

Copyright © 2009 Sunbelt Software. All rights reserved.
 sales@sunbeltsoftware.com support@sunbeltsoftware.com

1

Rootkit Installation
and Obfuscation in Rustock

By Chandra Prakash

Sunbelt Software
Manager of Advanced Detection Technologies

Summary:

Rustock is a group of rootkit-enabled backdoor Trojans. First appearing in 2006, they
apparently were created to co-opt victim machines to distribute spam. More recently,
Rustock has been used in the distribution of rogue anti-malware products.

This article describes some portions of analysis of the recent (March 2009) Rustock
samples in regard to the following.

1. Multiple layers of dropper unpacking

2 . A new technique for dropping the rootkit driver

This is the most significant change we found. Rustock uses Microsoft drivers beep.sys
and null.sys as goats. It saves copies of these drivers, overwrites them with its own, starts
those, then replaces the originals after the rootkit installation is complete.

3. A unique technique for detecting and avoiding VMWare analysis

VMWare is a virtual environment and a major tool used by anti-malware analysts. The
Rustock driver queries the PCI Bus to detect VMWare, using the vendor ID and device
ID numbers of the PCI-to-Host bridge and PCI-to-ISA bridge.

Dropper unpacking

The outer layer 1 of the Rustock dropper is packed using the well-known UPX packer.
Layer 1 unpacking results in a Win32 command line executable with _wmain as shown in
listing 1:

UPX0:00401920 _wmain proc near
UPX0:00401920 call sub_401928
UPX0:00401925 xor eax, eax
UPX0:00401927 retn

Copyright © 2009 Sunbelt Software. All rights reserved.
 sales@sunbeltsoftware.com support@sunbeltsoftware.com

2

UPX0:00401927 _wmain endp
UPX0:00401927
UPX0:00401928 sub_401928 proc near
UPX0:00401928 jmp short loc_401995
 .
 .
UPX0:00401995 loc_401995:
UPX0:00401995 pusha
UPX0:00401996 or eax, 0FFFFFFFFh
UPX0:00401999 xor eax, 0FFFFFFFFh
UPX0:0040199C push 2DB7h
UPX0:004019A1 push offset loc_401957
UPX0:004019A6 retn

Listing 1.

The _wmain routine is a layer 2 inner custom unpacking routine with many PUSH RETN
instruction sequences. Listing 2 shows a snippet of the layer 2 unpacking routine.

0040197D push offset loc_4019A7; Start of encrypted code
00401982 pop ebx
00401983 lea esi, dword_420000; Starting decryption
 ; location
00401989
00401989 loc_401989:
00401989 add eax, 0B1788E5Ch ; Decryption key
 ; different for every dword
0040198E mov edx, [ebx]
00401990 xor edx, eax ; Simple XOR Decryption
00401992 push edx
00401993 jmp short loc_401941
00401941
00401941 loc_401941:
00401941 pop dword ptr [esi] ; Write decrypted dword
00401943 lea ebx, [ebx+4]

Listing 2.

The start of decrypted code after layer 2 unpacking is shown in listing 3. The decrypted
code gets the location of PEB using FS:[30] register. From PEB it retrieves the address of

Copyright © 2009 Sunbelt Software. All rights reserved.
 sales@sunbeltsoftware.com support@sunbeltsoftware.com

3

the InitializationOrderModuleList to find the kernel32.dll load virtual address, which is
used to resolve the import addresses of GetProcAddress, LoadLibrary and ExitProcess
APIs.

00420000 8b4c2404 mov ecx,dword ptr [esp+4]
00420004 call 0420009
00420009 pop ebp
0042000a sub ebp,9
0042000d mov eax,dword ptr fs:[00000030h]
00420013 mov eax,dword ptr [eax+0Ch]
00420016 mov eax,dword ptr [eax+1Ch]
00420019 mov eax,dword ptr [eax]
0042001b mov eax,dword ptr [eax+8] ; Getting
 ; Kernel32.dll load address from PEB
Listing 3.

These APIs in turn are used to load more libraries e.g., advapi32.dl, and resolve functions
from them.

Dropping the rootkit driver

Rustock’s next step is to load the rootkit driver in a shared memory. Using
CreateFileMapping API, the dropper creates a system-paging-file-backed named shared
memory section object. The user mode name of the section object is Global\5B37FB3B-
984D-1E57-FF38-AA681BE5C8D9. It then uses the virtual address return from
MapViewOfFile API to copy the rootkit driver into the shared memory.

Next beep.sys is used as the first goat driver to install the rootkit driver. The dropper
copies the beep.sys driver into a temporary file. The path to the temporary file is obtained
using GetTempPath and GetTempFileName APIs. It uses SCM APIs OpenSCManager
and OpenService to get a handle to beep service and then calls the ControlService API to
stop it, if it’s already running. It overwrites the beep.sys driver with its own Rustock
driver and then later starts the beep service using ControlService API.

The dropper checks if the driver has started successfully by opening a named event object
created from the Rustock driver. The API used is OpenEvent and name of the event
object is Global\{60F9FCD0-8DD4-6453-E394-771298D2A471}. The open event is
attempted in several retries in one second sleep intervals, until OpenEvent returns
success. After OpenEvent retries, the original beep.sys driver is restored from the
temporary saved location.

Copyright © 2009 Sunbelt Software. All rights reserved.
 sales@sunbeltsoftware.com support@sunbeltsoftware.com

4

If the open event fails, the dropper next uses null.sys driver as the goat driver, repeating
the same steps as with the beep.sys driver. If using null.sys also does not succeed, then it
creates a driver named glaide32.sys in %SystemRoot%\System32\drivers and uses it to
start the Rustock driver.

