclusions In Theorem A4.1 we have given an algorithm for deciding the NP-complete

decision problem SAT(n,m) by a uniform family of P system with active membranes in linear

time (with respect to nm) with only two polarizations and rules of types (a), (c), and (e),

of specific restrictive types. Various other restrictions are summarized in Corollary A4.1,

followed by the discussion.

The question remains whether further or other restrictions, respectively, of the general

form of these rules are possible. For instance, can the problem be solved using only rules of

131

types (a), (cp0), (e) (the rules of type (c) do not depend on the polarization and preserve

it)? What about using only types (ap), (c), (e) (the rules of type (a) do not depend on the

polarization)?

Another interesting question is to study systems with rules of types (au), (b), (c), (d),

(e); such systems can only increase the number of objects via membrane division. What is

their generative power? Are they efficient?

4.4 Beyond NP and co-NP

Due to massive parallelism and exponential space in membrane systems, some intractable

computational problems can be solved by P systems with active membranes in polynomial

number of steps. In this section we present a generalization of this approach from decisional

problems to the computational ones, by providing a solution of a #P-complete problem,

namely to compute the permanent of a binary matrix. The implication of this result to the

PP complexity class is discussed and compared to the known result of NP ∪ co−NP.

Membrane systems are convenient for describing polynomial-time solutions to certain

intractable problems in a massively parallel way. Division of membranes makes it possible

to create exponential space in linear time, suitable for attacking problems in NP and even

in PSPACE. Their solutions by P systems with active membranes have been investigated

in a number of papers since 2001, later focusing on solutions by restricted systems.

The first efficient semi–uniform solution to SAT was given by Gh. Păun in [253], using

division for non–elementary membranes and three electrical charges. This result was im-

proved by Gh. Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [260] using only division

for elementary membranes.

Different efficient uniform solutions have been obtained in the framework of recognizer

P systems with active membranes, with polarizations and only using division rules for ele-

mentary membranes (see, e.g., references in [35]).

Let us cite [282] for additional motivation: While 3SAT and the other problems in NP-

complete are widely assumed to require an effort at least proportional to 2n, where n is a

measure of the size of the input, the problems in #P-complete are harder, being widely

assumed to require an effort proportional to n2n.

While attacking NP complexity class by P systems with active membranes have been

often motivated by P
?
= NP problem, we recall the following fact from [288]:

If the permanent can be computed in polynomial time by any method, then FP=#P

which is an even stronger statement than P= NP.

Here, by “any method” one understands “... on sequential computers” and FP is the set

of polynomial-computable functions.

Finally, we recall the definition of PP (the probabilistic polynomial time complexity

class) and present an approach to solving the problems in PP.

4.4.1 Permanent of a matrix

The complexity class #P, see [291], was first defined in [277] in a paper on the computation

of the permanent.

132

Definition 4.1 Let Sn be the set of permutations of integers from 1 to n, i.e., the set of

bijective functions σ : {1, · · · , n} → {1, · · · , n}. The permanent of a matrix A = (ai,j)1≤i,j≤n

is defined as perm(A) =
∑

σ∈Sn

∏n
i=1 ai,σ(i).

Informally, consider a combination of n matrix elements containing one element from every

row and one element from every column. The permanent is the sum over all such combina-

tions of the product of the combination’s elements.

A matrix is binary if its elements are either 0 or 1. In this case, the permanent is the

number of combinations of n matrix elements with value 1, containing one element from

each row and one element from each column. For example, perm

1 0 1

0 1 0

1 0 1

 = 2. Unlike

the determinant of a matrix, the permanent cannot be computed by Gauss elimination.

Theorem 4.5 The problem of computing a permanent of a binary matrix is solvable in

polynomial time by a uniform family of deterministic P systems with active membranes with

two polarizations and rules of types (a), (c), (e).

We give the proof in Appendix A5.

Note that requirement that the output region is the environment (typical for decisional

problem solutions) has been dropped. This makes it possible to give non-polynomial answers

to the permanent problem (which is a number between 0 and n!) in polynomial number of

steps without having to recall from [108] rules sending objects out that work in parallel.

4.4.2 Attacking PP complexity class

The probabilistic polynomial complexity class PP, also called Majority-P, has been intro-

duced in [191]. It is the class of decision problems solvable by a probabilistic Turing machine

in polynomial time, with an error probability of less than 1/2 for all instances, see also [289].

It is known that PP ⊇ NP∪co−NP, and the inclusion is strict if P 6= NP. Therefore,

showing a solution to a PP-complete problem by P systems with active membranes without

division of non-elementary membranes and without membrane creation would improve the

best known results (NP ∪ co−NP).

In this section we show a way to do this, paying a small price of post-processing. We

recall that the framework of solving decisional problems by P systems with active membranes

includes two encoding functions (computing the description of a P system from the size of the

problem instance and computing the input multiset from the instance of the problem). Unlike

a more general case of solving computational problems, there was no need for the decoding

function, since the meaning of objects yes and no sent to the environment was linked with

the answer. While the decoding function was necessary for extending the framework for

the computational problems (computing the answer to the instance of the problem from the

output multiset of a P system in polynomial time), we would like to underline that it is

useful even for the decisional problems.

It is not difficult to see that the problem “given a matrix A of size n, is Perm(A) > n!/2?”

is PP-complete. Hence, we only have to compare the result of the computation of the matrix

133

permanent with n!/2. Doing it by usual P systems with active membranes would need a

non-polynomial number of steps. We can propose two approaches.

• Generalizing rules of type (a) to cooperative ones. It would then suffice to generate

n!/2 copies of a new object z, then erase pairs of o and z and finally check if some

object o remains. However, this class of P systems is not studied.

• Consider, as before, the number of objects o as the result of the computation of a P

system. Use the decoding function dec(x) =

{
no , x ≤ n!/2,

yes , x > n!/2.
The function dec

can obviously computed in polynomial time.

Discussion In this section we presented a solution to the problem of computing a perma-

nent of a binary matrix by P systems with active membranes, namely with two polarizations

and rules of object evolution, sending objects out and membrane division. This problem is

known to be #P-complete. The solution has been preceded by the framework that gener-

alizes decisional problems to computing functions: now the answer is much more than one

bit. This result suggests that P systems with active membranes without non–elementary

membrane division still compute more than decisions of the problems in NP ∪ co−NP.

Indeed, paying the small price of using the decoding function also for decisional problem this

approach allows to solve the class PP, which is strictly larger than that (assuming P 6= NP).

The main result presented in this section has been improved by the Milano group, by

implementing decoding also by P systems themselves without additional features. Hence,

P systems with active membranes without non–elementary membrane division compute at

least PP. A subsequent paper by the Milano group, contains an attempt to implement so-

lutions to PPP problems, implementing PP oracles as subsystems of a P system. Although

PPP solves entire polynomial hierarchy (by Toda’s Theorem), the question about whether

P systems with active membranes without non–elementary membrane division solve the

whole PSPACE class is open, in particular due to difficulties of understanding the unifor-

mity criterion and whether such transformations are of a permitting (i.e., polynomial time)

complexity.

4.5 Attacking PSPACE

It is known that the satisfiability problem (SAT) can be solved with a semi-uniform family

of deterministic polarizationless P systems with active membranes with non–elementary

membrane division. We present a double improvement of this result by showing that the

satisfiability of a quantified Boolean formula (QSAT) can be solved by a uniform family of P

systems of the same kind.

A particularly interesting model of membrane systems are the systems with active mem-

branes, see [253], where membrane division can be used in order to solve computationally

hard problems in polynomial or even linear time, by a space–time trade-off. The description

of rules in this model involves membranes and objects; the typical types of rules are (a) ob-

ject evolution, (b), (c) object communication, (d) membrane dissolution, (e), (f) membrane

division. Since membrane systems are an abstraction of living cells, the membranes are

134

arranged hierarchically, yielding a tree structure. A membrane is called elementary if it is a

leaf of this tree, i.e., if it does not contain other membranes.

The first efficient semi–uniform solution to SAT was given by Gh. Păun in [253], using

division for non–elementary membranes and three electrical charges. This result was im-

proved by Gh. Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [260] using only division for

elementary membranes (in that paper also a semi–uniform solution to HPP using membrane

creation is presented).

P. Sośık in [272] provides an efficient semi–uniform solution to QSAT (quantified satisfia-

bility problem), a well known PSPACE–complete problem, in the framework of P systems

with active membranes but using cell division rules for non–elementary membranes. A

uniform solution for QSAT was presented in [100], while a semi–uniform polarizationless

solution for SAT was presented in [108].

Different efficient uniform solutions have been obtained in the framework of recognizer P

systems with active membranes, with polarizations and only using division rules for elemen-

tary membranes (see, e.g., references in [114]). Nevertheless, the polynomial complexity class

associated with recognizer P systems with active membranes and with polarizations does not

seem precise enough to describe classical complexity classes below PSPACE. Hence, it is

challenging to investigate weaker variants of membrane systems able to characterize classical

complexity classes. Here we work with a variant of these systems not using polarizations.

A uniform solution of QSAT In this section we extend the result (2) from Theorem

1, providing an uniform and linear time solution of QSAT (quantified satisfiability) problem,

through a family of recognizer P systems using polarizationless active membranes, dissolution

rules and division for elementary and non–elementary membranes.

Given a Boolean formula ϕ(x1, . . . , xn) in conjunctive normal form, with Boolean vari-

ables x1, . . . , xn, the sentence ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn) (where Qn is ∃ if n is odd,

and Qn is ∀ otherwise) is said to be the (existential) fully quantified formula associated with

ϕ(x1, . . . , xn). Recall that a sentence is a Boolean formula in which every variable is in

scope of a quantifier. We say that ϕ∗ is satisfiable if for each truth assignment, σ, over

{i : 1 ≤ i ≤ n ∧ i even} there is an extension σ∗ of σ over {1, . . . , n} such that the value

of xi only depends on the values of xj, 1 ≤ j < i, verifying σ∗(ϕ(x1, . . . , xn)) = 1.

The QSAT problem is the following: Given the (existential) fully quantified formula ϕ∗ as-

sociated with a Boolean formula ϕ(x1, . . . , xn) in conjunctive normal form, determine whether

or not ϕ∗ is satisfiable. It is well known that QSAT is a PSPACE–complete problem [246].

Theorem 4.6 QSAT ∈ PMCAM0(+d,+ne).

Proof. The solution proposed follows a brute force approach, in the framework of recognizer

P systems with polarizationless active membranes where dissolution rules, and division for

elementary and non–elementary membranes are permitted. The solution is grouped in stages:

Generation stage: using membrane division for elementary and non–elementary mem-

branes, all truth assignments for the variables associated with the Boolean formula are

produced. Assignments stage: in a special membrane we encode the clauses that are satis-

fied for each truth assignment. Checking stage: we determine what truth assignments make

the Boolean formula evaluate to true. Quantifier stage: the universal and existential gates of

135

the fully quantified formula are simulated and its satisfiability is encoded by a special object

in a suitable membrane. Output stage: The systems sends out to the environment the right

answer according to the result of the previous stage.

Let us consider a propositional formula in the conjunctive normal form:

ϕ = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

We consider a normal form for QSAT: the number of variables is even (n = 2n′) and the

quantified formula is ϕ∗ = ∃x1∀x2 · · · ∃xn−1∀xn ϕ(x1, . . . , xn).

Let us consider the (polynomial time computable and bijective) pair function from N2

onto N defined by 〈n,m〉 = ((n+m)(n+m+1)/2)+n. Depending on numbers m (of clauses)

and n (of variables), we will consider a system (Π(〈n,m〉), Σ(〈n,m〉), i0), where i0 = 0 is the

input region and Σ(〈n,m〉) = {vi,j, v
′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the input alphabet.

The problem instance ϕ will be encoded in the P system by a multiset containing one

copy of each symbol from sets X,X ′ ⊆ Σ(〈n,m〉), corresponding to the clause-variable pairs

such that the clause is satisfied by true and false assignment of the variable, defined below.

We now construct the P system

Xϕ = {vi,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n},

X ′
ϕ = {v′

i,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Π(〈n,m〉) = (O,H, µ, w0, · · · , wm+5n+3, R), with

O = Σ(〈n,m〉) ∪ {ui,j, u
′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {di | 0 ≤ i ≤ 2m + 7n + 2} ∪ {ai, ti, fi | 1 ≤ i ≤ n}

∪ {ci | 1 ≤ i ≤ m} ∪ {t, f, z, z′, T, T ′, yes, no},

µ = [[· · · [[]
0

]
1
· · ·]

m+5n+2
]
m+5n+3

,

w0 = wm+5n+1 = d0,

wm+2n+3i = dm+5n, 1 ≤ i ≤ n,

wi = λ, i /∈ {0,m + 5n + 1} ∪ {m + 2n + 3i | 1 ≤ i ≤ n},

H = {0, · · · ,m + 5n + 3},

and the following rules (we also explain their use):

Generation stage

G1 [d3i → ai+1d3i+1]
0
,

[d3i+1 → d3i+2]
0
,

[d3i+2 → d3i+3]
0
, 0 ≤ i < n.

[d3n+i → d3n+i+1]0, 0 ≤ i < m + 2n.

We count to m + 5n, which is the time needed for producing all 2n truth assignments for

the n variables, as well as membrane sub-structures which will examine the truth value of

formula ϕ for each of these truth assignments; this counting is done in the central membrane;

moreover during steps 3i− 2, 1 ≤ i ≤ n, symbols a1, · · · , an are subsequently produced.

136

label s
��~~

t a g e

m+5n+3 O o

m+5n+2 O o

m+5n+1 O o

eeeeeeeeeeeee
YYYYYYYYYYYYY

m+5n−1 Q o o

m+5n−2 Q o

kkkkkk
SSSSSS o

llllll
SSSSSS

m+5n−4 Q o o o o

m+5n−5 Q o o o o

m+2n+2 Q o o o o o o o o

m+2n+1 Q o

�� GG o

ww GG o

xx GG o

xx GG o

xx GG o

xx GG o

xx GG o

xx <<
m+2n A o o o o o o o o o o o o o o o o

m+2n − 1 A o o o

2n + 1 A o o o

2n C o o o

2 C o o o

1 C o o o

Figure 4.8: The membrane structure of the system Π after m + 5n steps

G2 [ai]
0
→ [ti]

0
[fi]

0
, 1 ≤ i ≤ n.

In membrane 0, we subsequently choose each variable xi, 1 ≤ i ≤ n, and both values true

and false are associated with it, in form of objects ti and fi, which are separated in two

membranes with label 0. The division of membrane 0 is triggered by the objects ai, which

are introduced by the first rule from group G1 in steps 3i− 2, 1 ≤ i ≤ n; this is important

in interleaving the use of these rules (hence the division of membrane 0) with the use of the

rules of group G4, for dividing membranes placed above membrane 0.

G3 [dj → dj−1]
m+2n+3i

, 1 ≤ j ≤ m + 5n− 2, 1 ≤ i ≤ n,

[d0]
m+2n+3i

→ z′, 1 ≤ i ≤ n.

After m + 5n steps, dissolution rule is applied to membranes m + 2n + 3i.

G4 [[]
i
[]

i
]
i+1
→ [[]

i
]
i+1

[[]
i
]
i+1

, 0 ≤ i < m + 5n.

These are division rules for membranes with label 0, 1, · · · ,m+5n, to be used for the central

membrane 0 in steps which follow the use of the first rule of type G1. The division of a

membrane with label 1 is then propagated from lower levels to upper levels of the membrane

structure and the membranes are continuously divided. The membrane division stops at the

level where a membrane m + 2n + 3i has been already dissolved by a rule from group G3.

This results in the structure as shown in Fig. 4.8 after m + 5n steps.

G5 [dm+5n]
0
→ T .

After m + 5n steps, each copy of membrane with label 0 is dissolved and the contents is

released into the surrounding membrane, which is labeled with 1.

Assignments stage

A1 [ti → t′]2i−1,

[t′]
2i−1
→ z,

137

[fi]
2i−1
→ f ′,

[f ′ → z]
2i
,

[z]2i → z′, 1 ≤ i ≤ n.

Depending on the variable assignments, we need to determine what clauses are satisfied. For

a variable xi, this is done in membranes 2i − 1 and 2i. The objects encoding the problem

propagate through the membrane structure: object ti dissolves membrane 2i − 1 after one

step, and then it dissolves membrane 2i immediately, while object fi dissolves membrane

2i− 1 immediately, and then it dissolves membrane 2i after one step.

A2 [vi,j → ui,j]
2i−1

,

[v′
i,j → u′

i,j]
2i−1

, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Once in membrane 2i− 1, objects vi,j and v′
i,j wait for one step.

A3 [u′
i,j → λ]

2i−1
,

[ui,j → ci]2i−1,

[ui,j → λ]
2i
,

[u′
i,j → ci]

2i
, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

If there is no membrane 2i − 1 in the meantime, then the objects encoding the instance of

SAT assume the true value of xi, otherwise, they assume the false value of xi.

At the end of this routine (it takes 3n steps), a membrane with label 2n+1 which contains

all the symbols c1, · · · , cm, corresponds to the truth assignment satisfying all clauses, hence

it satisfies formula ϕ, and vice-versa.

Checking stage

C1 [ci]
2n+i
→ ci, 1 ≤ i ≤ m.

A membrane with label 2n + i, 1 ≤ i ≤ m, is dissolved if and only if ci appears in it (i.e.,

clause Ci is satisfied by the current truth assignment); if this is the case, the truth assignment

associated with the membrane is released in the surrounding membrane. Otherwise, the truth

assignment remains blocked in membrane 2n + i and never used at the next steps by the

membranes placed above.

C2 [T]m+2n+1 → T .

The fact the object T appears in the membrane labeled m + 2n + 1 means that there is a

truth assignment which satisfies formula ϕ. In this case, the membrane labeled m + 2n + 1

is dissolved and the contents are released into membrane labeled m+2n+2. Otherwise, the

formula is not satisfiable, and the membrane labeled m + 2n + 1 will not dissolve.

Quantifier stage

Q1 [T]
m+2n+6i+1

→ T ′,

[T]m+2n+6i+2 → T ,

[T ′ → λ]
m+2n+6i+2

, 1 ≤ 2i ≤ m.

138

The universal gate of the formula is simulated by dissolution of two membranes: this happens

if and only if two copies of T are present. One copy dissolves membrane m + 2n + 6i + 1

and is erased while the other copy dissolves membrane m + 2n + 6i + 2 and sends one copy

of T outside; otherwise the computation in this gate stops without sending any object out.

Recall that membrane m + 2n + 6i + 3 has been erased by rule from group G3.

Q2 [T]
m+2n+6i+4

→ T ′,

[T ′]
m+2n+6i+5

→ T ,

[T → λ]m+2n+6i+5, 1 ≤ 2i ≤ m.

The existential gate of the formula is simulated by dissolution of two membranes: this

happens if and only at least one copy of T is present. One copy dissolves membrane m +

2n + 6i + 4 and then it also dissolves membrane m + 2n + 6i + 2, (thus sending one copy

of T outside) while the other copy (if exists) is erased; if no copy of T is present, no rule is

applied, so the gate sends nothing outside. Recall that membrane m + 2n + 6i + 6 has been

erased by rule from group G3.

Q3 [di → di+1]
m+5n+1

, 0 ≤ i ≤ 2m + 8n + 1.

At the same time as the membrane with label m + 5n + 1 is dissolved (at step 2m + 8n + 1),

the object d2m+8n+1 evolves to d2m+8n+2, and then released to the membrane with label

m + 5n + 2.

Output stage

O1 [d2m+8n+2]
m+5n+2

→ yes.

O2 [a]
m+8n+3

→ []
m+5n+3

a, a ∈ {yes, no}.

In the next two steps, the object yes is produced, and sent to the environment.

O3 [d2m+8n+2]
m+5n+1

→ no.

O4 [no]
m+5n+2

→ no.

If the formula is not satisfiable, then the object d2m+8n+1 remains in the membrane with

label m + 5n + 1, which produces the object no, ejecting it into the membrane with label

m + 5n + 2, then into the membrane with label m + 5n + 3, finally into the environment.

Therefore, in 2m + 8n + 3 the system halts and sends into the environment one of the

objects yes, no, indicating whether or not the formula ϕ∗ is satisfiable.

It is easy to see that the system Π can be constructed in a polynomial time starting from

numbers m,n, and this concludes the proof. 1
�

1 The systems constructed above are deterministic.

It is possible to speed up the system; the present construction is made for an easier explanation: the stages

do not overlap in time.

The only rules of type (c0) in the system are O2, executed in the last step. Hence, these rules are not

important for deciding whether ϕ∗ is satisfied; they are only needed to send the answer out of the skin

membrane.

139

This result can be contrasted to one from [100] as follows: we used membrane dissolution

instead of polarization. One of the techniques used to achieve this goal is: instead of modi-

fying the (polarization of the) membrane and checking it later, we use two membranes and

control the time when the inner membrane is dissolved. In this case checking the membrane

polarization is replaced by checking whether it exists, i.e., checking the membrane label.

This is used in the Assignments stage (truth-value objects influence the input objects,

rules A1 and A3). In the Checking stage the dissolution picks one object ci, performing the

“if” behavior. In the Output stage the dissolution makes it possible to send exactly one of

objects yes and no out. in the Quantifier stage OR and AND are implemented by counting

until one or two by dissolution.

Another way the dissolution is used in the construction is to stop (by rules G3) the prop-

agation of the non-elementary division (rules G4) from the elementary membranes outwards,

to obtain the structure on Figure 4.8, because the rule is more restricted then in the case

with polarizations.

From Theorem 2, since the complexity class PMCAM0(+d,+ne) is closed under polynomial

time reductions, we have the following result.

Corollary 4.2 PSPACE ⊆ PMCAM0(+d,+ne).

Conclusions In this section we gave a polynomial time and uniform solution of QSAT, a

well-known PSPACE–complete problem, through a family of recognizer P systems using

polarizationless active membranes, dissolution rules and division for elementary and non–

elementary membranes. It remain as an open question if the division for non–elementary

membranes can be removed. Our result thus presents an interesting counterpart of the

result from [100], compared to which the polarizations have been replaced by membrane

dissolution.

4.6 Minimal Parallelism

It is known that the satisfiability problem (SAT) can be efficiently solved by a uniform

family of P systems with active membranes with two polarizations working in a maximally

parallel way. We study P systems with active membranes without non-elementary membrane

division, working in minimally parallel way. The main question we address is what number

of polarizations is sufficient for an efficient computation depending on the types of rules used.

In particular, we show that it is enough to have four polarizations, sequential evolution

rules changing polarizations, polarizationless non-elementary membrane division rules and

polarizationless rules of sending an object out. The same problem is solved with the standard

evolution rules, rules of sending an object out and polarizationless non-elementary membrane

division rules, with six polarizations. It is open whether these numbers are optimal.

An interesting class of membrane systems are those with active membranes (see [253]),

where membrane division can be used for solving computationally hard problems in poly-

nomial time. Let us mention a few results: A semi–uniform solution to SAT using three

polarizations and division for non-elementary membranes, [253]. A polarizationless solu-

tion, [108]. Using only division for elementary membranes, with three polarizations, [260].

140

A uniform solution, with elementary membrane division, [261]. Using only two polarizations,

in a uniform way, with elementary membrane division, [59], [60]. Computational complete-

ness of P systems with three polarizations and three membranes, [252]. Using only two

polarizations and two membranes, [72], [71]. Using only one membrane, with two polariza-

tions, [75], [74], [73]. Polarizationless systems are complete, with no known bound on the

number of membranes, [17]. Solving SAT in a minimally parallel way, using non-elementary

membrane division (replicating both objects and inner membranes), [152]. Avoiding polar-

izations by using rules changing membrane labels. Using (up to the best author’s knowledge)

either cooperative rules or non-elementary division as above, [199].

Given a P system, a rule and an object, whether this rule is applicable to this object in

some membrane might depend on both membrane label (that usually cannot be changed)

and membrane polarization. Essentially, the number of polarizations is the number of states

that can be encoded directly on the membrane.

Minimal parallelism provides less synchronization between the objects, so one might ex-

pect the need of a stronger control, i.e., more polarizations. It is not difficult to construct

the system in such a way that the rules are global (i.e., the membrane labels are not dis-

tinguished), most likely without adding additional polarizations. In this way the results on

the number of polarizations can be reformulated in terms of number of membrane labels (in

that case, the systems have no polarizations, but the rules may modify membrane labels).

4.6.1 With sequential polarization-changing evolution

The three size parameters of the SAT problem are the number m of clauses, the number n

of variables and the total number l of occurrences of variables in clauses (clearly, l ≤ mn:

without restricting generality, we could assume that no variable appears in the same clause

more than once, with or without negation).

Theorem 4.7 A uniform family of confluent minimally parallel P systems with rules

(a′′
s), (c0), (e0) can solve SAT with four polarizations in O(l(m + n)) number of steps.

Proof. The main idea of the construction is to implement a maximally parallel step

sequentially. For this, a “control” object will be changing the polarization, and then an

input object or a clause object will be restoring it. Since the input is encoded in l objects,

changing and restoring polarization will happen for l times, the counting is done by the

“control” object.

Consider a propositional formula in the conjunctive normal form:

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m∑

i=1

li.

Let us encode the instance of β in the alphabet Σ(〈n,m, l〉) by multisets X,X ′ of the clause-

variable pairs such that the variable appears in the clause without negation, with negation

or neither:

141

Σ(〈n,m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},

X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n},

X ′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj},

1 ≤ j ≤ m, 1 ≤ i ≤ n}.

We construct the following P system:

Π(〈n,m, l〉) = (O,H,E, [[]02[]03]01, w1, w2, w3, R), with

O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n,

1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}

∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l}

∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}

∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S, Z, yes, no}

∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}

w1 = λ, w2 = d1, w3 = z0, H = {1, 2, 3}, E = {0, 1, 2, 3},

and the rules are listed below. The computation consists of three stages.

1. Producing 2n membranes labeled 2, corresponding to the possible assignments of vari-

ables x1, · · · , xn and selecting clauses satisfied for every assignment (groups A, C).

2. Checking for all assignments whether all clauses are satisfied (groups B and D of rules).

3. Generating yes from the positive answer, and sending it to the environment. Generat-

ing no from the timeout (during the first two stages the number of steps is counted in

the object in membrane with label 3) and sending it to the environment if there was

no positive answer (groups E and F of rules).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s aim is to process

all l objects, i.e., each object counts the number of cycles completed, and in the first stage

the clauses are evaluated while in the second stage the presence of each clause is checked.

In the case of maximal parallelism, a cycle could be performed in a constant number of

(actually, one or two) steps, while the minimal parallelism cannot guarantee that all objects

are processed. The solution used here is the following. A cycle consists of marking (setting

the last index to 3 or 4) all l objects one by one while performing the necessary operation,

and then unmarking (setting the last index to 1 or 2) all of them. Marking or unmarking an

object happens in two steps: the control object changes the polarization from 0 to 1, 2 (to

mark) or to 3 (to unmark), and then one of the objects that has not yet been (un)marked is

processed, resetting the polarization to 0.

Control objects in membrane 2: select clauses

A1 (for variable i: divide)

[di] → [ti,0] [fi,0] , 1 ≤ i ≤ n

142

A2 (process and mark all l objects)

[ti,k−1]0 → [ti,k]1, 1 ≤ i ≤ n, 1 ≤ k ≤ l

[fi,k−1]0 → [fi,k]2, 1 ≤ i ≤ n, 1 ≤ k ≤ l

A3 (prepare to unmark objects)

[ti,l]0 → [di,0]0, 1 ≤ i ≤ n

[fi,l]0 → [di,0]0, 1 ≤ i ≤ n

A4 (unmark all l objects)

[di,k−1]0 → [di,k]3, 1 ≤ i ≤ n, 1 ≤ k ≤ l

A5 (switch to the next variable)

[di,l]0 → [di+1]0, 1 ≤ i ≤ n

Control objects in membrane 2: check clauses

B1 (test if clause i is satisfied)

[dn+i]0 → [dn+i,1]2, 1 ≤ i ≤ m

B2 (process and mark the other l − 1 objects)

[dn+i,k−1]0 → [dn+i,k]1, 1 ≤ i ≤ m, 1 ≤ k ≤ l

B3 (unmark all l objects)

[dn+i,l+k−1]0 → [dn+i,l+k]3, 1 ≤ i ≤ m, 1 ≤ k ≤ l

B4 (switch to the next clause)

[dn+i,2l]0 → [dn+i+1]0, 1 ≤ i ≤ m

B5 (send a positive answer)

[dm+n+1] → []S

Input objects in membrane 2: select clauses

C1 (mark an object)

[vj,i,k,s]p → [vj,i,k+1,s+2]0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2

C2 (a true variable present without negation or a false variable present with negation

satisfies the clause)

[vj,i,i,s]s → [vj,i,i+1,3]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C3 (a true variable present with negation or a false variable present without negation does

not satisfy the clause)

[vj,i,i,3−s]s → [vj,i,i+1,4]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C4 (unmark an object)

[vj,i,k,s+2]3 → [vj,i,k,s]0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

Input objects in membrane 2: check clauses

143

D1 (check if the clause is satisfied at least by one variable)

[vj,i,m+j,1]2 → [vj,i,k+1,3]0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

D2 (mark an object)

[vj,i,m+k,s]1 → [vj,i,k+1,s+2]0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2

D3 (unmark an object)

[vj,i,m+k,s+2]3 → [vj,i,k,s]0,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3

E1 (count)

[zk−1]0 → [zk]0, 1 ≤ k ≤ N = (4l + 3)n + m(4l + 1) + 2

E2 (send time-out object)

[zN] → []Z

Control objects in the skin membrane

F1 (a positive result generates the answer)

[S]0 → [yes]1

F2 (without the positive answer, the time-out generates the negative answer)

[Z]0 → [no]0

F3 (send the answer)

[yes] → []yes

[no] → []no

Let us now explain how the system works in more details.

Like the input objects, the control objects keep track of the number of cycles completed.

The control object also remembers whether marking or unmarking takes place, as well as

the number of objects already (un)marked. Moreover, the control object is responsible to

pass the “right” information to the objects via polarization: in stage 1, 1 if the variable is

true, and 2 if the variable is false; in stage 2, 1 if the clause is already found, and 2 if the

clause is being checked for.

During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t, where t = 1 if variable

xj satisfies clause Ci, or t = 2 if not. The change of the last index from s to t happens when

the third index is equal to i. Notice that although only information about what clauses

are satisfied seems to be necessary for checking if β is true for the given assignment of the

variables, the information such as the number of cycles completed is kept for synchronization

purposes, and the other objects are kept so that their total number remains l. The control

object d1 is transformed into dn+1. Stage 1 takes (4l + 3)n steps.

If some clause is not satisfied, then the computation in the corresponding membrane

is “stuck” with polarization 2. Otherwise, during the second stage an object vj,i,n+1,t is

144

transformed into vj,i,n+m+1,t, while the control object dn+1 becomes dm+n+1. Stage 2 takes

m(4l + 1) steps, plus one extra step to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is transformed into yes, changing the

polarization of the skin membrane. In the same time yes, if it has been produced, is sent

out, object Z comes to the skin from region 3. If the polarization of the skin remained 0, Z

changes to no, which is then sent out. Depending on the answer, stage 3 takes 2 or 4 steps.

In either case, the result is sent out in the last step of the computation. �

Notice that membrane labels are not indicated in the rules. This means that the system

is organized in such a way that the rules are global, i.e., the system would work equally well

starting with the configuration µ = [w1[w2]0
1
[w3]0

1
]0
1
, the labels were only given for the

simplicity of explanation.

Using the remark in the end of the Introduction, we obtain

Corollary 4.3 A uniform family of confluent polarizationless minimally parallel P systems

with rules (a′
0s), (c0), (e0) can solve SAT with membrane labels of four kinds.

The statement follows directly from the possibility of rewriting a global rule [a]e → [u]e
′

of type (a′′
s) in a rule [a]

e
→ [u]

e′
of type (a′

0s) (which is polarizationless but is able to

change the membrane label).

Using Rules (a) An informal idea of this section is to replace rules of type (a′′
s) with rules

(a) producing additional objects, and rules (c), sending an additional object out to change

the polarization.

Theorem 4.8 A uniform family of confluent minimally parallel P systems with rules (a), (c),

(e0) can solve SAT with six polarizations in O(l(m + n)) number of steps.

We give the proof of this theorem in Appendix A6.

The rules of the system in the proof above are also global, so we again obtain the following

Corollary 4.4 A uniform family of confluent polarizationless minimally parallel P systems

with rules (a), (c′0), (e0) can solve SAT with membrane labels of six kinds.

Conclusions Since changing membrane polarization controls what rules can be applied,

the number of polarizations corresponds to the number of states of this control. Moreover,

almost the only way the objects of the system may interact is via changing membrane

polarization. Hence, the number of polarizations is a complexity measure deserving attention.

For maximal parallelism it has been proved that two polarizations are sufficient for both

universality (with one membrane) and efficiency, while one-polarization systems are still uni-

versal (with elementary membrane division and membrane dissolution), but are conjectured

not to be efficient.

We proved that efficient solutions of computationally hard problems by P systems with

active membranes working in minimally parallel way can be constructed avoiding both co-

operative rules and non-elementary membrane division, thus improving results from [152],

145

[199]. For this task, it is enough to have four polarizations, sequential evolution rules chang-

ing polarizations, polarizationless elementary membrane division rules and polarizationless

rules of sending an object out. The standard evolution and send-out rules can be used with

polarizationless elementary membrane division rules; in this case, six polarizations suffice.

The first construction is “almost” deterministic: the only choices the system can make in

each cycle is the order in which the input systems are processed. The second construction

exhibits a more asynchronous behavior of the input objects, which, depending on the chosen

degree of parallelism, might speed up obtaining the positive answer, but less than by 20% 2.

In this case, controlling polarizations by evolution is still faster than by communication.

A number of interesting problems related to minimal parallelism remain open. For in-

stance, is it possible to decrease the number of polarizations/labels? Moreover, it presents

an interest to study other computational problems in the minimally-parallel setting, for in-

stance, the computational power of P systems with one active membrane working in the

minimally parallel way.

4.7 Energy Assigned to Membranes

We recall a variant of membrane systems introduced in [62], where the rules are directly

assigned to membranes and, moreover, every membrane carries an energy value that can be

changed during a computation by objects passing through the membrane. The result of a

successful computation is considered to be the distribution of energy values carried by the

membranes. We show that for systems working in the sequential mode with a kind of priority

relation on the rules we already obtain universal computational power. When omitting the

priority relation, we obtain a characterization of the family of Parikh sets of languages

generated by context-free matrix grammars. On the other hand, when using the maximally

parallel mode, we do not need a priority relation to obtain computational completeness.

Finally, we introduce the corresponding model of tissue P systems with energy assigned to

the membrane of each cell and objects moving from one cell to another one in the environment

as well as being able to change the energy of a cell when entering or leaving the cell. In

each derivation step, only one object may pass through the membrane of each cell. When

using priorities on the rules in the sequential mode (where in each derivation step only one

cell is affected) as well as without priorities in the maximally parallel mode (where in each

derivation step all cells possible are affected) we again obtain computational completeness,

whereas without priorities on the rules in the sequential mode we only get a characterization

of the family of Parikh sets of languages generated by context-free matrix grammars.

Considering the energy balancing of processes in a cell first was investigated in [259] and

then in [166]. There the energies of all rules to be used in a given step in a membrane are

summed up; if the total amount of energies is positive ([259]) or within a given range ([166]),

then this multiset of rules can be applied if it is maximal with this property.

2The maximal total number of steps needed is slightly over 10l(m + n); the fastest computation happens

if rules C2 are executed in parallel for all input objects, as well as rules C4, D2, D3, saving lm− 1, lm− 1,

ln− 1, ln− 1 steps, respectively. Their total is 2l(m + n)− 4, which is less than (but asymptotically equal

to) 1/5 of the worst time.

146

We here take another approach. In contrast to most models of P systems where the

evolution rules are placed within a region, in this section we consider membrane systems

where the rules are directly assigned to the membranes (as, for example, in [175]); moreover,

each membrane carries an energy value. As long as the energy value of a membrane is non-

negative, by the application of a rule, singleton objects can be renamed while passing through

membranes, thereby consuming or producing energy that is added to or subtracted from the

energy value of the respective membrane. We also consider a kind of priority relation on the

rules assigned to the membranes by choosing first the rules that changes the energy value of

the membrane under consideration in a maximal way. The result of a successful computation

is stored in the final energy values of the membranes. We consider these systems working in

different modes of derivation: either the rules are applied in a sequential way (for sequential

variants of P systems see, for example, [167] and [168]), i.e., in each derivation step only

one membrane is affected by one singleton object entering or leaving this membrane, or else

we work in the maximally parallel mode, i.e., to each membrane we have to apply a rule if

possible thereby obeying to the constraints given by the priority relation for the rules.

We present the results for the sequential case in Appendix A7.

Trading Priorities for Maximal Parallelism In this section we show that even without

the priority feature P systems with unit rules and energy assigned to membranes can obtain

universal computational power, but only when working in the maximally parallel mode and

not in the sequential mode as this was originally defined for P systems with unit rules and

energy assigned to membranes in [173].

Theorem 4.9 Any partial recursive function f : Nα → Nβ (α > 0, β > 0) can be computed

by a P system with unit rules and energy assigned to membranes with (at most) max{α, β}+4

membranes working in the maximally parallel mode without priorities.

The proof is quite long and technical, so we refer the reader to [62].

The following results are immediate consequences of Theorem 4.9 as Corollaries A7.1

and A7.2 were immediate consequences of Theorem A7.1; we therefore omit the proofs:

Corollary 4.5 Each recursively enumerable set L ⊆ PsRE(β) can be accepted by a P system

with unit rules and energy assigned to membranes with (at most) β + 4 membranes in the

maximally parallel mode without priorities on the rules.

Again we want to point out that in the proofs of Theorem 4.9 and Corollary 4.5, the simula-

tion of a deterministic register machine by a P systems with unit rules and energy assigned

to membranes in the maximally parallel mode can be carried out in a deterministic way, i.e.,

for a given input only one computation (halting or not) exists. In the generative case (which

corresponds to taking α = 0 in the proof of Theorem 4.9), the non-determinism is an inher-

ent feature (again we now have to use the non-deterministic variant of ADD-instructions),

although the simulation of each single step of the underlying register machine is carried out

in a deterministic way, too:

Corollary 4.6 Each recursively enumerable set L ⊆ PsRE(α) can be generated by a P

system with unit rules and energy assigned to cells with (at most) α + 4 membranes in the

maximally parallel mode without priorities on the rules.

147

The Tissue-like Variant

We briefly recall from [62] the associated results in case when the communication across

every edge of a graph is sequential3.

Corollary 4.7 Each partial recursive function f : Nα → Nβ (α > 0, β > 0) can be

computed by a tissue-like P system with unit rules and energy assigned to cells with (at

most) max {α, β}+ 2 cells in the sequential mode with priorities on the rules.

Corollary 4.8 Each language in PsRE (d) can be accepted/generated by a tissue-like P

system with unit rules and energy assigned to cells with (at most) d+2 cells in the sequential

mode with priorities on the rules.

Corollary 4.9 Each partial recursive function f : Nα → Nβ (α > 0, β > 0) can be

computed by a tissue-like P system with unit rules and energy assigned to cells with (at

most) max {α, β}+ 3 cells in the maximally parallel mode without priorities on the rules.

Corollary 4.10 Each language in PsRE (d) can be accepted/generated by a tissue-like P

system with unit rules and energy assigned to cells with (at most) d+3 cells in the maximally

parallel mode without priorities on the rules.

Corollary 4.11 PstPE∗ (unit) = PsPE∗ (unit) = PsMAT.

PstPE∗(unit) denotes the family of sets of Parikh vectors generated (or accepted) by

tissue-like P systems with unit rules and energy assigned to cells without priorities, with

arbitrary number of cells.

4.8 Energy Assigned to Regions

We investigate the computational power of energy-based P systems, a model of membrane

systems where a fixed amount of energy is associated with each object and the rules transform

single objects by adding or removing energy from them. We answer recently proposed open

questions about the power of such systems without priorities associated to the rules, for both

sequential and maximally parallel modes. We also conjecture that deterministic energy-based

P systems are not computationally complete.

In this section we consider energy-based P systems [259], [217, 216, 215], a model of

computation in the framework of Membrane Computing in which a given amount of energy

3 We should like to point out that we have considered a quite restricted variant of tissue-like P systems,

i.e., the cells only communicate with the environment. A more general model (e.g., compare with that one

introduced in [173]) would also allow connections between cells themselves; in that way, we could change

the energy value of two cells at the same time by the application of one unit rule, but then in the case of

the maximally parallel derivation mode there might occur conflicts between different rules applicable at the

same time to a specific cell, which in the maximal case now might have connections to the environment and

every other cell. As computational completeness can be obtained quite easily already with the restricted

model defined at the beginning of this section (with each cell being able to communicate only with the

environment), we do not investigate the more general model in this section.

148

is associated to each object, and the energy manipulated during computations is taken into

account by means of conservative rules.

Note there has been other attempts in the literature to incorporate certain conservation

laws in membrane computing. One is purely communicative models, of which the most thor-

oughly studied is P systems with symport/antiport [247]. In these systems the computation

is carried out by moving objects between the regions in groups. To reach computational

completeness, the workspace is increased by bringing (some types of) objects from the envi-

ronment, where they can be found in an unbounded supply. Another model is conformon P

systems [187], where computations are performed by redistributing energy between objects,

that can also be renamed and moved. A feature of these systems is that a different amount

of energy may be embedded in the same object at different time steps. Yet another approach

is to assign energy to membranes, as in P systems with Unit Rules and Energy assigned to

Membranes (UREM P systems, for short) [62]. Here the computations are performed by

rules renaming and moving an object across a membrane, possibly modifying the energy

assigned to that membrane. It has been proved in [62] that UREM P systems working in

the sequential mode characterize PsMAT , the family of Parikh sets generated by matrix

grammars without appearance checking (and with erasing rules), and that their power is in-

creased to PsRE (the family of recursively enumerable Parikh sets) if priorities are assigned

to the rules or the mode of applying the rules is changed to maximally parallel.

As stated above, in this section we consider energy-based P systems, in which energy

is assigned to objects in a way that each object from the alphabet is assigned a specific

value. Instances of a special symbol are used to denote free energy units occurring inside

the regions of the system. The computations are carried out by rules renaming and possibly

moving objects, which may consume or release free energy in the region, respecting the

energy conservation law (that is, the total amount of energy associated with the objects that

appear in the left side of a rule is the same as the energy occurring in the right side). The

result of a computation may be interpreted in many ways: for example, as the amount of

free energy units in a designated output region. Also for this model, to give the possibility

to reach computational completeness it is necessary (but not sufficient, as we will see) that

there may be an unbounded amount of free energy in (at least one) specified region of the

system. In [215] it is proved that energy-based P systems working in the sequential way

and using a form of local priorities associated to the rules are computationally complete.

