Terbium: the essentials

Terbium is reasonably stable in air. It is a silvery-grey metal, and is malleable, ductile, and soft enough to be cut with a knife. It is a rare earth metal found in cerite, gadolinite and monazite. The element itself was isolated only recently.

Table: basic information about and classifications of terbium.

Terbium: historical information

Terbium was discovered by Carl Mosander at 1843 in Sweden. Origin of name: named after "Ytterby", a town in Sweden.

Terbium was discovered by Gustav Mosander in 1843. He detected it is as an impurity in yttria which is yttrium oxide, Y2O3.

Terbium: physical properties

 Read more » »

Terbium: orbital properties

 Read more » »

Isolation

Isolation: terbium metal is available commercially so it is not normally necessary to make it in the laboratory, which is just as well as it is difficult to isolate as the pure metal. This is largely because of the way it is found in nature. The lanthanoids are found in nature in a number of minerals. The most important are xenotime, monazite, and bastnaesite. The first two are orthophosphate minerals LnPO4 (Ln deonotes a mixture of all the lanthanoids except promethium which is vanishingly rare) and the third is a fluoride carbonate LnCO3F. Lanthanoids with even atomic numbers are more common. The most comon lanthanoids in these minerals are, in order, cerium, lanthanum, neodymium, and praseodymium. Monazite also contains thorium and ytrrium which makes handling difficult since thorium and its decomposition products are radioactive.

For many purposes it is not particularly necessary to separate the metals, but if separation into individual metals is required, the process is complex. Initially, the metals are extracted as salts from the ores by extraction with sulphuric acid (H2SO4), hydrochloric acid (HCl), and sodium hydroxide (NaOH). Modern purification techniques for these lanthanoid salt mixtures are ingenious and involve selective complexation techniques, solvent extractions, and ion exchange chromatography.

Pure terbium is available through the reduction of TbF3 with calcium metal.

2TbF3 + 3Ca → 2Tb + 3CaF2

This would work for the other calcium halides as well but the product CaF2 is easier to handle under the reaction conditions (heat to 50°C above the melting point of the element in an argon atmosphere). Excess calcium is removed from the reaction mixture under vacuum.

WebElements Shop

WebElements now has a WebElements shop at which you can buy periodic table posters, mugs, T-shirts, games, fridge magnets, molecular models, and more.

Periodic Table fridge magnets Periodic Table fridge magnets
Buy our periodic table fridge magnets here

WebElements poster Periodic table t-shirts Periodic table mouse mats Molymod molecular model kits Chemistry educational resources

terbium atomic number