Querying the PCI Bus to detect VMWare

Rustock communicates with the PCI Bus Device to get two DWORDs. One DWORD
indentifying the vendor and device ID of bridge between PCI Bus to Host and the other
DWORD indentifying the device ID of the bridge between PCI Bus and ISA bridge
[2][3].

The vendor and device IDs corresponding to these DWORD pairs are shown in table 1
[4]. If a match happens with any of these pairs, APC2 is not delivered [1]. It is seen that
Pair 1 corresponds to VMWare and was checked on VMWare version 5.5, 6.0 and 6.5.
More than likely the malware uses these vendor and device IDs to detect VMWare.

 VendorID DeviceID

8086 - Intel 7190 - 440BX/ZX AGPset Host
Bridge

Pair 1
71908086
71108086 8086 - Intel 7110 - PIIX4/4E/4M ISABridgeA

8086 - Intel 1237 - PCI & Memory Pair 2
12378086
70008086

8086 - Intel 7000 - PIIX3 PCI-to-ISA Bridge
(Triton II)

8086 - Intel 7192 - 440BX/ZX chipset Host-to-
PCI Bridge

Pair 3
71928086
71108086 8086 - Intel 7110 - PIIX4/4E/4M ISBridgeA

8086 - Intel 1130 - Host-Hub Interface Bridge /
DRAM Ctrlr

Pair 4
11308086
1112AAAA Unknown

Table 1.

The code snippet to get device and vendor IDs corresponding to the first DWORD is
shown in listing 5.

Copyright © 2009 Sunbelt Software. All rights reserved.
 sales@sunbeltsoftware.com support@sunbeltsoftware.com

5

mov edx, 0CFBh ; In dx Set PCI Mechanism control (PMC)

; register port number 0xCFB.
in al, dx ; Read value from PMC register
or al, 1 ; PCI CONFIGURATION ACCESS MECHANISM SELECT

; (PCAMS):
 ; Set PCI Configuration Access Mechanism #1.
 ; The CONFADD and CONFDATA Registers (see below)
 ; are only accessible when PCAMS = 1.
out dx, al ; Enable PCI Configuration Mechanism #1
xor ebx, ebx

QRY_PCI_VENDOR_DEV_ID_LOOP:
mov eax, ebx
shl eax, 8 ; Set up device number and function number.
bts eax, 1Fh ; Set bit 31. Note device number is always 0.
mov dl, 0F8h
out dx, eax ;Output to port 0xCF8, the PCI configuration

; address (CONFADD) register.
mov dl, 0FCh
in eax, dx ; Read port 0xCFC, the PCI Configuration
 ; data (CONFDATA) register.
mov esi, eax
inc ax
jz short INVALID_VALUE_READ_FR_PORT

mov eax, ebx ; Reached here if vendID and devID are valid

; for the given device num and function num at bus 0.
shl eax, 8
add eax, 80000008h ; Set PCI Config address offset 0x8.
mov dl, 0F8h
out dx, eax
mov dl, 0FCh
in eax, dx ; Here it is reading DWORD

; from CONFDATA at PCI address offset 0x8.
 ; The DWORD contains 4 bytes as below
 ; byte at offset 0xB - broad classification

; byte at offset 0xA - sub-classification
 ; byte at offset 0x9 - Register programming interface

; byte at offset 0x8 - Ignored
 shr eax, 8 ; Ignoring byte at offset 0x8.
cmp eax, 60000h ; 0x060000 is a such that
 ; 06 - PCI Bridge (broad classification)

Copyright © 2009 Sunbelt Software. All rights reserved.
 sales@sunbeltsoftware.com support@sunbeltsoftware.com

6

 ; 00 - bridge to CPU Host (sub-classification)
 ; 00 - register programming interface
 ; Hence it identifies a PCI Host Bridge Device.

jz short FOUND_VALID_VENDOR_DEV_ID

INVALID_VALUE_READ_FR_PORT:
inc bl ; Here by incrementing bl which is byte sized its

; scanning all device numbers and functions numbers.
; Note device number is 4 bits and so is the function number.

jnz short QRY_PCI_VENDOR_DEV_ID_LOOP
xor esi, esi

FOUND_VALID_VENDOR_DEV_ID:
Listing 5.

The logic for getting device and vendor ID corresponding to the second DWORD is same
except the comparison part as shown in listing 6.

cmp eax, 60100h ; 060100 is a such that
 ; 06 - PCI Bridge (broad classification)
 ; 01 - ISA bridge (sub-classification)
 ; 00 - register programming intf
 ; Hence it indentifies a PCI ISA Bridge Device.
jz short loc_1116D
cmp eax, 68001h ; 068001 identifies PCI "Other"
 ; bridge device
Listing 6.

References

1. Chandra Prakash, Your filters are bypassed: Rustock.C in the kernel, Virus Bulletin

Magazine, Nov 2008.
2. 82434LX/82434NX PCI, CACHE AND MEMORYCONTROLLER (PCMC),

http://datasheet.digchip.com/227/227-3-008971-2434NX.pdf.
3. PCI 2.2 Local Bus Specification,

http://www.ece.mtu.edu/faculty/btdavis/courses/mtu_ee3173_f04/papers/PCI_22.pdf.
4. PCI Vendor and Device Lists, http://www.pcidatabase.com.

http://datasheet.digchip.com/227/227-3-008971-2434NX.pdf
http://www.ece.mtu.edu/faculty/btdavis/courses/mtu_ee3173_f04/papers/PCI_22.pdf
http://www.pcidatabase.com/