Without priorities, their behavior can be simulated by vector addition systems, and hence

are not universal. However, in [215] the precise characterization of the computational power

of energy-based P systems without priorities is left open. A related open question was

whether energy-based P systems can reach computational completeness by working in the

maximally parallel mode, without priorities, as it happens with UREM P systems [62].

In this section we answer these questions, by showing that the power of energy-based

P systems containing infinite free energy and without priorities is exactly PsMAT when

working in the sequential mode, and PsRE when working in the maximally parallel mode.

Nonetheless we will end with another open question: what is the power of energy-based P

systems under the restriction of determinism? We conjecture non-universality for this case.

149

Characterizing the Power of Energy-based P Systems In this section we characterize

the computational power of energy-based P systems without priorities associated to the rules

and with an unbounded amount of free energy units. As stated in the previous section, we use

energy-based P systems as generating devices; the extension to the computing and accepting

cases (concerning computational completeness) is easy to obtain.

We start with systems working in the sequential mode; with the next two theo-

rems we prove that they characterize PsMAT . We first prove the inclusion PsMAT ⊆

PsOP seq
∗ (energy∗), obtained by simulating partially blind register machines.

Theorem 4.10 PsOP seq
∗ (energy∗) ⊇ PsMAT .

Proof. Consider a partially blind register machine M = (m,Q, I, q0, qf), generating β-

dimensional vectors. We recall that we assume registers β + 1, · · · ,m are empty in the final

configuration of successful computations, corresponding to an implicit final zero-test.

We construct a corresponding energy-based P system ΠM , containing an infinite amount

of free energy units in the skin, as follows:

Π = (A, ε, µ, e, ws, · · · , wf , Rs, · · · , Rf , i0), where

i0 = {1, · · · , β} are the output membranes,

A = {q, q′, q′′ | q ∈ Q} ∪ {tj, Tj | β + 1 ≤ j ≤ m} ∪ {t, T,H,H ′},

ε(q) = 1, ε(q′) = 2, ε(q′′) = 0, q ∈ Q,

ε(tj) = 0, ε(Tj) = 2, β + 1 ≤ j ≤ m,

ε(t) = 0, ε(T) = 1, ε(H) = 2m + 1, ε(H ′) = 2β + 2,

µ = [[]1 · · · []m[]f]s,

ws = q0, wj = λ, 1 ≤ j ≤ m, wf = tβ+1 · · · tmT,

Rs = {q1e→ (q′1, in(j)) | (q1 : [RjP], q2, q3) ∈ I}

∪ {q1 → (q′′1 , in(j)) e | (q1 : 〈RjZM〉, q2) ∈ I}

∪ {T → (T, in(f)), lhe
2m → (H, in(f))}

∪ {Tj → (t, in(j)) e2 | β + 1 ≤ j ≤ m},

Rj = {q′1 → (q2, out) e, q′1 → (q3, out) e | (q1 : [RjP], q2, q3) ∈ I}

∪ {q′′1e→ (q2, out) | (q1 : 〈RjZM〉, q2) ∈ I} ∪R′
j, 1 ≤ j ≤ m,

R′
j = ∅, 1 ≤ j ≤ β,

R′
j = {T → te, te→ T}, β + 1 ≤ j ≤ m,

Rf = {T → te, te→ T, H → H ′e2(m−β)−1}

∪ {tje
2 → (Tj, out) | β + 1 ≤ j ≤ m}.

Note that if β = m, then we replace H → H ′e−1 in Rf by He → H ′. The sets of rules Rj

and R′
j, 1 ≤ j ≤ m, are both intended to be associated with region j, and hence should be

joined. As explained below, the rules from R′
j are used to produce infinite loops T ↔ te in

the regions corresponding to non-output registers of M if such registers are non-empty when

the computation halts.

The simulation consists of a few parts. Every object associated with an instruction label

q1 embeds 1 unit of energy. To simulate an increment instruction (q1 : [RjP], l2, l3), the

150

corresponding object q1 consumes 1 more unit of energy, enters the region associated with

register j as q′1, releases e there, and returns to the skin either as the object q2 or as q3 (the

choice being made in a non-deterministic way), indicating the next instruction of M to be

simulated. To simulate a decrement instruction (q1 : 〈RjZM〉, q2), the corresponding object

q1 releases e in the skin and enters as q′′1 the region associated with register j. There it

consumes 1 unit of energy, and returns to the skin as the object q2 associated with the next

instruction of M to be simulated. If the register was empty then this process is blocked.

Meanwhile, another process takes place in region f ; the order of execution of the two

processes is non-deterministic, but both must finish in order for the system to terminate

the computation and produce a result. The aim of this latter process is indeed to make

ΠM “compute” forever if the above simulation of the 〈RZM〉 instruction gets blocked when

trying to decrement an empty register, so that no result is produced in this case. The process

consists of object T cyclically releasing e and capturing it, generating a possibly infinite loop.

The only way to stop the loop is to alter the free energy occurring in region m. This is done

when the simulation of M is finished, leading to object H releasing e2(m−β)−1. If β = m this

consumes 1 unit of energy, thus stopping the T ↔ te loop. Otherwise it releases enough

energy for objects tj, β + 1 ≤ j ≤ m to leave the region, and the last one of them stops the

T ↔ te loop. The objects tj are used to ensure that registers β + 1 ≤ j ≤ m are empty,

otherwise causing a T ↔ te loop in the corresponding region. �

The opposite inclusion, PsOP seq
∗ (energy∗) ⊆ PsMAT , is proved by simulating energy-based

P systems by matrix grammars.

Theorem 4.11 PsOP seq
∗ (energy∗) ⊆ PsMAT .

Proof. Let Π = (A, ε, µ, e, w1, · · · , wm, R1, · · · , Rm, iout) be an energy-based P system

containing an infinite amount of free energy units that applies its rules in the sequential mode,

and let Ps(Π) be the set of vectors generated by Π. Each rule of Π can be simulated by a

corresponding rewriting rule on multisets of object-region pairs, ignoring those pairs involving

energy objects in the regions containing infinite free energy. Such a multiset rewriting rule

can be written as a matrix, yielding a matrix grammar.

Formally, let R′
i = {a → (b, p) | aek → (b, p) ∈ Ri or a → (b, p)ek ∈ Ri} if region

i contains infinite free energy, and R′
i = Ri otherwise. We construct a matrix grammar

(G = N, T, S,M), where

T = {(a, i)′ | a ∈ A ∪ {e}, 1 ≤ i ≤ m},

N = {(a, i) | a ∈ A ∪ {e}, 1 ≤ i ≤ m} ∪ {S},

M = {((a, i)→ (b, p), (e, i)→ λ, · · · , (e, i)→ λ
︸ ︷︷ ︸

k times

)} | aek → (b, p) ∈ R′
i}

∪ {((a, i)→ (b, p)(e, i)k) | a→ (b, p)ek ∈ Ri}

∪ {(a, i)→ (a, i)′ | (a, i) ∈ T} ∪ {S → u}, where

u is a string containing a copy of symbol (a, i) for every copy of object a in wi.

Grammar G generates the representations of all reachable configurations of Π. We now

proceed with specifying the halting condition by a regular language. The applicability of

every rule r ∈ R′
i corresponds to the presence of some (a, i)′ as well as k copies of (e, i)′ for

151

e
**''

zj

(q′′′1) Z ′′
j

;;ww
//

""DD
e

��

zj

&&
(q1)

99
Z ′

j

<<yy
e

""EE

q′1 //
""EE e // Zj

GG����������

%%JJJ
q1 44 q′′′1 ##GG j′

q1

=={{
q′′′1

��.
..

..
..

..
zj

��9
99

99
9 e

CC������
qiv
1

//

""DD

��2
22

22
2

q3

e

FF
e

%%KKK
K z′j

GG���������
q′1

EE

// e e

(e)

��

Zj
//

88rrrr
e

::tttt
e

q1
&&

>>

j
(q′1) //

JJ

(e)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

s

gf ed

`a bc

WV UTPQ RS

gf ed

`a bc

Figure 4.9: Simulation of the zero-test of (q1 : 〈RjZM〉, q2, q3) in Theorem 4.12

some k ≥ 0: App(r) = (a, i)′⊔⊔(e, i)′k⊔⊔T ∗, which is regular. Then the halting condition is

H = T ∗ \
⋃

r∈R′

i, 1≤i≤m App(r), which is also regular. Since the family of matrix languages is

closed under intersections with regular languages, L(G) ∩H is also a matrix language.

Finally, the result consists of symbols (e, i)′, i ∈ iout, i.e., energy in the output region(s)

of Π. We define a morphism h by h((e, i)′) = ei, i ∈ iout, and h((a, i)′) = λ otherwise. Since

matrix languages are closed under morphisms, also h(L(G) ∩H) ∈ MAT holds. It follows

from Ps(h(L(G) ∪H)) = Ps(Π) that Ps(Π) ∈ PsMAT . �

By joining the two inclusions proved in Theorems 4.10 and 4.11 we obtain our character-

ization of PsMAT by energy-based P systems working in the sequential mode with an

unbounded amount of free energy and without priorities associated to the rules:

Corollary 4.12 PsOP seq
∗ (energy∗) = PsMAT .

Running energy-based P systems in the maximally parallel mode allows them to reach com-

putational completeness without using priorities, as shown in the next theorem.

Theorem 4.12 Ps(β)RE = Ps(β)OPβ+6(energy∗) for all integers β ≥ 1.

Proof. We start by noticing that the construction from Theorem 4.10 produces the same

result when the P system works in the maximally parallel mode. Thus, it suffices to only

add a simulation of zero-test instructions without disrupting the existing machinery. The

new system non-deterministically chooses between decrement and zero-test, and blocks the

simulation process if the zero-test fails.

We thus add membranes []
1′
, []

2′
, · · · , []

m′
and the following sets of rules to the

energy-based P system ΠM mentioned in the proof of Theorem 4.10:

R0
s = {1 : q1e→ (q′1, in(j′)), 3a : q′′′1 → (q1, in(j)),

5a : q′1 → (q1, in(j′)) e, 5b : zje→ (Zj, in(j)) e,

7b : z′je→ (Z ′
j, in(j′)), 12a : q

(iv)
1 → q3e

2

| (q1 : 〈RjZM〉, q2, q3) ∈ P},

152

R0
j = {4a : q1e→ (q′1, out), 6b : Zj → (z′j, out) e ∈ R′′

j

| (q1 : 〈RjZM〉, q2, q3) ∈ P},

R0
j′ = {2 : q′1 → (q′′′1 , out) e, 3b : zje→ Zj, 4b : Zj → (zj, out),

8b : Z ′
je→ Z ′′

j , 9b : Z ′′
j → zje

2, 10a : q1e→ q′′′1 ,

11a : q′′′1 e→ (q
(iv)
1 , out) | (q1 : 〈RjZM〉, q2, q3) ∈ P}.

The case of correct simulation of a zero-test is illustrated in Figure 4.9. The case when the

register is not zero is shown by dotted lines and symbols in parentheses, and the computation

stops before the dashed line. Indeed, if region j does not contain any object e, then the

following sequence of multisets of rules is applied: 1, 2, (3a, 3b), (4a, 4b), (5a, 5b), 6b, 7b, 8b,

9b, 10a, 11a, 12a. In this way, l1 is transformed to l3 while the other objects used (energy and

zj) are reproduced. On the other hand, if region j contains some object e, corresponding

to a non-zero value of the corresponding register, then the sequence of multisets of rules

applied is 1, 2, (3a, 3b), (4a, 4b), (5a, 5b), (6b, 10a), 7b, and the simulation process is blocked.

We recall that blocking the simulation process leads to an infinite computation due to the

T ↔ te loop in region f . In words, because of free energy in region j, object l1 left that

region three steps earlier. As a result, instead of object Z ′
j consuming 1 unit of energy and

then releasing 2 units needed for l1, the existing unit of energy has been consumed by l1,

leaving the computation unfinished.

The full P system, defined using components of the construction from Theorem 4.10, is

given below:

Π′′ = (A′′, ε′′, µ′′, e, w′′
s , · · · , w

′′
f , R

′′
s , · · · , R

′′
f , iout), where

A′′ = A ∪ {q′′′ | q ∈ Q} ∪ {zj, z
′
j, Zj, Z

′
j, Z

′′
j | 1 ≤ j ≤ m},

ε′′(x) = ε(x), ∀x ∈ A, ε(q′′′) = 1, ε(q(iv)) = 2, ∀ q ∈ Q,

ε′′(zj) = ε′′(z′j) = 0, ε′′(Zj) = ε′′(Z ′
j) = 1, ε′′(Z ′′

j) = 2, 1 ≤ j ≤ m,

µ′′ = [[]
1
· · · []

m
[]

1′
· · · []

m′
[]

f
]
s
,

w′′
s = ws, w′′

j = wj, 1 ≤ j ≤ m, w′′
f = wf ,

w′′
j′ = zj, 1 ≤ j ≤ m,

R′′
s = Rs ∪R0

s, R′′
j = Rj ∪R0

j , 1 ≤ j ≤ m,

R′′
j′ = R0

j′ , 1 ≤ j ≤ m, R′′
f = Rf .

As we can see, system Π′′ uses the skin membrane, one membrane to control the halting,

and two membranes for each of the m registers, for a total of 2m + 2 membranes.

Since it is known (see Proposition 1.3) that m = β + 2 registers suffice to generate

any recursively enumerable set L ⊆ Ps(β)RE of vectors of non-negative integers by non-

deterministic register machines, we would obtain 2β + 6 membranes. However, as recalled

above, when using register machines as generating devices we can assume without loss of

generality that only [RP] instructions are applied to the output registers. So only one

membrane is needed for each output register, thus reducing the total number of membranes

to β + 2(m− β) + 2 = β + 6. �

By putting β = 1 in the above theorem we obtain a characterization of NRE:

153

Corollary 4.13 NOP7(energy∗) = NRE,

whereas if we make the union of all classes Ps(β)OPβ+6(energy∗) for β ranging through the

set of non-negative integers we obtain a characterization of PsRE:

Corollary 4.14 PsOP∗(energy∗) = PsRE.

As stated above, these results can be easily generalized to the cases in which energy-based

P systems are used as accepting devices or as devices computing partial recursive functions.

First of all note that the energy-based P systems built in the proofs of Theorems 4.10 and

4.12 can be easily modified to simulate deterministic register machines. Considering the

computing case, we know from Proposition 1.1 that m = max{α, β} + 2 registers suffice to

compute any partial recursive function f : Nα → Nβ. To simulate such a register machine we

would obtain 2 max{α, β} + 6 membranes for the system Π′′ built in the proof of Theorem

4.12. However, this number can be reduced to α + max{α, β}+ 6 by considering that:

• as stated above, we can assume that only ADD instructions are applied to the output

registers. This means that only one membrane (instead of two) is needed to simulate

the behavior of each output register;

• in general some input registers may also be used as output ones. Yet, any “primed”

membrane j′ associated with an input register, 1 ≤ j′ ≤ α, cannot be used also as a

membrane associated to an output register, due to object zj residing in the membrane.

Hence, with α inputs and β outputs we need α primed membranes plus max{α, β}

non-primed membranes. Adding two membranes for each of the 2 additional registers

of M , plus membranes f and s, we obtain α + max{α, β}+ 6 membranes.

As particular cases, we need 2α + 6 membranes for the accepting case and β + 6 membranes

for the generating case.

Conclusions and Discussion on Determinism In this section we have considered

energy-based P systems, a model of membrane systems with energy assigned to objects.

We have answered two questions about their computational power, and we have thus proved

that it matches Parikh images of matrix languages when the rules of the P systems are ap-

plied in the sequential mode, whereas there is computational completeness in the maximally

parallel case.

As a direction for future research, we propose the following problem: What is the com-

putational power of deterministic energy-based P systems? We conjecture that they are not

universal. The question originates from the fact that in [217, 216] energy-based P systems are

used to simulate Fredkin gates and Fredkin circuits, respectively; however, the simulation is

performed in a non-deterministic way, relying on the fact that sooner or later the simulation

will choose the correct sequence of rules. Note that if the wrong rules are chosen the simula-

tion is not aborted; the state of the system is “rolled back” so that a new non-deterministic

choice can be made, hopefully the correct one. Clearly this situation could produce infinite

loops; this is why one would like instead to have a deterministic simulation.

154

Here we can only give an informal justification for our conjecture. Notice that objects

only interact indirectly, via releasing free energy units in a region or consuming them. Con-

sider a dependency graph whose nodes are identified by object-region pairs. Two nodes are

connected if the corresponding objects are present in the associated regions in some rule.

A system is deterministic if no branching can be effectively used in its computations, so

removing unusable rules would lead to a dependency graph where each node has out-degree

at most one. Hence, any object occurring in the initial configuration of the system has some

predetermined evolution path, and one of the following cases must happen: 1)the path is

finite, and the object evolves until there are no associated rules, 2)the path leads to a cy-

cle, and the object evolves forever (the computation yields no result), or 3)the evolution is

“frozen” because there is not enough energy for the associated rule.

In energy-based P systems, the only way one object can influence the behavior of another

object is by manipulating energy, leading to freezing or unfreezing the computational path

of another object. There is no deterministic way to set an object to two different paths. If

a “frozen” object receives enough energy to continue its evolution, then its computational

path is the same as if it was never frozen.

So the information that can be passed from an object to another one is quite limited:

giving the latter energy, as opposed to letting it freeze forever. However, every time this

happens, some object must stop evolving forever. Since the initial number of objects is

fixed and cannot increase, the communication complexity is bounded and this should imply

non-universality.

However, even if deterministic energy-based P systems were not universal, they could

nonetheless be able to simulate Fredkin gates. This should be doable if leaving some

“garbage” into the system at the end of the computation is allowed. Indeed, the active

objects could unfreeze the desired ones, producing the needed result. More difficult would

be designing an energy-based P system that can be reused to simulate a Fredkin gate as

many times as desired. We expect the reusable construction to be impossible, for the same

reasons as exposed above.

4.9 Conclusions to Chapter 4

A simulation of exponential-space Turing machines by P systems with active membranes

has been presented. The simulation can be carried out by a uniform family of polynomial-

time P systems with active membranes operating in space O(s(n) log s(n)), where s(n) is

the space required by the simulated Turing machine on inputs of length n. Since the con-

verse result holds, the two classes of devices solve exactly the same decision problems when

working withing an exponential space limit. The techniques employed here do not carry

over to the simulation of superexponential space Turing machines, since they would require

a super-polynomial number of subscripted objects in order to encode tape positions; this

amount of objects (and their associated rules) cannot be constructed using a polynomial-

time uniformity condition. Novel techniques will be probably needed in order to prove that

the equivalence of Turing machines and P systems also holds for larger space bounds.

The computational completeness of P systems with active membranes without polariza-

155

tions has been established. Specifically, we have shown that RE is generated by P systems

using four membranes and three labels or seven membranes and two labels in the initial

configuration, where at most three objects are ever present in any halting computation. We

have also proved that deterministic P systems with two polarizations and rules of types (a)

and (c) accept PsRE using one membrane. Moreover, we can require the rules to be global

and rules of type (c) to be non-renaming.

Improving any complexity parameter greater than one (especially in the case of ∗) in any

theorem is an open question. Moreover, the following issues are of interest: the power of

deterministic P systems with membrane division (without polarizations, without changing

labels, etc.); restricting the types of rules in Theorem 4.1; further restrictions causing a com-

plexity trade-off; the generative power of P systems without polarizations and m membranes,

m = 1, 2, 3; the generative power of one-membrane P systems with two polarizations and

external output.

An algorithm has been given for deciding the NP-complete decision problem SAT(n,m)

by a uniform family of P system with active membranes in linear time (with respect to nm)

with only two polarizations and rules of types (a), (c), and (e), of specific restrictive types.

Various other restrictions are summarized in Corollary A4.1, followed by the discussion.

The question remains whether further or other restrictions, respectively, of the general

form of these rules are possible. For instance, can the problem be solved using only rules of

types (a), (cp0), (e) (the rules of type (c) do not depend on the polarization and preserve

it)? What about using only types (ap), (c), (e) (the rules of type (a) do not depend on the

polarization)? Another interesting question is to study systems with rules of types (au), (b),

(c), (d), (e); such systems can only increase the number of objects via membrane division.

What is their generative power? Are they efficient?

A solution has been presented to a known #P-complete problem of computing a perma-

nent of a binary matrix by P systems with active membranes, namely with two polarizations

and rules of object evolution, sending objects out and membrane division. The solution has

been preceded by the framework that generalizes decisional problems to computing functions:

now the answer is much more than one bit. This result suggests that P systems with active

membranes without non–elementary membrane division still compute more than decisions

of the problems in NP ∪ co−NP.

The main result presented in Section 4.4 has been later developed by the Milano group,

by implementing decoding also by P systems themselves without additional features. Hence,

P systems with active membranes without non–elementary membrane division compute at

least PP. A subsequent paper by the Milano group, contains an attempt to implement

solutions to PPP problems, implementing PP oracles as subsystems of a P system.

A uniform polynomial-time solution of QSAT, a well-known PSPACE–complete problem

has been given through a family of recognizer P systems using polarizationless active mem-

branes, dissolution rules and division for elementary and non–elementary membranes. It

remain as an open question if the division for non–elementary membranes can be removed.

Our result thus presents an interesting counterpart of the result from [100], compared to

which the polarizations have been replaced by membrane dissolution.

It has been showed that efficient solutions of computationally hard problems by P systems

156

with active membranes working in minimally parallel way can be constructed avoiding both

cooperative rules and non-elementary membrane division. For this task, it is enough to have

4 polarizations, sequential evolution rules changing polarizations, polarizationless elementary

membrane division rules and polarizationless rules of sending an object out. One can use

the standard evolution and send-out rules, as well as polarizationless elementary membrane

division rules; in this case, 6 polarizations suffice.

The first construction is “almost” deterministic: the only choices the system can make in

each cycle is the order in which the input systems are processed. The second construction

exhibits a more asynchronous behavior of the input objects, which, depending on the chosen

degree of parallelism, might speed up obtaining the positive answer, but less than by 20%.

In this case, controlling polarizations by evolution is still faster than controlling polarizations

by communication.

A number of interesting problems related to minimal parallelism remain open. For in-

stance, is it possible to decrease the number of polarizations/labels? Moreover, it presents

an interest to study other computational problems in the minimally-parallel setting, for in-

stance, the computational power of P systems with one active membrane working in the

minimally parallel way.

The results on two models of P systems with energy have been presented. In the first

case, energy is a kind of a membrane polarization that can take infinitely many values, but is

used only by adding and subtracting one to/from it. In the second case, energy is associated

to objects and regions, requiring also a conservativity condition.

For the latter case, called energy-based P systems, we have answered two questions about

their computational power, proving that it matches Parikh images of matrix languages when

the rules of the P systems are applied in the sequential mode, whereas there is computational

completeness in the maximally parallel case.

As a direction for future research, we propose the following problem: What is the com-

putational power of deterministic energy-based P systems? We conjecture that they are not

universal.

However, even if deterministic energy-based P systems were not universal, they could

nonetheless be able to simulate Fredkin gates. This should be doable if leaving some

“garbage” into the system at the end of the computation is allowed. Indeed, the active

objects could unfreeze the desired ones, producing the needed result. More difficult would

be designing an energy-based P system that can be reused to simulate a Fredkin gate as

many times as desired. We expect the reusable construction to be impossible, for the same

reasons as exposed above.

Section 4.1 is based on publications [92] and [93]. Section 4.2 is based on publications

[73], [17], [74] and [75], as well as [71] and [72]. Section 4.3 is based on publications [60],

[59] and [72]. Section 4.4 is mainly based on publications [35] and [34]. Section 4.5 is based

on publications [114], [115], [108] and [107]. Section 4.6 is based on publications [9], [8] and

[10]. Sections 4.7 and 4.8 are based on publications [23], [24] and [62].

157

5. STRING-OBJECT MODELS

In this chapter we take strings instead of symbols as objects. Hence, we already have linear

order as structure. We mostly consider very restricted variants of the string rewriting rules,

such as symbol insertion, symbol deletion, symbol substitution (we speak about splicing in

Section 5.4). It is particularly interesting how one can enforce interaction between different

symbols of the string (and interaction between different strings in cases of splicing and later

in Section 6.2).

In Section 5.1 we consider networks of evolutionary processors (NEPs), which are are

distributed word rewriting systems, as language generators (these models have inspirations

similar to P systems, but are not considered a part of membrane computing). Each node

contains a set of words, a set of operations (typically insertion, deletion or rewriting of one

symbol with another one), an input filter and an output filter. The purpose of this section

is to overview existing models of NEPs, their variants and developments.

In particular, besides the basic model, hybrid networks of evolutionary processors

(HNEPs) have been extensively studied. In HNEPs, operations application might be re-

stricted to specific end of the string, but the filters are random-context conditions (they

were regular in the basic model). We will also cover the literature on the so-called obligatory

HNEPs, i.e., ones where the operations are obligatory: the string that cannot be rewritten

is not preserved. Some specific aspects that we pay attention to are: computational uni-

versality and completeness, the topology of the underlying graph, the number of nodes, the

power of filters.

In Section 5.2 we consider insertion-deletion P systems with priority of deletion over the

insertion. We show that such systems with one symbol context-free insertion and deletion

rules are able to generate Parikh sets of all recursively enumerable languages (PsRE). If

one-symbol one-sided context is added to insertion or deletion rules, then all recursively

enumerable languages can be generated. The same result holds if a deletion of two symbols

is permitted. We also show that the priority relation is very important and in its absence

the corresponding class of P systems is strictly included in the family of matrix languages

(MAT).

In Section 5.3 we consider insertion-deletion P systems where the place where operations

are applied is restricted to the ends of the string. We prove the computational completeness

in case of priority of deletion over insertion. This result presents interest since the strings

are controlled by a tree structure only, and because insertion and deletion of one symbol are

the simplest string operations.

To obtain a simple proof, we use a new variant (CPM5) of circular Post machines (Turing

machines moving one-way on a circular tape): those with instructions changing a state and

158

either reading one symbol or writing one symbol. CPM5 is a simple, yet useful tool. In the

last part of the section, we return to the case without priorities. We give a lower bound on

the power of such systems, which holds even for one-sided operations only.

In Section 5.4 we mention a group of results on splicing, an abstraction of a well-known

biological operation, mostly the small universal systems based on splicing. Note that ba-

sic splicing has subregular behavior, so additional control is needed to make such systems

possible.

One approach is to view splicing systems in a distributed framework, yielding splicing P

systems. The second case is the so-called test tube systems based on splicing. The third way

is to allow rules to change, in the framework of time-varying distributed H systems (TVDH

systems). The fourth possibility is to consider a class of H systems which can be viewed as

a counterpart of the matrix grammars in the regulated rewriting area.

Finally, we recall a related model, motivated by the gene assembly in ciliates. Ciliate

operations are considered in membrane systems framework, establishing the computational

completeness of the intermolecular model. One performs analysis of pointers in actual living

ciliates, and one considers the problem of complexity of the graph-based model of gene

assembly in ciliates. Moreover, ciliate operations provide a framework of describing the

solution to the Hamiltonian Path Problem.

5.1 Networks of Evolutionary Processors

Networks of evolutionary processors (NEPs) are distributed word rewriting systems typically

viewed as language generators. Each node contains a set of words, a set of operations

(typically insertion, deletion or rewriting of one symbol with another one), an input filter

and an output filter. The purpose of this section is to overview existing models of NEPs,

their variants and developments.

In particular, besides the basic model, hybrid networks of evolutionary processors

(HNEPs) have been extensively studied. In HNEPs, operations application might be re-

stricted to specific end of the string, but the filters are random-context conditions (they

were regular in the basic model). We will also cover the literature on the so-called obligatory

HNEPs, i.e., ones where the operations are obligatory: the string that cannot be rewritten

is not preserved.

Some specific aspects that we pay attention to are: computational universality and com-

pleteness, the topology of the underlying graph, the number of nodes, the power of filters.

Insertion, deletion, and substitution are fundamental operations in formal language the-

ory, their power and limits have obtained much attention during the years. Due to their

simplicity, language generating mechanisms based on these operations are of particular in-

terest. Networks of evolutionary processors (NEPs, for short), introduced in [148], are proper

examples for distributed variants of these constructs. In this case, an evolutionary processor

(a rewriting system which is capable to perform an insertion, a deletion, and a substitution

of a symbol) is located at every node of a virtual graph which may operate over sets or

multisets of words. The system functions by rewriting the collections of words present at the

nodes and then re-distributing the resulting strings according to a communication protocol

159

defined by a filtering mechanism. The language determined by the network is defined as

the set of words which appear at some distinguished node in the course of the computa-

tion. These architectures also belong to models inspired by cell biology, since each processor

represents a cell performing point mutations of DNA and controlling its passage inside and

outside the cell through a filtering mechanism. The evolutionary processor corresponds to

the cell, the generated word – to a DNA strand, and the operations insertion, deletion, and

substitution of a symbol – to the point mutations. It is known that, by using an appropriate

filtering mechanism, NEPs with a very small number of nodes are computationally complete

computational devices, i.e. they are as powerful as the Turing machines (see, for example

[103], [101], [102]).

Basic model Motivated by some models of massively parallel computer architectures,

networks of language processors have been introduced in [160]. Such a network can be

considered as a graph, where the nodes are sets of productions and at any moment of time a

language is associated with a node. In a derivation step, any node derives from its language

all possible words as its new language. In a communication step, any node sends those words

to other nodes that satisfy an output condition given as a regular language, and any node

takes those words sent by the other nodes that satisfy an input condition also given by a

regular language. The language generated by a network of language processors consists of

all (terminal) words which occur in the languages associated with a given node.

Inspired by biological processes, a special type of networks of language processors was

introduced in [148], called networks with evolutionary processors, because the allowed pro-

ductions model the point mutation known from biology. The sets of productions have to

be substitutions of one letter by another letter or insertions of letters or deletion of letters;

the nodes are then called substitution node or insertion node or deletion node, respectively.

Results on networks of evolutionary processors can be found e. g. in [148], [147], [146],

[103]. In [147] it was shown that networks of evolutionary processors are universal in that

sense that they can generate any recursively enumerable language, and that networks with

six nodes are sufficient to get all recursively enumerable languages. In [103] the latter result

has been improved by showing that networks with three nodes are sufficient.

In [103] one presents the proof of the computational completeness with two nodes, addi-

tionally employing a morphism. In [55] one shows that NEPs with two nodes (one insertion

node and one deletion node) generate all recursively enumerable languages (in intersection

with a monoid), avoiding the need for a morphism. The same paper shows that insertion

and substitution characterize context-sensitive languages, while deletion and substitution

characterize finite languages.

Hybrid model Particularly interesting variants of these devices are the so-called hybrid

networks of evolutionary processors (HNEPs), where each language processor performs only

one of the above operations on a certain position of the words in that node. Furthermore,

the filters are defined by some variants of random-context conditions, i.e., they check the

presence/absence of certain symbols in the words. These constructs can be considered both

language generating and accepting devices, i.e., generating HNEPs (GHNEPs) and accept-

ing HNEPS (AHNEPs). The notion of an HNEP, as a language generating device, was

160

introduced in [229] and the concept of an AHNEP was defined in [224].

In [159] it was shown that, for an alphabet V , GHNEPs with 27 + 3 · card(V) nodes

are computationally complete. A significant improvement of the result can be found in [51],

[52], where it was proved that GHNEPs with 10 nodes (irrespectively of the size of the

alphabet) obtain the universal power. For accepting HNEPs, in [222] it was shown that

for any recursively enumerable language there exists a recognizing AHNEP with 31 nodes;

the result was improved in [221] where the number of necessary nodes was reduced to 24.

Furthermore, in [221] the authors demonstrated a method to construct for any NP-language

L an AHNEP with 24 nodes which decides L in polynomial time.

At last in [53] it was proved that any recursively enumerable language can be generated

by a GHNEP having 7 nodes (thus, the result from [51], [52] is improved) and in [54] the same

authors showed that any recursively enumerable language can be accepted by an AHNEP

with 7 nodes (thus, the result from [221] is improved significantly). An improvement of

the accepting result to 6 nodes has been obtained in [220], by simulating Tag systems. In

[54] also it was showed that the families of GHNEPs and AHNEPs with 2 nodes are not

computationally complete.

In [159] it was demonstrated that a GHNEP with one node can generate only regular lan-

guage, while in [116] a precise form of the generated language was presented, also considering

one case omitted in the previous proof. Tasks of characterization of languages generated by

a GHNEP with two nodes and languages accepting by an AHNEP with two nodes are still

open.

Obligatory operations A variant of HNEPs, called Obligatory HNEPs (OHNEP for

short) was introduced in [29]. The differences between HNEP and OHNEP are the following:

1. in deletion and substitution: a node discards a string if no operations in the node are

applicable to the string (in HNEP case, this string remains in the node),

2. the underlying graph is a directed graph (in HNEP case, this graph is undirected); this

second difference disappears when we consider complete networks.

These differences make OHNEPs universal [29] with 1 operation per node, no filters and

only left insertion and right deletion.

In [27] complete OHNEPs were considered, i.e., OHNEPs with complete underlying

graph. One may now regard complete OHNEP as a set of very simple evolutionary pro-

cessors “swimming in the environment” (i.e., once a string leaves a node, it is not essential

for the rest of the computation which node it left). In [27] it is proved that the complete

OHNEPs with very simple evolutionary processors, i.e., evolutionary processors with only

one operation (obligatory deletion, obligatory substitution and insertion) and filters contain-

ing not more than 3 symbols are computationally complete. We recall that the filters are

either single symbols or empty sets, while the sum of weights has been counted.

In [26] one considers OHNEPs without substitution. It is not difficult to notice that in

complete OHNEPs without substitution there is no control on the number of insertion or

deletion of terminal symbols (i.e., those symbols which appear in output words). Therefore,

the definition of OHNEPs needed to be modified in order to increase their computational

161

power. In [26] one shows that it is possible to avoid substitution using modified operations of

insertion and deletion in evolutionary processors similar to “matrix” rules in formal language

theory. By using such techniques a small universal complete OHNEP with 182 nodes without

substitution is constructed.

Several open questions were posed in [26], in particular the question about the minimal

total complexity of filters of evolutionary processor in computationally complete OHNEPs

and the question about universal complete OHNEP without substitution with the minimal

number of nodes. In [25] one considers a model of OHNEP allowing the use of all three

molecular operations: insertion, deletion and substitution, and provides a very unexpected

result. OHNEPs are computationally complete even if the total power of the filters of each

node does not exceed 1! This means that in any node, all four filters are empty, except

possibly one, being a single symbol.

We would like to point out that there is no interaction, direct or indirect, between the

words of the network. Hence, the generated language is a union of languages, generated by

the same system, but starting with only one word.

As for the replication, i.e., the possibility of applying multiple rules or the same rule

in multiple ways, producing many words from one word, this could be viewed as a non-

deterministic evolution of one word. In this case, distributivity simply means assigning a

state to the word. Summing up, the language generated by a parallel deterministic word

rewriting system may be viewed as a (union of) language(s) generated by a non-deterministic

one-word rewriting system with states (without any other parallelism or distributivity).

Furthermore, the nature of the model (except the obligatory variant) leads to many

cases of the “shadow” computations, in the following sense. If one carefully considers the

definitions, and constructs a faithful simulation of the model, one would notice that a lot of

computation in the system consists of repeatedly recomputing the same steps. This is due

to the fact that if some operation π ∈ SubV or ρ ∈ DelV of a node is not applicable to some

word w in that node, the result is w. Taking the union over all operations of a node yields a

set containing w, even if some other operation was applicable to w. Clearly, in the next step,

the words obtainable from w in the same node will be recomputed. However, the system is

deterministic, so nothing new is obtained in this way.

A careful examination reveals that, in some circumstances, the shadow computations can

be avoided, modifying the definition while yielding the same generated language! Indeed,

preserving w is useless (everything that is possible to derive from w in that node is derived

immediately) unless w exits the node. However, at least in the case of complete networks,

if w enters a node and exits it unchanged, this does not do anything new either (if w is an

initial word, it can be copied to all nodes that it can reach unchanged in communication

step).

The above reason lets us claim that, e.g., any result for complete OHNEPs holds also for

the usual complete HNEPs, and the associated computational burden of the simulation may

be greatly reduced. If the network is not complete, then a heuristic still may be used by a

simulator, by preserving unchanged words only in case if they actually move from a node

into some different node.

162

5.1.1 NEPs with two nodes

Theorem 5.1 For any recursively enumerable language L, there are a set T and a network

N of evolutionary processors with exactly one insertion node and exactly one deletion node

such that L = L(N) ∩ T ∗.[55]

Proof. (sketch) We consider a type-0 grammar G = (N, T, P, S) with L(G) = L. Then all

rules of P have the form u→ v with u ∈ N+ and v ∈ (N ∪T)∗. Let X = N ∪T,X ′ = {a, a′ |

a ∈ N ∪ T}, T ′ = {a, a′ | a ∈ T} and P ′ = {pi | p ∈ P, 1 ≤ i ≤ 4}. We define a morphism

µ : X∗ → (X ′)∗ by µ(a) = aa′ for a ∈ X and set W = {µ(w) | w ∈ X∗}. We construct the

following network N = (V, (M1, A1, I1, O1), (M2, A2, I2, O2), E, 2) of evolutionary processors

with

V = P ′ ∪X ′,

M1 = {λ→ pi | pi ∈ P ′, 1 ≤ i ≤ 4} ∪ {λ→ a | a ∈ X ′},

A1 = {µ(S)}, I1 = W \ (T ′)∗, O1 = V ∗ \(WR1,1W),

M2 = {pi → λ | pi ∈ P ′, 1 ≤ i ≤ 4} ∪ {a→ λ | a ∈ X ′ \ T},

A2 = ∅, I2 = WR1,2W, O2 = V ∗ \ (WR2,2W ∪ (T ′)∗),

E = {(1, 2), (2, 1)}, where

R1,1 =
⋃

p:u→v∈P

({p1µ(u), p1µ(u)p3, p1p2µ(u)p3, p1p2µ(u)p3p4}

∪ {p1p2µ(u)}PPref(µ(v)){p3p4})

\{p1p2µ(u)p3p4 | p : u→ v ∈ P},

R1,2 = {p1p2µ(uv)p3p4 | p : u→ v ∈ P},

R2,2 =
⋃

p:u→v∈P

({p1p2}PSuf(µ(u)){µ(v)p3p4}

∪ {p2µ(v)p3p4, p2µ(v)p4, µ(v)p4}).

The output and input filters are defined in order to remove the garbage and communicate
the strings that should change the type of operation, keeping only the strings that should
continue to evolve by operations of the same type. Since the morphism µ(a) = aa′ is
introduced, the strings obtained by applying rules to the left or to the right of the place
of application of the current rule are no longer kept in the node by the filter, and are not
accepted by either node (recall that W = aa′|a ∈ {N ∪ T ∗), so they leave the system. Claim:
L(N) \ T ∗ = L. The “correct” simulation of an application of a production p : a1 · · · as →
b1 · · · bt to a sentential form αa1 · · · asβ and with x = µ(α) and y = µ(α) has the following
form. In N1 we have

xa1a
′
1 · · · asa

′
sy ⇒λ→p1 xp1a1a

′
1 · · · asa

′
sy

⇒λ→p3 xp1a1a
′
1 · · · asa

′
sp3y ⇒λ→p2 xp1p2a1a

′
1 · · · asa

′
sp3y

⇒λ→p4 xp1p2a1a
′
1 · · · asa

′
sp3p4y ⇒λ→b1 xp1p2a1a

′
1 · · · asa

′
sb1p3p4y

⇒λ→b′1 xp1p2a1a
′
1 · · · asa

′
sb1b

′
1p3p4y ⇒∗ xp1p2a1a

′
1 · · · asa

′
sb1b

′
1 · · · btp3p4y

⇒λ→b′t xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y,

163

and in N2 we have xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y ⇒

a1→λ

xp1p2a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y ⇒a′

1→λ

xp1p2a2 · · · asa
′
sb1b

′
1 · · · btb

′
tp3p4y ⇒∗ xp1p2asa

′
sb1b

′
1 · · · btb

′
tp3p4y

⇒as→λ xp1p2a
′
sb1b

′
1 · · · btb

′
tp3p4y ⇒a′

s→λ xp1p2b1b
′
1 · · · btb

′
tp3p4y

⇒p1→λ xp2b1b
′
1 · · · btb

′
tp3p4y ⇒p3→λ xp2b1b

′
1 · · · btb

′
tp4y

⇒p2→λ xb1b
′
1 · · · btb

′
tp4y ⇒p4→λ xb1b

′
1 · · · btb

′
ty.

Notice that if a production can be applied to the same sentential form in different ways (multiple

productions and/or multiple places to apply them), then the corresponding number of strings is

produced in the first step (inserting marker p1 associated to the production, to the left of the

application place). The rest of the simulation is “deterministic” in the following sense: starting from

xp1a1a
′
1 · · · asa

′
sy, the result xb1b

′
1 · · · btb

′
ty is obtained according to the derivations above, while all

other strings are discarded. The strings that leave one node and enter another one belong to the

sets O1 \ I2 = I2 and O2 \ I1 = I1. All other strings that leave a node do not enter anywhere. With

p ∈ P , a ∈ X ′ and A ∈ X ′ \ T , Table 5.1 illustrates the behavior of a string (the numbers give the

situation which is obtained by using the rule in question and n/a refers to non-applicability of the

rule).

Table 5.1: Strings in 2-node NEP
n Shape in N1 λ→ p1 λ→ p3 λ→ p2 λ→ p4 λ→ a

1 W 2 out out out out

2 Wp1µ(u)Wout 3 out out out

3 Wp1µ(u)p3W out out 4 out out

4 Wp1p2µ(u)p3W out out out 5 out

5 Wp1p2µ(u)·

PPref(µ(v))p3p4W out out out out 5,6

n Shape in N2 p1 → λ p3 → λ p2 → λ p4 → λ A→ λ

6 Wp1p2·

NSuf(µ(u))µ(v)p3p4W out out out out 6,7

7 Wp1p2µ(v)p3p4W 8 out out out out

8 Wp2µ(v)p3p4W n/a 9 out out out

9 Wp2µ(v)p4W n/a n/a 10 out out

10 Wµ(v)p4W n/a n/a n/a 1,11 out

11 (T ′)∗ n/a n/a n/a n/a 11

Table 5.1 illustrates the fact that if a symbol is inserted or deleted in a way that does not follow

the “correct” simulation, than the string leaves the system. Finally, consider L(N) ∩ (T ′)∗. It is

the set of all strings obtained in N2 without nonterminal symbols, without markers and without

pre-terminals (i. e., primed versions of terminals). Hence, all of them are obtained from shape 5 of

N2 by deleting the marker p4, reaching shape 6 if the string only has terminals and pre-terminals.

It is easy to see that in several computation steps all pre-terminal symbols will be deleted. This

exactly corresponds to the set of terminal strings w produced by the underlying grammar G, all

letters being represented by a double repetition, i. e., encoded by µ. Such strings remain in N2 and

all pre-terminals are deleted, obtaining w from µ(w). �

164

5.1.2 HNEPs with one node

The following theorem states the regularity result for GHNEPs with one node. Although

this has already been stated in [159], their proof is certainly incomplete. They stated that

while GHNEPs without insertion only generate finite languages, GHNEPs with one insertion

node only generate languages I∗C0, C0I
∗, C0⊔⊔I

∗, for the mode l, r, ∗, respectively. In the

theorem below we present a precise characterization of languages generated by GHNEP with

one node and consider the case omitted in [159], when the underlying graph G has a loop.

Theorem 5.2 One-node GHNEPs only generate regular languages.[116]

Proof. As finite languages are regular, the statement holds for GHNEPs without insertion

nodes. We now proceed with the case of one insertion node. Consider such a GHNEP

Γ = (V,G,N1, C0, α, β, 1), where

N1 = (M,PI, FI, PO, FO).

Let us introduce a few notations. Inserting a symbol from I in a language C yields a

language insI(C). Depending on whether α = l, α = r or α = ∗, insI(C) is one of IC, CI,

C⊔⊔I, respectively. For inserting an arbitrary number of symbols from a set I in a language

C, ins
∗
I(C) is one of I∗C, CI∗, C⊔⊔I∗. Clearly, ins

∗
I preserves regularity.

We denote the set of symbols inserted in N1 by I = {a | λ→ a ∈M}. The configuration

of N1 after one step is C1 = insI(C0). Assume that β = 2 (a case, when β = 1, can be

considered analogously), then the conditions of passing permitting and forbidding output

filter can be specified by regular languages π = V ∗POV ∗ and ϕ = (V − FO)∗, respectively.

For instance, the set of words of C1 that pass the forbidding output filter but do not pass

the forbidding input filter is C ′
1 = C1 ∩ ϕ \ π. Notice that inserting symbols that belong to

neither PO nor FO does not change the behavior of the filters; we denote the corresponding

language by B = ins
∗
I\(PO∪FO)(C1).

Consider the case when the graph G consists of one node and no edges. Then, Γ generates

the following language

L1 = L1(Γ) = C0 ∪ C1 ∪ ins
∗
I(C1 \ ϕ) ∪B

∪insI∩PO\FO(B) ∪ ins
∗
I(insI∩FO(B)), (5.1)

B = ins
∗
I\(PO∪FO)(C1),

C1 = insI(C0).

Indeed, this is a union of six languages:

1. initial configuration,

2. configuration after one insertion,

3. all words that can be obtained from a word from C1 if it is trapped in N1 by the

forbidding filter,

4. B represents the words that pass the forbidding filter but not the permitting filter,

165

5. words obtained by inserting one permitting and not forbidden symbol into B, and

6. words obtained by inserting one forbidden symbol into B, and then by arbitrary inser-

tions.

Consider the case when the graph G has a loop. The set of words leaving the node

(for the first time) is D = (C1 ∩ ϕ ∩ π) ∩ insI∩PO\FO(B). The conditions of the permitting

and forbidding input filters can be specified by regular languages π′ = V ∗PIV ∗ and ϕ′ =

(V − FI)∗, respectively. Some of words from D return to N1, namely D ∩ π′ ∩ ϕ′. Notice

that further insertion of symbols that belong neither to FO nor to FI causes the words to

continuously exit and reeenter N1. The associated language is B′ = ins
∗
I\(FO∪FI)(D∩π′∩ϕ′).

Finally, we give the complete presentation of the language generated by Γ in this case:

L′
1 = L1(Γ) = L1 ∪B′ ∪ ins

∗
I(insI∩FO(B′)) ∪ insI∩FI\FO(B′), (5.2)

B′ = ins
∗
I\(FO∪FI)(D ∩ π′ ∩ ϕ′),

D = (C1 ∩ ϕ ∩ π) ∩ insI∩PO\FO(B),

C1 = insI(C0).

Indeed, this is a union of four languages:

1. words that never reenter N1, as in the case when G has no edges,

2. B′ represents the words that once leave and reenter N1, and keep doing so after sub-

sequent insertions,

3. words obtained by inserting a symbol from FO into B′, and then by arbitrary inser-

tions,

4. words obtained by inserting a symbol from FI \ FO into B′. �

5.1.3 HNEPs with 7 nodes

Theorem 5.3 Any recursively enumerable language can be generated by a complete HNEP

of size 7. [53], [54]

Proof. Let L ⊆ T ∗ be a language generated by a type-0 grammar G = (N, T, S, P) in

Kuroda normal form.

We construct a complete HNEP Γ = (V,H,N , C0, α, β, 7) of size 7 which simulates the

derivations in G and only that, by using the so-called rotate-and-simulate method. The

rotate-and-simulate method means that the words in the nodes are involved in either the

rotation of their leftmost symbol (the leftmost symbol of the word is moved to the end of the

word) or the simulation of a rule of P . In order to indicate the end of the word when rotating

its symbols and thus to guarantee the correct simulation, a marker symbol, #, different

from any element of (N ∪ T) is introduced. Let N ∪ T ∪ {#} = A = {A1, A2, . . . An},

I = {1, 2, . . . , n}, I ′ = {1, 2, . . . , n − 1}, I ′′ = {2, 3 . . . , n}, I0 = {0, 1, 2, . . . , n}, I ′
0 =

{0, 1, 2, . . . , n − 1}, B0 = {Bj,0 | j ∈ I}, B′
0 = {B′

j,0 | j ∈ I}, # = An, T ′ = T ∪ #. Let

us define the alphabet V = A ∪ B ∪ B′ ∪ C ∪ C ′ ∪ D ∪ D′ ∪ E ∪ E ′ ∪ F ∪ G ∪ {λ′} of Γ

166

Table 5.2: A universal HNEP with 7 nodes.
N,α, β, C0, M, PI, FI, PO, FO

1, ∗, (2), {1.1 : Ai → C ′

i | i ∈ I} ∪ {1.2 : Ai → λ′ | i ∈ I ′, Ai → λ} ∪

{A1Bn,0} {1.3 : Bj,0 → Bs,0 | Aj → As, j, s ∈ I ′}{1.4 : Ci → C ′

i−1, 1.5 : Bj,0 → B′

j,0,

1.6 : Bj,k → B′

j,k+1
| i ∈ I ′′, j ∈ I, k ∈ I ′} ∪ {1.7 : C1 → λ′} ∪

{1.8 : E′

j,k → Ej,k−1, 1.9 : D′

i → Di+1, 1.10 : E′

j,1 → Fj | i ∈ I ′, j ∈ I, k ∈ I ′′}

PI = {An, Bn,0} ∪ C ∪ E′, F I = C ′ ∪ E ∪D ∪ F ∪G ∪ {λ′}

PO = C ′ ∪B′ ∪D ∪ F ∪ {λ′}, FO = B ∪ C ∪D′ ∪ E′

2, ∗, (2), ∅ {2.1 : C ′

i → Ci−1, 2.2 : B′

j,k → Bj,k+1 | i ∈ I ′′, j ∈ I, k ∈ I ′0} ∪ {2.3 : C ′

1 → λ′} ∪

{2.4 : Ej,k → E′

j,k−1
, 2.5 : Di → D′

i+1, 2.6 : Ej,1 → Fj | i ∈ I ′0, j ∈ I, k ∈ I ′′} ∪

{2.7 : An → λ′} ∪ {2.8 : Bj,0 → Aj | Aj ∈ T}

PI = {Bj,0 | Aj ∈ T} ∪ C ′ ∪ E, FI = {B \Bj,0 | Aj ∈ T} ∪ C ∪ D′ ∪ E′ ∪ F ∪G ∪ {λ′}

PO = C ∪D′ ∪ F ∪ {λ′}, FO = {Bj,0 | Aj ∈ T} ∪B′ ∪ C ′ ∪ E ∪D

3, r, (2), ∅ {3.1 : λ→ D0}

PI = B \B0 ∪B′ \B′

0 ∪G, FI = C ∪ C ′ ∪B0 ∪ {D0}, PO = {D0}, FO = ∅

4, ∗, (2), ∅ {4.1 : Bj,k → Ej,k, 4.2 : B′

j,k → Ej,k | j, k ∈ I} ∪ {4.3 : Bj,k → Es,t,

4.4 : B′

j,k → Es,t | j, k, s, t ∈ I ′, AjAk → AsAt} ∪ {4.5 : Gj,k → Ej,k | j, k ∈ I ′}

PI = {D0}, F I = E, PO = E, FO = B ∪B′ ∪G

5, ∗, (2), ∅ {5.1 : Dj → Bj,0, 5.2 : D′

j → Bj,0 | j ∈ I} ∪ {5.3 : Fj → Aj | j ∈ I} ∪

{5.4 : Dj → Gs,t, 5.5 : D′

j → Gs,t | Aj → AsAt, j, s, t ∈ I ′}

PI = D \ {D0} ∪D′, F I = E ∪E′ ∪ {D0} ∪ C ∪ C ′ ∪ {λ′} PO = ∅, FO = D ∪D′ ∪ F

6, l, (2), ∅ {6.1 : λ′ → λ}

PI = {λ′}, F I = B \B0 ∪B′ ∪ C ∪ C ′ ∪ F ∪ (D \ {D0}), PO = ∅, FO = {λ′}

7, ∗, (2), ∅ ∅

PI = T, FI = V \ T, PO = ∅, FO = T

as follows: B = {Bi,j | i ∈ I, j ∈ I0}, B′ = {B′
i,j | i ∈ I, j ∈ I0}, C = {Ci | i ∈ I},

C ′ = {C ′
i | i ∈ I}, D = {Di | i ∈ I0}, D′ = {D′

i | i ∈ I}, E = {Ei,j | i, j ∈ I},

E ′ = {E ′
i,j | i, j ∈ I}, F = {Fj | j ∈ I}, G = {Gi,j | i, j ∈ I}.

Let H be a complete graph with 7 nodes, let N , C0, α, β be presented in Table 5.2, and

let node 7 be the output node of HNEP Γ.

A sentential form (a configuration) of grammar G is a word w ∈ (N ∪ T)∗. When

simulating the derivations in G, each sentential form w of G corresponds to a string of Γ in

node 1 and having one of the forms wBn,0 or w′′Anw′Bi,0, where An = #, w,w′, w′′ ∈ (N∪T)∗

and w = w′Aiw
′′. The start symbol S = A1 of G corresponds to an initial word A1#,

represented as A1Bn,0 in node 1 of HNEP Γ, the other nodes do not contain any word. The

simulation of the application of a rule of G to a substring of a sentential form of G is done

in several evolution and communication steps in Γ, through rewriting the leftmost symbol

and the two rightmost or the rightmost symbol of strings. This is the reason why we need

the symbols to be rotated.

In the following we describe how the rotation of a symbol and the application of an

arbitrary rule of grammar G are simulated in HNEP Γ.

Rotation.

Let Ai1Ai2 . . . Aik−1
Bik,0 = Ai1wBik,0 be a word found at node 1, and let w,w′, w′′ ∈

A∗. Then, by applying rule 1.1 we obtain Ai1Ai2 . . . Aik−1
Bik,0 = Ai1wBik,0

1.1
−→

{C ′
i1
wBik,0, Ai1w

′C ′
itw

′′Bik,0}.

167

We note that during the simulation symbols C ′
i should be transformed to λ′, and this

symbol can only be deleted from the left-hand end of the string (node 6). So, the replacement

of Cit by its primed version in a string of the form Ai1w
′Citw

′′Bik,0 results in a word that

will stay in node 6 forever; thus, in the sequel, we will not consider strings with C ′
i not in

the leftmost position. In the communication step following the above evolution step, string

C ′
i1
wBik,0 cannot leave node 1 and stays there for the next evolution step:

C ′
i1
wBik,0

1.5
−→ C ′

i1
wB′

ik,0.

Observe that rules 1.1 and 1.5 may be applied in any order. After then, string C ′
i1
wB′

ik,0

can leave node 1 and can enter only node 2. In the following steps of the computation, in

nodes 1 and 2, the string is involved in evolution steps followed by communication:

Ci1−twBik,t
1.4
−→ C ′

i1−(t+1)wBik,t
1.6
−→ C ′

i1−(t+1)wB′
ik,t+1 (in node 1),

C ′
i1−twB′

ik,t
2.1
−→ Ci1−(t+1)wB′

ik,t
2.2
−→ Ci1−(t+1)wBik,t+1 (in node 2).

We note that during this phase of the computation rules 1.2: Ai → λ′ or 2.7: An → λ′

may be applied in nodes 1 and 2. In this case, the string leaves node 1 or 2, but cannot

enter any node. So, this case will not be considered in the sequel.

The process continues in nodes 1 and 2 until subscript i of Ci or that of C ′
i is decreased

to 1. In this case, either rule 1.7 : C1 → λ′ in node 1 or rule 2.3 : C ′
1 → λ′ in node

2 will be applied and the obtained string λ′wB′
ik,i1

or λ′wBik,i1 is communicated to node

3. (Notice that the string is able to leave the node either if both C and B are primed

or both of them are unprimed.) Then, in node 3, depending on the form of the string,

either evolution step λ′wB′
ik,i1

3.1
−→ λ′wB′

ik,i1
D0 or evolution step λ′wBik,i1

3.1
−→ λ′wBik,i1D0

is performed. Strings λ′wB′
ik,i1

D0 or λ′wBik,i1D0 can enter only node 4, where (depending on

the form of the string) either evolution step λ′wBik,i1D0
4.1
−→ λ′wEik,i1D0 or evolution step

λ′wB′
ik,i1

D0
4.2
−→ λ′wEik,i1D0 follows. The obtained word, λ′wEik,i1D0, can enter only node

6, where evolution step λ′wEik,i1D0
6.1
−→ wEik,i1D0 is performed. Then the string leaves the

node and enters node 2.

Then, in nodes 2 and 1, a sequence of computation steps is performed, when the string

is involved in evolution steps followed by communication as follows:

wEik,i1−tDt
2.4
−→ wE ′

ik,i1−(t+1)Dt
2.5
−→ wE ′

ik,i1−(t+1)D
′
t+1 (in node 2).

wE ′
ik,i1−tD

′
t

1.8
−→ wEik,i1−(t+1)D

′
t

1.9
−→ wEik,i1−(t+1)Dt+1 (in node 1),

The process continues in nodes 1 and 2 until the second subscript of E ′
i,j or that of Ei,j is

decreased to 1. In this case, either rule 1.10 : E ′
ik,1 → Fik in node 1 or rule 2.6 : Eik,1 → Fik

in node 2 is applied and the new string, wFikDi1 or wFikD
′
i1
, will be present in node 5.

Notice that applying rules 1.1, 1.2 and 2.7 we obtain strings that cannot enter nodes 3 –

7 and stay in nodes 1 or 2.

The next evolution steps that take place in node 5 are as follows:

wFikDi1(wFikD
′
i1
)

5.1(5.2)
−→ wFikBi1,0

5.3
−→ wAikBi1,0.

In the following communication step, string wAikBi1,0 can enter either node 1 or node 2

(if Ai1 ∈ T). In the first case, the rotation of symbol Ai1 has been successful. Let us consider

the second case. Then string wAikBi1,0 appears in node 2.

168

• Suppose that the word wAikBi1,0 does not contain any nonterminal symbol except

An. Let wAikBi1,0 = Anw
′AikBi1,0, where w = Anw′. So, w′AikAi1 is a result

and it appears in node 7. Notice that if w = w′Anw′′ and w′ 6= λ, then word

w′Anw
′′AikBi1,0 leads to a string which will stay in node 6 forever (if rule 2.7 was ap-

plied). So, we consider the following evolution of the word wAikBi1,0 = Anw
′AikBi1,0:

Anw′AikBi1,0
2.7
−→ λ′w′AikBi1,0

2.8
−→ λ′w′AikAi1 . Then, string λ′w′AikAi1 will appear

in node 6, where symbol λ′ will be deleted by rule 6.1. Finally, the resulted word

w′AikAi1 will enter node 7. This is a result.

• Suppose now that the word wAikBi1,0 contains at least one nonterminal symbol different

from An and Ai1 ∈ T .

Consider the evolution of the word wAikBi1,0 = w′Anw′′AikBi1,0 in node 2:

w′Anw
′′AikBi1,0

2.8
−→ w′Anw

′′AikAi1
2.7
−→ w′λ′w′′AikAi1 .

Now, string w′λ′w′′AikAi1 will enter node 6 and either it will not be able to leave it (if

w′ 6= λ) or it will not be able to enter any of the other nodes (if w′ = λ).

In the following we will explain how the application of the rules of G are simulated in Γ.

Rule Ai −→ λ. Suppose that string AiwBj,0 is in node 1 and let w,w′, w′′ ∈ A∗. Then, by

evolution, we obtain AiwBj,0
1.2
−→ λ′wBj,0 or Atw

′Aiw
′′Bj,0

1.2
−→ Atw

′λ′w′′Bj,0 which can enter

only node 6. String Atw
′λ′w′′Bj,0 will stay in node 6 forever. By evolution λ′wBj,0

6.1
−→ wBj,0

and the resulting string, wBj,0, enters in node 1 (and node 2, if Aj ∈ T). Thus, the

application of rule Ai −→ λ in G was correctly simulated.

Rule Ai −→ Aj. The evolution step performed at node 1 is wBi,0
1.3
−→ wBj,0. Since string

wBj,0 is in node 1, the simulation of the rule Ai −→ Aj of grammar G was done in a correct

manner.

Rule Aj −→ AsAt. At the end of the simulation of the rotation of a symbol, in node 5 instead

of applying rule Dj → Bj,0 (D′
j → Bj,0) a rule Dj → Gs,t (D′

j → Gs,t) is applied. That is, in

node 5, either evolution step wDj
5.4
−→ wGs,t or evolution step wD′

j
5.5
−→ wGs,t is performed.

The new string wGs,t can enter only node 3, where, by evolution, wGs,t
3.1
−→ wGs,tD0. String

wGs,tD0 can enter only node 4, where evolution step wGs,tD0
4.5
−→ wEs,tD0 follows. The

process continues as above, in the case of simulating rotation, and in several computation

steps the string wFsDt or wFsD
′
t will enter node 5. After evolution in this node, the resulting

string wAsBt,0 will enter node 1 (and node 2, if At ∈ T). Thus, the application of rule

Aj −→ AsAt of G is correctly simulated.

Rule AiAj −→ AsAt. The evolutionary processor in node 4 has rules 4.3 : Bi,j → Es,t or

4.4 : B′
i,j → Es,t. As in the case of simulating rotation, above, we will obtain string wAsBt,0

in node 1 (and in node 2, if At ∈ T).

We have demonstrated how the rotation of a symbol and the application of rules of G

are simulated by Γ. By the constructions, the reader can verify that G and Γ generate the

same language. �

169

5.1.4 Obligatory HNEPs

As described in the second section, obligatory operations were considered in HNEPs. The

result of the evolution step now consists of all strings produced from the current ones by the

operations of insertion, deletion and substitution (the current strings are no longer preserved,

even if some operation is not applicable to them). Not only this yields a simpler and a more

uniform definition, but also the following result is obtained.

Theorem 5.4 Any CPM0 P can be simulated by an OHNEP P ′, where obligatory evolu-

tionary processors are with empty input and output filters and only insertion and obligatory

deletion operations in right and left modes are used (without obligatory substitution opera-

tions). [29], [28]

Proof. Let us consider a CPM0 P with symbols aj ∈ Σ, j ∈ J = {0, 1 . . . , n}, a0 = 0 is the

blank symbol, and states, qi ∈ Q, i ∈ I = {1, 2, . . . , f}, where q1 is the initial state and the

only terminal state is qf ∈ Q. We suppose that P stops in the terminal state qf on every

symbol, i.e., there are instructions qfaj → Halt, aj ∈ J . (Notice that it is easy to transform

any CPM0 P into a CPM0 P ′ that stops on every symbol in the final state.)

So, we consider CPM0 P with the set R of instructions of the forms qiaj −→ ql, qiaj −→

akql, qi0 −→ akqm0, qfaj −→ Halt, where qi ∈ Q \ {qf}, ql, qm ∈ Q, aj, ak ∈ Σ. We do

not consider case qm = qf in instruction qi0 −→ akqm0. Notice that it is easy to modify the

program of P such that it only halts by instructions of other types.

A configuration w = qiajW of CPM0 P describes that P in state qi ∈ Q considers symbol

aj ∈ Σ to the left of W ∈ Σ∗.

Now we construct an OHNEP P ′ simulating P. To simplify its description, we use 〈qfaj〉

and 〈qfaj〉1, j ∈ J as aliases of 〈out〉. Let v ∈ Q and let u ∈ Q ∪Q · {0}.

P ′ = (V,G,N,C0, α, β, i0), V = {q1} ∪ Σ, G = (XG, EG),

XG = {〈init〉, 〈out〉} ∪ {〈qiaj〉 | (qiaj → v) ∈ R} ∪ {〈qiaj〉1 | (qiaj → aku) ∈ R},

EG = {(〈init〉, 〈q1aj〉) | j ∈ J} ∪ {(〈qiaj〉, 〈qlak〉) | (qiaj → ql) ∈ R, k ∈ J}

∪ {(〈qiaj〉, 〈qiaj〉1) | (qiaj → aku) ∈ R}

∪ {(〈qiaj〉1, 〈qlas〉) | (qiaj → akql) ∈ R, s ∈ J}

∪ {(〈qi0〉1, 〈ql0〉1) | (qi0→ akql0), (ql0→ asu) ∈ R, s ∈ J},

∪ {(〈qi0〉1, 〈qpas〉) | (qi0→ akql0), (ql0→ qp) ∈ R, s ∈ J},

C0(x) = {q1W}, if x = 〈init〉, where W is the input of P,

C0(x) = ∅, x ∈ XG \ {〈init〉}, β(x) = 2, x ∈ XG,

N(x) = (Mx, ∅, ∅, ∅, ∅), x ∈ XG, M〈init〉 = {q1 → λ},

Mx = {aj → λ}, x = 〈qiaj〉,

Mx = {λ→ ak}, x = 〈qiaj〉1, where (qiaj → aku) ∈ R,

α(x) = l, if Mx = {a→ λ}, α(x) = r, if Mx = {λ→ a} or Mx = ∅.

OHNEP P ′ will simulate every computation step performed by CPM0 P by a sequence

of computation steps in P ′.

170

Let q1ajW0 be the initial configuration of CPM0 P . We represent this configuration in

node 〈init〉 of OHNEP P ′ as a word q1ajW0. Obligatory evolutionary processor associated

with this node is N(〈init〉) = ({(q1 → λ)l}, ∅, ∅, ∅, ∅). Since all other nodes also have empty

filters, in the following we will skip the complete description of obligatory evolutionary

processors, and will present only their obligatory evolutionary operations. The word ajW0

will be passed from node 〈init〉 to nodes 〈q1aj〉, j ∈ J .

If the computation in P is finite, then the final configuration qfW of P will appear at

node 〈out〉 of P ′ as a string W , moreover, any string W that can appear at node 〈out〉

corresponds to a final configuration qfW of P. In the case of an infinite computation in P ,

no string will appear in node 〈out〉 of P ′ and the computation in P ′ will never stop.

Now we describe nodes of OHNEP P ′, connections between them and obligatory evolu-

tionary operations, associated with these nodes. Let I ′ = I \ {f}.

1. Node 〈qiaj〉 with operation (aj → λ)l, i ∈ I ′, j ∈ J .

Let word atW, t ∈ J, W ∈ Σ∗ appear in this node. If j 6= t, then this word atW will be

discarded, and in the next communication step node 〈qiaj〉 will send nothing. If j = t, then

the node sends W to nodes {〈qlak〉 | k ∈ J} or 〈qiaj〉1.

• Instruction of P is qiaj −→ ql, i ∈ I ′, j ∈ J, l ∈ I. Node 〈qiaj〉 is connected with

nodes {〈qlak〉 | k ∈ J}.

• Instructions of P are qiaj −→ akql or qi0 −→ akql0, i ∈ I ′, j, k ∈ J, l ∈ I. Node 〈qiaj〉

is connected with node 〈qiaj〉1.

2. Node 〈qiaj〉1, i ∈ I ′, j ∈ J with operation (λ→ ak)
r receives word W and sends word

Wak to nodes {〈qlas〉 | s ∈ J} or 〈ql0〉1.

• Instructions of P are qiaj −→ akql, i ∈ I ′, j, k ∈ J, l ∈ I. Node 〈qiaj〉1 is connected

with nodes {〈qlas〉 | s ∈ J}.

• Instruction of P is qi0 −→ akql0, i ∈ I ′, k ∈ J, l ∈ I. Node 〈qi0〉1 is connected with

nodes {〈qpas〉 | s ∈ J} if there exists an instruction of P ql0 −→ qp, p ∈ I; and with

node 〈ql0〉1 in other cases.

We repeat that in all cases, we mean 〈out〉 whenever we write 〈qfaj〉 or 〈qfaj〉1, j ∈ J .

Now we describe simulation of instructions of CPM0 P by OHNEP P ′.

Instruction qiaj −→ ql: qiajW
P
−→ qlW .

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qiaj〉. If t 6= j, string atW

will be discarded; if t = j, string W will be passed to nodes {〈qlas〉 | s ∈ J}. If l = f , the

final configuration qfW of P will appear in the output node 〈out〉 as W . This is the result.

So, we simulated instruction qiaj −→ ql in a correct manner.

Instruction qiaj −→ akql: qiajW
P
−→ qlWak.

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qiaj〉. If t 6= j, string atW

will be discarded; if t = j string W will be passed to node 〈qiaj〉1. Node 〈qiaj〉1 receives this

word and sends word Wak to nodes 〈qlas〉, s ∈ J . If l = f , the final configuration qfWak

of P will appear in the output node 〈out〉 as Wak. This is the result. So, we simulated

instruction qiaj −→ akql in a correct manner.

171

Instruction qi0 −→ akql0: qi0W
P
−→ ql0Wak.

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qi0〉. If at 6= 0, string atW

will be discarded; if at = 0, string W will be passed to node 〈qi0〉1. It receives this word and

sends word Wak to nodes 〈qpas〉, s ∈ J if there is instruction of P ql0 −→ qp, p ∈ I ′. If there

are instructions ql0 −→ asqp or ql0 −→ asqp0, then node 〈qi0〉1 is connected with node 〈ql0〉1.

Thus, word Wak will be passed to node 〈ql0〉1, which corresponds to the configuration of P

which has “just read” symbol 0 in state ql. So, we simulated instruction qi0 −→ akql0 in a

correct manner.

So, CPM0 P is correctly modeled. We have demonstrated that the rules of P are simu-

lated in P ′. The proof that P ′ simulates only P comes from the construction of the rules in

P ′, we leave the details to the reader. �

Conclusion We have described the networks of evolutionary processors, their models and

variants, together with the associated results. A few selected results were presented in more

details. For instance, NEPs with two nodes are already computationally complete modulo

the terminal alphabet. HNEPs with one node are given the precise regular characterization,

HNEPs with two nodes are not computationally complete, while seven nodes are enough to

reach the computational completeness of HNEPs, even with a complete graph. We should

mention that a network over a complete graph (with loops, although it is not important for

the last proof) may be viewed as number of agents in a common environment, acting “in-

dependently” without explicitly enforcing any transition protocol, where a computationally

complete behavior still emerges.

A particularly interesting variant is obligatory HNEPs (OHNEPs). Using a power of the

underlying graph, computational completeness is obtained even without the filters. In case

of a complete graph, OHNEPs are still computationally complete. Moreover, it suffices that

the sum of numbers of symbols in filters of each node does not exceed one. The last proof has

been obtained in [25], using a variant of circular Post machines, CPM5, introduced in [84].

Some details of definitions and associated results for CPM5 can be found in Appendix A3.

5.2 Insertion-Deletion P Systems

In this section we consider insertion-deletion P systems with priority of deletion over the

insertion. We show that such systems with one symbol context-free insertion and deletion

rules are able to generate Parikh sets of all recursively enumerable languages (PsRE). If

one-symbol one-sided context is added to insertion or deletion rules, then all recursively

enumerable languages can be generated. The same result holds if a deletion of two symbols

is permitted. We also show that the priority relation is very important and in its absence

the corresponding class of P systems is strictly included in the family of matrix languages

(MAT).

The insertion and the deletion operations originate from the language theory, where they

where introduced mainly with linguistic motivation. In general form, an insertion operation

means adding a substring to a given string in a specified (left and right) context, while

172

a deletion operation means removing a substring of a given string from a specified (left

and right) context. A finite set of insertion-deletion rules, together with a set of axioms

provide a language generating device: starting from the set of initial strings and iterating

insertion-deletion operations as defined by the given rules we get a language.

Insertion systems, without using the deletion operation, were first considered in [190],

however the idea of the context adjoining was exploited long before by [223]. Both insertion

and deletion operations were first considered together in [206] and related formal language

investigations can be found in several places; we mention only [204], [231] and [251]. In the

last few years, the study of these operations has received a new motivation from molecular

computing, see, for example, [161], [205], [256], [275], because, from the biological point of

view, insertion-deletion operations correspond to mismatched annealing of DNA sequences.

As expected, insertion-deletion systems are quite powerful, leading to characterizations

of recursively enumerable languages. This is not quite surprising as the corresponding de-

vice contains two important ingredients needed for the universality: the context dependency

and the erasing ability. However, as it was shown in [225], the context dependency may

be replaced by insertion and deletion of strings of sufficient length, in a context-free man-

ner. If the length is not sufficient (less than two) then such systems are decidable and a

characterization of them was shown in [278]. Similar investigations were continued in [232]

and [210] on insertion-deletion systems with one-sided contexts, i.e. where the context de-

pendency is present only from the left (right) side of all insertion and deletion rules. These

articles also give some combinations of rule parameters that lead to systems which are not

computationally complete. However, if these systems are combined with the distributed com-

puting framework of P systems [252], then their computational power may strictly increase,

see [211], [209].

In this section we study P systems with context-free insertion and deletion rules of one

symbol. We show that this family is strictly included in MAT , however some non-context-

free languages may be generated. If Parikh vectors are considered, then the corresponding

family equals to the family of Parikh sets of matrix languages (PsMAT). When a priority of

deletion over insertion is introduced, PsRE can be characterized, but in terms of language

generation such systems cannot generate a lot of languages because there is no control on

the position of an inserted symbol. If one-sided contextual insertion or deletion rules are

used, then this can be controlled and all recursively enumerable languages can be generated.

The same result holds if a context-free deletion of two symbols is allowed.

5.2.1 Minimal insertion-deletion P systems

When a membrane structure is added to minimal insertion-deletion systems without context,

their computational power is increased.

Theorem 5.5 PsStP∗(ins0,0
1 , del0,0

1) = PsMAT .

Proof. It is not difficult to see that dropping the requirement of the uniqueness of the

instructions with the same label, the power of partially blind register machines does not

change, see, e.g., [170]. We use this fact for the proof.

The inclusion PsStP∗(ins0,0
1 , del0,0

1) ⊆ PsMAT follows from the simulation of minimal

context-free insertion-deletion P systems by partially blind register machines, which are

173

known to characterize PsMAT [170]. Indeed, any rule (λ, a, λ; q)a ∈ Rp is simulated by

instructions (p : [RaP], q). Similarly, rule (λ, a, λ; q)e ∈ Rp is simulated by instructions

(p : [RaM], q).

The output region i0 is associated to the final state, while the halting is represented by

the absence of the corresponding symbols (final zero-test) as follows. We assume that Ri0

has no insertion rules (∅ can be generated by a trivial partially blind register machine), and

the output registers correspond to those symbols that cannot be deleted by rules from Ri0 .

The converse inclusion follows from the simulation of partially blind register machines

by P systems. Indeed, with every instruction p of the register machine we associate a

cell. Instruction (p : [RAkP], q) is simulated by rule (λ,Ak, λ; q)a ∈ Rp, and instruction

(p : [RAkM], q) by (λ,Ak, λ; q)e ∈ Rp. Final zero-tests: rules (λ,Ak, λ; #)e ∈ Rh, k ≥ m,

should be inapplicable (R# = ∅). �

As the membrane structure is a tree, one-way inclusion follows.

Corollary 5.1 PsSP∗(ins0,0
1 , del0,0

1) ⊆ PsMAT .

In terms of the generated language the above systems are not too powerful, even with

priorities. Like in the case of insertion-deletion systems there is no control on the position

of insertion. Hence, the language L = {a∗b∗} cannot be generated, for insertion strings of

any size. Hence we obtain:

Theorem 5.6 REG\LStP∗(ins0,0
n < del0,0

1) 6= ∅, for any n > 0.

However, there are non-context-free languages that can be generated by such P systems

(even without priorities and deletion).

Theorem 5.7 LStP∗(ins0,0
1 , del0,0

0) \ CF 6= ∅.

Proof. It is easy to see that the language {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c} is generated

by such a system with 3 nodes, inserting consecutively a, b and c. �

For the tree case the language {w ∈ {a, b}∗ : |w|a = |w|b} can be generated in a similar

manner.

We show a more general inclusion:

Theorem 5.8 ELStP∗(ins0,0
n , del0,0

1) ⊂MAT , for any n > 0.

Proof. As in [210] we can suppose that there are no deletions of terminal symbols. We also

suppose that there is only one initial string in the system, because there is no interaction

between different evolving strings and the result matches the union of results for the systems

with only one string. Consider a tissue P system Π with alphabet O, terminal symbols T ,

the set H of unique cell labels and the initial string w in cell labeled p0. Such a system can

be simulated by the following matrix grammar G = (O ∪H,T, S, P).

For insertion instruction (λ, a1 · · · an, λ; q)a in cell p, the matrix {p → q,D →

Da1D · · ·DanD} ∈ P . For any deletion instruction (λ,A, λ; q)e in cell p, the matrix

{p → q, A → λ} ∈ P . Three additional matrices {h → λ}, {D → λ} and {S →

q0Da1D · · ·DamD} (w = a1 · · · am) shall be also added to P .

174

The above construction correctly simulates the system Π. Indeed, symbols D represent

placeholders for all possible insertions. The first rule in the matrix simulates the navigation

between cells. �

Nevertheless, minimal context-free insertion-deletion systems with priorities do generate

PsRE. This is especially clear for the tissue P systems: jumping to an instruction cor-

responds to sending a string to the associated region, and the entire construction is a com-

position of graphs shown in Figure 5.1. The decrement instruction works correctly because

of priority of deletion over insertion.

/.-,()*+
p
(λ,Ak,λ;q)a //

(λ,Ak,λ;r)a

��

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p
(λ,Ak,λ;q)e //

(λ,N,λ;p′)a

��

/.-,()*+
q

/.-,()*+
p′

(λ,N,λ;r)e ///.-,()*+
r

Figure 5.1: Simulating (p : [RkP], q, r)(left) and (p : 〈RkZM〉, q, r) (right)

We now give a more sophisticated proof for the tree-like membrane structure.

Theorem 5.9 PsSP∗(ins0,0
1 < del0,0

1) = PsRE.

Proof. The proof is done by showing that for any register machineM = (d,Q, I, q0, qf)

there is a P system Π ∈ PsSP∗(ins0,0
1 < del0,0

1) with Ps(Π) = Ps(M). Then the existence

of register machines generating PsRE implies PsRE ⊆ PsSP∗(ins0,0
1 < del0,0

1).

Let Q+ (Q−) be the sets of labels of increment (conditional decrement, respectively)

instructions of a register machine, and let Q = Q+ ∪ Q− ∪ {qf} represent all instructions.

Consider a P system with alphabet Q ∪ {Ai | 1 ≤ i ≤ d} ∪ {Y } and the following structure

(illustrated in Figure 5.2, the structures in the dashed rectangles are repeated for every

instruction of the register machine):

µ = [[[
∏

p∈Q+

µ〈p+〉

∏

p∈Q−

µ〈p−〉]3[]4]2]1, where

µ〈p+〉 = [[[]
p+
3

]
p+
2

]
p+
1

, p− increment,

µ〈p−〉 = [[[]
p−3

]
p−2

[[]
p0
3

]
p0
2

]
p−1

, p− conditional decrement.

Initially there is a single string q0 in membrane 3. The rules are the following.

R1 = { 1 :(λ, Y, λ; out)e},

R2 = { 2.1 :(λ, Y, λ; out)a, 2.2 :(λ, Y, λ; in4)e},

R3 = { 3.1 :(λ, p, λ; inp+
1
)e | p ∈ Q+}∪ {3.2 :(λ, p, λ; inp−1

)e | p ∈ Q−}

∪ { 3.3 :(λ, Y, λ; here)e, 3.4 :(λ, h, λ; out)e},

For any rule (p : [RkP], q, s), Rp+
3

= ∅ and

Rp+
1

= { a.1.1 :(λ, Ak, λ; inp+
2
)a, a.1.2 :(λ, Y, λ; out)a},

Rp+
2

= { a.2.1 :(λ, q, λ; out)a, a.2.1′ :(λ, s, λ; out)a,

a.2.2 :(λ, q, λ; inp+
3
)e, a.2.2′ :(λ, s, λ; inp+

3
)e},

175

/.-,()*+
1

/.-,()*+
2

KKK
KKK

K

for every p ∈ Q+
/.-,()*+

3
iiiiiiiiiiiiii

UUUUUUUUUUUUU /.-,()*+
4

for every p ∈ Q−

/.-,()*+
p+

1

/.-,()*+
p−1

VVVVVVVVVVVVVV

/.-,()*+
p+

2

/.-,()*+
p−2

/.-,()*+
p0

2/.-,()*+
p+

3

/.-,()*+
p−3

/.-,()*+
p0

3

Figure 5.2: Membrane structure for Theorem 5.9

For any rule (p : 〈RkZM〉, q, s), Rp−3
= Rp0

3
= ∅ and

Rp−1
= { e.1.1 :(λ, Ak, λ; inp−2

)e, e.1.2 :(λ, Y, λ; inp0
2
)a, e.1.3 :(λ, Y, λ; out)e},

Rp−2
= { e.2.1 :(λ, q, λ; out)a, e.2.2 :(λ, q, λ; inp−3

)e,

e.2.3 :(λ, s, λ; inp−3
)e, e.2.4 :(λ, Y, λ; here)a},

Rp0
2

= { e.3.1 :(λ, s, λ; out)a, e.3.2 :(λ, q, λ; inp0
3
)e, e.3.3 :(λ, s, λ; inp0

3
)e}.

In membrane 3 configurations (p, x1, · · · , xn) ofM are encoded by strings

Perm(pAx1
1 · · ·A

xn
n Y t), t ≥ 0.

We say that such strings have a simulating form. Clearly, in the initial configuration the

string is already in the simulating form.

To prove that system Π correctly simulatesM we prove the following claims:

1. For any transition (p, x1 · · ·xn) =⇒ (q, x′
1, · · · , x

′
n) in M there exist a computation

in Π from the configuration containing Perm(pAx1
1 · · ·A

xn
n Y t) in membrane 3 to the

configuration containing Perm(qA
x′

1
1 · · ·A

x′

n
n Y t′), t′ ≥ 0 in membrane 3 such that during

this computation membrane 3 is empty on all intermediate steps and, moreover, this

computation is unique.

2. For any successful computation in Π (yielding a non-empty result), membrane 3 con-

tains only strings of the above form.

3. The result (x1, · · · , xn) in Π is obtained if and only if a string of form

Perm(hAx1
1 · · ·A

xn
n)

appears in membrane 3.

Now we prove each claim from above. Consider a string Perm(pAx1
1 · · ·A

xn
n Y t), t ≥ 0

in membrane 3 of Π. Take an instruction p : (ADD(k), q, s) ∈ P . The only applica-

ble rule in Π is from the group 3.1 (in the future we simply say rule 3.1) yielding the

string Perm(Ax1
1 · · ·A

xn
n Y t) in membrane p+

1 . After that rule a.1.1 is applied yielding string

Perm(Ax1
1 · · ·A

xk+1
k · · ·Axn

n Y t) in membrane p+
2 . After that one of rules a.2.1 or a.2.1′ is

applied; then rule a.1.2 yields one of strings Perm(zAx1
1 · · ·A

xk+1
k · · ·Axn

n Y t+1), z ∈ {q, s}, is

in the simulating form.

176

Now suppose that there is an instruction (p : 〈RkZM〉, q, s) ∈ P . Then the only appli-

cable rule in Π is 3.2 which yields the string Perm(Ax1
1 · · ·A

xn
n Y t) in membrane p−1 . Now if

xk > 0, then, due to the priority, rule e.1.1 will be applied followed by application of rules

e.2.4, e.2.1 and e.1.3 which yields the string Perm(qAx1
1 · · ·A

xk−1
k · · ·Axn

n Y t′) that is in the

simulating form. If xk = 0, then rule e.1.2 will be applied (provided that all symbols Y were

previously deleted by rule 3.3), followed by rules e.3.1 and e.1.3 which leads to the string

Perm(sAx1
1 · · ·A

xn
n) that is in the simulating form.

To show that membrane 3 is empty during the intermediate steps, we prove the following

invariant:

Invariant 5.1 During a successful computation, any visited membrane p+
1 or p−1 is visited

an even number of times as follows: first a string coming from membrane 3 is sent to an

inner membrane (p+
2 , p−2 or p0

2) and after that a string coming from an inner membrane is

sent to membrane 3.

Indeed, since there is only one string in the initial configuration, it is enough to follow only

its evolution. Hence, a sting may visit the node p+
1 or p−1 only if on the previous step

symbol p was deleted by one of rules 3.1 or 3.2. If one of rules a.1.2 or e.1.3 is applied, then

membrane 3 will contain a string of form Perm(Ax1
1 · · ·A

xn
n Y t) which cannot evolve anymore

because all rules in membrane 3 imply the presence of symbol from the set Q. Hence, the

string is sent to an inner membrane. In the next step the string will return from the inner

membrane by one of rules a.2.1, a.2.1′, e.2.1 or e.3.1 inserting a symbol from Q. If the string

enters an inner membrane again, then it will be sent to a trap membrane (p+
3 , p−3 or p0

3) by

rules deleting symbols from Q. Hence the only possibility is to go to membrane 3 (a string

that visited membrane p−2 will additionally use rule e.2.4).

For the second claim, it suffices to observe that the invariant above ensures that in

membrane 3 only one symbol from Q can be present in the string.

The third claim holds since a string may move to membrane 2 if and only if the final

label h ofM appears in membrane 3. Then, the string is checked for the absence of symbols

Y by rule 2.2 (note that symbols Y can be erased in membrane 3 by rule 3.3) and sent to

the environment by rules 2.1 and 1. Hence, the string sent to the environment will contain

only occurrences of symbols Ai, 1 ≤ i ≤ d.

By induction on the number of computational steps we obtain that Π simulates any

computation in M. Claim 1 and 2 imply it is not possible to generate other strings and

Claim 3 implies that the same result is obtained. Hence, Ps(M) ⊆ Ps(Π).

The converse inclusion Ps(Π) ⊆ Ps(M) follows from above considerations as well. Since

Π can compute only configurations corresponding to configurations inM, a computation in

M can be reconstructed from a successful computation in Π. This concludes the proof. �

We remark that an empty string may be obtained during the proof. This string can still

evolve using insertion rules. If we would like to forbid such evolutions, it suffices to use a

new symbol, e.g. X, in the initial configuration, add new surrounding membrane and a rule

that deletes X from it.

177

5.2.2 Small contextual insertion-deletion P systems

Although Theorem 5.9 shows that the systems from the previous section are quite powerful,

they cannot generate RE without control on the place where a symbol is inserted. Once we

allow a context in insertion or deletion rules, they can.

Theorem 5.10 LSP∗(ins0,1
1 < del0,0

1) = RE.

The result is proved by simulating register machines with an output tape. The proof can be

found in [88]. Taking M in the left context yields the mirror language. Since RE is closed

with respect to the mirror operation we get the following corollary:

Corollary 5.2 LSP∗(ins1,0
1 < del0,0

1) = RE.

A similar result holds if contextual deleting operation is allowed.

Theorem 5.11 LSP∗(ins0,0
1 < del1,0

1) = RE.

The result is proved by simulating register machines with an output tape. The proof can be

found in [88].

Since RE is closed with respect to the mirror operation we obtain:

Corollary 5.3 LSP∗(ins0,0
1 < del0,1

1) = RE.

We remark that the contextual deletion was used only to check for erroneous evolutions.

Therefore we can replace it by a context-free deletion of two symbols.

Theorem 5.12 LSP∗(ins0,0
1 < del0,0

2) = RE.

The proof can be found in [88]. We mention that the counterpart of Theorem 5.12 obtained

by interchanging parameters of the insertion and deletion rules is not true, see Theorem 5.6.

Conclusions We showed several results concerning P systems with insertion and deletion

rules of small size. Surprisingly, systems with context-free rules inserting and deleting only

one symbol are quite powerful and generate PsRE if the priority of deletion over insertion

is used. From the language generation viewpoint such systems are not too powerful and

no language specifying the order of symbols can be generated. To be able to generate

more complicated languages we considered systems with one-symbol one-sided insertion or

deletion contexts. In both cases we obtained that any recursively enumerable language can

be generated. The same result holds if a context-free deletion of two symbols is allowed. The

counterpart of the last result is not true, moreover Theorem 5.6 shows that the insertion of

strings of an arbitrary size still cannot lead to generating languages like a∗b∗.

We also have considered one-symbol context-free insertion-deletion P systems without

the priority relations and we showed that in terms of Parikh sets these systems characterize

PsMAT family. However, in terms of the generated language such systems are strictly

included in MAT .

We remark that context-free insertions and deletions of one symbol correspond to random

point mutations from an evolutionary point of view. We think that the obtained results could

give a frame for the modeling of evolutionary processes.

178

Most of the results above were obtained using rules with target indicators. It is interesting

to investigate the computational power of systems with non-specific target indicators in or

go. Another open problem is to replace the priority relation by some other mechanism from

the P systems area without decreasing the computational power.

5.3 (Exo) Insertion-Deletion Operations

The main aim of this section is to consider the operations applied at the ends of the string,

and prove the computational completeness in case of priority of deletion over insertion. This

result presents interest since the strings are controlled by a tree structure only, and because

insertion and deletion of one symbol are the simplest string operations.

To obtain a simple proof, we use a new variant (CPM5) of circular Post machines (Turing

machines moving one-way on a circular tape): those with instructions changing a state and

either reading one symbol or writing one symbol. We believe CPM5 deserves attention as a

simple, yet useful tool.

In the last part of the section, we return to the case without priorities. We give a lower

bound on the power of such systems, which holds even for one-sided operations only.

Insertion and deletion are fundamental string operations, introduced in the formal lan-

guage theory mainly with linguistic motivation. The biological motivation is that these

operations correspond to mismatched annealing of DNA sequences. They are also present

in the evolution processes as point mutations as well as in RNA editing, see [141], [271]

and [256].

In general, insertion/deletion means adding/removing a substring to/from a given string

in a specified (left and right) context. A language-generating device can be defined by a

finite set of insertion-deletion rules together with a set of axioms: the language is obtained

by iterating the operations, as the set of terminal strings from the closure of the axioms

under the operations.

We mention some sources concerning the topic of this section; see [190] for insertion

systems, [223] for the idea of context adjoining, [206] for insertion and deletion. Related

formal language theoretic research can be found in e.g., [204], [231] and [251], and the

biologically motivated studies can be found in e.g., [161], [205], [256] and [275].

As expected, insertion-deletion systems characterize recursively enumerable languages,

which is not surprising since the systems the context dependency and the erasing ability.

However, the contexts may be replaced by insertion and deletion of strings of sufficient

length, in a context-free manner, [225]. If the length is not sufficient (at most two symbols),

then such systems are decidable and their characterization was shown in [278].

Similar research continued in [232] and [210] on insertion-deletion systems with one-sided

contexts, i.e., where the context dependency is present only from the left (right) side of all

insertion and deletion rules. The behavior of such variants is between those of context-free

and context-dependent insertion-deletion systems. Indeed, like in the context-free systems,

an insertion or deletion may be performed any number of times, but like in the contextual

variant, their application site is not arbitrary. The above papers give several computational

completeness results depending on the size of parameters of insertion or deletion rules, i.e.,

179

the bounds on the lengths of strings in the description of rules, (inserted string, its left

context, its right context; deleted string, its left context, its right context); some combinations

do not lead to computational completeness and there are languages that cannot be generated

by such devices.

In [208] one-sided insertion-deletion systems with insertion and deletion rules of at

most two symbols were considered. This corresponds to systems of size (1, 1, 0; 1, 1, 0),

(1, 1, 0; 1, 0, 1), (1, 1, 0; 2, 0, 0) and (2, 0, 0; 1, 1, 0), where the first three numbers represent

the maximal length of the inserted string and the maximal length of the left and right con-

texts, while the last three numbers represent the same information for deletion rules. A

characterization in terms of context-free grammars of the class of insertion-deletion systems

of size (1, 1, 0; 1, 1, 0) was presented. It was also shown that such systems generate some

non-regular context-free languages even without deletion. The remaining classes are not

computationally complete; the language (ba)+ cannot be generated by such systems.

In [208] one also considered insertion-deletion operations in P systems framework, which

is a maximally parallel distributed computing device inspired by the structure and the func-

tioning of a living cell. We refer to [252], [257], [186] and [284] for more details about P

systems. It was shown that such additional control permits to increase the computational

power up to computationally completeness results for all four cases, improving the results

from [211] and [209]. However, the framework of P systems cannot increase the computa-

tional power to such extent in all cases, namely it was shown that if context-free insertion and

deletion rules using at most two symbols are considered, i.e. systems of size (2, 0, 0; 2, 0, 0),

then the corresponding P systems are still not computationally complete [208], [278]. It is

thus interesting to consider conditions that would allow such systems to reach computational

completeness.

In [87] one considers insertion-deletion P systems with insertion and deletion operations

applied at the ends of the string (called exo-operations). Such systems with insertion of one

symbol and deletion of up to two symbols and systems with insertion of up to two symbols and

deletion of one symbol are computationally complete. The question about the computational

power of insertion-deletion P systems with one-symbol insertion and one-symbol deletion at

the ends of string has been left open (except the computational completeness holds in tissue

case).

We should also mention the research in [203]: one considers insertion at one end of a

string coupled with deletion at the other end. Even when the pairing is not prescribed, the

universality is still achieved. However, the size of the inserted and deleted substrings is not

bounded.

In this section we deal with one-symbol exo-insertion and one-symbol exo-deletion with

priority of the latter. We also introduce a new variant (CPM5) of circular Post machines

and use it for constructing a simpler proof; we believe CPM5 presents interest in itself, as a

convenient tool for similar proofs. Finally, we give a lower bound on the power of systems

without priorities, by a construction with one-sided operations.

It has been shown in [214] that any Turing machine can be simulated by a CPM0.

To obtain, e.g., a language generating device, it suffices to introduce non-determinism and

perform minor post-processing (such as removing the blanks at the ends of the halting

configuration; doing this by a CPM is an easy exercise for the reader).

180

We now define another string-processing system that is computationally complete, is

suitable for easy simulation by P systems with exo-insertion and exo-deletion, and has a low

descriptional complexity of the rule types.

The following contents makes a use of a specific variant of circular Post machines,

(N)CPM5, where instructions either read one symbol, or write one symbol, but not both.

The corresponding definitions and associated results are presented in Appendix A3.

5.3.1 P systems with priority of exo-deletion

Theorem 5.13 Any NCPM5 P can be simulated by an eIDP Π of size (1, 0, 0; 1, 0, 0) with

priority of deletion rules over insertion rules.

The proof is rather involved. We do not present it here, referring the reader to [84]. We

note that a similar result has been later obtained in [183], [184], but without priority of

deletion over insertion. Although the former result is not a direct consequence of the latter,

we recommend the reader to study the latter one first.

Corollary 5.4 Notice also that the proof does not use deletion at the right.

LSP∗(e− ins0,0
1 < e− del0,0

1) = LSP∗(e− ins0,0
1 < l − del0,0

1) = RE.

The power of the systems with deletion only at the left and insertion only at the right is an

interesting open question.

5.3.2 One-sided insertion/deletion without priorities

We emphasize the main open problem we try to attack:

P: Find a characterization of P systems with exo-insertion of weight one and

exo-deletion of weight one without contexts?

A number of related results is known (the references are given in the introduction, we repeat

them here in a compact formulation for easy comparison):

• Not computationally complete if operations (even both with weight two) are performed

anywhere in the string.

• Computationally complete if insertion has weight two.

• Computationally complete if deletion has weight two.

• Computationally complete for tissue P systems.

• Computationally complete if deletion has priority over insertion (even without deletion

on the right).

In this subsection we start show a lower bound, by a construction that only uses one-sided

operations.

181

Lemma 5.1 Any deterministic finite automaton P can be simulated by an eIDP Π of size

(1, 0, 0; 1, 0, 0) (without priorities) and with insertions and deletions at the right only.

Proof. Consider a deterministic finite automaton P = (Σ, Q, q1, F, σ) with symbols Σ,

states Q transition function σ, initial state q1 and final states F ⊆ Q.

We now construct an eIDP Π = (V, Σ, µ,Mis , . . . ,Mif , Ris , . . . , Rif):

V = Σ ∪Q ∪ {mi | qi ∈ Q}

∪ {nij | σ(qi, aj) = ql} ∪ {S},

µ = [
∏

qi∈Q

[
∏

σ(qi,aj)=ql

[]
nij

]
mi

 []
if

]
is
,

Mis = {q1},

Mi = ∅, i 6= is, and the rules are given and explained below.

The membrane structure of Π consists of the skin membrane is, output membrane if , inner

membranes mi and nij, where qi ∈ Q, σ(qi, aj) = ql.

Ris = {1i : delr(qi,mi) | qi ∈ Q} ∪ {2 : delr(S, here)}

∪ {3k : delr(qk, if) | qk ∈ F},

Rmi
= {1j : insr(aj, nij)} ∪ {2 : insr(S, out)}, σ(qi, aj) = ql,

Rnij
= {1 : insr(ql, out)}, σ(qi, aj) = ql.

We claim that L(P) = L(Π): Π generates exactly the language accepted by P . Indeed, eIDP

Π starts the computation from a string q1 in the skin is (other regions of Π are empty).

A transition rule of P σ(qi, aj) = ql, qi, ql ∈ Q, aj ∈ Σ is simulated as follows:

qiW
((is,1i),mi)

=⇒ W
((mi,1j),nij)

=⇒ ajW
((nij ,1),mi)

=⇒ qlajW
((mi,2i),is)

=⇒ SqlajW
((is,2),is)

=⇒ qlajW. At the

end of computation, qk ∈ F is removed by rule 3k : delr(qk, if) and the resulted string

appears in the output membrane if : qkW
((is,3k),if)

=⇒ W.

Notice, that in region mi rule 1j : insr(aj, nij) must be applied (otherwise string SW

appears in the skin by rule 2 : insr(S, out) and will stay there forever). Moreover, this rule 1j

must be applied exactly once, after that rule 2 applies and string SqlakW is sent to the skin.

At this point rule 2 : delr(S, is) deletes S. Now this string is ready to continue the evolution.

Notice that if rule 1j were applied more than once, a string of the form SqlakqlakW
′ appears in

the skin and the symbols ql at the right cannot be further deleted. By the given construction,

the system Π generates exactly the words accepted by P . Moreover, if a derivation of Π

differs from the pattern shown above, then it will contain nonterminals qi /∈ Σ that cannot

be removed and, hence, such word is not in L(Π). Therefore, L(P) = L(Π). �

Corollary 5.5 Since the family of regular languages is closed with respect to taking the

mirror image, the following relations hold:

ELSP (e− ins0,0
1 , e− del0,0

1) ⊇ ELSP (r − ins0,0
1 , r − del0,0

1) ⊇ REG.

ELSP (e− ins0,0
1 , e− del0,0

1) ⊇ ELSP (l − ins0,0
1 , l − del0,0

1) ⊇ REG.

182

Conclusions In this section we presented a tool — a simple computationally complete

string rewriting model, NCPM5 (non-deterministic circular Post machines), for a purpose of

allowing as simple simulation as possible by systems with insertion and deletion of prefixes

and suffixes. Then we focus on distributed systems inserting and deleting substrings at the

ends of the string, called P systems with exo-insertion and exo-deletion without contexts

(eIDPs).

The focus of study is the maximal size of inserted and deleted substrings. It is known from

[87] that eIDPs are computationally complete with either 1-symbol insertion and 2-symbol

deletion, or with 2-symbol insertion and 1-symbol deletion, or even with 1-symbol insertion

and 1-symbol deletion in the tissue case. The general problem about 1-symbol insertion

and 1-symbol deletion has been partially answered, by showing that the computational

completeness holds if we impose the priority of deletion rules over insertion rules. The

definite solution of the above mentioned general problem has been presented in [183], [184].

We also gave a number of remarks related to the variants of CPMs and to the interpre-

tations of computational completeness. With respect to the general problem above, in the

final part of the section we showed that the family of regular languages is the lower bound,

by a construction with one-sided operations.

The previous section is based on publications [88], [89], [90] and [86]. This section is

based on publications [84], [87] and [85].

5.4 Splicing

Head splicing systems (H systems) [194] were one of the first theoretical models of biomole-

cular computing (DNA-computing). The molecules from biology are replaced by words over

a finite alphabet and the chemical reactions are replaced by the splicing operation. An H

system specifies a set of rules used to perform a splicing and a set of initial words or axioms.

The computation is done by applying iteratively the rules to the set of words until no more

new words can be generated. This corresponds to a bio-chemical experiment where one has

enzymes (splicing rules) and initial molecules (axioms) which are put together in a tube and

one waits until the reaction stops.

From the formal language theory point of view, the computational power of the obtained

model is rather limited, only regular languages can be generated. Various additional control

mechanisms were proposed in order to “overcome” this obstacle and to generate all recursively

enumerable languages. An overview of such mechanisms can be found in [256].

The main goal of this section is to recall several small universal systems based on splicing.

The number of rules is a measure of the size of the system. This approach is coherent with

investigations related to small universal Turing machines, e.g. [267].

One of the first ideas to increase the computational power of splicing systems is to consider

them in a distributed framework. Such a framework introduces test tubes, corresponding

to H systems, which are arranged in a communicating network. The computation is then

performed as a repeated sequence of two steps: computation and communication. During

the computational step, each test tube evolves as an ordinary H system in an independent

manner. During the communication step, the words at each test tube are redistributed

183

among other tubes according to some communication protocol.

Test tube systems based on splicing, introduced in [156], communicate through redistri-

bution of the contents of the test tubes via filters that are simply sets of letters (in a similar

way to the separate operation of Lipton-Adleman [218], [1]). These systems, with finite ini-

tial contents of the tubes and finite sets of splicing rules associated to each component, are

computationally complete, they characterize the family of recursively enumerable languages.

The existence of universal splicing test tube distributed systems was obtained on this basis,

hence the theoretical proof of the possibility to design universal programmable computers

with the structure of such a system. After a series of results, the number of tubes sufficient

to achieve this result was established to be 3 [264]. The computational power of splicing test

tube systems with two tubes is still an open question. The descriptional complexity for such

kind of systems was investigated in [83] where it was shown that there exist universal splic-

ing test tube systems with 10 rules. The best known result shows that there exist universal

splicing test tube system with 8 rules [129].

A simple possibility to turn splicing-based systems into computationally complete devices

are time-varying distributed H systems (TVDH systems). Such systems work like H systems,

but on each computational step the set of active rules is changed in a cycle. These sets are

called components. It was shown [256] that 7 components are enough for the computational

completeness; further this number was reduced to 1 [226], [227]. This last result shows a

fine difference between the definitions of a computational step in H systems. If one iterates

the splicing operation while keeping all generated strings, then such systems are regular. If

only the result of each splicing step is kept, then the resulting systems are computationally

complete. An overview of results on TVDH systems may be found in [228]. Recently one

constructed very small universal TVDH systems with two components and 15 rules and with

one component and 17 rules [83].

Another extension of H systems was done using the framework of P systems [252], see

also [186] and [257]. In a formal way, splicing P systems can be considered like a graph,

whose nodes contain sets of strings and sets of splicing rules. Every rule permits to perform

a splicing and to send the result to some other node. Since splicing P systems generate any

recursively enumerable language, it is clear that there are universal splicing P systems. Like

for small universal Turing machines, we are interested in such universal systems that have

a small number of rules. A first result was obtained in [265] where a universal splicing P

system with 8 rules was shown. Recently a new construction was presented in [126], [127]

for a universal splicing P system with 6 rules. The best known result [129] shows that there

exists a universal splicing P system with 5 rules and this result is presented in this section.

Notice, that this result (5 rules) is the best known for “classical” approach to construct small

universal devices.

We also consider a class of H systems which can be viewed as a counterpart of the matrix

grammars in the regulated rewriting area. These systems are called double splicing extended

H systems [256]. In [129] one obtains an unexpected result: 5 rules are enough for such kind

of H systems in order to be universal.

The following series of results claims existence of universal devices of very small size.

Thus, there exist the following universal devices:

• A double splicing extended H system with 5 rules [129],

184

• An extended splicing test tube system with 3 tubes with 8 rules [129],

• A TVDH system with two components and 15 rules [83],

• A TVDH system with one component and 17 rules [83],

• A splicing P system with 5 rules [129].

We skip all the technicalities and the actual constructions from the above mentioned

results, referring the interested reader to [268], [129], [126], [83] and [127], as well as the

corresponding references within this section.

Ciliates Another model of rewriting of (circular) strings is that of ciliate operations, in-

spired from the gene assembly in Ciliated Protozoa. It can be viewed as specific synchronized

splicing, but does not provide as much control as the models described above. Here we will

only list a few results with associated references, without actually describing them.

In [3] and [4] one considers ciliate operations in membrane systems framework, estab-

lishing the computational completeness of the intermolecular model, without context, even

in the case where the pointers (the key concept used to define the operations) consist of

a single symbol. In [281], [113] one performs analysis of pointers in actual living ciliates.

Publications [94], [95] and [112] focus on the complexity of the graph-based model of gene

assembly in ciliates, while works [109], [110] and [111] attack Hamiltonian Path Problem, a

well-known NP-complete problem, with ciliate operations.

5.5 Conclusions to Chapter 5

The networks of evolutionary processors and their models and variants have been described,

together with the associated results. A few selected results were presented in more details.

For instance, NEPs with two nodes are already computationally complete modulo the termi-

nal alphabet. HNEPs with one node are given the precise regular characterization, HNEPs

with two nodes are not computationally complete, while seven nodes are enough to reach

the computational completeness of HNEPs, even with a complete graph. We should men-

tion that a network over a complete graph (with loops, although it is not important for

the last proof) may be viewed as number of agents in a common environment, acting “in-

dependently” without explicitly enforcing any transition protocol, where a computationally

complete behavior still emerges.

A particularly interesting variant is obligatory HNEPs (OHNEPs). Using a power of the

underlying graph, computational completeness is obtained even without the filters. In case

of a complete graph, OHNEPs are still computationally complete. Moreover, it suffices that

the sum of numbers of symbols in filters of each node does not exceed one.

Several results were showed concerning P systems with insertion and deletion rules of

small size. Surprisingly, systems with context-free rules inserting and deleting only one

symbol are quite powerful and generate PsRE if the priority of deletion over insertion is used.

From the language generation viewpoint such systems are not too powerful and no language

specifying the order of symbols can be generated. To be able to generate more complicated

185

languages we considered systems with one-symbol one-sided insertion or deletion contexts.

In both cases we obtained that any recursively enumerable language can be generated. The

same result holds if a context-free deletion of two symbols is allowed. The counterpart of

the last result is not true, moreover, the insertion of strings of an arbitrary size still cannot

lead to generating languages like a∗b∗.

We also have considered one-symbol context-free insertion-deletion P systems without

the priority relations and we showed that in terms of Parikh sets these systems characterize

PsMAT family. However, in terms of the generated language such systems are strictly

included in MAT . We remark that context-free insertions and deletions of one symbol

correspond to random point mutations from an evolutionary point of view. We think that

the obtained results could give a frame for the modeling of evolutionary processes.

Most of the results above were obtained using rules with target indicators. It is interesting

to investigate the computational power of systems with non-specific target indicators in or

go. Another open problem is to replace the priority relation by some other mechanism from

the P systems area without decreasing the computational power.

Section 5.1 is based on publications [6], [25], [26], [27], [28], [29], [54], [53], [55], [101],

[102], [103], [116], [51] and [52]. Section 5.2 is based on publications [88], [89], [90], [86].

Section 5.3 is based on publications [84], [87] and [85]. Section 5.4 is based on publications

[129], [126], [83], [127], as well as the ciliate direction, based on publications [3], [4], [281],

[113], [94], [95], [112], [109], [110] and [111].

186

6. APPLICATIONS

A few applications of membrane systems (sorting, solving NP-complete problem and mod-

eling bi-stable catalysts by protons) are described in my Ph.D. thesis [5]. A larger number

of applications is presented in the book containing [132]. In this chapter we present some

more applications obtained in the recent author’s publications.

In Section 6.1 we present a formalization of inflection process for the Romanian language

using the model of P systems with cooperative string replication rules, which will make it

possible to automatically build the morphological lexicons as a base for different linguistic

applications. We also mention the solution to the problem of annotating affixes, by the

process of reverse derivation.

In Section 6.2 we describe the work with the prefix tree by P systems with strings and

active membranes. We present the algorithms of searching in a dictionary and updating it

implemented as membrane systems. The systems are constructed as reusable modules, so

they are suitable for using as sub-algorithms for solving more complicated problems.

In Section 6.3 we consider the problem of synchronizing the activity of all membranes of

a P system. After pointing at the connection with a similar problem in the field of cellular

automata where the problem is called the firing squad synchronization problem, FSSP for

short, we focus on the deterministic algorithm to solve this problem. Our algorithm works

in 3h + 3, where h is the height of the tree describing the membrane structure.

In Section 6.4 we present a variant of the multiset rewriting model where the rules of every

region are defined by the contents of interior regions, rather than being explicitly specified

in the description of the system. This idea is inspired by the von Neumann’s concept of

“program is data” and also related to the research direction proposed by Gh. Păun about

the cell nucleus.

The author has published a number of other works on application of P systems and other

formal computing models. In Section 6.5 we list some of them here, without describing

them in detail. These include performing logical inference by membrane systems, called

“chaining”, encoding numbers by multisets and discussion of the questions of compactness of

the representation and of the efficiency of performing the arithmetic operations in different

multiset representations, right self-assembly of a double-stranded molecule from a single-

stranded words of bounded length, cellular automata that possess a specific invariant, a

so-called number-conservativity, and reversible logical elements with memory.

187

6.1 Inflections

The aim of this section is to present a formalization of inflection process for the Romanian

language using the model of P systems with cooperative string replication rules, which will

make it possible to automatically build the morphological lexicons as a base for different

linguistic applications.

Natural language processing has a wide range of applications, the spectrum of which

varies from a simple spell-check up to automatic translation, text and speech understanding,

etc. The development of appropriate technology is extremely difficult due to the specific

feature of multidisciplinarity of the problem. This problem involves several fields such as lin-

guistics, psycholinguistics, computational linguistics, philosophy, computer science, artificial

intelligence, etc.

As in many other fields, solving of a complex problem is reduced to finding solutions for a

set of simpler problems. In our case among the items of this set we find again many traditional

compartments of the language grammar. The subject of our interest is the morphology, and

more specifically, its inflectional aspect.

The inflectional morphology studies the rules defining how the inflections of the words of

a natural language are formed, i.e., the aspect of form variation (of the inflection, which is the

action of words modification by gender, number, mood, time, person) for various expressing

grammatical categories.

In terms of natural language typology the morphological classification can be analytical

and synthetic. Of course, this classification is a relative one, having, however, some irrefutable

poles: Chinese, Vietnamese, as typical representatives of the analytical group, and Slavic

and Romance languages serving as examples of synthetic ones. The English language, with

a low degree of morpheme use, is often among the analytical ones, sometimes is regarded

as synthetic, indicating however that it is “less synthetic” than other languages from the

same group. It is evident that it is the inflectional morphology of synthetic languages that

presents special interest, being a problem more complex than the analytical class.

The object of our studies is the Romanian language, which belongs to the category of

synthetic flective languages. The last notion stresses the possibility to form new words

by declension and conjugation. Moreover, the Romanian language is considered a highly

inflectional language, because the number of word-forms is big enough.

The inflection simplicity in English makes that the majority of researchers in the field of

computational linguistics neglect the inflection morphology. For efficient processing of other

natural languages, including Romanian, it is necessary to develop suitable computational

models of morphology of each language.

A model of inflection process is a formalism, which should include two processes:

- making the alternation in the root, and

- concatenation of a flective.

In general case, from a whole variety of inflection groups, we can identify two classes:

– without alternations, and

– with alternations.

In the first case the inflection is made in the following manner. Let ℑ be a set formed

from lists of flectives, F = {f1, f2, · · · , fn}, w = w′α is a word-lemma, where |α| ≥ 0. In the

188

simplest case the inflected words will be those of the form w′fi, fi ∈ F , (i = 1, · · · , n).

General case: Let w = w1a1w2a2 · · ·wmα. The inflected words will be of the form:

w(1) = w1 a1 w2 a2 · · · wmfi1 ,

w(2) = w1 u
(2)
1 w2 u

(2)
2 · · · wmfi2 ,

· · ·

w(s) = w1 u
(s)
1 w2 u

(s)
2 · · · wmfis ,

where wi, ai ∈ V +, u
(j)
i ∈ V ∗, fi1 ∈ F (1), . . . , fis ∈ F (s), and F (1) ∪ . . . ∪ F (s) forms a

complete paradigm. Note: the analysis of inflection rules allowed us to ascertain that for

the Romanian language m ≤ 4, s ≤ 3.

Modern dictionaries contain hundreds of thousands of words–lemma. Their forms of

inflexion (the amount of which exceeds millions) are needed for developing various applica-

tions based on natural language: from the spell-checker up to the systems understanding

the speech. Obviously, to solve the problem of creating a dictionary with a morphologically

representative coverage, as well as to build various applications based on it, effective mech-

anisms are needed, especially those that allow parallel processing. One of the possible ways

to perform parallel computation is based on biological models.

To formalize the inflection process for the Romanian language the model of cooperative

membrane P systems with replication will be used [252].

Describing the inflection process by P systems Let us define the P system performing

the inflection process. Let L be the set of words which form opened productive classes. We

will start by assuming that the words in L are divided into groups of inflection, i.e. for each

w ∈ L the number of inflection group is known [219]. The inflection group is characterized

by the set G = {α,RG, FG}, where |α| ≥ 0 is the length of ending which is reduced in

the process of inflection, FG is the set of the lists of flectives, the assembly of which forms

complete paradigm, RG is the set of the rules, which indicate vowel/consonant alternation

of type a → u, a ∈ V +, u ∈ V ∗, and also the conformity of the roots obtained by the lists

of flectives from FG. To each group of inflexion a membrane system ΠG will be put into

correspondence.

As it was mentioned earlier, we will investigate two cases:

– without alternations, and

– with vowel/consonant alternation.

The first model is very simple. For any group G = (α, ∅, {f1G
, f2G

, · · · , fnG
}) of

inflection without alternation,

ΠG = (O, Σ, []
1
, ∅, R1, 1), where

O = Σ = V ∪ {#},

V = {a, · · · , z} is the alphabet of the Romanian language, and

R1 = {α#→ (f1G
, out)||(f2G

, out)|| · · · ||(fnG
, out)}

If this system receives as an input the words w′α#, where w′α corresponds to the inflection

group G, then it sends all its inflected words out of the system in one step. Clearly, ΠG is

189

non-cooperative if α = λ, but non-cooperativeness is too restrictive in general, since then

the system would not be able to distinguish the termination to be reduced from any other

occurrence of α.

The general model will require either a more complicated structure, or a more so-

phisticated approach. Let G be an arbitrary inflection group, with m − 1 alternations

a1 = a
(1)
1 a

(1)
2 · · · a

(1)
n1 , · · · , am = a

(m)
1 a

(m)
2 · · · a(m)

nm . Let the set of flectives consist of s subsets,

and for subset FkG
= {f (k)

1 , · · · , f (k)
p1 }, 1 ≤ k ≤ s, the following alternations occur: a1 → u

(k)
1 ,

· · · , am → u
(k)
m (the alternations are fictive for k = 1), and

⋃s
k=1 FkG

corresponds to a com-

plete paradigm. For instance, Example 2 corresponds to s = 2 sublists (singular and plural),

and m− 1 = 2 alternations.

The associated P system should perform the computation

w# =
m−1∏

j=1

(wjaj) wmα#⇒∗

{
m−1∏

j=1

(

wju
(k)
j

)

wmfik | 1 ≤ k ≤ s, fik ∈ F (k)

}

,

where u
(1)
j = aj, 1 ≤ j ≤ m.

The first method assumes the alternating subwords aj are present in the input word in

just one occurrence, or marked. Moreover, we assume that carrying out previous alternations

does not introduce more occurrences of the next alternations.

For modeling such process of inflection for the group G we define the following P system

with 1 + (s− 1)m membranes

Π′
G = (O, Σ, µ, ∅, · · · , ∅, R1, · · · , R1+(s−1)m, 1), where

Σ = V ∪ {#}, O = Σ ∪ E,

µ = [[]
2
[]

3
· · · []

1+(s−1)m
]
1
,

E = {#k | 2 ≤ k ≤ s} ∪ {Ak,j | 1 ≤ k ≤ s, 1 ≤ j ≤ m},

V = {a, · · · , z} is the alphabet of the Romanian language,

(V can be extended by marked letters if needed), and the rules are given below.

R1 = {α#→ A1,m||(#2, in2)|| · · · ||(#s, ins)}

∪ {Ak,j → (λ, ink+(s−1)j) | 2 ≤ k ≤ s, 1 ≤ j ≤ m− 1}

∪ {Ak,m → (f
(k)
1 , out)|| · · · ||(f (k)

pm
, out) | 1 ≤ k ≤ s},

Rk+(s−1)(j−1) = {aj → (u
(k)
j Ak,j, out)}, 2 ≤ k ≤ s, 1 ≤ j ≤ m− 1,

Rk+(s−1)(m−1) = {#k → (Ak,m, out)}, 2 ≤ k ≤ s.

The work of P system Π′
G is the following. First, s copies of the string are made, and

the first one stays in the skin, while others enter regions 2, · · · , s. Each copy in region

k is responsible to handle the k-th subset of inflections. The first one simply performs a

replicative substitution in the end, and sends the results out, in the same way as ΠG works.

Consider a copy of the input in region k, 2 ≤ k ≤ s. When j-th alternation is carried out,

the string returns to the skin, and symbol Ak,j is produced. This symbol will be used to

send the string in the corresponding region to carry out alternation j + 1. Finally, if j = m,

then the system performs a replicative substitution in the end, and sends the results out.

190

Assuming s ≥ 2, the system halts in 2m + 1 steps, making an efficient use of scattered

rewriting with parallel processing of different inflection subsets. For instance, the inflection

group from Example 2 would transform into a P systems with 4 membranes, halting in 7

steps. Notice that this system is non-cooperative if α = λ and |aj| = 1, 1 ≤ j ≤ m. It is

also worth noticing that it is possible to reduce the time to m + 1 steps by using tissue P

systems with parallel channels.

The second method avoids the limiting assumptions of the first methods. More exactly,

it performs the first alternation at its leftmost occurrence, the second alternation at its

leftmost occurrence which is to the right of the first one, etc. Formally, such a P system

discovers the representation of the input string as
∏m−1

j=1 (wjaj) wmα, where aj has no other

occurrences inside wjaj except as a suffix.

A theoretical note: overlapping occurrences or occurrences with context can be handled

by rules with a longer left-hand side. A different order of occurrences of the alternations can

be handled by renumbering the alternations. Should the specification of a group require, e.g.,

second-leftmost occurrence for a→ u, this can be handled by inserting a fictive substitution

a→ a before a→ u, etc. Therefore, this is the most general method.

We construct the following P system, which takes the input in the form

#lw#r = #l

m−1∏

j=1

(wjaj) wmα#r.

Π′′
G = (O, Σ, []

1
, ∅, R1, 1), where Σ = V ∪ {#l, #r}, O = Σ ∪ E,

E = {Ak,j | 1 ≤ k ≤ s, 0 ≤ j ≤ m},

V = {a, · · · , z} is the Romanian alphabet,

R1 = {#l → A1,0|| · · · ||As,0} (6.1)

∪ {Ak,j−1γ → γAk,j−1 | γ ∈ V \ {a(j)
1 },

1 ≤ k ≤ s, 1 ≤ j ≤ m} (6.2)

∪ {Ak,j−1a
(j)
1 vγ → a

(j)
1 Ak,j−1vγ | a(j)

1 v ∈ Pref(aj),

|v| < |aj| − 1, γ ∈ V \ {a(|v|+2)
1 }, 1 ≤ k ≤ s, 1 ≤ j ≤ m} (6.3)

∪ {Ak,j−1aj → u
(k)
j Ak,j | 1 ≤ k ≤ s, 1 ≤ j ≤ m} (6.4)

∪ {αAk,m#r → (f
(k)
1 , out)|| · · · ||(f (k)

pm
, out) | 1 ≤ k ≤ s}. (6.5)

The rules are presented as a union of 5 sets. The rule in the first set replicates the input for

carrying out different inflection subsets. The symbol Ak,j is a marker that will move through

the string. Its index k corresponds to the inflection subset, while index j tells how many

alternations have been carried out so far.

The rules in the second set allow the marker to skip a letter if it does not match the first

letter needed for the current alternation. The rules in the third set allow the marker to skip

one letter if some prefix of the needed subword is found, followed by a mismatch. The rules

in the fourth set carry out an alternation, and the last set of rules perform the replicative

substitution of the flectives.

191

This system halts in at most |w|+ 2 steps.

For the question of determining the inflection group, we refer the interested readers to

[154], [153] and [31].

Annotating affixes A more complicated problem is, given a derived word, to produce its

lexical decomposition. An attempt to attack this problem using membrane systems is made

in [48].

Conclusions The membrane system to describe the inflectional process when the inflec-

tional morphological model is known is investigated in this section.

In the case when the model is not known in advance, it can be determined by using the

algorithm from [153]. The membrane systems presented in this section can be also adapted

for other natural languages with high level of inflection, such as Italian, French, Spanish etc.,

having structured morphological dictionaries, similar to the Romanian one.

6.2 Dictionary

In this section we describe the work with the prefix tree by P systems with strings and

active membranes. We present the algorithms of searching in a dictionary and updating it

implemented as membrane systems. The systems are constructed as reusable modules, so

they are suitable for using as sub-algorithms for solving more complicated problems.

Solving most problems of natural language processing is based on using certain linguistic

resources, represented by corpora, lexicons, etc. Usually, these collections of data consti-

tute an enormous volume of information, so processing them requires much computational

resources. A reasonable approach for obtaining efficient solutions is that based on apply-

ing parallelism; this idea has been promoted already in 1970s. Many of the stages of text

processing (from tokenization, segmentation, lematizing to those dealing with natural lan-

guage understanding) can be carried out by parallel methods. This justifies the interest to

the methods offered by the biologically inspired models, and by membrane computing in

particular.

However, there are some issues that by their nature do not allow complete parallelization,

yet exactly they are often those “computational primitives” that are inevitably used during

solving major problems, like the elementary arithmetic operations are always present in

solving difficult computational problems. Among such “primitives” in the computational

linguistics we mention handling of the dictionaries, e.g., dictionary lookup and dictionary

update. Exactly these problems constitute the subject of the present section. In our approach

we speak about dictionary represented by a prefix tree.

P (membrane) systems are a convenient framework of describing computations on trees.

Since membrane systems are an abstraction of living cells, the membranes are arranged

hierarchically, yielding a tree structure.

Dictionary Dictionary search represents computing a string-valued function {ui −→ vi |

1 ≤ i ≤ d} defined on a finite set of strings.

192

We represent such a dictionary by the skin membrane containing the membrane structure

corresponding to the prefix tree of {ui | 1 ≤ i ≤ d}, with strings vi
′ in regions corresponding

to the nodes associated to ui. Let A1, A2 be the source and target alphabets: ui ∈ A∗
1,

vi ∈ A∗
2, 1 ≤ i ≤ d. Due to technical reasons, we assume that for every l ∈ A1, the skin

contains a membrane with label l. We also suppose that the source words are non-empty.

For instance, the dictionary {bat −→ flying, bit −→ stored} is represented by

[[]0
a
[[[$flying$′]0

t
]0
a
[[$stored$′]0

t
]0
i

]
b
[]0

c
· · · []0

z
]0
0

Consider a P system corresponding to the given dictionary:

Π =
(
O, Σ, H,E, µ,M1, · · · ,Mp, R, i0

)
,

O = A1 ∪ A2 ∪ {?, ?
′, $, $′, $1, $2, fail}

∪ {?i | 1 ≤ i ≤ 11} ∪ {!i | 1 ≤ i ≤ 4},

Σ = A1 ∪ A2 ∪ {?, ?
′, !, $, $′},

H = A1 ∪ {0}, E = {0, +,−}, i0 = 1,

µ and sets Mi, 1 ≤ i ≤ p, are defined as described above.

So only the rules and input semantics still have to be defined.

6.2.1 Dictionary search

To translate a word u, input the string ?u?′ in region 1. Consider the following rules.

S1 ?l[]0
l
→ [?]0

l
, l ∈ A1

Propagation of the input into the membrane structure, reaching the location corresponding

to the input word.

S2 [??′]0
l
→ []−

l
∅, l ∈ A1

Marking the region corresponding to the source word.

S3 [$→ $1||$2]−l , l ∈ A1

Replicating the translation.

S4 [$2]e
l
→ []0

l
$2, l ∈ H, e ∈ {−, 0}

Sending one copy of the translation to the environment.

S5 [$1 → $]0
l
, l ∈ A1

Keeping the other copy in the dictionary.

The system will send the translation of u in the environment. This is a simple example

illustrating search. If the source word is not in the dictionary, the system will be blocked

without giving an answer. The following subsection shows a solution to this problem.

193

6.2.2 Search with fail

The set of rules below is considerably more involved than the previous one. However, it

handles 3 cases: a) the target word is found, b) the target word is missing in the target

location, c) the target location is unreachable.

F1 [?→?1||?2]00

Replicate the input.

F2 [?2 →?3]0
0

Delay the second copy of the input for one step.

F3 ?1l[]0l → [?1]+l , l ∈ A1

Propagation of the first copy towards the target location, changing the polarization of the

entered membrane to +.

F4 ?3l[]+
l
→ [?3]0

l
, l ∈ A1

Propagation of the second copy towards the target location, restoring the polarization of the

entered membrane.

F5 [?1l→ [?4]−
l

]0
k
, l, k ∈ A1

If a membrane corresponding to some symbol of the source word is missing, then the first

copy of the input remains in the same membrane, while the second copy of the input restores

its polarization. Creating a membrane to handle the failure.

F6 [?1?
′ →?7]0l , l ∈ A1

Target location found, marking the first input copy.

F7 [?7]0
l
→ []−

l
∅, l ∈ A1

Marking the target location.

In either case, some membrane has polarization −. It remains to send the answer out,

or fail if it is absent. The membrane should be deleted in the fail case.

F8 [$→ $1||$2]−
l
, l ∈ A1

Replicating the translation.

F9 [$2]e
l
→ []0

l
$2, l ∈ H, e ∈ {0,−}

Sending one copy of the translation out.

F10 [$1 → $]0
l
, l ∈ A1

Keeping the other copy in the dictionary.

F11 [?3 →?5]−
l
, l ∈ A1

194

The second copy of input will check if the translation is available in the current region.

F12 ?3l[]−
l
→ [?5]−

l
, l ∈ A1

The second copy of input enters the auxiliary membrane with polarization −.

By now the second copy of the input is in the region corresponding to either the search

word, or to its maximal prefix plus one letter (auxiliary one).

F13 [?5 →?6]−
l
, l ∈ A1

It waits for one step.

F14 [?6 → ∅]0l , l ∈ A1

If the target word has been found, the second copy of the input is erased.

F15 [?6]−
l
→ []0

l
?8, l ∈ A1

If not, the search fails.

F16 [?8]0
l
→ []0

l
?8, l ∈ A1

Sending the fail notification to the skin.

F17 [?8l→?8]0
0

Erasing the remaining part of the source word.

F18 [?8?
′]0

0
→ []0

0
fail

Answering fail.

F19 [?4 →?9]−
l
, l ∈ A1

F20 [?9 →?10]−
l
, l ∈ A1

F21 [?10 →?11]−l , l ∈ A1

If the target location was not found, the first input copy waits for 3 steps while the membrane

with polarization − handles the second input copy.

F22 [?11]0
l
→ ∅, l ∈ A1

Erasing the auxiliary membrane.

195

6.2.3 Dictionary update

To add an entry u −→ v to the dictionary, input the string !uv′ in region 1. Consider the

following rules.

U1 [!→!1||!2]0
0

Replicate the input.

U2 [!2 →!3]0
0

Delay the second copy of the input for one step.

U3 !1l[]0
l
→ [!1]+

l
, l ∈ A1

Propagation of the first copy towards the target location, changing the polarization of the

entered membrane to +.

U4 !3l[]+
l
→ [!3]0

l
, l ∈ A1

Propagation of the second copy towards the target location, restoring the polarization of the

entered membrane.

U5 [!1 →!4]0l , l ∈ A1

If a membrane corresponding to some symbol of the source word is missing, then the first

copy of the input remains in the same membrane, while the second copy of the input restores

its polarization. Marking the fist copy of the input for creation of missing membranes.

U6 [!4l→ [!4]+
l

]0
k
, l, k ∈ A1

Creating missing membranes.

U7 [!4$→ $]0
l
, l ∈ A1

Releasing the target word in the corresponding location.

U8 [!3$→ ∅]0
l
, l ∈ A1

Erasing the second copy of the input.

We underline that the constructions presented above also hold in a more general case, i.e.,

when the dictionary is a multi-valued function. Indeed, multiple translations can be added to

the dictionary as multiple strings in the region associated to the input word. The search for

a word with multiple translations will lead to all translations sent to the environment. The

price to pay is that the construction is no longer deterministic, since the order of application

of rules S4 or F9 to different translations is arbitrary. Nevertheless, the constructions remain

“deterministic modulo the order in which the translations are sent out”. All constructions

work in linear time with respect to the length of the input. The parallelism is vital for

checking for the absence of a needed submembrane, or for checking for the absence of a

translation of a given word; sending multiple translation results out is also parallel.

196

Discussion In this section we presented the linear-time algorithms of searching in a dic-

tionary and updating it implemented as membrane systems. We underline that the systems

are constructed as reusable modules, so they are suitable for using as sub-algorithms for

solving more complicated problems.

The scope of handling dictionaries is not limited to the dictionaries in the classical sense.

Understanding a dictionary as introduced in Subsection 6.2, i.e., a string-valued function

defined on a finite set of strings, leads to direct applicability of the proposed methods to

handle alphabets, lexicons, thesauruses, dictionaries of exceptions, and even databases. At

last, it is natural to consider these algorithms together with morphological analyzer and

morphological synthesizer.

We have presented a few applications of abstract computing models in linguistics.

6.3 Synchronization

Consider the problem of synchronizing the activity of all membranes of a P system. After

pointing at the connection with a similar problem dealt with in the field of cellular automata

where the problem is called the firing squad synchronization problem, FSSP for short, we

provide two algorithms to solve this problem. One algorithm is non-deterministic and works

in 2h + 3, the other is deterministic and works in 3h + 3, where h is the height of the tree

describing the membrane structure.

The synchronization problem can be formulated in general terms with a wide scope of

application. We consider a system constituted of explicitly identified elements and we require

that starting from an initial configuration where one element is distinguished, after a finite

time, all the elements which constitute the system reach a common feature, which we call

state, all at the same time and the state was never reached before by any element.

This problem is well known for cellular automata, where it was intensively studied under

the name of the firing squad synchronization problem (FSSP): a line of soldiers have to fire at

the same time after the appropriate order of a general which stands at one end of the line, see,

e.g., references in [97], [98]. The first solution of the problem was found by Goto, see [192].

It works on any cellular automaton on the line with n cells in the minimal time, 2n−2 steps,

and requiring several thousands of states. A bit later, Minsky found his famous solution

which works in 3n, see [233] with a much smaller number of states, 13 states. Then, a race

to find a cellular automaton with the smallest number of states which synchronizes in 3n

started. See the above papers for references and for the best results and for generalizations

to the planar case, see [276] for results and references.

The synchronization problem appears in many different contexts, in particular in biol-

ogy. As P systems model the work of a living cell constituted of many micro-organisms,

represented by its membranes, it is a natural question to raise the same issue in this con-

text. Take as an example the meiosis phenomenon, it probably starts with a synchronizing

process which initiates the division process. Many studies have been dedicated to general

synchronization principles occurring during the cell cycle; although some results are still

controversial, it is widely recognized that these aspects might lead to an understanding of

general biological principles used to study the normal cell cycle, see [273].

197

We may translate FSSP in P systems terms as follows. Starting from the initial config-

uration where all membranes, except the root, contain same objects the system must reach

a configuration where all membranes contain a distinguished symbol, F . Moreover, this

symbol must appear in all membranes only during at the synchronization time.

The synchronization problem as defined above was studied in [145] for two classes of

P systems: transitional P systems and P systems with priorities and polarizations. In the

first case, a non-deterministic solution to FSSP was presented and for the second case a

deterministic solution was found. These solutions need time 3h and 4n + 2h respectively,

where n is the number of membranes and h is the depth of the membrane tree.

In this section we recall a significant improvement of the previous results in the non-de-

terministic case. In the deterministic case, another type of P system was considered and this

permitted to improve the parameters. The new algorithms synchronize the corresponding P

systems in 2h + 3 and 3h + 3 respectively.

In the sequel, we will use transitional P systems without a distinguished compartment

as an output, i0, as this is not relevant for FSSP.

We translate the FSSP to P systems as follows:

Problem 6.1 For a class of P systems C find two multisets W ,W ′ ∈ O∗, and two sets of

rules R, R′ such that for any P system Π ∈ C of degree n ≥ 2 having

w1 = W ′, R1 = R′, wi = W and Ri = R for all i in {2..n}, assuming that the skin

membrane has the number 1, the following hold:

• If the skin membrane is not taken into account, then the initial configuration of the

system is stable (cannot evolve by itself).

• If the system halts, then all membranes contain the designated symbol F which appears

only at the last step of the computation.

Example 1 We present now an example and discuss the functioning of the system on it.

Consider a system Π having 7 membranes with the following membrane structure:

1

2 3

4 5 6

7

�
�

@
@

�
�

@
@

Although non-deterministic solution is an interesting exercise, we do not present it here

to keep the presentation reasonably concise. An interested reader can find it in [97] and [98].

6.3.1 Deterministic case

Consider now the deterministic case. We take the class of P systems with promoters and

inhibitors and solve Problem 1 for this class.

198

The idea of the algorithm is very simple. A symbol C2 is propagated down to the leaves

and at each step, being at a inner node, it sends back a signal C. At the root a counter

starts to compute the height of the tree and it stop if and only if there are no more signals

C. It is easy to compute that the last signal C will arrive at time 2h− 1 (there are h inner

nodes, and the last signal will continue for h − 1 steps). At the same time the height is

propagated down the tree as in the non-deterministic case.

Below is the formal description of the system.

The P system Π = (O, µ,w1, · · · , wn, R1, · · · , Rn) for deterministic synchronization is

present below. We consider that µ is an arbitrary membrane structure. The set of objects

is O = {S1, S2, S3, S4, S, S̄, S ′, S ′′, S ′′′, C1, C2, C, a, a′, b, F}, the initial contents of the skin is

w1 = {S1}, the other membranes are empty. The set of rules R1, . . . , Rn are identical, they

are presented below.

Start:

S1 → S2; C
′
2; S, in!; C1, in! (6.6)

Propagation of S:

S → S̄; S, in! (6.7)

Propagation of C (height computing signal):

C1 → C1, in! C2 → C; C2, in!; C, out (6.8)

C1C2 → λ C ′
2 → C; C2, in! (6.9)

C → C, out (6.10)

Root counter:

S2 → S3 S3 → S ′
3; b; a, in! |C (6.11)

C → λ |S3 S ′
3 → S3 |C (6.12)

C → λ |S′

3
S ′

3 → S4; a
′, in! |¬C (6.13)

Propagation of a:

S̄a→ S ′ a→ b; a, in! |S′ (6.14)

End propagate of a:

a′S ′ → S ′′; a′, in! a′Sa→ S ′′′ (6.15)

Decrement:

S ′′b→ S ′′ S ′′′a→ S ′′′ (6.16)

S ′′ → F |¬b S ′′′ → F |¬a (6.17)

Root decrement:

S4b→ S4 S4 → F |¬b (6.18)

199

We now give a structural explanation of the system. Rule (6.6) produces four objects.

Similar to the system from the previous section, the propagation of object S by (6.7) leads to

marking the intermediate nodes by S̄ and the leaves by S. While objects C1, C2 propagate

down the tree structure and send a continuous stream of objects C up to the root by (6.8)-

(6.10), object S2 counts, producing by rules (6.11)-(6.13) an object b every other step.

When the counting stops, there will be exactly h copies of object b in the root. Similar to

the construction from the previous section, objects a are produced together with objects b by

the second rule from (6.11). Objects a are propagated down the structure and decremented

by one at every level by (6.14).

After the counting stops in the root (the last rule from (6.13)), object a′ is produced. It

propagates down the tree structure by (6.15), leading to the appearance of objects S ′′ in the

intermediate nodes and S ′′′ in the leaves. These two objects perform the countdown and the

corresponding nodes fire by (6.16). The root behaves in a similar way by (6.18).

The correctness of the construction can be argued as follows. It takes h + 1 steps for a

symbol C2 to reach all leaves. All this time, symbols C are sent up the tree. It takes further

h − 1 steps for all symbols C to reach the root node, and one more step until symbols C

disappear. Therefore, symbols b appear in the root node every odd step from step 3 until

step 2h + 1, so h copies will be made. Together with the production of bh in the root node,

this number propagates down the tree, being decremented by one at each level. For the

depth i, the number h− i is represented, during propagation, by the multiplicity of symbols

a (one additional copy of a is made) in the leaves and by the multiplicity of symbols b in

non-leaf nodes. After 2h + 2 steps, the root node starts the propagation of the countdown

(i.e., decrement of symbols a or b). For a node of depth i, it takes i steps for the countdown

signal (a′) to reach it, another h − i steps to eliminate symbols a or b, so every node fires

after 2h + 2 + i + (h− i) + 1 = 3h + 3 steps after the synchronization has started.

Example 2 Consider a P system having the membrane structure given in Example 1. We

present below the evolution of the system in this case.

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C
′
2 SC1 SC1

2 S3C SC1C2 S̄C2 SC1 SC1 SC1

3 S ′
3bC Sa S̄aC SC1C2 SC1C2 S̄C2 SC1

4 S3bC Sa S ′C S S S̄C SC1C2

5 S ′
3bbC Saa S ′aC S S S̄ S

6 S3bbC Saa S ′b Sa Sa S̄a S

7 S ′
3bbb Saaa S ′ba Sa Sa S ′ S

8 S4bbb a′Saaa a′S ′bb Saa Saa S ′a S

9 S4bb S ′′′aa S ′′bb a′Saa a′Saa a′S ′b Sa

10 S4b S ′′′a S ′′b S ′′′a S ′′′a S ′b a′Sa

11 S4 S ′′′ S ′′ S ′′′ S ′′′ S ′ S ′′′

12 F F F F F F F

200

Conclusions In this section we presented two algorithms that synchronize two given

classes of P systems. The first one is non-deterministic and it synchronizes the class of

transitional P systems (with cooperative rules) in time 2h + 3, where h is the depth of the

membrane tree. The second algorithm is deterministic and it synchronizes the class of P

systems with promoters and inhibitors in time 3h + 3.

It is worth to note that the first algorithm has the following interesting property. After

2h steps either the system synchronizes and the object F is introduced, or an object # will

be present in some membrane. This property can be used during an implementation in order

to cut off failure cases.

The results obtained in this article rely on a rather strong target indication, in!, which

sends an object to all inner membranes. Such a synchronization was already considered

in neural-like P systems where it corresponds to the target go. It would be interesting to

investigate what happens if such target is not permitted. However, we conjecture that a

synchronization would be impossible in this case.

The study of the synchronization algorithms for different classes of P systems is important

as it permits to implement different synchronization strategies which are important for such

a parallel device as P systems. In particular, with such approach it is possible to simulate

P systems with multiple global clocks by P systems with one global clock. It is particulary

interesting to investigate the synchronization problem for P systems which cannot create

new objects, for example for P systems with symport/antiport.

This section is based on publications [97] and [98].

6.4 Polymorphism

In this section we present a variant of the multiset rewriting model where the rules of every

region are defined by the contents of interior regions, rather than being explicitly specified

in the description of the system. This idea is inspired by the von Neumann’s concept of

“program is data” and also related to the research direction proposed by Gh. Păun about

the cell nucleus.

We present yet another, relatively powerful, extension for the framework of P systems,

which allows the system to dynamically change the set of rules, not limited to some finite

prescribed set of candidates. There are three motives for this extension. First, our experience

shows that “practical” problems need “more” computing potential than just computational

completeness. Second, we attempt to import a very important computational ingredients

into P systems, this time from the conventional computer science. Third, this extension

correlates with the biological idea that different actions are carried out by different objects,

which too can be acted upon. (This last idea was also considered in, e.g., [167] and [2], but

there one represented each rule by a single object, therefore all rules were still prescribed,

though not their multiplicities.) Let us first explain these motives.

Most papers of the field belong to the following categories: 1) introducing different mod-

els and variants, 2) studying the computational power of different models depending on what

ingredients are allowed and on the descriptional complexity parameters, 3) studying the com-

putational efficiency of solving intractable problems (supercomputing potential) depending

201

on the ingredients, 4) using membrane computing to represent and model various processes

and phenomena, including but not limited to biology, 5) other applications.

There is a surprisingly big gap between the sets of ingredients needed to fulfill require-

ments in directions 2, 3, and the sets of ingredients demanded by other applications. For

instance, very weak forms of cooperation between objects are often enough for the compu-

tational completeness, but many “practical” problems cannot be solved in a satisfactory way

under the same limitations. This leads to the following question.

What is implicitly required in most “practical” problems? We will mention just a

few of these requirements below.

• Determinism or at least confluence. Clearly, the end user wants to obtain the answer

to the specified problem in a single run of a system instead of examining infinitely many

computations. This is a strong constraint, e.g., catalytic P systems and P systems

with minimal symport/antiport are universal, while in the deterministic case non-

universality is published for the first ones and claimed for the latter ones. Informally

speaking, less computational power is needed to just compute the result than it is to

also enforce choice-free behavior of the system.

• Input/output. Most of the universality results are formulated as generating lan-

guages or accepting sets of vectors, or in an even more restricted setup. There is no

need to deal with input in the first case, and in the latter case the final configuration

itself is irrelevant (except yes or no in case of the efficiency research). On the other

side, both input and output are critical for most applications.

• Representation. Clearly, any kind of discrete information can be encoded in a single

integer in some consistent way. However, a much more transparent data representa-

tion is typically required; even the intermediate configurations in a computation are

expected to reflect a state of the object in the problem area.

• Efficiency. Suppose numbers are represented by multiplicities of certain objects.

The number of steps needed to multiply two numbers by plain (cooperative) multiset

processing is proportional to the result. If the multiset processing can be controlled

by promoters/inhibitors/priorities, then the number of steps needed for multiplication

is proportional to one of the arguments. However, many applications would ask for a

multiplication to be performed in a constant number of steps. Similar problems appear

for string processing.

• Data structures. Membrane computing deals with multisets distributed over a graph,

while conventional computers provide random memory access and pointer operations,

allowing much more complex structures to be built.

Some of these implicit requirements originate because the user wants a solution which is at

least as good as the one that can be provided by conventional computers. We hope that the

explanations of the above list have convinced the reader that this is often a challenge.

202

Thus,

1 : ab→ ac

2 : a→ d

abbb
s

becomes

ab
1L

ac
1R

a
2L

d
2R

abbb
s
.

Figure 6.1: Graphical representation of a polymorphic P system

Program is data. Cell nucleus This time the new feature considered within the P sys-

tems framework is not of a biological inspiration, but rather is from the area of conventional

computing. Suppose we want to be able to manipulate the rules of the system during its com-

putation. A number of papers has been written in this direction (see, e.g., GP systems [167],

rule creation [140], activators [2], inhibiting/deinhibiting rules [151] and symport/antiport

of rules [150]), but in most of them the rules are predefined in the description of the system.

The most natural way to manipulate the rules is to represent them as data, treat this

data as rules, and manipulate it as usual in P systems, in the spirit of von Neumann’s

approach. In membrane systems, the data consists of multisets, so objects should be treated

as description of the rules. Informally, a rule j in a region i can be represented by the

contents of membranes jL and jR inside i.

Changing the contents of regions jL and jR results in the corresponding change of the rule

j. The next section illustrates this effect in Figure 6.2 and gives the formal definitions. We

call such P systems polymorphic, by analogy with polymorphic, or self-modifying computer

programs.

At the same time, if a membrane system is an abstraction inspired by the biological

cell, one can view inner regions as an abstraction inspired by the cell nucleus; their contents

correspond to the genes encoding the enzymes performing the reactions of the system. The

simplicity of the proposed model is that we consider the natural encoding, i.e., no encoding

at all: the multisets describing the rules are represented by exactly themselves. Therefore, we

are addressing a problem informally stated by Gh. Păun in Section “Where Is the Nucleus?”

of [248] by proposing a computational variant based on one simple difference: the rules are

taken from the current configuration rather than from the description of the P system itself.

The idea of a nucleus was also considered in [274], but such a presentation had the follow-

ing drawbacks. First, one described the dynamics of the rules in a high-level programming

language (good for simulators, but otherwise too powerful extension having the power of

conventional computers directly built into the definition). Second, this dynamics of the rules

did not depend on the actual configuration of the membrane system (no direct feedback from

objects to rules). In the model presented in this section, the dynamics of rules is defined by

exactly the same mechanism as the standard dynamics of objects.

We illustrate the definitions by the following example.

Example 6.1 A P system with a superexponential growth.

Π1 = ({a}, {a}, µ, a, a, a, a, a, a, aa, ϕ, 1), where

µ = [[]
1L

[[]
2L

[[]
3L

[]
3R

]
2R

]
1R

]
s
,

ϕ(i) = here, 1 ≤ i ≤ 3.

If the number of objects a in regions 3R, 2R 1R, s at step n is (xn, yn, zn, tn), respectively,

203

then (x0, y0, z0, t0) = (2, 1, 1, 1) and (xn+1, yn+1, zn+1, tn+1) = (xn, ynxn, znyn, tnzn).

Following just this quadruple, the computation can be represented as (2, 1, 1, 1) ⇒

(2, 2, 1, 1) ⇒ (2, 4, 2, 1) ⇒ (2, 8, 8, 2) ⇒ (2, 16, 64, 16) ⇒ (2, 32, 1024, 1024) ⇒ (2, 64, 32768,

1048576)⇒ · · · .

The exponents of the closed form formula (2, 2n, 2n(n−1)/2, 2n(n−1)(n−2)/6) can be verified

as follows. n + 1 = n + 1, (n + 1)n/2 = n(n− 1)/2 + n, (n + 1)n(n− 1)/6 = n(n− 1)(n−

2)/6 + n(n− 1)/2.

a
1L

a
2L

a
3L

a2

3R

a
2R

a
1R

a
s

3 : a→ a2 in 2R

2 : a→ a in 1R

1 : a→ a in s

⇒

a
1L

a
2L

a
3L

a2

3R

a2

2R

a
1R

a
s

3 : a→ a2 in 2R

2 : a→ a2 in 1R

1 : a→ a in s

⇒

a
1L

a
2L

a
3L

a2

3R

a4

2R

a2

1R

a
s

3 : a→ a2 in 2R

2 : a→ a4 in 1R

1 : a→ a2 in s

⇒

a
1L

a
2L

a
3L

a2

3R

a8

2R

a8

1R

a2

s

3 : a→ a2 in 2R

2 : a→ a8 in 1R

1 : a→ a8 in s

⇒

a
1L

a
2L

a
3L

a2

3R

a16

2R

a64

1R

a16

s

3 : a→ a2 in 2R

2 : a→ a16 in 1R

1 : a→ a64 in s

⇒ · · ·

Figure 6.2: The polymorphic computation from Example 6.1

Naturally, contents of membranes 1L, 2L, 3L is never changed because they are elemen-

tary and no rules have the corresponding target indications, and their initial contents is a,

204

so the system is non-cooperative, and the rules are never disabled. Since only one rule acts

in each of the regions s, 1R, 2R, the system is deterministic. From all above we conclude

that Π1 ∈ DOP7(polym−d(ncoo)), a quite restricted class.

This system never halts. Its interesting aspect, however, is the growth of the number

of objects in the skin. We claim that at step n the skin contains 2n(n−1)(n−2)/6 objects, so

the growth function is an exponential of a polynomial. Indeed, this is not difficult to see by

starting from the elementary membranes and going outside.

The contents of 3R is aa and it never changes. Region 2R initially contains a and

undergoes rule a → aa every step, so its contents at step n is a2n
. Region 1R initially

contains a and undergoes rule a→ a2n
at step n, so its contents at step n is a2n(n−1)/2

. The

skin originally contains a and at step n rule a→ a2n(n−1)/2
is applied, so its contents at step

n is a2n(n−1)(n−2)/6
, see Figure 6.2 for the actual illustration of the computation and for the

proof of the result.

This growth is faster than that of any non-polymorphic P systems, which is bounded

by the exponential Icn, where I is the initial number of objects in the system and c is the

maximum ratio for all rules of the right side size and its left side size. It is not difficult to see

that the growth function of a polymorphic P system without target indications is bounded

by Icp(n), where I and c are defined as above and p is a polynomial whose degree equals the

depth of the membrane structure minus one.

6.4.1 The power of polymorphism

As long as full cooperation is allowed, the universality of polymorphic P system is not difficult

to obtain, even without the actual polymorphism (i.e. without ever modifying rules) and

without the use of target indications. The upper bound on the number of membranes needed

is one plus twice the number of rules, because in the polymorphic P systems the rules can

only be represented by pairs of membranes. We recall that in [136] one presents a strongly

universal P system with 23 rules. Hence, the following theorem holds.

Theorem 6.1 NOP47(polym−d(coo)) = NRE.

Proof. The claim is fulfilled by taking the one-membrane construction from the main result

in [136] and replacing each of the 23 rules by two membranes containing the left-hand side

and the right-hand side of that rule. �

In the rest of the section we focus on the efficiency of computations performed by polymorphic

P systems, using the time complexity terms. We devote special attention to fast generating

and deciding factorials, because they best illustrate constant-time multiplication where the

factors are not known in advance and are even changing during the computation. First,

we present a non-cooperative system generating “slightly” more than factorials, using target

indications. It is a bit more complicated than Π1 because, firstly, we need to multiply by

numbers that grow linearly, and secondly, we want the system to halt.

Example 6.2 A polymorphic P system from OP13(polym−d(ncoo), tar) which generates {n!·

205

nk | n ≥ 1, k ≥ 0}.

Π2 = ({a, b, c, d}, {a}, µ, ab, a, a, a, a, a, c, b, bd, b, λ, d, a, ϕ, 1), where

µ = [[[]
2L

[]
2R

[]
3L

[]
3R

]
1L

[]
1R

[]
4L

[]
4R

[]
5L

[]
5R

[]
6L

[]
6R

]
s
,

ϕ(i) = here, 1 ≤ i ≤ 5, ϕ(6) = in1R.

The initial configuration can be graphically represented as shown in Figure 6.3. In fact, such

a graphical representation gives a complete description of Π2 except the output alphabet

and the output region. The target indication of a rule (here rule 6 in 1R) may be indicated

by an arrow, in this case from 6R to 1R (keeping in mind that the reactants of the rule

are taken from the parent region of the membranes describing the rule, in this case, from

region 1). At the right we give a simplified representation of the same system by replacing

pairs of membranes with constant contents by the rules written explicitly (this is just a

different representation, so-called “syntactic sugar”, and we still count such rules as pairs of

membranes). Rule 1 is not written with the rule syntax because the contents of both 1L and

1R will change.

a
2L

a
2R

b
4L

bd
4R

a
3L

c
3R

b
5L

λ
5R

a d
6L

a
6R

≡

1L

a
1R

ab

s

2 : a→ a

3 : a→ c

a
1L

a
1R

4 : b→ bd

5 : b→ λ

6 : d→ (a, in1R)

ab
s

Figure 6.3: A non-cooperative polymorphic system giving a complicated result

The essence of the functioning of Π2 is the following. Rules 4 and 6 lead to incrementation

of the number of copies of a in 1R (the number of copies of a in the skin does not change

during the first two steps). The system will apply rule 4 for n − 1 ≥ 0 times and then rule

5 (applying rule 5 is necessary for the system to halt). Suppose that all this time rule 2 has

been applied in region 1L. Then, the number of objects in region 1R will grow linearly, and

subsequent applications of a dynamic rule 1 : a→ ai, 1 ≤ i ≤ n will produce an! in the skin.

After that, the number of objects a in the skin will be multiplied by n until rule 3 is applied,

because 1 : c→ an will be no longer applicable, halting with the skin only containing objects

a their number being an arbitrary number of the form n! · nk. Now assume that rule 3 has

been applied earlier, effectively stopping the multiplication of the number of objects a in the

skin before the incrementation of objects a in 1R is finished. In that case the multiplicity of

objects a in the skin will be just a factorial of a smaller number, and the system will evolve

by application of rules 4, 6 until rule 5 is applied, without affecting the result. Notice that

the time complexity (understood as the shortest computation producing the corresponding

result) of generating n! · nk is only n + k + 1.

206

To generate exactly {n! | n ≥ 1} we need to stop the multiplication when we stop the

increment. This seems impossible without cooperative rules.

Example 6.3 A P system from OP9(polym−d(coo), tar) generating {n! | n ≥ 1}.

Π3 = ({a, b, c, d}, {a}, µ, ab, a, a, b, bd, b, c, d, a, ϕ, 1), where

µ = [[[]
1L

[]
1R

[]
2L

[]
2R

[]
3L

[]
3R

[]
4L

[]
4R

]
s
,

ϕ(i) = here, 1 ≤ i ≤ 2, ϕ(3) = in1L, ϕ(4) = in1R.

This system is very similar to Π2. There are only the following differences. First, rules

a → a and a → c are removed from region 1L. Second, instead of erasing b in the skin,

the corresponding rule sends object c to region 1L, which stops both increment (b is erased)

and multiplication (1 : ac → an is not applicable in the skin). Ironically, this system never

applies any non-cooperative rule, but the non-cooperative feature seems unavoidable in order

to stop the computation in the synchronized way. A compact graphical representation of Π3

is given in Figure 6.4.

a
1L

a
1R

2 : b→ bd, 3 : b→ (c, in1L), 4 : d→ (a, in1R)

ab
s

Figure 6.4: Illustration of a polymorphic system generating factorials

Now we proceed to describing a P system generating {22n
| n ≥ 0} in O(n) steps. Since

the growth of polymorphic P systems without target indications is bounded by exponential

of polynomials, the system below grows faster than any of them. Moreover, it produces the

above mentioned result by halting.

It is also worth noting that even polymorphic P systems cannot grow faster than expo-

nential of exponential in linear time, because if a system has n + n + 1 > 3 objects at some

step, then it cannot have more than n2 + n + 1 objects in the next step. Indeed, consider

that some rule r is applied for n times; let its left side contain x objects and let its right side

contain y objects. Then, x+y objects are needed to describe the rule and they transform nx

other objects into ny objects. It is not difficult to see that the growth is maximal if x = 1

and y = n. Since n2 + n + 1 is less than the square of n + n + 1, and iterated squaring yields

the growth which is exponential of exponential, it is not possible to grow faster. The system

below grows three times slower than this bound.

Example 6.4 A P system from OP15(polym−d(ncoo), tar) generating numbers from {22n
|

n ≥ 0} in 3n + 2 steps.

Π4 = ({a, b, a′, b′, c}, {a}, µ, b2, a, λ, a, a, a, c, b, λ, b, a′b′, a′, a, b′, b, ϕ, 1),

µ = [[[]
2L

[]
2R

[]
3L

[]
3R

]
1L

[[]
4L

[]
4R

]
1R

7∏

i=5

(
[]

iL
[]

iR

)
]
s
,

ϕ(i) = here, 1 ≤ i ≤ 6, ϕ(7) = in1R.

207

The desired effect is obtained by iterated squaring. By rules 5, 6, 7, in two steps each

copy of b in the skin changes into a and also sends a copy of b in region 1R. In the next

step, if region 1L still contains an a, each copy of a in the skin is replaced by the contents of

region 1R, and the process continues. Therefore, if we had bk in the skin at some step, then

in two steps we will have ak in the skin and rule 1 will be of the form a→ bk, yielding bk2
in

the third step. The iteration continues while rule 2 is being applied in region 1L. When rule

3 is applied, the cycle stops because rule 1 : c → bk will not be applicable, and the result

is given as the multiplicity of objects a in the skin. Clearly, 2 = 220
and 22n+1

= (22n
)2, so

the systems generates 2nth powers of 2. We underline that no cooperation was used in this

case. A compact graphical representation of this system is shown in Figure 6.5.

2 : a→ a, 3 : a→ c

a
1L

4 : b→ λ

λ
1R

5 : b→ a′b′, 6 : a′ → a, 7 : b′ → (b, in1R)

b2

s

Figure 6.5: A polymorphic system generating 22n

We remind the reader that the picture above represents a system with 15 membranes

because the rules notation is simply a compact way to represent pairs of membranes. Note

that one rule could have been saved if the right side of the rule were allowed to have objects

with different target indications, but this issue does not affect the computational power, only

the number of rules, whereas the definitions are much simpler. Another rule could be saved

at the price of using a cooperative rule to stop the computation instead of rules 2 and 3, like

in the previous example.

We now proceed to tasks which are more difficult than generating, namely, deciding a set

of numbers or computing a function in a deterministic way. We illustrate the first case by

modifying the previous example. We use an additional ingredient compared to the previous

systems: we rely on disabling a rule by emptying the region describing its left side. Although

we expect that this ingredient does not change the computational power of the systems, we

use it in order to have smaller constructions.

Example 6.5 A deterministic P system from OP15(polym+d(coo), tar) computing the func-

tion n −→ 22n
in 3n + 2 steps.

Π5 = ({a, b, a′, b′, c, d, d′}, {d}, {a}, µ, cb2, λ, λ, a, λ, b, λ,

b, a′b′, a′, a, cd, c′d′, c′, c′′, c′′, c, d′, a, b′, b, ϕ, 1, 1), where

µ = [[[[]
2L

[]
2R

]
1L

[[]
3L

[]
3R

]
1R

10∏

i=4

(
[]

iL
[]

iR

)
]
s
,

ϕ(i) = here, 1 ≤ i ≤ 8, ϕ(9) = in1L, ϕ(10) = in1R.

This system works like Π4 from the previous example. We only focus on the differences.

The previous system used non-deterministic choice between rules 2 and 3 to continue the

computation or to stop it. In this case, squaring stops by itself due to the rule 2 : a → λ,

208

2 : a→ λ

λ
1L

3 : b→ λ

λ
1R

4 : b→ a′b′, 5 : a′ → a, 10 : b′ → (b, in1R)

6 : cd→ c′d′, 7 : c′ → c′′, 8 : c′′ → c, 9 : d′ → (a, in1L)

cb2

input dn

s

Figure 6.6: A polymorphic system computing a superpower function

so producing object a in region 1L activates one squaring. The most important difference is

that the number n is given as input into the skin, by the multiplicity of objects d. Moreover,

besides two copies of b the skin initially contains an object c, responsible for counting until

n by consuming objects d and activating the squaring routine the corresponding number of

times. The cycle takes 3 steps, see rules 6, 7, 8, 9. When object c has no more copies of d

to consume, the result is obtained as the multiplicity of objects a in the skin. We show a

compact graphical representation of Π5 in Figure 6.6.

Note that this system uses cooperation for counting and disabling the rules for easier

control. We leave it as an exercise for the reader to construct a P system Π′
5 computing

the same function without disabling rules. Hint: as long as objects a only appear in the

skin every third step, there is no need to disable rule 1 while the computation is in progress.

Object c can deterministically subtract d and perform its appearance checking. Finally,

when there are no copies of d in the skin, moving c into 1L will make rule 1 inapplicable

without the need to disable it by emptying its left side.

Now we give an example of a P system deciding a set of numbers. It works deterministi-

cally and produces an object yes or no in the skin, depending on whether the input number

belongs to the specified set. We also emphasize its time complexity.

Example 6.6 A deterministic P system from OP37(polym−d(coo), tar) deciding the set {n! |

n ≥ 1}. A number k ≤ n! is decided in at most 4n steps, i.e., in a sublogarithmic time with

respect to k.

Π6 = ({a, b, c0, c1, c2, A,A′, B,B′, p0, p1, p2, p3, yes, no}, {a}, {yes, no}, µ,

p0c0, a
2, b, b, a, c1, c2, c2, λ, p0, AABp1, Aa,A′a,Bb,B′b, p1, p2,

p2B
′AA, p3d, p2B

′A′A, fno, p2B
′A′A′, fno, p2BAA, fno,

p2BA′A, fyes, p2BA′A′, fno, p3, p0c0, c0, c1, d, a, f, f, ϕ, 1, 1), where

µ = [[]
1L

[[]
3L

[]
3R

[]
4L

[]
4R

]
2L

[]
2R

18∏

i=5

(
[]

iL
[]

iR

)
]
s
,

ϕ(i) = here, 1 ≤ i ≤ 15, ϕ(16) = in2L, ϕ(17) = ϕ(18) = in1L.

The work of Π6 consists of iterated division of the input ak. Each cycle consists of 4

steps. The role of object c0 is to enter into 2L by rule 16, thus preventing rule 2 : b→ a to

work during the second and the third step of the cycle (bc1 → a is not applicable, changing

by rule 3 to bc2 → a, which is also not applicable, and then being restored by rule 4).

209

Object p0 marks the steps and produces the necessary objects for checking some numbers,

and finally produces symbols to increment the divisor or to modify the dividing rule to stop

the computation, and give the answer, as follows. Suppose that the input is ak. In the first

step, p0 changes into p1, also producing checkers AAB. In the same time, the number k will

be divided by n (initially n = 2) by rule 1 : an → b, changing ak into bxay, where x is the

quotient and y is the remainder.

In the second step, p1 changes into p2, waiting for the checkers. The role of the checking

rules 6 : Aa → A′a and 7 : Bb → B′b is to test the multiplicity of the remainder and the

quotient, respectively. Hence, object B will be primed if x > 0. Notice that since there are

two copies of A in the system, the number of symbols A that will be primed is min(y, 2).

Thus, there are 6 combinations of symbols A and B, primed or not.

In the third step, we distinguish two special cases. If x > 0 and y = 0, then the input is

a multiple of the currently computed factorial, and we proceed to the next iteration by rule

9 : p2B
′AA → p3d. If x = 0 and y = 1, then the input is equal to the previously computed

factorial, and the system gives the positive answer by the rule 13 : p2BA′A → fyes. Four

other combinations correspond to detecting that the input is not equal to a factorial of any

number (two cases correspond to non-zero quotient and non-zero remainder, the third case

corresponds to the input being zero, and the last case corresponds to a multiple of some

factorial which is smaller than the next factorial), so fno is produced.

In the fourth step, rule 2 : b → a is used, so the quotient is ready to be divided again.

Object f is used to stop the computation by rule 18, since rule 1 : anf → b is not applicable.

In case we proceed to the next iteration, the role of object d is to increment the multiplicity

n of objects a in region 1L, and object p3 changes back to p0 and produces a new copy of c0

for the next cycle.

Figure 6.7 shows a compact graphical representation of Π6.

a2

1L
b

1R

3 : c1 → c2, 4 : c2 → λ

b
2L

a
2R

5 : p0 → AABp1, 6 : Aa→ A′a, 7 : Bb→ B′b, 8 : p1 → p2

9 : p2B
′AA→ p3d, 10 : p2B

′A′A→ fno, 11 : p2B
′A′A′ → fno

12 : p2BAA→ fno, 13 : p2BA′A→ fyes, 14 : p2BA′A′ → fno

15 : p3 → p0c0, 16 : c0 → (c1, in2L), 17 : d→ (a, in1L), 18 : f → (f, in1L)

p0c0

input an

s

Figure 6.7: A polymorphic P system deciding factorials

We summarize some of the results we obtained as follows.

Theorem 6.2 There exist

• A strongly universal P system from OP47(polym−d(coo));

• A P system Π1 ∈ DOP7(polym−d(ncoo)) with a superexponential growth;

210

• A P system Π2 ∈ OP13(polym−d(ncoo), tar) such that N(Π2) = {n! ·nk | n ≥ 1, k ≥ 0}

and the time complexity of generating n! · nk is n + k + 1;

• A P system Π3 ∈ OP9(polym−d(coo), tar) such that N(Π3) = {n! | n ≥ 1} and the

time complexity of generating n! is n + 1;

• A P system Π4 ∈ OP15(polym−d(ncoo), tar) such that N(Π4) = {22n
| n ≥ 0} and the

time complexity of generating 22n
is 3n + 2;

• A P system Π′
5 ∈ DOP∗(polym−d(coo), tar) such that f(Π5) = (n −→ 22n

) and the

time complexity of computing n −→ 22n
is O(n);

• A P system Π6 ∈ DOP∗(polym−d(coo), tar) such that Nd(Π6) = {n! | n ≥ 1} and the

complexity of deciding any number k, k ≤ n! does not exceed 4n.

Moreover, polymorphic P systems can grow faster than any non-polymorphic P systems,

whereas even non-cooperative polymorphic P systems with targets can grow faster than any

polymorphic P systems without targets.

Discussion We proposed a variant of the rewriting model of P systems where the rules are

represented by objects of the system itself and thus can dynamically change. This yields a

mechanism whose idea is similar to the idea of the functioning of the cell nucleus (i.e., DNA

represent the proteins performing certain functions on the objects including DNA), except

our formalism is more elegant mathematically because of its simplicity and because we only

used a trivial encoding (which is no encoding at all, except the left and right parts of the

rule are given in dedicated membranes).

This variant also has a number of connections to the conventional computing, since the

“program” can be changed by manipulating data (cf. von Neumann architecture vs Harvard

architecture). A number of possible extensions is suggested in the Definition section of the

section.

Polymorphic P systems are universal (with 47 membranes) because non-polymorphic

P systems are universal. While the growth of non-polymorphic P systems is bounded by

exponential, polymorphic P systems without target indications can grow faster, bounded by

an exponential of polynomials, and polymorphic P systems with target indications can grow

even faster, bounded by an exponential of exponentials.

Non-cooperative polymorphic P systems can generate non-context-free sets of numbers.

Cooperative polymorphic P systems can multiply numbers in constant time and generate

factorials of n or exponentials of exponentials of n in time O(n), which is a very important

advantage over non-polymorphic P systems.

An especially interesting case is that of deciding if the input belongs to a given set, e.g.,

{n! | n ≥ 1}. While non-polymorphic P systems cannot even grow with factorial speed, not

to speak about halting or verifying the input, we have shown that polymorphic P systems

can decide factorials in time O(n). This implies that there exist infinite sets of numbers

that are accepted in a time which is sublinear with respect to the size of the input in binary

representation (without cheating by only examining a part of the input to accept).

211

Many questions are left open, we mention three questions here. First, we find it par-

ticularly interesting what is the exact characterization of the most restricted classes we

defined, like OP∗(polym−d(ncoo)). On the other hand, it seems interesting how the (gen-

eral classes of) polymorphic P systems can solve the problems of real applications which

non-polymorphic P system are not suitable for. Another question is whether the polymor-

phic P systems can effectively use superexponential growth and dynamics of rule description

to solve intractable problems in polynomial time without dividing or creating membranes.

Conjecture: no, because the total number of rules (counting rules in different regions as

different) cannot grow.

6.5 Other Applications

The author has published a number of other works on application of P systems and other

formal computing models. We list some of them here, without describing them in detail.

In [201], [202] one considers performing logical inference by membrane systems, called

there “chaining”.

In [33] one considers encoding numbers by multisets and discusses the questions of com-

pactness of the representation and of the efficiency of performing the arithmetic operations

in different multiset representations.

In [36], [37] one considers right self-assembly of a double-stranded molecule from a single-

stranded words of bounded length. If this subregular generative mechanism is equipped with

the idea of computing and observing, we have a computationally complete device.

In [200] one considers cellular automata that possess a specific invariant, a so-called

number-conservativity. It is established that even with the minimal (called radius-1/2, and

sometimes referred to as one-way) neighborhood (the focus cell and one neighbor), number

conservative cellular automata are computationally complete. It is established that 1057

states are sufficient.

Reversible logical elements with memory In [239], [238], [240], [241] and [242] one

considers different reversible computing models, in particular reversible logic elements with

(1-bit) memory of degree k (written k-RLEMs). These are primitives with k inputs, k

outputs and 2 states, defined by a bijection from input-state pairs onto state-output pairs.

It was well-known that a specific 4-RLEM called rotary element, denoted RE is com-

putationally universal, in the sense that any computation device, e.g., a reversible Turing

machine, can be constructed from REs, connected by wires. On the other hand, RE has an

implementation in the so-called billiard ball model.

An RLEM is called non-degenerate if it is not equivalent to RLEM(s) of smaller degrees

and/or wires. It is known that there must be some input that changes the state, there

must be some input leading to different outputs depending on the state, and no input can

lead to the same output in both states without changing the state. Moreover, these three

requirements are sufficient for an RLEM to be non-degenerate.

It has been shown (see the references in the beginning of the subsection) that any non-

degenerate k-RLEM is computationally universal if k ≥ 3. In particular, all k-RLEMs are

212

thoroughly studied for 2 ≤ k ≤ 4, and necessary simulations of some elements are given as

circuits of other ones.

6.6 Conclusions to Chapter 6

Membrane systems were presented describing the inflectional process.

The linear-time algorithms were given for searching in a dictionary and updating it im-

plemented as membrane systems. We underline that the systems are constructed as reusable

modules, so they are suitable for using as sub-algorithms for solving more complicated prob-

lems.

The scope of handling dictionaries is not limited to the dictionaries in the classical sense.

Understanding the definition of a dictionary, i.e., a string-valued function defined on a finite

set of strings, leads to direct applicability of the proposed methods to handle alphabets,

lexicons, thesauruses, dictionaries of exceptions, and even databases. At last, it is natu-

ral to consider these algorithms together with morphological analyzer and morphological

synthesizer.

Two algorithms were outlined that synchronize two given classes of P systems. The

first one is non-deterministic and it synchronizes the class of transitional P systems (with

cooperative rules) in time 2h + 3, where h is the depth of the membrane tree. The second

algorithm is deterministic and it synchronizes the class of P systems with promoters and

inhibitors in time 3h + 3.

The results presented here rely on a rather strong target indication, in!, which sends an

object to all inner membranes. Such a synchronization was already considered in neural-like

P systems where it corresponds to the target go. It would be interesting to investigate what

happens if such target is not permitted. However, we conjecture that a synchronization

would be impossible in this case.

The study of the synchronization algorithms for different classes of P systems is important

as it permits to implement different synchronization strategies which are important for such

a parallel device as P systems. In particular, with such approach it is possible to simulate

P systems with multiple global clocks by P systems with one global clock. It is particularly

interesting to investigate the synchronization problem for P systems which cannot create

new objects, for example for P systems with symport/antiport.

A variant of the rewriting model of P systems was proposed where the rules are rep-

resented by objects of the system itself and thus can dynamically change. This yields a

mechanism whose idea is similar to the idea of the functioning of the cell nucleus (i.e., DNA

represent the proteins performing certain functions on the objects including DNA), except

our formalism is more elegant mathematically because of its simplicity and because we only

used a trivial encoding (which is no encoding at all, except the left and right parts of the

rule are given in dedicated membranes).

This variant also has a number of connections to the conventional computing, since the

“program” can be changed by manipulating data (cf. von Neumann architecture vs Harvard

architecture). A number of possible extensions is suggested in the Definition section of the

section.

213

Polymorphic P systems are universal (with 47 membranes) because non-polymorphic

P systems are universal. While the growth of non-polymorphic P systems is bounded by

exponential, polymorphic P systems without target indications can grow faster, bounded by

an exponential of polynomials, and polymorphic P systems with target indications can grow

even faster, bounded by an exponential of exponentials.

Non-cooperative polymorphic P systems can generate non-context-free sets of numbers.

Cooperative polymorphic P systems can multiply numbers in constant time and generate

factorials of n or exponentials of exponentials of n in time O(n), which is a very important

advantage over non-polymorphic P systems.

An especially interesting case is that of deciding if the input belongs to a given set, e.g.,

{n! | n ≥ 1}. While non-polymorphic P systems cannot even grow with factorial speed, not

to speak about halting or verifying the input, we have shown that polymorphic P systems

can decide factorials in time O(n). This implies that there exist infinite sets of numbers

that are accepted in a time which is sublinear with respect to the size of the input in binary

representation (without cheating by only examining a part of the input to accept).

Many questions are left open, we mention three questions here. First, we find it par-

ticularly interesting what is the exact characterization of the most restricted classes we

defined, like OP∗(polym−d(ncoo)). On the other hand, it seems interesting how the (gen-

eral classes of) polymorphic P systems can solve the problems of real applications which

non-polymorphic P system are not suitable for. Another question is whether the polymor-

phic P systems can effectively use superexponential growth and dynamics of rule description

to solve intractable problems in polynomial time without dividing or creating membranes.

Conjecture: no, because the total number of rules (counting rules in different regions as

different) cannot grow.

Other applicative directions are mentioned, such as chaining, encoding numbers by mul-

tisets for their processing with membrane systems, right self-assembly of a double-stranded

molecule from a single-stranded words of bounded length, cellular automata that are number-

conservative, and reversible logical elements with memory.

Section 6.1 is based on publications [31], [32] and [48], and mentions publication [48].

Section 6.2 is based on works [49] and [50]. Section 6.3 is based on publications [97] and [98].

Section 6.4 is based on publications [81] and [82]. Section 6.5 is based on works [201], [202],

[33], [36], [37], [200], as well as the publications on reversible logical elements with memory

[239], [238], [240], [241] and [242].

214

GENERAL CONCLUSIONS AND

RECOMMENDATIONS
The present habilitation thesis contains an overview and the obtained results on small com-

putational devices, mainly in distributed parallel processing of multisets and strings. In our

world, with rapid development of technologies, we see that, despite their miniaturization,

the computational devices become increasingly complex, to the unimaginable limits. In this

perspective it strongly contrasts to the results here, showing that, at least in principle, a

computational device does not really have to be complicated just to be able to compute

anything computable. In the abstract framework, interpretation and execution of stored pro-

grams can be done by systems of very small descriptional complexity. Clearly, we are also

interested in efficient computations. Hence, we also pay attention to the simple computing

devices that attack intractable (for computers with bounded parallelism) problems by using

parallelism and distributivity.

We have studied a number of models, variants, features, working modes, their restrictions,

properties, computational power, efficiency, and certainly, their descriptional complexity

parameters. The underlying research is classified as Theoretical computer science, but it also

interconnects with multiple disciplines, like Algebra, Formal language theory, Computability,

Computational complexity, Logic and Biocomputing, to name a few. The following results

can be considered as the most important theoretical ones.

1. Small number of rules. In Section 3.1 we presented a universal P system with 23

antiport rules. Clearly, it may also be viewed as a universal maximally parallel system with

23 multiset rewriting rules. Multiple optimization techniques and strategies were used to

achieve behavior of many rules with only a few. It is truly remarkable that such a small

number of such simple rules makes it possible to interpret a stored program and yield a

computationally complete behavior. The number of computational branches of the machine

used as a starting point for the simulation was higher than that. Although the author has

shown that 5 rules already suffice for universality in case of P systems with string-objects

and splicing operations (this result is only mentioned in the section on Splicing, but its

presentation is not included in the thesis), the symbol-object model is limited to a much

simpler data structure.

2. Determinism and reversibility. In Section 2.3 we presented a study of determin-

istic and reversible P systems and the strong variants of these properties. The power (from

sublinear to universal) of uncontrolled and of controlled systems satisfying these properties

is summarized in Table 2.1. We also presented a syntactic criterion of strong reversibility.

A few cases remain open, and some interesting conjectures were formulated. We mention

other computational models where the author considered reversibility and determinism.

3. Membrane creation in transitional P systems, together with membrane dissolution,

215

makes it possible to obtain the computational complete systems! Note that no dynamic

information is present on the membrane itself, besides the fact whether it exists or not. The

only possible interaction between different objects is via creating and dissolving membranes.

A completely untraditional approach has been used to obtain this result, see Section 2.5: the

information of the simulated computation is stored in the multiplicities of membranes, rather

than in the multiplicities of objects. We have also addressed the questions of generating

languages, deterministic acceptance of sets of vectors, object and membrane complexity.

4. P systems with active membranes without polarizations are computationally

complete! The idea is related to the previous most important result, except that the work-

ing mode of these P systems is different. It is possible here to create new membranes only

by dividing the existing ones, so even zero has to be encoded by one, otherwise it cannot be

incremented. Again, the information of the simulated computation is stored in the multi-

plicities of membranes, not objects, see Section 4.2. We have also addressed the questions

of generating languages, object complexity, and membrane complexity. The technique used

heavily relies on non-determinism, and we conjecture that such deterministic systems are not

universal. Note that with two polarizations (storing 1 bit on a membrane), computational

completeness can be obtained in a single membrane and deterministically.

5. PSPACE-complete problems can be solved by P systems with active membranes

even without polarizations! We exploited timing as the way of interacting of the objects

(dissolving a membrane earlier or later by one object, and checking this by another object),

see Section 4.5. In contrast to the two previous most important results, we now use a limited

number of such interactions, corresponding to the number of levels of membrane hierarchy.

Note that with two polarizations (storing 1 bit on a membrane), one has solved problems in

P PP without non-elementary division.

6. We have improved the state of the art for the model of hybrid networks of evo-

lutionary processors, see Section 5.1. Namely, HNEPs are universal with 7 nodes, while

HNEPs with 1 node are subregular and have been characterized. Note that in the basic

model of networks of evolutionary processors, the filters are much more powerful, and com-

putational completeness has been obtained already with 2 nodes. We remark that NEPs with

a complete graph demonstrate complicated (computationally universal) behavior emerging

as a joint effect of very simple components, acting independently. We have also introduced

a new variant of HNEPs: those with obligatory operations, its research being quite a per-

spective direction.

7. Deterministic controlled non-cooperative systems only accept finite sets and

their complements, see Section 2.2. This implies that determinism establishes a frontier be-

tween the computational completeness and decidability for non-cooperative multiset rewrit-

ing with control. Note that this holds for the maximally parallel mode and for the asyn-

chronous mode, while surprisingly the sequential mode turns out to be more powerful here,

yielding computational completeness.

8. Energy-based P systems have been shown to be computationally complete in the

maximally parallel mode, see Section 4.8. This model has a very weak form of interaction

between objects: all they can do is to be renamed, releasing or consuming free energy of the

region. Moreover, energy conservation law is a built-in feature of the model. We conjecture

that deterministic systems are not universal, because by modifying free energy of the region

216

we can only toggle the behavior of an object between three possibilities, namely its evolution

in the pre-defined way, waiting forever or waiting before resuming that evolution. Although

the technique is quite different, the results are similar to those for P systems with unit rules

and energy assigned to membranes.

9. Insertion-deletion P systems are computationally complete in the maximally parallel

mode even with inserting and deleting one symbol without context (with priority of deletion

over insertion), see Section 5.2. This is easy to see for graphs, but requires a more difficult

technique for trees. Similar results have been established for insertion and deletion on the

ends of the string.

Besides the theoretical results mentioned above, we have considered a number of ap-

plications. For instance, we presented new results on synchronization in P systems, see

Section 6.3. This is a problem similar to Firing Squad Synchronization, except that the un-

derlying structure is a tree (of height h, not known in advance), and the model is membrane

systems, not cellular automata. Deterministic systems synchronize in 3h + 3 steps.

Another application is polymorphic P systems. Its use is providing a framework where

rules can dynamically change during the process of computation, which is important for

problems of symbolic computation and computer algebra.

Other applications deal with linguistics. We proposed an efficient implementation of

dictionaries by membrane systems, using membrane (tree) structure to represent the prefix

tree of the dictionary. We discovered suitability of P systems for performing inflections of

words in the Romanian language. We also proposed P systems annotating affixes of the

Romanian language, using a model that accounts for complex derivation steps that may

consist of multiple affixes, changing terminations and/or alternations in the root.

More detailed conclusions can be found at the end of Chapters 2, 3, 4, 5 and 6. Tech-

nical conclusions and more detailed open problems are given in the end of sections of these

chapters. The potential new directions that complete and continue investigation of the cor-

responding formal models, can serve as the basis for further work. The present thesis can

be also regarded as a didactic work. It provides a detailed coverage of multiset processing,

transitional P systems, P systems with symport/antiport, P systems with string-objects and

networks of evolutionary processors. Many results proved are optimal: either the minimiza-

tion is already at the lowest possible parameter, or a characterization has been obtained.

Minimization problems lead to simplification of potential implementations performed by

other researchers. Comparison and characterization of different models, variants and features

lead to simplification of choice what to implement, depending on whether the corresponding

task falls under the obtained characterization. Connection to different models advances the

general theory of computation as information processing.

Recommendations The author recommends to continue research of parallel distributed

processing of multisets and strings, in particular paying attention to the following problems

that remained open:

1) What is the exact characterization of the family of languages generated by non-

cooperative transitional P systems?

2) Verify the conjectures of non-universality in Table 2.1 on determinism and reversibility.

3) Answer unsolved cases in Table 2.2 on self-stabilization.

217

4) What is the power of P systems with membrane creation and one object (PsMAT is

conjectured)?

5) What is the power of symport systems with only one extra object?

6) What is the power of deterministic P systems with polarizationless membrane division?

7) Investigate P systems with active membranes where rules of type (a) have at most one

object in their right side.

8) Can PSPACE-complete problems be solved by P systems with active membranes

without non-elementary division?

9) What is the minimal number of membranes in efficient P systems with active mem-

branes under minimal parallelism?

10) What is the power of deterministic energy-based P systems (conjecture: degenerate).
11) Characterizing restricted polymorphic P systems.

Direct applications and implementations The discussion below concerns investiga-
tions that are NOT part of the present thesis. However, the author has been overwhelmed
with questions “why?” and “how?”, so the corresponding explanations are due. Since most
research presented here make part of membrane computing, it is the membrane computing
that will be used as a representative member of unconventional computing area.

Applications of membrane systems include machine learning, modeling of biological pro-
cesses (photosynthesis, certain signaling pathways, quorum sensing in bacteria, cell-mediated
immunity), and computer science applications such as computer graphics, public-key cryp-
tography, approximation and sorting algorithms, as well as analysis of various computation-
ally hard problems.

Many variant models have been studied, and interest has focused on proving computa-
tional universality for systems with a small number of membranes, for the purpose of solving
NP-complete problems such as Boolean satisfiability (SAT) problems and the traveling sales-
man problem (TSP). The P systems may trade space and time complexities and less often
use models to explain natural processes in living cells. The studies devise models that may
at least theoretically be implemented on hardware. To date, the P systems are nearly all
theoretical models that have never been reduced to practice, although a practical system is
given in the US Patent Application No.: 12/289,735.

Although inspired by biology, the primary research interest in P systems is concerned
with their use as a computational model, rather than for biological modeling, although this is
also being investigated. Most variants of membrane systems have been proved to be Turing-
complete and computationally efficient, i.e., able to solve computationally hard problems
in polynomial time. Although most research in P systems concentrates on computational
powers, lately they have been used to model biological phenomena.

As P systems are inspired from the structure and functioning of the living cell, it is
natural to consider them as modeling tools for biological systems, within the framework of
Systems Biology, being an alternative and complementary to more classical approaches like
Ordinary Differential Equations (ODEs), Petri nets and π-calculus.

Indirect applications. To give the reader just a few ideas about possible applica-
tions of membrane computing, we list the chapters of the book containing [132]. (I)Bio-
applications: 2)P System Models for Mechanosensitive Channels, 3)P Systems for Biolog-
ical Dynamics, 4)Modeling Respiration in Bacteria and Respiration/Photosynthesis Inter-
action in Cyanobacteria Using a P System Simulator, 5)Modeling Cell-Mediated Immunity
by Means of P Systems, 6)A Membrane Computing Model of Photosynthesis, 7)Modeling

218

p53 Signaling Pathways by Using Multiset Processing; (II)Computer Science Applications:
8)Static Sorting P Systems, 9)Membrane-Based Devices Used in Computer Graphics, 10)An
Analysis of a Public Key Protocol with Membranes, 11)Membrane Algorithms: Approximate
Algorithms for NP-Complete Optimization Problems, 12)Computationally Hard Problems
Addressed Through P Systems; (III)Applications to Linguistics: 13)Linguistic Membrane
Systems and Applications, 14)Parsing with P Automata, (IV)Membrane Software: 15)Avail-
able Membrane Computing Software.

Let us return to the unconventional computing in general. The most obvious explanations
of importance of unconventional computing are the miniaturization as the aim of devising
small massively parallel computers or information storages, and the Moore’s law, predicting
the increase of speed, energy efficiency and compactness of future computers.

Looking deeper, one can easily see a number of other reasons to focus on unconventional

computing, without directly having applications in mind. For instance, 1)developing new

methods of algorithm design for conventional computers, 2)new perspective insights into

the fundamental Physics laws, 3)new measures of information, relevant for non-standard

data structures, 4)the interdisciplinary research bridging Classical computability, Informa-

tion theory, Number theory, Biology, Physics, etc.

The author has published over 160 papers. Besides writing about 20 single-author pub-

lications, he has also collaborated with over 50 coauthors from Austria, China, Finland,

France, Germany, Hungary, Italy, Japan, Kazakhstan, Macedonia, Moldova, Mongolia, Ro-

mania and Spain. The author has publications in the most prestigious journals in Theoretical

computer science, e.g., Theoretical Computer Science and Information Processing Letters by

Elsevier, Natural Computing and Acta Informatica by Springer, Fundamenta Informaticae

by the Polish Mathematical Society, International Journal of Foundations of Computer Sci-

ence by World Scientific, and New Generation Computing by Ohmsha Ltd. and Springer

Japan. He has over 30 articles in Lecture Notes of Computer Science published by Springer,

and chapters in monographs The Oxford Handbook of Membrane Computing by the Oxford

University Press, Bio-Inspired Models for Natural and Formal Languages by the Cambridge

Scholars Publishing, Mathematics, Computing, Language, and Life: Frontiers in Mathe-

matical Linguistics and Language Theory by Imperial College Press/World Scientific, and

Applications of Membrane Computing in the Natural Computing Series by Springer.

By the completion of this thesis, DBLP [286] has shown 37 journal papers and 37 confer-

ence ones, and Google Scholar [287] has reported the author’s h-index of 16 and i10-index

of 30, having registered over 880 citations. Out of over 200 researchers working in the

areas mentioned below, the author is one of the main contributors to, e.g., the following

research: maximally parallel multiset rewriting, non-cooperative P systems with/without

control, transitional P systems, symport/antiport, evolution-communication P systems, ac-

tive membranes, reversibility in membrane computing, and the networks of evolutionary

processors. The author has produced some exotic results, e.g., on tatami tilings, and on

solving the Hamiltonian path problem by ciliate gene assembly (with potential implementa-

tion in a laboratory), as well as a number of applied results, e.g., on the multicriterial bot-

tleneck transportation problem, sorting, synchronization, chaining in logic, polymorphism,

inflections in the Romanian language, and annotating affixes in the Romanian language.

219

Bibliography

1. Adleman L. Molecular Computation of Solutions to Combinatorial Problems. Science
226, 1994, p. 1021–1024.

2. Alhazov A. A Note on P Systems with Activators. Third Brainstorming Week on Mem-
brane Computing, RGNC report 01/2005, Sevilla: Fénix Editora, 2005, p. 16–19.

3. Alhazov A. Ciliate Operations without Context in a Membrane Computing Framework.
Romanian Journal of Information Science and Technology 10, 4, 2007, p. 315–322.

4. Alhazov A. Ciliate Operations without Context in a Membrane Computing Framework.
Technical Report 855, Turku: Turku Centre for Computer Science, 2007.

5. Alhazov A. Communication in Membrane Systems with Symbol Objects. PhD Thesis,
Rovira i Virgili University, 2006, 218 p.

6. Alhazov A. Developments in Networks of Evolutionary Processors. Computer Science
Journal of Moldova 21, 1(61), 2013, p. 3–35.

7. Alhazov A. Maximally Parallel Multiset-Rewriting Systems: Browsing the Configura-
tions. Third Brainstorming Week on Membrane Computing, RGNC report 01/2005,
Univ. Seville, Sevilla: Fénix Editora, 2005, p. 1–10.

8. Alhazov A. Minimal Parallelism and Number of Membrane Polarizations. Computer
Science Journal of Moldova 18, 2(53), 2010, p. 149–170.

9. Alhazov A. Minimal Parallelism and Number of Membrane Polarizations. Triangle.
Language, Literature, Computation 6, Languages: Bioinspired Approaches, Tarragona:
Publicacions URV, 2011, p. 1–18.

10. Alhazov A. Minimal Parallelism and Number of Membrane Polarizations. Preproc. 7th
Int’l Workshop on Membrane Computing, WMC7, Leiden, 2006, p. 74–87.

11. Alhazov A. Minimizing Evolution-Communication P Systems and Automata. New Gen-
eration Computing 22, 4, 2004, p. 299–310.

12. Alhazov A. Minimizing Evolution-Communication P Systems and EC P Automata.
Brainstorming Week on Membrane Computing, Technical Report 26/03, Tarragona:
Rovira i Virgili University, 2003, p. 23–31.

13. Alhazov A. Number of Protons/Bi-stable Catalysts and Membranes in P Systems.
Time-Freeness. Membrane Computing, 6th Int’l Workshop, WMC 2005, Vienna, Lec-
ture Notes in Computer Science 3850, Springer, 2006, p. 79–95.

14. Alhazov A. Number of Protons/Bi-stable Catalysts and Membranes in P Systems.
Time-Freeness. Preproc. 6th Int’l Workshop on Membrane Computing, WMC6, Vienna,
2005, p. 102–122.

15. Alhazov A. On Determinism of Evolution-Communication P Systems. Journal of Uni-
versal Computer Science 10, 5, 2004, p. 502–508.

16. Alhazov A. On the Power of Deterministic EC P Systems. Third Brainstorming Week on
Membrane Computing, RGNC report 01/2005, Univ. Seville, Sevilla: Fénix Editora,
2005, p. 11–15.

17. Alhazov A. P Systems without Multiplicities of Symbol-Objects. Information Process-
ing Letters 100, 3, 2006, p. 124–129.

220

18. Alhazov A. Properties of Membrane Systems. Membrane Computing - 12th Interna-
tional Conference, CMC12, Fontainebleau, Lecture Notes in Computer Science 7184,
2012, p. 1–13.

19. Alhazov A. Properties of Membrane Systems. Preproc. Twelfth Conference on Mem-
brane Computing, CMC12, Fontainebleau, 2011, p. 3–14.

20. Alhazov A. Solving SAT by Symport/Antiport P Systems with Membrane Division.
Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Sevilla:
Fénix Editora, 2005, p. 1–6.

21. Alhazov A., Antoniotti M., Freund R., Leporati A., Mauri G. Self-Stabilization in
Membrane Systems. Computer Sc. Journal of Moldova 20, 2(59), 2012, p. 133–146.

22. Alhazov A., Antoniotti M., Freund R., Leporati A., Mauri G. Self-Stabilization in
Membrane Systems. RGNC report 1/2012, 10th Brainstorming Week on Membrane
Computing, vol. I, Sevilla: Fénix Editora, 2012, p. 1–10.

23. Alhazov A., Antoniotti M., Leporati A. Characterizing the Computational Power of
Energy-Based P Systems. International Journal of Computer Mathematics 90, 4, 2013,
p. 789–800.

24. Alhazov A., Antoniotti M., Leporati A. Characterizing the Computational Power of
Energy-Based P Systems. RGNC report 1/2012, 10th Brainstorming Week on Mem-
brane Computing, vol. I, Sevilla: Fénix Editora, 2012, p. 11–24.

25. Alhazov A., Bel-Enguix G., Epifanova I., Rogozhin Yu. About Two Models of Complete
Obligatory Hybrid Networks of Evolutionary Processors. In preparation.

26. Alhazov A., Bel-Enguix G., Krassovitskiy A., Rogozhin Yu. About Complete Obliga-
tory Hybrid Networks of Evolutionary Processors without Substitution. Advances in
Computational Intelligence, 11th Int’l Work-Conference on Artificial Neural Networks,
IWANN 2011, Málaga, Lecture Notes in Computer Science 6691, 2011, p. 441–448.

27. Alhazov A., Bel-Enguix G., Krassovitskiy A., Rogozhin Yu. Complete Obligatory
Hybrid Networks of Evolutionary Processors. Highlights in Practical Applications of
Agents and Multiagent Systems, Salamanca, Advances in Intelligent and Soft Comput-
ing 89, 2011, p. 275–282.

28. Alhazov A., Bel-Enguix G., Rogozhin Yu. About a New Variant of HNEPs: Obliga-
tory Hybrid Networks of Evolutionary Processors. Bio-Inspired Models for Natural and
Formal Languages, Cambridge Scholars Publishing, 2011, p. 191–204.

29. Alhazov A., Bel-Enguix G., Rogozhin Yu. Obligatory Hybrid Networks of Evolutionary
Processors. International Conference on Agents and Artificial Intelligence, Porto, 2009,
INSTICC Press, 613-618.

30. Alhazov A., Boian E., Ciubotaru C., Cojocaru S., Colesnicov A., Malahova L., Rogozhin
Yu. Application of P System Models in Computer Linguistics. Proceedings of the In-
ternational Workshop on Intelligent Information Systems, IIS2011, Chişinău, 2011, p.
101–104.

31. Alhazov A., Boian E., Cojocaru S., Rogozhin Yu. Modelling Inflections in Romanian
Language by P Systems with String Replication. Computer Science Journal of Moldova
17, 2(50), 2009, p. 160–178.

32. Alhazov A., Boian E., Cojocaru S., Rogozhin Yu. Modelling Inflections in Romanian
Language by P Systems with String Replication. Preproc. Tenth Workshop on Mem-
brane Computing, WMC10, Curtea de Argeş, RGNC report 3/2009, University of
Seville, 2009, p. 116–128.

33. Alhazov A., Bonchiş C., Ciobanu G., Izbaşa C. Encodings and Arithmetic Operations in
P Systems. 4th Brainstorming Week on Membrane Computing, RGNC report 02/2006,
Univ. Seville, vol. I, Sevilla: Fénix Ed., 2006, p. 1–28.

221

34. Alhazov A., Burtseva L., Cojocaru S., Rogozhin Yu. Computing Solutions of #P-
complete Problems by P Systems with Active Membranes. Preproceedings of the Ninth
Workshop on Membrane Computing, WMC9, Edinburgh, 2008, p. 59–70.

35. Alhazov A., Burtseva L., Cojocaru S., Rogozhin Yu. Solving PP-Complete and #P-
Complete Problems by P Systems with Active Membranes. Membrane Computing - 9th
International Workshop, WMC 2008, Edinburgh, Lecture Notes in Computer Science
5391, Springer, 2009, p. 108–117.

36. Alhazov A., Cavaliere M. Computing by Observing Bio-Systems: the Case of Sticker
Systems. DNA Computing: 10th International Workshop on DNA Computing, DNA10,
Milan, Revised Selected Papers, Lecture Notes in Computer Science 3384, Springer,
2005, p. 1–13.

37. Alhazov A., Cavaliere M. Computing by Observing Bio-Systems: the Case of Sticker
Systems. Tenth International Meeting on DNA Computing, DNA10, Milan: University
of Milano-Bicocca, 2004, p. 324–333.

38. Alhazov A., Cavaliere M. Evolution-Communication P Systems: Time-freeness. Third
Brainstorming Week on Membrane Computing, RGNC report 01/2005, Univ. Seville,
Sevilla: Fénix Editora, 2005, p. 11–18.

39. Alhazov A., Cavaliere M. Proton Pumping P Systems. Membrane Computing, Int’l
Workshop, WMC 2003, Tarragona, Lecture Notes in Computer Science 2933, Springer,
2004, p. 1–18.

40. Alhazov A., Cavaliere M. Proton Pumping P Systems. Preproc. Workshop on Membrane
Computing, TR 28/03, Tarragona: Rovira i Virgili Univ., 2003, p. 1–16.

41. Alhazov A., Ciubotaru C., Ivanov S., Rogozhin Yu. Membrane Systems Languages Are
Polynomial-Time Parsable. The Computer Science Journal of Moldova 18, 2(53), 2010,
139-148.

42. Alhazov A., Ciubotaru C., Rogozhin Yu., Ivanov S. Introduction to the Membrane
Systems Language Class. Telecommunications, Electronics and Informatics, 3rd Inter-
national Conference, ICTEI 2010, Proceedings, vol. II, Chişinău, 2010, p. 19–24.

43. Alhazov A., Ciubotaru C., Rogozhin Yu., Ivanov S. The Family of Languages Generated
by Non-Cooperative Membrane Systems. Membrane Computing - 11th Int’l Conference,
CMC11, Jena, Lecture Notes in Computer Science 6501, 2011, p. 65–79.

44. Alhazov A., Ciubotaru C., Rogozhin Yu., Ivanov S. The Family of Languages Generated
by Non-Cooperative Membrane Systems. Preproc. Eleventh Conference on Membrane
Computing, CMC11, Jena, Berlin: Verlag ProBusiness, 2010, p. 37–51.

45. Alhazov A., Ciubotaru C., Rogozhin Yu., Ivanov S. The Membrane Systems Language
Class. LA symposium, Mathematical Foundation of Algorithms and Computer Science,
RIMS Kôkyûroku Series 1691, Kyoto University, 2010, p. 44–50.

46. Alhazov A., Ciubotaru C., Rogozhin Yu., Ivanov S. The Membrane Systems Language
Class. RGNC report 1/2010, Eight Brainstorming Week on Membrane Computing,
Sevilla: Fénix Editora, 2010, p. 23–35.

47. Alhazov A., Ciubotaru C., Rogozhin Yu., Ivanov S. The Membrane Systems Language
Class. LA sympos., Kyoto Univ., 2010, p. 12-1 – 12-9.

48. Alhazov A., Cojocaru S., Colesnicov A., Malahov L., Petic M. A P system for anno-
tation of Romanian affixes. 14th International Conference on Membrane Computing,
Chişinău, submitted, 2013.

49. Alhazov A., Cojocaru S., Malahova L., Rogozhin Yu. Dictionary Search and Update
by P Systems with String-Objects and Active Membranes. International Journal of
Computers, Communications and Control 3, 2009, p. 206–213.

222

50. Alhazov A., Cojocaru S., Malahova L., Rogozhin Yu. Dictionary Search and Update
by P Systems with String-Objects and Active Membranes. 7th Brainstorming Week on
Membrane Computing, RGNC report 1/2009, vol. I, Sevilla: Fénix Editora, 2009, p.
1–8.

51. Alhazov A., Csuhaj-Varjú E., Mart́ın-Vide C., Rogozhin Yu. About Universal Hybrid
Networks of Evolutionary Processors of Small Size. Language and Automata Theory
and Applications, Second International Conference, LATA 2008, Tarragona, Revised
Papers, Lecture Notes in Computer Science 5196, Springer, 2008, p. 28–39.

52. Alhazov A., Csuhaj-Varjú E., Mart́ın-Vide C., Rogozhin Yu. About Universal Hybrid
Networks of Evolutionary Processors of Small Size. Preproc. 2nd International Con-
ference on Language and Automata Theory and Applications, LATA 2008, Tarragona,
2008, p. 43–54.

53. Alhazov A., Csuhaj-Varjú E., Mart́ın-Vide C., Rogozhin Yu. Computational Com-
pleteness of Hybrid Networks of Evolutionary Processors with Seven Nodes. Preproc.
10th Int’l Workshop on Descriptional Complexity of Formal Systems, Charlottetown,
Canada, 2008, p. 38–47.

54. Alhazov A., Csuhaj-Varjú E., Mart́ın-Vide C., Rogozhin Yu. On the Size of Computa-
tionally Complete Hybrid Networks of Evolutionary Processors. Theoretical Computer
Science 410, 35, 2009, p. 3188–3197.

55. Alhazov A., Dassow J., Mart́ın-Vide C., Rogozhin Yu., Truthe B. On Networks of
Evolutionary Processors with Nodes of Two Types. Fundamenta Informaticae 91, 1,
2009, p. 1–15.

56. Alhazov A., Freund R. Asynchronous and Maximally Parallel Deterministic Controlled
Non-cooperative P Systems Characterize NFIN and coNFIN. Membrane Computing -
13th Int’l Conference, CMC13, Budapest, Lecture Notes in Computer Science 7762,
2013, p. 101–111.

57. Alhazov A., Freund R. Asynchronous and Maximally Parallel Deterministic Controlled
Non-cooperative P Systems Characterize NFIN and coNFIN. Preproc. 13th Int’l Con-
ference on Membrane Computing, CMC13, Budapest, 2012, p. 87–98.

58. Alhazov A., Freund R. Asynchronous and Maximally Parallel Deterministic Controlled
Non-Cooperative P Systems Characterize NFIN U coNFIN. RGNC report 1/2012, 10th
Brainstorming Week on Membrane Computing, vol. I, Sevilla: Fénix Editora, 2012, p.
25–34.

59. Alhazov A., Freund R. On Efficiency of P Systems with Active Membranes and Two
Polarizations. Preproc. Fifth Workshop on Membrane Computing, WMC5, Milan: Univ.
Milano-Bicocca, 2004, p. 81–94.

60. Alhazov A., Freund R. On the Efficiency of P Systems with Active Membranes and
Two Polarizations. Membrane Computing, 5th International Workshop, WMC 2004,
Milan, Revised Selected and Invited Papers, Lecture Notes in Computer Science 3365,
Springer, 2005, p. 146–160.

61. Alhazov A., Freund R. P Systems with One Membrane and Symport/ Antiport Rules of
Five Symbols are Computationally Complete. Third Brainstorming Week on Membrane
Computing, RGNC report 01/2005, Sevilla: Fénix Editora, 2005, p. 19–28.

62. Alhazov A., Freund R., Leporati A., Oswald M., Zandron C. (Tissue) P Systems with
Unit Rules and Energy Assigned to Membranes. Fundamenta Informaticae 74, 4, 2006,
p. 391–408.

63. Alhazov A., Freund R., Morita K. Determinism and Reversibility in P Systems with
One Membrane. “Kasseler Informatikschriften” (KIS), Tagungsband zum 20. Theo-

223

rietag der GI-Fachgruppe “Automaten und Formale Sprachen”, Technical report,
urn:nbn:de:hebis:34-2010110534894, 2010, p. 39–44.

64. Alhazov A., Freund R., Morita K. Reversibility and Determinism in Sequential Multi-
set Rewriting. Unconventional Computation 2010, Tokyo, Lecture Notes in Computer
Science 6079, 2010, p. 21–31.

65. Alhazov A., Freund R., Morita K. Sequential and Maximally Parallel Multiset Rewrit-
ing: Reversibility and Determinism. Natural Computing 11, 1, 2012, p. 95–106.

66. Alhazov A., Freund R., Oswald M. Cell / Symbol Complexity of Tissue P Systems with
Symport / Antiport Rules. International Journal of Foundations of Computer Science
17, 1, 2006, p. 3–26.

67. Alhazov A., Freund R., Oswald M. Symbol/Membrane Complexity of P Systems with
Symport/Antiport Rules. Membrane Computing, 6th Int’l Workshop, WMC 2005, Vi-
enna, Revised Sel. and Inv. Papers, Lecture Notes in Computer Science 3850, Springer,
2006, p. 96–113.

68. Alhazov A., Freund R., Oswald M. Symbol / Membrane Complexity of P Systems
with Symport / Antiport Rules. Preproc. 6th Int’l Workshop on Membrane Computing,
WMC6, Vienna, 2005, p. 123–146.

69. Alhazov A., Freund R., Oswald M. Tissue P Systems with Antiport Rules and Small
Numbers of Symbols and Cells. Developments in Language Theory: 9th Int’l Confer-
ence, DLT 2005, Palermo, Proceedings, Lecture Notes in Computer Science 3572,
Springer, 2005, p. 100–111.

70. Alhazov A., Freund R., Oswald M. Tissue P Systems with Antiport Rules and Small
Number of Symbols and Cells. Cellular Computing (Complexity Aspects), ESF PESC
Exploratory Workshop, Sevilla: Fénix Editora, 2005, p. 7–22.

71. Alhazov A., Freund R., Păun Gh. Computational Completeness of P Systems with
Active Membranes and Two Polarizations. Machines, Computations, and Universal-
ity, International Conference, MCU 2004, Saint Petersburg, Revised Selected Papers,
Lecture Notes in Computer Science 3354, Springer, 2005, p. 82–92.

72. Alhazov A., Freund R., Păun Gh. P Systems with Active Membranes and Two Polar-
izations. Third Brainstorming Week on Membrane Computing, RGNC report 01/2005,
Univ. Seville, Sevilla: Fénix Editora, 2005, p. 20–36.

73. Alhazov A., Freund R., Riscos-Núñez A. Membrane Division, Restricted Membrane
Creation and Object Complexity in P Systems. Int’l Journal of Computer Mathematics
83, 7, 2006, p. 529–548.

74. Alhazov A., Freund R., Riscos-Núñez A. One and Two Polarizations, Membrane Cre-
ation and Objects Complexity in P Systems. 7th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, SYNASC 05, EEE Computer Soci-
ety, 2005, p. 385–394.

75. Alhazov A., Freund R., Riscos-Núñez A. One and Two Polarizations, Membrane Cre-
ation and Objects Complexity in P Systems. Technical Report 05-11, Institute e-
Austria, Timişoara, Romania, 1st Int’l Workshop on Theory and Application of P Sys-
tems, TAPS, 2005, p. 9–18.

76. Alhazov A., Freund R., Rogozhin Yu. Computational Power of Symport/Antiport:
History, Advances and Open Problems. Membrane Computing, 6th Int’l Workshop,
WMC 2005, Vienna, Revised Sel. and Inv. Papers, Lecture Notes in Computer Science
3850, Springer, 2006, p. 1–30.

77. Alhazov A., Freund R., Rogozhin Yu. Computational Power of Symport / Antiport:
History, Advances and Open Problems. Preproc. 6th Int’l Workshop on Membrane Com-
puting, WMC6, Vienna, 2005, p. 44–78.

224

78. Alhazov A., Freund R., Rogozhin Yu. Some Optimal Results on Symport/Antiport P
Systems with Minimal Cooperation. Cellular Computing (Complexity Aspects), ESF
PESC Exploratory Workshop, Sevilla: Fénix Editora, 2005, p. 23–36.

79. Alhazov A., Ishdorj Ts.-O. Membrane Operations in P Systems with Active Membranes.
Triangle. Language, Literature, Computation 6, Languages: Bioinspired Appr., Tar-
ragona: Publ. URV, 2011, p. 19–28.

80. Alhazov A., Ishdorj Ts.-O. Membrane Operations in P Systems with Active Membranes.
Third Brainstorming Week on Membrane Computing, RGNC report 01/2005, Univ.
Seville, Sevilla: Fénix Editora, 2005, p. 37–44.

81. Alhazov A., Ivanov S., Rogozhin Yu. Polymorphic P Systems. Membrane Computing -
11th Int’l Conference, CMC11, Jena, Lecture Notes in Computer Science 6501, 2011,
p. 80–93.

82. Alhazov A., Ivanov S., Rogozhin Yu. Polymorphic P Systems. Preproc. Eleventh Con-
ference on Membrane Computing, CMC11, Jena, Verlag ProBusiness Berlin, 2010, p.
53–66.

83. Alhazov A., Kogler M., Margenstern M., Rogozhin Yu., Verlan S. Small Universal
TVDH and Test Tube Systems. International Journal of Foundations of Computer
Science 22, 1, 2011, p. 143–154.

84. Alhazov A., Krassovitskiy A., Rogozhin Yu. Circular Post Machines and P Systems with
Exo-insertion and Deletion. Membrane Computing - 12th Int’l Conference, CMC12,
Fontainebleau, Lecture Notes in Computer Science 7184, 2012, p. 73–86.

85. Alhazov A., Krassovitskiy A., Rogozhin Yu. Circular Post Machines and P Systems with
Exo-insertion and Deletion. Preproc. Twelfth Conference on Membrane Computing,
CMC12, Fontainebleau, 2011, p. 63–76.

86. Alhazov A., Krassovitskiy A., Rogozhin Yu., Verlan S. A Note on P Systems with
Small-Size Insertion and Deletion. Preproc. Tenth Workshop on Membrane Computing,
WMC10, Curtea de Argeş, RGNC report 3/2009, University of Seville, 2009, p. 534–
537.

87. Alhazov A., Krassovitskiy A., Rogozhin Yu., Verlan S. P Systems with Insertion and
Deletion Exo-operations. Fundamenta Informaticae 110, 1, 2011, p. 13–28.

88. Alhazov A., Krassovitskiy A., Rogozhin Yu., Verlan S. P Systems with Minimal Inser-
tion and Deletion. Theoretical Computer Science 412, 1-2, 2011, p. 136–144.

89. Alhazov A., Krassovitskiy A., Rogozhin Yu., Verlan S. P Systems with Minimal Inser-
tion and Deletion. 7th Brainstorming Week on Membrane Computing, RGNC report
1/2009, vol. I, Sevilla: Fénix Editora, 2009, p. 9–21.

90. Alhazov A., Krassovitskiy A., Rogozhin Yu., Verlan S. Small Size Insertion and Deletion
Systems. Mathematics, Computing, Language, and Life: Frontiers in Mathematical
Linguistics and Language Theory, Imperial College Press, 2010, p. 459–524.

91. Alhazov A., Kudlek M., Rogozhin Yu. Nine Universal Circular Post Machines. The
Computer Science Journal of Moldova 10, 3(30), Chişinău, 2002, p. 247–262.

92. Alhazov A., Leporati A., Mauri G., Porreca A.E., Zandron C. Simulating EXPSPACE
Turing Machines Using P Systems with Active Membranes. 13th Italian Conference on
Theoretical Computer Science, ICTCS 2012, Varese, 2012, 4p.

93. Alhazov A., Leporati A., Mauri G., Porreca A.E., Zandron C. The Computational
Power of Exponential-Space P Systems with Active Membranes. RGNC report 1/2012,
10th Brainstorming Week on Membrane Computing, vol. I, Sevilla: Fénix Editora, 2012,
p. 35–60.

94. Alhazov A., Li C., Petre I. Computing the Graph-Based Parallel Complexity of Gene
Assembly. Theoretical Computer Science 411, 25, 2010, p. 2359–2367.

225

95. Alhazov A., Li C., Petre I. Computing the graph-based parallel complexity of gene
assembly. Technical Report 859, Turku: Turku Centre for Computer Science, 2007.

96. Alhazov A., Margenstern M., Rogozhin V., Rogozhin Yu., Verlan S. Communicative P
Systems with Minimal Cooperation. Membrane Computing, 5th International Work-
shop, WMC 2004, Milan, Revised Selected and Invited Papers, Lecture Notes in Com-
puter Science 3365, Springer, 2005, p. 161–177.

97. Alhazov A., Margenstern M., Verlan S. Fast Synchronization in P Systems. Membrane
Computing - 9th International Workshop, WMC 2008, Edinburgh, Lecture Notes in
Computer Science 5391, Springer, 2009, p. 118–128.

98. Alhazov A., Margenstern M., Verlan S. Fast Synchronization in P Systems. Preproc.
Ninth Workshop on Membrane Computing, WMC9, Edinburgh, 2008, p. 71–84.

99. Alhazov A., Mart́ın-Vide C., Pan L. Solving Graph Problems by P Systems with Re-
stricted Elementary Active Membranes. Aspects of Molecular Computing, Lecture Notes
in Computer Science 2950, Springer, 2004, p. 1–22.

100. Alhazov A., Mart́ın-Vide C., Pan L. Solving a PSPACE-Complete Problem by P Sys-
tems with Restricted Active Membranes. Fundamenta Informaticae 58, 2, 2003, p.
67–77.

101. Alhazov A., Mart́ın-Vide C., Rogozhin Yu. Networks of Evolutionary Processors with
Two Nodes Are Unpredictable. Technical Report 818, Turku: Turku Centre for Com-
puter Science, 2007.

102. Alhazov A., Mart́ın-Vide C., Rogozhin Yu. Networks of Evolutionary Processors with
Two Nodes Are Unpredictable. Language and Automata Theory and Applications, Tech-
nical Report 35/07, Tarragona: Rovira i Virgili University, 2007, p. 521–527.

103. Alhazov A., Mart́ın-Vide C., Rogozhin Yu. On the Number of Nodes in Universal
Networks of Evolutionary Processors. Acta Informatica 43, 5, 2006, p. 331–339.

104. Alhazov A., Morita K. A Short Note on Reversibility in P Systems. 7th Brainstorming
Week on Membrane Computing, RGNC report 1/2009, vol. I, Sevilla: Fénix Editora,
2009, p. 23–28.

105. Alhazov A., Morita K. On Reversibility and Determinism in P Systems. Membrane
Computing, 10th Int’l Workshop, WMC 2009, Curtea de Argeş, Lecture Notes in Com-
puter Science 5957, 2010, p. 158–168.

106. Alhazov A., Morita K. On Reversibility and Determinism in P Systems. Preproc. Tenth
Workshop on Membrane Computing, WMC10, Curtea de Argeş, RGNC report 3/2009,
University of Seville, 2009, p. 129–140.

107. Alhazov A., Pan L. Polarizationless P Systems with Active Membranes. Grammars 7,
2004, p. 141–159.

108. Alhazov A., Pan L., Păun Gh. Trading Polarizations for Labels in P Systems with
Active Membranes. Acta Informatica 41, 2-3, 2004, p. 111–144.

109. Alhazov A., Petre I., Rogojin V. Solutions to Computational Problems through Gene
Assembly. Natural Computing 7, 3, 2008, p. 385–401.

110. Alhazov A., Petre I., Rogojin V. Solutions to Computational Problems through Gene
Assembly. 13th Int’l Meeting on DNA Computing, DNA13, Memphis, TN, Revised
Selected Papers, Lecture Notes in Computer Science 4848, Springer, 2008, p. 36–45.

111. Alhazov A., Petre I., Rogojin V. Solutions to Computational Problems through Gene
Assembly. Preproceedings of the 13th Int’l Workshop on DNA Computing, 2007.

112. Alhazov A., Petre I., Rogojin V. The Parallel Complexity of Signed Graphs: Some
Decidability Results and an Improved Algorithm. Theoretical Computer Science 410,
24-25, 2009, p. 2308–2315.

226

113. Alhazov A., Petre I., Verlan S. A Sequence-Based Analysis of the Pointer Distribution
of Ciliate Genes. Tech. Rep. 902, Turku: Turku Centre for Computer Science, 2008.

114. Alhazov A., Pérez-Jiménez M.J. Uniform Solution of QSAT using Polarizationless Ac-
tive Membranes. Machines, Computations, and Universality, 5th International Confer-
ence, MCU 2007, Orléans, Lecture Notes in Computer Science 4664, Springer, 2007,
p. 122–133.

115. Alhazov A., Pérez-Jiménez M.J. Uniform Solution to QSAT Using Polarizationless
Active Membranes. 4th Brainstorming Week on Membrane Computing, RGNC report
02/2006, Univ. Seville, vol. I, Sevilla: Fénix Ed., 2006, p. 29–40.

116. Alhazov A., Rogozhin Yu. About Precise Characterization of Languages Generated
by Hybrid Networks of Evolutionary Processors with One Node. Computer Sci. J. of
Moldova 16, 3, 2008, p. 364–376.

117. Alhazov A., Rogozhin Yu. Generating Languages by P Systems with Minimal Sym-
port/Antiport. The Computer Science Journal of Moldova 14, 3(42), 2006, p. 299–323.

118. Alhazov A., Rogozhin Yu. Minimal Cooperation in Symport /Antiport P Systems with
One Membrane. Third Brainstorming Week on Membrane Computing, RGNC report
01/2005, Univ. Seville, Sevilla: Fénix Editora, 2005, p. 29–34.

119. Alhazov A., Rogozhin Yu. One-Membrane Symport with Few Extra Symbols. Int’l J.
of Computer Mathematics 90, 4, 2013, p. 750–759.

120. Alhazov A., Rogozhin Yu. One-Membrane Symport P Systems with Few Extra Symbols.
Preproc. 13th Int’l Conference on Membrane Computing, CMC13, Budapest, 2012, p.
115–124.

121. Alhazov A., Rogozhin Yu. Skin Output in P Systems with Minimal Symport/Antiport
and Two Membranes. Membrane Computing, 8th Int’l Workshop, WMC 2007, Thes-
saloniki, Lecture Notes in Computer Science 4860, 2007, p. 97–112.

122. Alhazov A., Rogozhin Yu. Skin Output in P Systems with Minimal Symport/Antiport
and Two Membranes. Preproc. Eighth Workshop on Membrane Computing, WMC8,
Thessaloniki, 2007, p. 99–110.

123. Alhazov A., Rogozhin Yu. The Power of Symport-3 with Few Extra Symbols. RGNC
report 1/2012, 10th Brainstorming Week on Membrane Computing, vol. I, Sevilla:
Fénix Editora, 2012, p. 61–68.

124. Alhazov A., Rogozhin Yu. Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes. Membrane Computing, 7th Int’l Workshop,
WMC 2006, Leiden, Lecture Notes in Computer Science 4361, Springer, 2006, p.
135–153.

125. Alhazov A., Rogozhin Yu. Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes. Preproc. 7th Int’l Workshop on Membrane
Computing, WMC7, Leiden, 2006, p. 102–117.

126. Alhazov A., Rogozhin Yu., Verlan S. A Small Universal Splicing P System. Membrane
Computing - 11th Int’l Conference, CMC11, Jena, Lecture Notes in Computer Science
6501, 2011, p. 95–102.

127. Alhazov A., Rogozhin Yu., Verlan S. A Small Universal Splicing P System. Preproc.
Eleventh Conference on Membrane Computing, CMC11, Jena, Berlin: Verlag ProBusi-
ness, 2010, p. 67–74.

128. Alhazov A., Rogozhin Yu., Verlan S. Minimal Cooperation in Symport/Antiport Tissue
P Systems. Int’l Journal of Foundations of Computer Science 18, 1, 2007, p. 163–180.

129. Alhazov A., Rogozhin Yu., Verlan S. On Small Universal Splicing Systems. Int’l J.
Foundations of Comp. Sci. 23, 7, 2012, p. 1423–1438.

227

130. Alhazov A., Rogozhin Yu., Verlan S. Symport/Antiport Tissue P Systems with Min-
imal Cooperation. Cellular Computing (Complexity Aspects), ESF PESC Exploratory
Workshop, Sevilla: Fénix Editora, 2005, p. 37–52.

131. Alhazov A., Sburlan D. Static Sorting Algorithms for P Systems. Preproc. Workshop on
Membrane Computing, TR 28/03, Tarragona: Rovira i Virgili Univ., 2003, p. 17–40.

132. Alhazov A., Sburlan D. Static Sorting P Systems. In: Ciobanu G., Păun Gh., Pérez-
Jiménez M.J.: Applications of Membrane Computing, Nat. Computing Ser., Springer,
2005, p. 215–252.

133. Alhazov A., Sburlan D. (Ultimately Confluent) Parallel Multiset-Rewriting Systems
with Context. Third Brainstorming Week on Membrane Computing, RGNC report
01/2005, Univ. Seville, Sevilla: Fénix Editora, 2005, p. 45–52.

134. Alhazov A., Sburlan D. (Ultimately Confluent) Parallel Multiset-Rewriting Systems
with Permitting Contexts. Preproc. Fifth Workshop on Membrane Computing, WMC5,
Milan: Univ. Milano-Bicocca, 2004, p. 95–103.

135. Alhazov A., Sburlan D. Ultimately Confluent Rewriting Systems. Parallel Multiset-
Rewriting with Permitting or Forbidding Contexts. Membrane Computing, 5th Inter-
national Workshop, WMC 2004, Milan, Revised Selected and Invited Papers, Lecture
Notes in Computer Science 3365, Springer, 2005, p. 178–189.

136. Alhazov A., Verlan S. Minimization Strategies for Maximally Parallel Multiset Rewrit-
ing Systems. Theoretical Computer Science 412, 17, 2011, p. 1581–1591.

137. Alhazov A., Verlan S. Minimization Strategies for Maximally Parallel Multiset Rewrit-
ing Systems. Report arXiv:1009.2706v1 [cs.FL], 2010.

138. Alhazov A., Verlan S. Minimization Strategies for Maximally Parallel Multiset Rewrit-
ing Systems. Technical Report 862, Turku: Turku Centre for Computer Science, 2008.

139. Alhazov A., Verlan S. Sevilla Carpets of Deterministic Non-cooperative P Systems.
Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Sevilla:
Fénix Editora, 2005, p. 53–60.

140. Arroyo F., Baranda A., Castellanos J., Păun Gh. Membrane Computing: The Power
of (Rule) Creation. Journal of Universal Computer Science 8, 3, 2002, p. 369–381.

141. Beene R. RNA-editing: The Alteration of Protein Coding Sequences of RNA. Ellis
Horwood Series in Molecular Biology, Chichester, West Sussex, 1993.

142. Bernardini F., Gheorghe M. On the Power of Minimal Symport/Antiport. Preproc.
Workshop on Membrane Computing, TR 28/03, Tarragona: Rovira i Virgili Univ.,
2003, p. 72–83.

143. Bennett C.H. Logical Reversibility of Computation. IBM Journal of Research and De-
velopment 17, 1973, p. 525–532.

144. Bernardini F., Gheorghe M. Language Generating by Means of P Systems with Active
Membranes. Brainstorming Week on Membrane Computing, Technical Report 26/03,
Tarragona: Rovira i Virgili University, 2003, p. 46–60.

145. Bernardini F., Gheorghe M., Margenstern M., Verlan S. How to Synchronize the Ac-
tivity of All Components of a P System? Proc. International Workshop Automata for
Cellular and Molecular Computing, Budapest: MTA SZTAKI, 2007, p. 11–22.

146. Castellanos J., Leupold P., Mitrana V. On the Size Complexity of Hybrid Networks of
Evolutionary Processors. Theoretical Computer Science 330(2), 2005, p. 205–220.

147. Castellanos J., Mart́ın-Vide C., Mitrana V., Sempere J. Networks of Evolutionary pro-
cessors. Acta Informatica 38, 2003, p. 517–529.

148. Castellanos J., Mart́ın-Vide C., Mitrana V., Sempere J. Solving NP-complete Problems
with Networks of Evolutionary Processors. IWANN 2001, Lecture Notes in Computer
Science 2084, Springer, 2001, p. 621–628.

228

149. Cavaliere M. Evolution-Communication P systems. Membrane Computing. Int’l Work-
shop, WMC 2002, Curteă de Argeş, Revised Papers, Lecture Notes in Computer Science
2597, Springer, 2003, p. 134–145.

150. Cavaliere M., Genova D. P Systems with Symport/Antiport of Rules. Journal of Uni-
versal Computer Science 10, 5, 2004, p. 540–558.

151. Cavaliere M., Ionescu M., Ishdorj Ts.-O. Inhibiting/De-inhibiting Rules in P Systems.
Preproc. Fifth Workshop on Membrane Computing, WMC5, Milan: Univ. Milano-
Bicocca, 2004, p. 174–183.

152. Ciobanu G., Pan L., Păun Gh., Pérez-Jiménez M.J. P Systems with Minimal Paral-
lelism. Theor. Computer Science 378, 2007, p. 117–130.

153. Cojocaru S. The Ascertainment of the Inflection Models for Romanian. Computer Sci-
ence Journal of Moldova 14, 1(40), 2006, p. 103–112.

154. Cojocaru S., Boian E. Determination of Inflexional Group using P Systems. Computer
Science Journal of Moldova 18, 1(52), 2010, p. 70–81.

155. Csuhaj-Varjú E. P Automata. Membrane Computing, 5th International Workshop,
WMC 2004, Milan, Revised Selected and Invited Papers, Lecture Notes in Computer
Science 3365, Springer, 2005, p. 19–35.

156. Csuhaj-Varjú E., Kari L., Păun Gh. Test Tube Distributed Systems Based on Splicing.
Computers and Artificial Intelligence 15(2-3), 1996, p. 211–232.

157. Csuhaj-Varjú E., Margenstern M., Vaszil Gy., Verlan S. Small Computationally Com-
plete Symport/Antiport P systems. Theoretical Computer Science 372 (2-3), 2007, p.
152–164.

158. Csuhaj-Varjú E., Ibarra O.H., Vaszil Gy. On the Computational Complexity of P Au-
tomata. Natural Computing 5, 2, 2006, p. 109–126.

159. Csuhaj-Varjú E., Mart́ın-Vide C., Mitrana V. Hybrid Networks of Evolutionary Pro-
cessors are Computationally Complete. Acta Informatica 41(4-5), 2005, p. 257–272.

160. Csuhaj-Varjú E., Salomaa A. Networks of Parallel Language Processors. New Trends
in Formal Language Theory, Lecture Notes in Computer Science 1218, Springer, 1997,
p. 299–318.

161. Daley M., Kari L., Gloor G., Siromoney R. Circular Contextual Insertions/Deletions
with Applications to Biomolecular Computation. In Proc. of 6th Int. Symp. on String
Processing and Information Retrieval, SPIRE’99, Cancun, p. 47–54.

162. Dassow J., Păun Gh. Regulated Rewriting in Formal Language Theory. EATCS Mono-
graphs in Theor. Computer Science 18, Springer, 1989.

163. Dijkstra E.W. Self-stabilizing Systems in Spite of Distributed Control. Communication
of the ACM 17(11), 1974, p. 643–644.

164. Emerson E.A. Temporal and Modal Logic. Handbook of Theoretical Computer Science,
Chapter 16, the MIT Press, 1990.

165. Fredkin E., Toffoli T. Conservative Logic. International Journal of Theoretical Physics
21, 1982, p. 219–253.

166. Freund R. Energy-controlled P Systems. Membrane Computing. Int’l Workshop, WMC
2002, Curteă de Argeş, Revised Papers, Lecture Notes in Computer Science 2597,
Springer, 2003, p. 247–260.

167. Freund R. Generalized P-Systems, Proceedings of Fundamentals of Computation The-
ory, Lecture Notes in Computer Science 1684, Springer, 1999, p. 281–292.

168. Freund R. Sequential P-Systems, Romanian Journal of Information Science and Tech-
nology 4, 1-2, 2001, p. 77–88.

169. Freund R., Alhazov A., Rogozhin Yu., Verlan S. Communication P Systems. Oxford
Handbook of Membrane Computing, 2010, p. 118–143.

229

170. Freund R., Ibarra O.H., Păun Gh., Yen H.-C. Matrix Languages, Register Machines,
Vector Addition Systems. Third Brainstorming Week on Membrane Computing, RGNC
report 01/2005, Univ. Seville, Sevilla: Fénix Editora, 2005, p. 155–168.

171. Freund R., Kari L., Oswald M., Sośık P. Computationally Universal P Systems without
Priorities: Two Catalysts are Sufficient. Theoretical Computer Science 330, 2005, p.
251–266.

172. Freund R., Kogler M., Oswald M. A General Framework for Regulated Rewriting Based
on the Applicability of Rules. Computation, Cooperation, and Life, Lecture Notes in
Computer Science 6610, Springer, 2011, p. 35–53.

173. Freund R., Leporati A., Oswald M., Zandron C. Sequential P Systems with Unit Rules
and Energy Assigned to Membranes. Machines, Computations, and Universality, Inter-
national Conference, MCU 2004, Saint Petersburg, Revised Selected Papers, Lecture
Notes in Computer Science 3354, Springer, 2005, p. 200–210.

174. Freund R., Oswald M. GP Systems with Forbidding Context. Fundamenta Informaticae
49, 1-3, 2002, p. 81–102.

175. Freund R., Oswald M. P Systems with Activated/Prohibited Membrane Channels.
Membrane Computing. Int’l Workshop, WMC 2002, Curteă de Argeş, Revised Papers,
Lecture Notes in Computer Science 2597, Springer, 2003, p. 261–268.

176. Freund R., Oswald M. Small Universal Antiport P Systems and Universal Multiset
Grammars. 4th Brainstorming Week on Membrane Computing, RGNC report 03/2006,
Univ. Seville, vol. II, Sevilla: Fénix Editora, 2006, p. 51–64.

177. Freund R., Oswald M. Tissue P Systems with Symport/Antiport Rules of One Symbol
are Computationally Universal. Cellular Computing (Complexity Aspects), ESF PESC
Exploratory Workshop, Sevilla: Fénix Editora, 2005, p. 187–200.

178. Freund R., Păun A. Membrane Systems with Symport/Antiport: Universality Results.
Membrane Computing. Int’l Workshop, WMC 2002, Curteă de Argeş, Revised Papers,
Lecture Notes in Computer Science 2597, Springer, 2003, p. 270–287.

179. Freund R., Păun Gh. From Regulated Rewriting to Computing with Membranes: Col-
lapsing Hierarchies. Theoretical Computer Science 312, 2004, p. 143–188.

180. Freund R., Păun Gh. On Deterministic P Systems, 2003, see [284].
181. Freund R., Păun Gh. On the Number of Non-terminals in Graph-controlled, Pro-

grammed, and Matrix Grammars. 3rd Int’l Conf. Machines, Computations, and Uni-
versality, Lecture Notes in Computer Science 2055, Springer, 2001, p. 214–225.

182. Freund R., Păun Gh., Pérez-Jiménez M.J. Tissue-like P Systems with Channel States.
Theoretical Computer Science 330, 2005, p. 101–116.

183. Freund R., Rogozhin Yu., Verlan S. P Systems with Minimal Left and Right Insertion
and Deletion. Unconventional Computation and Natural Computation, 11th Interna-
tional Conference, Orléans, Lecture Notes in Computer Science 7745, Springer, 2012,
p. 82–93.

184. Freund R., Rogozhin Yu., Verlan S. Generating and Accepting P Systems with Minimal
Left and Right Insertion and Deletion. Natural Computing, submitted.

185. Freund R., Verlan S. A Formal Framework for Static (Tissue) P systems. Membrane
Computing, 8th Int’l Workshop, WMC 2007, Thessaloniki, Lecture Notes in Computer
Science 4860, 2007, p. 271–284.

186. Frisco P. Computing with Cells: Advances in Membrane Computing, Oxford University
Press, 2009.

187. Frisco P. The Conformon-P system: A Molecular and Cell Biology-Inspired Com-
putability Model. Theoretical Computer Science 312(2-3), 2004, p. 295–319.

230

188. Frisco P., Hoogeboom H.J. P Systems with Symport/Antiport Simulating Counter
Automata. Acta Informatica 41, 2004, p. 145–170.

189. Frisco P., Hoogeboom H.J. Simulating Counter Automata by P Systems with Sym-
port/Antiport. Membrane Computing. Int’l Workshop, WMC 2002, Curteă de Argeş,
Revised Papers, Lecture Notes in Computer Science 2597, Springer, 2003, p. 288–301.

190. Galiukschov B.S. Semicontextual Grammars. Matematika Logica i Matematika Linguis-
tika, Tallin University, 1981, p. 38–50 (in Russian).

191. Gill J. Computational Complexity of Probabilistic Turing Machines, SIAM Journal on
Computing 6 (4), 1977, p. 675–695.

192. Goto E. A Minimum Time Solution of the Firing Squad Problem. Course Notes for
Applied Mathematics 298, Harvard University, 1962.

193. Gruska J. Foundations of Computing. International Thompson Computer Press, 1997.
194. Head T. Formal Language Theory and DNA: An Analysis of the Generative Capacity

of Recombinant Behaviors. Bulletin of Mathematical Biology 49, 1987, p. 737–759.
195. Ibarra O.H. On Strong Reversibility in P Systems and Related Problems. International

Journal of Foundations of Computer Science 22 (1), 2011, p. 7–14.
196. Ibarra O.H., Păun Gh. Characterizations of Context-Sensitive Languages and Other

Language Classes in Terms of Symport/Antiport P Systems. Theoretical Computer
Science 358, 1, 2006, p. 88–103.

197. Ibarra O.H., Yen H.-C. Deterministic Catalytic Systems are Not Universal. Theoretical
Computer Science 363, 2006, p. 149–161.

198. Ibarra O.H., Woodworth S. On Symport/ Antiport P Systems with One or Two Sym-
bols. Proc. 7th International Symposyum SYNASC, Timişoara, 2005, Washington:
IEEE Computer Society, p. 431–439.

199. Ishdorj Ts.-O. Power and Efficiency of Minimal Parallelism in Polarizationless P Sys-
tems. Journal of Automata, Languages, and Combinatorics 11, 3, 2006, p. 299–320.

200. K. Imai, Alhazov A. On Universality of Radius 1/2 Number-Conserving Cellular Au-
tomata. Unconventional Computation 2010, Tokyo, Lecture Notes in Computer Science
6079, 2010, p. 45–55.

201. Ivanov S., Alhazov A., Rogojin V., Gutiérrez-Naranjo M.Á. Forward and Back-
ward Chaining with P Systems. International Journal of Natural Computing Research
(IJNCR) 2, 2, 2011, p. 56–66.

202. Ivanov S., Alhazov A., Rogojin V., Gutiérrez-Naranjo M.Á. Forward and Backward
Chaining with P Systems. 9th Brainstorming Week on Membrane Computing, RGNC
report 1/2011, Sevilla: Fénix Ed., 2011, p. 221–236.

203. Karhumäki J., Kunc M., Okhotin A. Computational Power of Two Stacks with Re-
stricted Communication. Information and Computation 208(9), 2010, p. 1060–1089.

204. Kari L. On Insertion and Deletion in Formal Languages, PhD Thesis, University of
Turku, 1991.

205. Kari L., Păun Gh., Thierrin G., Yu S. At the Crossroads of DNA Computing and Formal
Languages: Characterizing RE using Insertion-Deletion Systems. DNA Philadelphia,
1997, p. 318–333.

206. Kari L., Thierrin G. Contextual Insertion/Deletion and Computability. Information
and Computation 131, 1, 1996, p. 47–61.

207. Korec I. Small Universal Register Machines. Theoretical Computer Science 168, 1996,
p. 267–301.

208. Krassovitskiy A., Rogozhin Yu., Verlan S. Computational Power of Insertion-Deletion P
Systems with Rules of Size Two. Natural Computing 10(2), Springer, 2011, p. 835–852.

231

209. Krassovitskiy A., Rogozhin Yu., Verlan S. Computational Power of P Systems with
Small Size Insertion and Deletion Rules. CSP 2008, Cork, p. 137–148.

210. Krassovitskiy A., Rogozhin Yu., Verlan S. Further Results on Insertion-Deletion Sys-
tems with One-Sided Contexts. LATA, Lecture Notes in Computer Science 5196, 2008,
p. 347–358.

211. Krassovitskiy A., Rogozhin Yu., Verlan S. One-Sided Insertion and Deletion: Tradi-
tional and P Systems Case. CBM 2008, Vienna, p. 53–64.

212. Krishna S.-N. Languages of P Systems. Computability and Complexity. PhD thesis,
Madras: Indian Institute of Technology, 2002.

213. Kudlek M., Rogozhin Yu. New Small Universal Circular Post Machines. Proc. FCT
2001, Lecture Notes in Computer Science 2138, Springer, 2001, p. 217–227.

214. Kudlek M., Rogozhin Yu. Small Universal Circular Post Machines. Computer Science
Journal of Moldova 9(1), 2001, p. 34–52.

215. Leporati A., Besozzi D., Cazzaniga P., Pescini D., Ferretti C. Computing with Energy
and Chemical Reactions. Natural Computing 9, 2010, p. 493–512.

216. Leporati A., Zandron C., Mauri G. Reversible P Systems to Simulate Fredkin Circuits.
Fundamenta Informaticae 74 (4), 2006, p. 529–548.

217. Leporati A., Zandron C., Mauri G. Simulating the Fredkin Gate with Energy-Based P
Systems. Journal of Universal Computer Science 10(5), 2004, p. 600–619.

218. Lipton R.J. DNA Solution of Hard Computational Problems. Science 268, 1995, p.
542–545.

219. Lombard A., Gâdei C. Morphological Romanian Dictionary (Dictionnaire mor-
phologique de la langue roumaine). Bucureşti, Editura Academiei, 1981 (in French).

220. Loos R., Manea F., Mitrana V. Small Universal Accepting Hybrid Networks of Evolu-
tionary Processors. Acta Informatica 47, 2, 2010, p. 133–146.

221. Manea F., Mart́ın-Vide C., Mitrana V. All NP-problems can be Solved in Polynomial
Time by Accepting Hybrid Networks of Evolutionary Processors of Constant Size. In-
formation Processing Letters 103, 2007, p. 112–118.

222. Manea F., Mart́ın-Vide C., Mitrana V. On the Size Complexity of Universal Accepting
Hybrid Networks of Evolutionary Processors. Mathematical Structures in Computer
Science 17(4) 2007, p. 753–771.

223. Marcus S. Contextual Grammars. Rev. Roum. Math. Pures Appl. 14, 1969, p. 1525–
1534.

224. Margenstern M., Mitrana V., Pérez-Jiménez M.J. Accepting Hybrid Networks of Evo-
lutionary Processors. DNA 10, Lecture Notes in Computer Science 3384, Springer,
2005, p. 235–246.

225. Margenstern M., Păun Gh., Rogozhin Yu., Verlan S. Context-Free Insertion-Deletion
Systems. Theoretical Computer Science 330, 2005, p. 339–348.

226. Margenstern M., Rogozhin Yu. A Universal Time-Varying Distributed H System of
Degree 1. Lecture Notes in Computer Science 2340, 2002, p. 371–380.

227. Margenstern M., Rogozhin Yu., Verlan S. Time-Varying Distributed H Systems with
Parallel Computations: the Problem is Solved. Lecture Notes in Computer Science
2943, 2004, p. 48–53.

228. Margenstern M., Verlan S., Rogozhin Yu. Time-Varying Distributed H Systems: an
Overview. Fundamenta Informaticae 64, 2005, p. 291–306.

229. Mart́ın-Vide C., Mitrana V., Pérez-Jiménez M.J., Sancho-Caparrini F. Hybrid Net-
works of Evolutionary Processors. Proc. of GECCO 2003, Lecture Notes in Computer
Science, 2723, Springer, 2003, p. 401–412.

232

230. Mart́ın-Vide C., Pazos J., Păun Gh., Rodŕıguez-Patón A. Tissue P systems. Theoretical
Computer Science 296, 2003, p. 295–326.

231. Mart́ın-Vide C., Păun Gh., Salomaa A. Characterizations of Recursively Enumerable
Languages by means of Insertion Grammars. Theoretical Computer Science 205, 1-2,
1998, p. 195–205.

232. Matveevici A., Rogozhin Yu., Verlan S. Insertion-Deletion Systems with One-Sided
Contexts. Machines, Computations, and Universality, 5th Int’l Conference, MCU 2007,
Orléans, Lecture Notes in Computer Science 4664, Springer, 2007, p. 205–217.

233. M.L. Minsky Computation: Finite and Infinite Machines, Englewood Cliffs NJ: Pren-
tice Hall, 1967.

234. Morita K. A Simple Reversible Logic Element and Cellular Automata for Reversible
Computing. 3rd International Conference on Machines, Computations, and Universal-
ity, Lecture Notes in Computer Science 2055, Springer, 2001, p. 102–113.

235. Morita K. Simple Universal One-Dimensional Reversible Cellular Automata. Journal
of Cellular Automata 2, 2007, p. 159–165.

236. Morita K. Universality of a Reversible Two-Counter Machine. Theoretical Computer
Science 168, 1996, p. 303–320.

237. Morita K., Yamaguchi Y. A Universal Reversible Turing Machine. Machines, Compu-
tations, and Universality, 5th International Conference, MCU 2007, Orléans, Lecture
Notes in Computer Science 4664, Springer, 2007, p. 90–98.

238. Morita K., Ogiro Ts., Alhazov A., Tanizawa Ts. Universality of Reversible Logic El-
ements with 1-Bit Memory. Mathematical Foundations and Applications of Computer
Science and Algorithms, RIMS Kôkyûroku Series 1744, Kyoto University, 2011, p.
77–84.

239. Morita K., Ogiro Ts., Alhazov A., Tanizawa Ts. Non-degenerate 2-State Reversible
Logic Elements with Three or More Symbols Are All Universal. Multiple-Valued Logic
and Soft Comp. 18, 1, 2012, p. 37–54.

240. Morita K., Ogiro Ts., Alhazov A., Tanizawa Ts. Non-degenerate 2-State Reversible
Logic Elements with Three or More Symbols Are All Universal. Proc. 2nd Workshop
on Reversible Computation, Bremen, 2010, p. 27–34.

241. Ogiro Ts., Alhazov A., Tanizawa Ts., Morita K. Universality of 2-State 3-Symbol Re-
versible Logic Elements - A Direct Simulation Method of a Rotary Element. Natural
Computing, PICT 2, Springer Japan, 2010, p. 252–259.

242. Ogiro Ts., Alhazov A., Tanizawa Ts., Morita K. Universality of 2-State 3-Symbol Re-
versible Logic Elements - A Direct Simulation Method of a Rotary Element. 4th Inter-
national Workshop on Natural Computing, Himeji, 2009, p. 220–227.

243. Pan L., Alhazov A. Solving HPP and SAT by P Systems with Active Membranes and
Separation Rules. Acta Inf. 43, 2, 2006, p. 131–145.

244. Pan L., Alhazov A., Ishdorj Ts.-O. Further Remarks on P Systems with Active Mem-
branes, Separation, Merging, and Release Rules. Soft Computing 9, 9, 2005, p. 686–690.

245. Pan L., Alhazov A., Ishdorj Ts.-O. Further Remarks on P Systems with Active Mem-
branes, Separation, Merging, and Release Rules. Third Brainstorming Week on Mem-
brane Computing, RGNC report 01/2005, Sevilla: Fénix Editora, 2005, p. 316–324.

246. Papadimitriou C.H. Computational Complexity, Addison–Wesley, 1995.
247. Păun A., Păun Gh. The Power of Communication: P Systems with Symport/ Antiport.

New Generation Computing 20, 2002, p. 295–305.
248. Păun Gh. 2006 Research Topics in Membrane Computing. 4th Brainstorming Week on

Membrane Computing, RGNC report 02/2006, vol. II, Sevilla: Fénix Ed., 2006, p.
235–252.

233

249. Păun Gh. Computing with Membranes. Journal of Computer and System Sciences 61,
2000, p. 108–143.

250. Păun Gh. Computing with Membranes. Technical Report 208, Turku: Turku Centre
for Computer Science, 1998.

251. Păun Gh. Marcus Contextual Grammars. Kluwer, Dordrecht, 1997.
252. Păun Gh. Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
253. Păun Gh. P Systems with Active Membranes: Attacking NP-complete Problems. Jour-

nal of Automata, Languages and Combinatorics 6(1), 2001, p. 75–90.
254. Păun Gh., Pazos J., Pérez-Jiménez M.J., Rodŕıguez-Patón A. Symport/Antiport P

Systems with Three Objects are Universal. Fundamenta Informaticae 64, 2005, p.
1–4.

255. Păun Gh., Pérez-Jiménez M., Riscos-Núñez A. Tissue P Systems with Cell Division.
Third Brainstorming Week on Membrane Computing, RGNC report 01/2005, Univ.
Seville, Sevilla: Fénix Editora, 2005, p. 380–386.

256. Păun Gh., Rozenberg G., Salomaa A. DNA Computing. New Computing Paradigms.
Berlin: Springer, 1998.

257. Păun Gh., Rozenberg G., Salomaa A. (Eds.) Handbook of Membrane Computing, Oxford
University Press, 2010.

258. Păun Gh., Rozenberg G., Salomaa A. Membrane Computing with an External Output.
Fundamenta Informaticae 41, 3, 2000, p. 313–340.

259. Păun Gh., Suzuki Y., Tanaka H. P Systems with Energy Accounting. International
Journal of Computer Mathematics 78, 3, 2001, p. 343–364.

260. Păun Gh., Suzuki Y., Tanaka H., Yokomori T. On the Power of Membrane Division in
P Systems. Theoretical Computer Science 324, 1, 2004, p. 61–85.

261. Pérez-Jiménez M.J., Romero-Jiménez A., Sancho-Caparrini F. Complexity Classes in
Cellular Computing with Membranes. Natural Computing 2, 3, 2003, p. 265–285.

262. Pérez-Jiménez M.J., Romero-Jiménez A., Sancho-Caparrini F. Solving VALIDITY
Problem by Active Membranes with Input. Brainstorming Week on Membrane Com-
puting, Tech. Rep. 26/03, Tarragona: Rovira i Virgili University, 2003, p. 279–290.

263. Porreca A.E., Leporati A., Mauri G., Zandron C. P Systems with Active Membranes
working in Polynomial Space. International Journal of Foundations of Computer Sci-
ence 22(1), 2011, p. 65–73.

264. Priese L., Rogozhin Yu., Margenstern M. Finite H-systems with 3 Test Tubes are not
Predictable. Proceedings of Pacific Simposium on Biocomputing, Singapore: World
Scientific Publishing, 1998, p. 545–556.

265. Rogozhin Yu., Verlan S. On the Rule Complexity of Universal Tissue P Systems. Lecture
Notes in Computer Science 3850, 2006, p. 356–362.

266. Qi Z., You J., Mao H. P Systems and Petri Nets. Membrane Computing, Int’l Workshop,
WMC 2003, Tarragona, Lecture Notes in Computer Science 2933, Springer, 2004, p.
286–303.

267. Rogozhin Yu. Small Universal Turing Machines. Theoretical Computer Science 168
(2), 1996, p. 215–240.

268. Rogozhin Yu., Alhazov A. Turing Computability and Membrane Computing. Membrane
Computing - 13th Int’l Conference, CMC13, Budapest, Lecture Notes in Computer
Science 7762, 2013, p. 56–77.

269. Rozenberg G., Salomaa A. (Eds.) Handbook of Formal Languages, vol. 1-3, Springer,
1997.

270. Salomaa A. Formal Languages. New York: Academic Press, 1973.

234

271. Smith W. DNA computers in Vitro and in Vivo. Proc. DIMACS workshop, Providence:
American Mathematical Society, 1996, p. 121–185.

272. Sośık P. The Computational Power of Cell Division. Natural Computing 2, 3, 2003, p.
287–298.

273. Spellman P.T., Sherlock G. Reply Whole-cell Synchronization- effective Tools for Cell
Cycle Studies. Trends in Biotechnology 22(6), 2004, p. 270–273.

274. Ştefănescu G., Şerbănuţa T., Chira C., Roşu G. P Systems with Control Nuclei. Pre-
proc. Tenth Workshop on Membrane Computing, WMC10, Curtea de Argeş, RGNC
report 3/2009, University of Seville, 2009, p. 361–365.

275. Takahara A., Yokomori T. On the Computational Power of Insertion-Deletion Systems.
DNA 2002, Sapporo, Lecture Notes in Computer Science 2568, 2003, p. 269–280.

276. Umeo H., Maeda M., Fujiwara N. An Efficient Mapping Scheme for Embedding any
One-dimensional Firing Squad Synchronization Algorithm onto Two-dimensional Ar-
rays. ACRI 2002, Lecture Notes in Computer Science 2493, 2002, p. 69–81.

277. Valiant L.G. The Complexity of Computing the Permanent. Theoretical Computer Sci-
ence 8, Elsevier, 1979, p. 189–201.

278. Verlan S. On Minimal Context-Free Insertion-Deletion Systems. J. Automata, Lan-
guages and Combinatorics 12, 1/2, 2007, p. 317–328.

279. Verlan S. Study of Language-Theoretic Computational Paradigms Inspired by Biology.
Habilitation thesis, Créteil Val de Marne: Université Paris Est, 2010.

280. Verlan S. Tissue P Systems with Minimal Symport/Antiport. Developments in Lan-
guage Theory, DLT 2004, Lecture Notes in Computer Science 3340, Springer, p. 418–
430.

281. Verlan S., Alhazov A., Petre I. A Sequence-Based Analysis of the Pointer Distribution
of Stichotrichous Ciliates. Biosystems 101, 2, 2010, p. 109–116.

282. Williams R.M., Wood D.H. Exascale Computer Algebra Problems Interconnect with
Molecular Reactions and Complexity Theory, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 44, 1999, p. 267–275.

283. Wood D. Theory of Computation. Harper and Row, New York, 1987.
284. P systems webpage. http://ppage.psystems.eu

See also http://psystems.disco.unimib.it,
http://ppage2010.psystems.eu/ and http://www.gcn.us.es/?q=workshops

285. Publication page of Artiom Alhazov. http://aartiom.50webs.com/pub_aa.html
286. DBLP page of Artiom Alhazov.

http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alhazov:Artiom.html

287. Google Scholar page of Artiom Alhazov.
http://scholar.google.com/citations?sortby=pubdate&user=M8LdW5kAAAAJ

288. http://en.wikipedia.org/wiki/Permanent

289. http://en.wikipedia.org/wiki/PP_(complexity)

290. http://en.wikipedia.org/wiki/Self-stabilization

291. http://en.wikipedia.org/wiki/Sharp-P

235

http://ppage.psystems.eu
http://psystems.disco.unimib.it
http://ppage2010.psystems.eu/
http://www.gcn.us.es/?q=workshops
http://aartiom.50webs.com/pub_aa.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alhazov:Artiom.html
http://scholar.google.com/citations?sortby=pubdate&user=M8LdW5kAAAAJ
http://en.wikipedia.org/wiki/Permanent
http://en.wikipedia.org/wiki/PP_(complexity)
http://en.wikipedia.org/wiki/Self-stabilization
http://en.wikipedia.org/wiki/Sharp-P

APPENDICES

236

A1. Context-free grammars and time-yield

Consider a non-terminal A in a grammar G = (N, T, S, P). We denote by GA the grammar

(N, T,A, P) obtained by considering A as axiom in G.

A derivation tree in a context-free grammar is an ordered rooted tree with leaves labeled

by terminals and all other nodes labeled by non-terminals. Rules of the form A→ λ cause a

problem, which can be solved by allowing to also label leaves by λ, or by transformation of

the corresponding grammar. Note: by derivation trees we only mean finite ones. Consider

a derivation tree τ . The following notion describes the sequence of terminal symbols at a

particular depth of a derivation tree:

The n-th level yield yieldn of τ can be defined as follows:

We define yield0(τ) = a if τ has a single node labeled by a ∈ T , and yield0(τ) =

λ otherwise.

Let k be the number of children nodes of the root of τ , and τ1, · · · , τk be the

subtrees of τ with these children as roots. We define yieldn+1(τ) = yieldn(τ1)•

yieldn(τ2) • · · · • yieldn(τk).

We now define the time yield Lt of a context-free grammar derivation tree τ , as the usual

yield except the order of terminals is vertical from root instead of left-to-right, and the order

of terminals at the same distance from root is arbitrary. We use
∏

to denote concatenation

in the following formal definition:

Lt(τ) =

height(τ)
∏

n=0

(Perm(yieldn(τ))).

The time yield Lt(G) of a grammar G is the union of time yields of all its derivation trees.

The corresponding family of languages is

Lt(CF) = {Lt(G) | G is a context-free grammar}.

Example A1.1 Consider a grammar G1 = ({S,A,B,C}, {a, b, c}, S, P), where P =

{S → SABC, S → ABC,A→ A,B → B,C → C,A→ a,B → b, C → c}.

We now show that Lt(G1) = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c > 0} = L. Indeed, all

derivations of A are of the form A ⇒∗ A ⇒ a. Likewise, symbols B,C are also trivially

rewritten an arbitrary number of times and then changes into a corresponding terminal.

Hence, Lt(G1A) = {a}, Lt(G1B) = {b}, Lt(G1C) = {c}. For inclusion Lt(G) ⊆ L it suffices

to note that S always generates the same number of symbols A,B,C.

237

S

S

S

A

A

A

a

B

b

C

C

c

A

A

A

A

a

B

B

b

C

C

C

c

A

A

A

A

A

a

B

B

B

B

b

C

C

C

c

Time yield

Perm(bbc)•

Perm(ccb)•

Perm(aaa).

Figure A1.1: An example of a derivation of the grammar from Example A1.1

The converse inclusion follows from the following simulation: given a word w ∈ L,

generate |w|/3 copies of A,B,C, and then apply their trivial rewriting in such way that the

timing when the terminal symbols appear corresponds to their order in w.

Corollary A1.1 Lt(CF) 6⊆ CF .

Derivation trees of context-free grammars

Theorem A1.1 Lt(CF) = LOP (ncoo, tar).

Proof. By Lemma 2.1, the statement is equivalent to Lt(CF) = LOP1(ncoo, out). Con-

sider a P system Π = (O, []
1
, w,R, 0). We construct a context-free grammar G =

(O′ ∪ {S}, O, S, P ∪ {S → w}), where S is a new symbol, ′ is a morphism from O into

new symbols and

P = {a′ → u′v | (a→ u vout) ∈ R, a ∈ O, u, v ∈ O∗}

∪ {a′ → λ | ¬∃(a→ u vout) ∈ R}.

Here vout are those symbols on the right-hand side of the rule in R which are sent out into

the environment, and u are the remaining right-hand side symbols.

The computations of Π are identical to parallel derivations in G, except the following:

• Unlike G, Π does not keep track of the left-to-right order of symbols. This does not

otherwise influence the derivation (since rules are context-free) or the result (since

the order of non-terminals produced in the same step is arbitrary, and the timing is

preserved).

• The initial configuration of Π is produced from the axiom of G in one additional step.

• The objects of Π that cannot evolve are erased in G, since they do not contribute to

the result.

It follows that Lt(CF) ⊇ LOP (ncoo, tar). To prove the converse inclusion, consider an

arbitrary context-free grammar G = (N, T, S, P). We construct a P system Π = (N ∪

238

T, []
1
, S, R, 0), where R = {a → h(u) | (a → u) ∈ R}, where h is a morphism defined by

h(a) = a, a ∈ N and h(a) = aout, a ∈ T . The computations in Π correspond to parallel

derivations in G, and the order of producing terminal symbols in G corresponds to the order

of sending them to the environment by Π, hence the theorem statement holds. �

We now present a few normal forms for the context-free grammars in the context of

the time yield. Note that these normal forms incorporate a number of similarities with

both L systems and standard CF grammars, because level-by-level derivation in context-free

grammars corresponds to the evolution in L systems. However, it is not possible to simply

take existing normal forms, because the result must be preserved, and the result is defined

in a different way. We omit the proofs; the reader can find them in [43].

Lemma A1.1 (First normal form) For a context-free grammar G there exists a context-free

grammar G′ such that Lt(G) = Lt(G
′) and in G′:

• the axiom does not appear in the right-hand side of any rule, and

• if the left side is not the axiom, then the right-hand side is not empty.

The First normal form shows that erasing can be limited to the axiom.

Lemma A1.2 (Binary normal form) For a context-free grammar G there exists a context-

free grammar G′ such that Lt(G) = Lt(G
′) and in G′:

• the First normal form holds,

• the right-hand side of any production is at most 2.

The Binary normal form shows that productions with right-hand side longer than two are

not necessary.

Lemma A1.3 (Third normal form) For a context-free grammar G there exists a context-free

grammar G′ such that Lt(G) = Lt(G
′) and in G′:

• the Binary normal form holds,

• G′ = (N, T, S, P ′) and every A ∈ N is reachable,

• either G′ = ({S}, T, S, {S → S}), or G′ = (N, T, S, P ′) and for every A ∈ N , Lt(G
′
A) 6=

∅.

The Third normal form shows that never ending derivations are only needed to generate the

empty language.

239

A2. Advanced control in one region

Flattening the membrane structure is a well-known technique transforming a P system into a

one-region P system, representing each object a in each region i by an object ai in the single

region of the new system. A configuration of a membrane system (with a fixed structure) is

the tuple of multisets contained in each region. We say that a system is deterministic if at

every step, there is (at most) one multiset of applicable rules. Since flattening the membrane

structure of a membrane system preserves both determinism and the model, in the following

we restrict ourselves to consider membrane systems as one-region multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple Π = (O, Σ, w,R′) where O is a

finite alphabet, Σ ⊆ O is the input subalphabet, w ∈ O∗ is a string representing the initial

multiset, and R′ is a set of rules of the form r : u→ v, u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from O contained

in the region, the set of all configurations over O is denoted by C (O). A rule r : u → v

is applicable if the current configuration contains the multiset specified by u. Furthermore,

applicability may be controlled by context conditions, specified by pairs of sets of multisets.

Definition A2.1 Let Pi, Qi be (finite) sets of multisets over O, 1 ≤ i ≤ m. A rule with

context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is applicable to a configuration C if r is ap-

plicable, and there exists some j ∈ {1, · · · ,m} for which

• there exists some p ∈ Pj such that p ⊆ C and

• q 6⊆ C for all q ∈ Qj.

In words, context conditions are satisfied if there exists a pair of sets of multisets (called

promoter set and inhibitor set, respectively) such that at least one multiset in the promoter

set is a submultiset of the current configuration, and no multiset in the inhibitor set is a

submultiset of the current configuration.

Definition A2.2 A P system with context conditions and priorities on the rules is a con-

struct Π = (O, Σ, w,R′, R,>) where (O, Σ, w,R′) is a (one-region) P system as defined above,

R is a set of rules with context conditions and > is a priority relation on the rules in R; if

rule r′ has priority over rule r, denoted by r′ > r, then r cannot be applied if r′ is applicable.

We will use the word control to mean that at least one of these features is allowed (context

conditions or promoters or inhibitors only and eventually priorities).

In the sequential mode (sequ), a computation step consists of the non-deterministic appli-

cation of one applicable rule r, replacing its left-hand side (lhs (r)) with its right-hand side

240

(rhs (r)). In the maximally parallel mode (maxpar), multiple applicable rules may be cho-

sen non-deterministically to be applied in parallel to the underlying configuration to disjoint

submultisets, possibly leaving some objects idle, under the condition that no further rule is

simultaneously applicable to them (i.e., no supermultiset of the chosen multiset is applicable

to the underlying configuration). Maximal parallelism is the most common computation

mode in membrane computing, see also Definition 4.8 in [185]. In the asynchronous mode

(asyn), any positive number of applicable rules may be chosen non-deterministically to be

applied in parallel to the underlying configuration to disjoint submultisets. The computation

step between two configurations C and C ′ is denoted by C ⇒ C ′, thus yielding the binary

relation ⇒: C (O) × C (O). A computation halts when there are no rules applicable to the

current configuration (halting configuration) in the corresponding mode.

The computation of a generating P system starts with w, and its result is |x| if it halts, an

accepting system starts with wx, x ∈ Σ∗, and we say that |x| is its result – is accepted – if it

halts. The set of numbers generated/accepted by a P system working in the mode α is the set

of results of its computations for all x ∈ Σ∗ and denoted by Nα
g (Π) and Nα

a (Π), respectively.

The family of sets of numbers generated/accepted by a family of (one-region) P systems with

context conditions and priorities on the rules with rules of type β working in the mode α

is denoted by NδOP α
1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the generating and δ = a for

the accepting case; d denotes the maximal number m in the rules with context conditions

(r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote the maximum numbers of promoters/inhibitors

in the Pi and Qi, respectively; l and l′ indicate the maximum of weights of promoters and

inhibitors, respectively. If any of these numbers k, k′, l, l′ is not bounded, we replace it by ∗.

As types of rules we here will distinguish between cooperative (β = coo) and non-cooperative

(i.e., the left-hand side of each rule is a single object; β = ncoo) ones.

In the case of accepting systems, we also consider the idea of determinism, which means

that in each step of any computation at most one (multiset of) rule(s) is applicable; in this

case, we write D after Na. It follows that, for any given input, the system has only one

computation.

In the literature, we find a lot of restricted variants of P systems with context condi-

tions and priorities on the rules, e.g., we may omit the priorities or the context conditions

completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm)) we have m = 1, we say that (r, (P1, Q1))

is a rule with a simple context condition, and we omit the inner parentheses in the nota-

tion. Moreover, context conditions only using promoters are denoted by r|p1,··· ,pn , meaning

(r, {p1, · · · , pn} , ∅), or, equivalently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions only using

inhibitors are denoted by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or r|¬{q1,··· ,qn}. Likewise,

a rule with both promoters and inhibitors can be specified as a rule with a simple context

condition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for (r, {p1, · · · , pn} , {q1, · · · , qn}). Finally, promoters

and inhibitors of weight one are called atomic.

In what follows, when speaking about the effect of rules, we mean the behavior induced

by them. Hence, two sets of rules have the same effect if substituting one of them by the

other one does not change the computations of the system.

Remark A2.1 If we do not consider determinism, then (the effect of) the rule

(r, (P1, Q1) , · · · , (Pm, Qm))

241

is equivalent to (the effect of) the collection of rules {(r, Pj, Qj) | 1 ≤ j ≤ m}, no matter

in which mode the P system is working (obviously, the priority relation has to be adapted

accordingly, too).

Remark A2.2 Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition; then we

claim that (the effect of) this rule is equivalent to (the effect of) the collection of rules

{(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m} even in the the case of a deterministic P sys-

tem: If the first promoter is chosen to make the rule r applicable, we do not care about the

other promoters; if the second promoter is chosen to make the rule r applicable, we do not

allow p1 to appear in the configuration, but do not care about the other promoters p3 to pm;

in general, when promoter pj is chosen to make the rule r applicable, we do not allow p1 to

pj−1 to appear in the configuration, but do not care about the other promoters pj+1 to pm;

finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}. If adding {pk | 1 ≤ k < j} to Q

has the effect of prohibiting the promoter pj from enabling the rule r to be applied, this makes

no harm as in this case one of the promoters pk, 1 ≤ k < j, must have the possibility for

enabling r to be applied. By construction, the domains of the new context conditions now are

disjoint, so this transformation does not create (new) non-determinism. In a similar way,

this transformation may be performed on context conditions which are not simple. Therefore,

without restricting generality, the set of promoters may be assumed to be a singleton. In this

case, we may omit the braces of the multiset notation for the promoter multiset and write

(r, p,Q).

242

A3. A new variant of circular Post machines

We introduce a new variant of Circular Post Machines.

Definition A3.1 A CPM5 is a tuple (Σ, Q,q1,qf , R) with instructions of the following

types (we use the notation Q′ = Q \ {qf}):

• px→ q, p ∈ Q′, q ∈ Q, x ∈ Σ, the same type as in CPM0.

The corresponding computational step is pxW
px→q
=⇒ qW, W ∈ Σ∗.

• p→ yq, p ∈ Q′, q ∈ Q, y ∈ Σ. This is the new type of rule. Notice it does not consume

a symbol. The corresponding computational step is pW
p→yq
=⇒ qWy, W ∈ Σ∗.

Theorem A3.1 Any CPM0 P can be simulated by CPM5 P ′.

Proof. Consider a CPM0 P = (Σ, Q,q1,qf , R) with 0 ∈ Σ, and Q′ = Q \ {qf}.

We construct CPM5 P ′ = (Σ, Q,q1,qf , R) simulating of CPM0 P :

Σ = Σ ∪ {aq | q ∈ Σ},

Q = Q ∪ {px | (px→ qy) ∈ Q} ∪ {p0, p
′
0 | (p0→ yq0) ∈ R} ∪ {r′, r},

R = {px→ q | (px→ q) ∈ R} ∪ {px→ px, px → yq | (px→ yq) ∈ R}

∪ {p0→ p0, p0 → yp′0, p′0 → aqr
′, raq → q | (p0→ yq0) ∈ R}

∪ {r′ → 0r} ∪ {rx→ rx, rx → xr | x ∈ Σ}.

We claim P ′ is equivalent to P (it produces the same result). Let pxW
px→yq
=⇒ qWy be a

computational step in P . The corresponding derivation in P ′ is pxW
px→px
=⇒ pxW

px→yq
=⇒ qWy.

Consider the second case. Let p0xW
p0→yq0
=⇒ q0xWy be a computational step in P . The

corresponding derivation in P ′ is

p0xW
p0→p0
=⇒ p0xW

p0→yp′0=⇒ p′0xWy
p′0→aqr′

=⇒ r′xWyaq
r′→0r
=⇒ rxWyaq0

rx→rx=⇒ rxWyaq0
rx→xr
=⇒ rWyaq0x =⇒ · · · =⇒ ryaq0xW

ry→ry
=⇒ ryaq0xW

ry→yr
=⇒ raq0xWy

raq→q
=⇒ q0xWy.

It remains to notice that P ′ does not do anything more than the simulation of P . Indeed,

even in the non-deterministic case, within the simulation of some computation step of P , P ′

is in some state Q \Q, whose behavior is bound to such simulation by construction. �

Remark A3.1 If we do not require the simulation to go through all configurations of the

computation, then a faster simulation of any CPM0 P by a CPM5 P ′ is possible. Instructions

px→ q are performed in one step, and instructions px→ yq are performed in two steps, so

it suffices to consider instructions p0→ yq0.

243

Like in the proof above we may start with p0→ p0, p0 → yp′0. Informally p′0 corresponds

to the state q, except symbol 0 has not been introduced, i.e., to the situation where it has

“already been read” in state q. Hence, depending on the next instruction of P we sometimes

replace p′0 with an appropriate state, as follows. If P has q0 → s, then it suffices to set

p′0 = s. If P has q0 → zs, then it suffices to have a rule p′0 → zs. Finally, if P has

q0→ zs0, then it suffices to set p′0 = q0, so the simulation of the first instruction continues

by simulation of the next one without the first step.

Consider the non-deterministic case. In fact, the following restriction of non-determinism

suffices:

Definition A3.2 An NCPM5 is a tuple (Σ, Q,q1,qf , R), where

• Q \ {qf} = Q1 ∪Q2, where Q1 ∩Q2 = ∅,

• For every p ∈ Q1 and every x ∈ Σ, there is exactly one instruction of the form px→ q,

• For every p ∈ Q2, there are two instructions of the form p → yq1, p → yq2 (and the

machine is deterministic if q1 = q2 for every pair of instructions p→ yq1, p→ yq2).

Corollary A3.1 The class of (N)CPM5 is computationally complete.

Proof. The statement is a trivial consequence of the theorem above in the sense of com-

pleteness as simulating Turing machines or as computing partial recursive functions. Let us

prove the claim of the corollary also in the sense of generating languages.

We claim that NCPM5 generates all recursively enumerable languages. Indeed, for every

L ∈ RE there exists a deterministic Turing machine M that, starting with configurations

q21
+ generates exactly L. It is enough to consider an NCPM5 with rules q1 → 1q1, q1 → 1q2,

where the rest of the machine starts with q2 and is a deterministic CPM5 that simulates a

CPM0 simulating M . �

244

A4. Two polarizations - “normal form”

In this subsection we now consider the following forms (particular cases) of the types (a),

(c), (e) of rules (where a, b, c ∈ O, h ∈ H, i ∈ {0, 1}):

(agb) [a→ bc] i (global split rule)

(agu) [a→ b] i
h

(rename only)

(cnp1) [a]
h
→ []¬

h
a (exit only, polarization switched)

(cgp1) [a] → []¬ b (global exit rule, polarization switched)

(cgny) [yes]0 → []1 yes (a special rule for ejecting the result)

(egp0) [a] → [b] [c] (global polarizationless division rule)

(egp2) [a] → [b]0[c]1 (global polarization-independent division rule, producing membranes

of different polarizations)

In the subscripts of the rules, we write g if the rule is global (does not depend on the label

of the membrane), n if the rule is not-renaming (the object(s) in (each membrane of) the

right-hand side is(are) the same as the object in the left-hand side), p if the rule does not

depend on the polarization, 0 if the rule preserves it, 1 if the rule changes it, 2 if the rule

produces two membranes with different polarizations, and b (u) if the number of the objects

in (each membrane of) the right-hand side is two (one, respectively). Finally, y is used if the

rule acts on the object yes.

The main idea of the possible restrictions is the following: to try to make rules of types (c)

and (e) independent of the polarization by remembering the needed value in a corresponding

object, and then decoding it by generating copies of z if needed (using such an approach,

the computation slows down by a constant factor). In the same time, other restrictions are

put on the general form of the rules, leading to the following theorem:

Theorem A4.1 SAT(n,m) can be deterministically decided in linear time (with respect to

nm) by a uniform family of P systems with active membranes with two polarizations and

rules of the forms (agb), (cnp1), (cgny), and (egp0).

We do not present the proof here. It can be found in [60].

245

Remarks and other variants

Some definitions of decisional P systems require that the result is ejected into the environment

only in the last step of the computation. Our construction can be easily adjusted to fulfill

this property by remembering, in the objects ei,j, also the number l of times the number of

steps the membrane had polarization 1 during the checking phase, and then “keeping them

busy” for 2(mn− l) steps. Then, all elementary membranes with positive answers will stop

evolving at the same time by sending yes into the skin, and those with negative answers will

stop evolving earlier.

In the construction given above, the time for giving a positive answer is actually bounded

by 2K + 4n + 3m + 4, where K is the number of occurrences of the variables in β. Thus,

if the size of the problem is given as (n,m,K), then (adjusting the counter in the skin) the

time can be made at most 2K + 4n + 3m + 5.

On the other hand, we do not believe that the rule sending object yes into the skin can be

made independent of the polarization; otherwise, multiple answers are given and the halting

time is no longer polynomial. This can easily be avoided for the price of using membrane

dissolution (rules of type (dgp)) and one more membrane: a copy of the “witness” of the

positive result dissolves the middle membrane, releasing a unique object yes into the skin,

otherwise object no is ejected to the skin, as it was done in the proof of Theorem 9 in [108].

Finally, we mention alternative variants of restrictions:

Using the generation phase similar to that from the proof of Theorem 4.4 and making

relevant adjustments to the global control, one can quite easily replace the rules of type

(egp0) by rules of type (egp2).

By replacing the rule [z]
2
→ []¬

2
z by [z] → []¬ o, one can remove type (cnp1) for

the price of introducing type (cgp1).

Corollary A4.1 For t ∈ {n, g} and k ∈ {0, 2}, SAT(n,m) can be decided in linear time

(with respect to nm) by a uniform family of P systems with active membranes with two

polarizations and rules of the forms (agb), (ctp1), and (egpk).

246

A5. Computing the Permanent

We now present the proof of Theorem 4.5: The problem of computing a permanent of a

binary matrix is solvable in polynomial time by a uniform family of deterministic P systems

with active membranes with two polarizations and rules of types (a), (c), (e). Proof. Let

A = (ai,j) be an n×n matrix. We define N = ⌈log2(n)⌉, and n′ = 2N < 2n is the least power

of two not smaller then n. The input alphabet is Σ(n) = {〈i, j〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n},

and the matrix A is given as a multiset w(A) containing for every element ai,j = 1 of the

matrix one symbol 〈i, j〉. Let the output alphabet be T = {o}, we will present a P system

Π(n) giving operm(A) as the result when given input w(A) in region iΠ(n) = 2.

Π(n) =
(
O, T,H,E, µ, w1, w2, R, 1

)
,

O = Σ(n) ∪ T ∪ {c} ∪ {di, ai | 0 ≤ i ≤ Nn} ∪ {Di | 0 ≤ i ≤ n + 1}

∪ {〈i, j, k, l〉 | 0 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, 0 ≤ k ≤ Nn− 1,

0 ≤ l ≤ n′ − 1},

µ = [[]0
2

]0
1
, H = {1, 2}, E = {0, 1},

w1 = λ, w2 = d0.

and the rules are presented and explained below.

A1 [〈i, j〉 → 〈Ni− 1, j − 1, Nn− 1, 0〉]0
2
, 1 ≤ i ≤ n, 1 ≤ j ≤ n

Preparation of the input objects: tuple representation. Informal meaning of the tuple com-

ponents is 1) number of steps remaining until row i is processed, 2) column number, starting

from 0, 3) number of steps remaining until all rows are processed, 4) will be used for mem-

orizing the chosen column.

A2 [di]e2 → [di+1]02[di+1]12, 0 ≤ i ≤ Nn− 1, e ∈ E

Division of the elementary membrane for Nn times.

A3 [〈i, j, k, l〉 → 〈i− 1, j, k − 1, 2l + e〉]e
2
,

0 ≤ i ≤ Nn− 1, i is not divisible by N ,

0 ≤ j ≤ n− 1, 1 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

For i times, during N−1 steps input objects corresponding to row i memorize the polarization

history. The binary representation of the chosen column for the current row corresponds to

the history of membrane polarizations during N steps.

247

A4 [〈i, j, k, l〉 → λ]e
2
,

0 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ Nn− 1,

(n− 1− e)/2 ≤ l ≤ n′/2− 1, e ∈ E

Erase all input objects if the chosen column is invalid, i.e., its number exceeds n− 1.

A5 [〈i, j, k, l〉 → 〈i− 1, j, k − 1, 0〉]e
2
,

1 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, j 6= 2l + e,

0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

If element’s row is not reached and element’s column is not chosen, proceed to the next row.

A6 [〈i, j, k, l〉 → λ]e
2
,

1 ≤ i ≤ Nn− 1, 0 ≤ j ≤ n− 1, j = 2l + e,

0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

Erase the chosen column, except the chosen element.

A7 [〈0, j, k, l〉 → λ]e
2
,

0 ≤ j ≤ n− 1, j 6= 2l + e,

0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

Erase the chosen row, except the chosen element.

A8 [〈0, j, k, l〉 → ak−1]e2,

0 ≤ j ≤ n− 1, j = 2l + e,

0 ≤ k ≤ Nn− 1, 0 ≤ l ≤ (n− 1− e)/2, e ∈ E

If chosen element is present (i.e., it has value 1 and its column has not been chosen before),

produce object ak−1.

A9 [ak → ak−1]e2, 1 ≤ k ≤ Nn− 1, e ∈ E

Objects ak wait until all rows are processed. Then a membrane represents a solution if n

copies of a0 are present.

B1 [dNn → D1−ec
n+e]e2, e ∈ E

If polarization is 0, produce n copies of object c and a counter D1. Otherwise, produce one

extra copy of c and set the counter to D0; this will reduce to the previous case in one extra

step.

B2 [c]1
2
→ []0

2
c

B3 [a0]0
2
→ []1

2
a0

B4 [Di → Di+1]1
2
, 0 ≤ i ≤ n

248

Each object a0 changes polarization to 1, the counter Di counts this, and then object c resets

the polarization to 0.

B5 [Dn+1]12 → []02o

If there are n chosen elements with value 1, send one object o out.

The system is deterministic. Indeed, for any polarization and any object (other than di,

i < Nn, c, a0 or Dn+1), there exist at most one rule of type (a) and no other associated

rules. As for the objects in parentheses above, they have no rules of type (a) associated with

them and they cause a well-observed deterministic behavior of the system: division rules are

applied during the first Nn steps; then, depending on the polarization, symbols a0 or c are

sent out; finally, wherever Dn+1 is produced, it is sent out.

The system computes the permanent of a matrix in at most n(2 + N) + 1 = O(n log n)

steps. Indeed, first Nn steps correspond to membrane divisions corresponding to finding all

permutations of Sn, see Definition 4.1, while the following steps correspond to counting the

number of non-zero entries of the matrix associated to these permutations (there are at most

2n + 1 of them since the system counts to at most n and each count takes two steps; one

extra step may be needed for a technical reasons: to reset to 0 the polarization of membranes

that had polarization 1 after the first Nn steps). �

249

A6. Minimal parallelism - 6 polarizations

We present the proof of Theorem 4.8: A uniform family of confluent P systems with rules

(a), (c), (e0) working in minimally parallel way can solve SAT with six polarizations in O(l(m+

n)) number of steps.

Proof. The strategy used in the construction below is similar to that of the previous

theorem. However, since the application of the evolution rules no longer changes the polar-

ization of the membrane, the control symbols di,k, ti,k, fi,k no longer “operate" in polarization

0, but rather in polarization that toggles between 0 (for even k) and 5 (for odd k), to prevent

multiple applications of evolution rules in a row in the same membrane. Moreover, the input

objects are actually allowed to evolve in parallel (and the degree of parallelism is chosen

non-deterministically), but in the end of both halves of a cycle it is possible to count the

number of extra objects produced, to make sure that all l objects have been processed.

For the same propositional formula

β = C1 ∨ · · · ∨ Cm,

Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

l =
m∑

i=1

li.

and the same encoding of the instance of β in the alphabet Σ(〈n,m, l〉) by multisets X,X ′,

Σ(〈n,m, l〉) = {vj,i,1,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ s ≤ 2},

X = {(vj,i,1,1, 1) | xi ∈ {yj,k | 1 ≤ k ≤ lj}, 1 ≤ j ≤ m, 1 ≤ i ≤ n},

X ′ = {(vj,i,1,2, 1) | ¬xi ∈ {yj,k | 1 ≤ k ≤ lj}, 1 ≤ j ≤ m, 1 ≤ i ≤ n}.

We construct the following P system:

Π(〈n,m, l〉) = (O,H,E, [[]02[]03]01, w1, w2, w3, R), with

O = {vj,i,k,s | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ k ≤ m + n + 1, 1 ≤ s ≤ 4}

∪ {di,k | 1 ≤ i ≤ m + n + 1, 1 ≤ k ≤ 2l} ∪ {ti,k, fi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ l}

∪ {di | 1 ≤ i ≤ m + n + 1} ∪ {S, Z, yes, no}

∪ {zk | 1 ≤ k ≤ (4l + 3)n + m(4l + 1) + 2}

∪ {oi,j | 0 ≤ i ≤ 5, 0 ≤ j ≤ 5}

w1 = λ, w2 = d1, w3 = z0, H = {1, 2, 3}, E = {0, 1, 2, 3, 4, 5},

and the rules are listed below. The computation stages are the same as in the previous proof.

250

1. Producing 2n membranes corresponding to the possible variables assignments; selecting

satisfied clauses (groups A and C).

2. Checking whether all clauses are satisfied (groups B and D).

3. Generating the answer and sending it to the environment. (groups E and F).

Stage 1 consists of n cycles and stage 2 consists of m cycles. Each cycle’s aim is to process

all l objects, i.e., each object counts the number of cycles completed, and in the first stage

the clauses are evaluated while in the second stage the presence of each clause is checked.

A cycle consists of marking (setting the last index to 3 or 4) all l objects one by one

while performing the necessary operation, and then unmarking (setting the last index to 1

or 2) all of them. Marking or unmarking an object generally happens in five steps:

1. the control object produces two “polarization changers",

2. one of them changes the polarization from 0 or 5 to 1, 2 (to mark) or to 3 (to unmark),

3. one of the objects that has not yet been (un)marked is processed, producing a “witness"

— yet another “polarization changer",

4. the “witness" switches the polarization to 4,

5. the second “changer" produced in step 1 of this routine changes the polarization to 5

or 0.

Notice, however, that “step" 3 might actually take more than one step (more objects can be

(un)marked in parallel, or even in a row, creating a supply of “witnesses"). Step 4 might

actually be executed in parallel with the last step of “step" 3 (sending out a previous “witness"

while producing more). Finally, “step" 3 might even be skipped if a previous “witness" is

already there. What matters is that the whole (un)marking routine takes at most 5l steps.

Changing polarization of membrane 2

O1 (change from i to j)

[oi,j] i → []j o4,5, 0 ≤ i ≤ 5, 0 ≤ j ≤ 5

O2 (“witnesses" of D2 are “compatible" with “witnesses" of D1; this does not interfere with

the rest of the computation)

[o1,4]2 → []4 o4,5

Control objects in membrane 2: select clauses

A1 (for variable i: divide)

[di] → [ti,0] [fi,0] , 1 ≤ i ≤ n

A2 (process and mark all l objects)

[ti,k−1 → ti,ko0,1o4,5]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd

[fi,k−1 → fi,ko0,2o4,5]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd

[ti,k−1 → ti,ko5,1o4,0]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

[fi,k−1 → fi,ko5,2o4,0]5, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

251

A3 (prepare to unmark objects)

[ti,l → di,0]0, 1 ≤ i ≤ n, if l is even

[fi,l → di,0]0, 1 ≤ i ≤ n, if l is even

[ti,l → di,0o5,0]5, 1 ≤ i ≤ n, if l is odd

[fi,l → di,0o5,0]5, 1 ≤ i ≤ n, if l is odd

A4 (unmark all l objects)

[di,k−1 → di,ko0,3o4,5]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is odd

[di,k−1 → di,ko5,3o4,0]0, 1 ≤ i ≤ n, 1 ≤ k ≤ l, k is even

A5 (switch to the next variable)

[di,l → di+1]0, 1 ≤ i ≤ n, if l is even

[di,l → di+1o5,0]5, 1 ≤ i ≤ n, if l is odd

Control objects in membrane 2: check clauses

B1 (test if clause i is satisfied)

[dn+i → dn+i,1o0,2o4,5]0, 1 ≤ i ≤ m

B2 (process and mark the other l − 1 objects)

[dn+i,k−1 → dn+i,ko0,1o4,5]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is odd

[dn+i,k−1 → dn+i,ko5,1o4,0]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, k is even

B3 (unmark all l objects)

[dn+i,l+k−1 → dn+i,l+ko0,3o4,5]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is odd

[dn+i,l+k−1 → dn+i,l+ko5,3o4,0]0, 1 ≤ i ≤ m, 1 ≤ k ≤ l, l + k is odd

B4 (switch to the next clause)

[dn+i,2l → dn+i+1]0, 1 ≤ i ≤ m

B5 (send a positive answer)

[dm+n+1]0 → []0S

Input objects in membrane 2: select clauses

C1 (mark an object)

[vj,i,k,s → vj,i,k+1,s+2op,4]p,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m, k 6= m, 1 ≤ s ≤ 2, 1 ≤ p ≤ 2

C2 (a true variable present without negation or a false variable present with negation

satisfies the clause)

[vj,i,i,s → vj,i,i+1,3os,4]s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C3 (a true variable present with negation or a false variable present without negation does

not satisfy the clause)

[vj,i,i,3−s → vj,i,i+1,4os,4]s, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

C4 (unmark an object)

[vj,i,k,s+2 → vj,i,k,so3,4]3,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ m + 1, 1 ≤ s ≤ 2

252

Input objects in membrane 2: check clauses

D1 (check if the clause is satisfied at least by one variable)

[vj,i,m+j,1 → vj,i,k+1,3o1,4]2, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ 2

D2 (mark an object)

[vj,i,m+k,s → vj,i,k+1,s+2o1,4]1,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ s ≤ 2

D3 (unmark an object)

[vj,i,m+k,s+2 → vj,i,k,so3,4]3,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 2 ≤ k ≤ n + 1, 1 ≤ s ≤ 2

Control objects in membrane 3

E1 (count)

[zk−1 → zk]0, 1 ≤ k ≤ N = (10l + 5)n + m(10l + 1) + 2

E2 (send time-out object)

[zN]0 → []0Z

Control objects in the skin membrane

F1 (the first positive result sends the answer)

[S]0 → []1yes

F2 (without the positive result, the time-out sends the negative answer)

[Z]0 → []0no

Let us now explain how the system works in more details. The control objects keep track of

the number of cycles completed, whether marking or unmarking takes place, as well as the

number of objects already (un)marked. Moreover, the control object is responsible to pass

the “right" information to the objects via polarization: in stage 1, by generating o0,1 or o5,1

if the variable is true, and o0,2 or o5,2 if the variable is false; in stage 2, o0,1 or o5,1 if the

clause is already found, and o0,2 or o5,2 if the clause is being checked for.

During the first stage, an object vj,i,1,s is transformed into vj,i,n+1,t, where t = 1 if variable

xj satisfies clause Ci, or t = 2 if not. The change of the last index from s to t happens when

the third index is equal to i. The control object d1 is transformed into dn+1. Stage 1 takes

at most (10l + 5)n steps (at most (10l + 3)n in the case when l is even).

If some clause is not satisfied, then the computation in the corresponding membrane

is “stuck" with polarization 2. Otherwise, during the second stage an object vj,i,n+1,t is

transformed into vj,i,n+m+1,t, while the control object dn+1 becomes dm+n+1. Stage 2 takes

at most m(10l + 1) steps, plus one extra step to send objects S to skin, if any.

After stage 2 is completed, one copy of S, if any, is sent out as yes, changing the

polarization of the skin membrane. After this time has passed, object Z comes to the skin

from region 3. If the polarization of the skin remained 0, Z is sent out as no. �

253

A7. Sequential UREM P systems

Sequential Mode with Priorities The following theorem establishes computational

completeness for P systems with unit rules and energy assigned to membranes, when working

in the sequential mode with priorities on the rules:

Theorem A7.1 Each partial recursive function f : Nα → Nβ (α > 0, β > 0) can be

computed by a P system with unit rules and energy assigned to membranes with (at most)

max{α, β}+ 3 membranes.

The proof of this theorem can be found in [62].

When taking β = 0 in the preceding proof, we get the accepting variant of P systems

with unit rules and energy assigned to membranes:

Corollary A7.1 For any L ∈ PsRE (α) there exists a P system with unit rules and energy

assigned to membranes with (at most) (α + 3) membranes accepting L.

The proof uses the constructions from the previous theorem; it can be found in [62].

As can immediately be seen from the constructions given in the proofs of Theorem A7.1

and Corollary A7.1, the simulation of a deterministic register machine by a P systems with

unit rules and energy assigned to membranes can be carried out in a deterministic way, i.e.,

for a given input only one computation (halting or not) exists.

We now turn to the non-deterministic case of generating vectors of non-negative integers:

when taking α = 0 in the proof of Theorem A7.1 and the non-deterministic variant of ADD-

instructions, we get the generative variant of P systems with unit rules and energy assigned

to membranes:

Corollary A7.2 For any L ∈ PsRE (β) there exists a P system with unit rules and energy

assigned to membranes with (at most) (β + 3) membranes generating L.

The proof uses the constructions from the previous theorem; it can be found in [62].

Sequential Mode without Priorities When omitting the priority feature, we do not

get systems with computational completeness anymore. Let PsPE∗(unit) denote the family

of sets of Parikh vectors generated by P systems with unit rules and energy assigned to

membranes without priorities and with an arbitrary number of membranes. The following

two lemmas prove that PsPE∗(unit) = PsMAT, i.e., we get a characterization of PsMAT

by the new family PsPE∗(unit).

254

Lemma A7.1 PsPE∗(unit) ⊇ PsMAT.

This result is proved by simulating matrix grammars. The proof is rather long; it can be

found in [62].

Lemma A7.2 PsPE∗ (unit) ⊆ PsMAT.

This result is proved by simulating UREM P systems by matrix grammars. The proof is

rather long; it can be found in [62].

If we now combine the two previous lemmas we get the following characterization of

PsMAT :

Theorem A7.2 PsPE∗(unit) = PsMAT.

Due to the construction in Lemma A7.1 we not only have obtained a characterization of

PsMAT by P systems with unit rules and energy assigned to membranes but also a normal

form for this kind of P systems, i.e., only one symbol moving through a membrane structure

is already sufficient (which of course is the minimal resource needed to obtain reasonable

results). Moreover, without giving a proof we should like to mention that PsPE∗(unit) also

equals the family of sets of Parikh vectors accepted by P systems with unit rules and energy

assigned to membranes without priorities and with an arbitrary number of membranes.

The results obtained so far in this section are already optimal with respect to the size of

the multisets transported through a membrane, as in all proofs we needed only one object

to be present in the system. Yet the optimal numbers of membranes necessary for obtain-

ing computational completeness or for characterizing PsMAT still remain open problems

(although we conjecture that the number of membranes needed in the universality results is

already optimal).

255

A8. List of selected results in formulas

LOP∗(ncoo, tar) = LOP1(ncoo, out) = Lt(CF) (A8.1)

REG • Perm(REG) ⊆ LOP (ncoo, tar) ⊆ CS ∩ SLIN ∩P (A8.2)

NaDOP sequ
1 (ncoo, pro1,1, inh1,1) = NRE (A8.3)

NFIN ∪ coNFIN = NaDOP1(ncoo, (pro∗,∗, inh∗,∗)∗, pri) (A8.4)

NaDOP asyn
1 (ncoo, (pro∗,∗, inh∗,∗)∗, pri) (A8.5)

NFIN ∪ coNFIN = NaDOP1(ncoo, pro1,∗) = NaDOP1(ncoo, pro1,∗) (A8.6)

NaDOP asyn
1 (ncoo, pro1,∗, inh1,∗) (A8.7)

NRMR(coo, pri)T = NRMR(coo, inh)T = NRE (A8.8)

NRsMR(coo)T = {∅} ∪ {{n} | n ∈ N} (A8.9)

NRsMR(coo, pri)T = NRE (A8.10)

NaDsMR(coo, pri)T = NRE (A8.11)

NaDsMR(coo) = {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N} (A8.12)

NaDMR(coo) = {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N} (A8.13)

NROP1(coo, pri)T = NROP1(coo, pri)T = NRE (A8.14)

NRsOP1(coo)T = {{n} | n ∈ N} (A8.15)

NRsOP1(coo, pri)T = NRE (A8.16)

NaDsMR(coo, pri)T = NRE (A8.17)

NaDsOP1(coo) = {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N} (A8.18)

NaDsOP1(coo, pro, inh) = NRE (A8.19)

LO1,2,∗P1,∗,2(ncoo, tar,mcre, δ) = RE (A8.20)

DPsaOP1,∗,2(ncoo, tar,mcre, δ) = PsRE (A8.21)

L(m)O1,2,10+mP2,∗,∗(ncoo, tar,mcre, δ) = RE(m) (A8.22)

L(m)O1,2,11+mP1,∗,∗(ncoo, tar,mcre, δ) = RE(m) (A8.23)

NDOP1(23anti) = NDMR1(23coo) = NRE (A8.24)

NFIN1 ∪
5⋃

k=0

(NkFINk ∪NkREGk) ∪N6RE ⊆ NOP1(sym3) (A8.25)

NFIN0 ∪NFIN1 ∪N1REG1 ∪N2RE ⊆ NOP1(sym4) (A8.26)

NFIN ∪N1REG ∪N2RE ⊆ NOP1(sym∗) ⊆ NFIN ∪N1RE (A8.27)

SEG1 ∪ SEG2 ⊆ NOP sequ
1 (sym2) ⊆ NFIN (A8.28)

NFIN1 ∪
∞⋃

k=0

(NkFINk ∪NkREGk) ⊆ NOP sequ
1 (sym3) (A8.29)

256

NOP sequ
1 (sym∗) = NFIN ∪N1REG (A8.30)

LO1,3/∗,∗P4,∗,3(active1, a, b, c, d, e) = RE (A8.31)

LO1,3/∗,∗P7,∗,2(active1, a, b, c, d, e) = RE (A8.32)

DPsaOP1,1,1(active2, a, c) = PsRE (A8.33)

NP ⊆ co−NP ⊆ PMCOP (active2,a,c,e) (A8.34)

PSPACE ⊆ PMCOP (active1,a,c,d,e,f) (A8.35)

NP ⊆ co−NP ⊆ PMCOP (active4,a′′

s ,c0,e0) (A8.36)

NP ⊆ co−NP ⊆ PMCOP (active6,a,c,e0) (A8.37)

PsOP sequ
∗ (energy∗) = PsMAT (A8.38)

Ps(m)OPm+6(energy∗) = Ps(m)RE (A8.39)

PsStP∗(ins0,0
1 , del0,0

1) = PsMAT (A8.40)

PsSP∗(ins0,0
1 < del0,0

1) = PsRE (A8.41)

LSP∗(ins0,1
1 < del0,0

1) = LSP∗(ins1,0
1 < del0,0

1) = RE (A8.42)

LSP∗(ins0,0
1 < del1,0

1) = LSP∗(ins0,0
1 < del0,1

1) = RE (A8.43)

LSP∗(ins0,0
1 < del0,0

2) = RE (A8.44)

LSP∗(e− ins0,0
1 < l − del0,0

1) = RE (A8.45)

REG ⊆ ELSP∗(r − ins0,0
1 , r − del0,0

1) (A8.46)

REG ⊆ ELSP∗(l − ins0,0
1 , l − del0,0

1) (A8.47)

NOP47(polymd(coo)) = NRE (A8.48)

List of Tables

1 Selected references of Membrane Computing Meetings 13

1.1 Variants of circular Post machines . 29

2.1 Properties of sequential(top) and maximally parallel (bottom) rewriting . . . 84

2.2 Results (letter F stands for “generate exactly NFIN ”) 90

3.1 23 rules of a universal antiport P system . 99

3.2 Families NOmPn . 107

3.3 P systems with small numbers of antiport rules 107

5.1 Strings in 2-node NEP . 164

5.2 A universal HNEP with 7 nodes. 167

257

List of Figures

1.1 Flowchart of the strongly universal machine 27

2.1 A computation and a word generated by a P system from Example 2.1 . . . 60

2.2 Bounded transition graph as a finite automaton 66

2.3 Membrane structures for membrane creation proofs 91

3.1 Part of the multiset rewriting flowchart of U22: only glued rules and encoding 100

3.2 Multiset rewriting flowchart of U22 with glued rules 101

4.1 A transition of a Turing machine . 120

4.2 Representation of a TM by a P system . 121

4.3 Beginning of simulation of a step of a TM by a P system 121

4.4 After some “wrong” guesses . 122

4.5 Finishing the simulation of a TM . 122

4.6 Membrane structures for active membrane proofs 123

4.7 A run a P system deciding solvability of γ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) 131

4.8 The membrane structure of the system Π after m + 5n steps 137

4.9 Simulation of the zero-test of (q1 : 〈RjZM〉, q2, q3) in Theorem 4.12 152

5.1 Simulating (p : [RkP], q, r)(left) and (p : 〈RkZM〉, q, r) (right) 175

5.2 Membrane structure for Theorem 5.9 . 176

6.1 Graphical representation of a polymorphic P system 203

6.2 The polymorphic computation from Example 6.1 204

6.3 A non-cooperative polymorphic system giving a complicated result 206

6.4 Illustration of a polymorphic system generating factorials 207

6.5 A polymorphic system generating 22n
. 208

6.6 A polymorphic system computing a superpower function 209

6.7 A polymorphic P system deciding factorials 210

A1.1 An example of a derivation of the grammar from Example A1.1 238

258

DECLARATION OF ASSUMING RESPONSIBILITY

Subsemnatul, declar pe răspundere personală că materialele prezentate ı̂n teza de doctorat

sunt rezultatul propriilor cercetări şi realizări ştiinţifice. Conştientizez că, ı̂n caz contrar,

urmează să suport consecinţele ı̂n conformitate cu legislaţia ı̂n vigoare.

Alhazov Artiom

. .

Dată: .

259

CURRICULUM VITAE
Numele: Alhazov
Prenumele: Artiom
Data şi locul naşterii: 11 octombrie 1979, Chişinău, RM
Cetăţenia: Republica Moldova
Studii superioare:
1996–2001, Universitatea de Stat din Moldova, Chişinău,
Specialitatea: Matematica şi Informatica
Studii de doctorat:
2001–2004, Institutul de Matematică şi Informatică
al A.Ş.M., Chişinău
Specialitatea: 01.05.01 – Bazele teoretice ale informaticii;
programarea calculatoarelor
2002–2006, Universitatea “Rovira i Virgili”, Tarragona, Spania
Diploma nr. 784408 Seria 1-BC , eliberată la 05.05.2006
echivalată la 20.12.2007 cu gradul de doctor ı̂n informatică,

ı̂n specialitatea: 01.05.01 - Bazele teoretice ale informaticii, programarea calculatoarelor.
Studii de postdoctorat: 2007, Åbo Akademi, Turku, Finlanda, 12 luni
2008–2010, Hiroshima University, Higashi Hiroshima, Japonia, 24 luni
2011-2012, Università degli Studi di Milano-Bicocca, Milano, Italia, 18 luni
Domenii de interes ştiinţific: Informatica teoretică, Teoria limbajelor formale,
Calcule biomoleculare, Matematica
Activitatea profesională: 2005-prezent, laboratorul Sisteme de programare,
Institutul de Matematică şi Informatică al A.Ş.M.
(inginer programator, cercetător ştiinţific, cercetător ştiinţific superior)
Participari in proiecte ştiinţifice naţionale si internaţionale:
Indicate ı̂n “acknowledgements” (p. 4)
şi ı̂n “acknowledgements” ı̂n [5],
http://psystems.disco.unimib.it/download/Alhazovthesis.zip

Participări la foruri ştiinţifice: peste 35 (co-autor),
peste 20 (participat personal, peste hotare)
Lucrari stiintifice publicate: peste 160,
http://www.aartiom.50webs.com/pub_aa.html,
http://www.math.md/people/alhazov-artiom/

Premii principale: 2006, Premiul Naţional pentru Tineret
ı̂n Domeniile Ştiinţei, Tehnicii, Literaturii şi Artelor,
2010, Premiul Academiei de Ştiinţe a Moldovei
pentru realizări ştiinţifice ale tinerilor cercetători,
2012, Premiu al Institutului de Matematică şi Informatică pentru tineri savanţi.
Cunoaşterea limbilor: rusa, româna, engleza (fluent),
spaniola, italiana (bine), catalana (cu dicţionarul)
Date de contact: tel. 022727483, email: artiom (at) math.md

260

http://psystems.disco.unimib.it/download/Alhazovthesis.zip
http://www.aartiom.50webs.com/pub_aa.html
http://www.math.md/people/alhazov-artiom/

	Annotations
	Abbreviations and Selected Notations
	INTRODUCTION
	Unconventional Computing
	The Topics
	What is New?
	Theory and Applications
	The Structure

	PREREQUISITES AND OVERVIEW
	Formal Language Prerequisites
	Grammars
	Matrix grammars
	Finite automata
	Counter automata
	Register machines
	Circular Post machines

	Networks of Evolutionary Processors
	P Systems with Symbol-Objects
	Multiset rewriting
	Transitional P systems
	Symport/antiport
	Active membranes
	Energy assigned to membranes
	Energy-based P systems
	Polymorphism

	String-objects. String Replication
	Active membranes
	Insertion/deletion

	Computing with P Systems
	Decisional framework
	Minimal parallelism

	Conclusions to Chapter 1

	MULTISET REWRITING. PROPERTIES
	The P Systems Language Family
	Comparison with known families
	Closure properties
	A difficult language
	Parsability

	Deterministic Non-Cooperative Systems
	Lower bounds
	Upper bounds and characterizations
	Sequential systems
	Asynchronous and maximally parallel systems

	Determinism and Reversibility
	Sequential multiset rewriting
	Reversible sequential rewriting
	Strong reversibility
	Deterministic sequential rewriting
	Strong determinism
	Maximally parallel multiset rewriting
	Reversible parallel rewriting
	Strong reversibility
	Strongly deterministic parallel rewriting

	Self-stabilization
	Self-stabilization and related properties
	Accepting systems
	Generating systems

	Membrane Creation
	Conclusions to Chapter 2

	SYMPORT/ANTIPORT
	Universality with Small Number of Rules
	State of the Art
	Computational completeness
	Minimal antiport and minimal symport
	Number of symbols
	Number of rules
	Efficiency

	Recent Symport Developments
	Unbounded weight
	Few-element sets
	Straightforward regularity
	Improved universality
	Symport of weight at most 4
	Sequential mode

	Conclusions to Chapter 3

	ACTIVE MEMBRANES. ENERGY
	Simulating Turing Machines
	Universality
	One polarization
	Two polarizations

	Efficiency with Two Polarizations
	Using global rules

	Beyond NP and co-NP
	Permanent of a matrix
	Attacking PP complexity class

	Attacking PSPACE
	Minimal Parallelism
	With sequential polarization-changing evolution

	Energy Assigned to Membranes
	Energy Assigned to Regions
	Conclusions to Chapter 4

	STRING-OBJECT MODELS
	Networks of Evolutionary Processors
	NEPs with two nodes
	HNEPs with one node
	HNEPs with 7 nodes
	Obligatory HNEPs

	Insertion-Deletion P Systems
	Minimal insertion-deletion P systems
	Small contextual insertion-deletion P systems

	(Exo) Insertion-Deletion Operations
	P systems with priority of exo-deletion
	One-sided insertion/deletion without priorities

	Splicing
	Conclusions to Chapter 5

	APPLICATIONS
	Inflections
	Dictionary
	Dictionary search
	Search with fail
	Dictionary update

	Synchronization
	Deterministic case

	Polymorphism
	The power of polymorphism

	Other Applications
	Conclusions to Chapter 6

	GENERAL CONCLUSIONS AND RECOMMENDATIONS
	Bibliography

	APPENDICES
	Context-free grammars and time-yield
	Advanced control in one region
	A new variant of circular Post machines
	Two polarizations - ``normal form''
	Computing the Permanent
	Minimal parallelism - 6 polarizations
	Sequential UREM P systems
	List of selected results in formulas
	List of Tables
	List of Figures

	DECLARATION OF ASSUMING RESPONSIBILITY
	CURRICULUM VITAE

