Scratch: A Sneak Preview

John Maloney Leo Burd

MIT Media Laboratory
jmaloney@media.mit.edu

Natalie Rusk
MIT Media Laboratory
nrusk@media.mit.edu

Abstract

Scratch is a networked, media-rich programming
environment designed to enhance the development of
technological fluency at after-school centers in
economically-disadvantaged communities. Just as the
LEGO MindStorms robotics kit added
programmability to an activity deeply rooted in youth
culture (building with LEGO bricks), Scratch adds
programmability to the media-rich and network-based
activities that are most popular among youth at after-
school computer centers. Taking advantage of the
extraordinary processing power of current computers,
Scratch supports new programming paradigms and
activities that were previously infeasible, making it
better positioned to succeed than previous attempts to
introduce programming to youth.

Our working hypothesis is that, as kids work on
personally meaningful Scratch projects such as
animated stories, games, and interactive art, they will
develop technological fluency, mathematical and
problem solving skills, and a justifiable self-
confidence that will serve them well in the wider
spheres of their lives.

1. Introduction

A flurry of recent U.S. policy reports ([NRC,
1999]; [ITEA, 2000]; and [NAE, 2002]) have drawn
attention to a critical societal problem: even as new
technologies proliferate and play increasingly
important roles in all aspects of society, most people
are “poorly equipped to recognize, let alone ponder or
address, the challenges technology poses or the
problems it could solve” [NAE, 2002].

To address this problem, these reports call for new
initiatives to help people become more fluent with
technologies. The NRC report defines “fluency” with

MIT Media Laboratory
leoburd@media.mit.edu

Brian Silverman
MIT Media Laboratory
bss@media.mit.edu

Yasmin Kafai
UCLA
kafai@gseis.ucla.edus

Mitchel Resnick
MIT Media Laboratory
mres@media.mit.edu

information technologies as “the ability to reformulate
knowledge, to express oneself creatively and
appropriately, and to produce and generate information
(rather than simply to comprehend it).” Fluency,
according to the report, “goes beyond traditional
notions of computer literacy...[It] requires a deeper,
more essential understanding and mastery of
information technology for information processing,
communication, and problem solving than does
computer literacy as traditionally defined.”

In the past, most initiatives to improve
technological fluency have focused on school
classrooms. But there is a growing recognition that
after-school centers and other informal learning settings
can play an important role, especially in economically-
disadvantaged communities, where schools typically
have few technological resources and many young
people are alienated from the formal education system.

During the past decade, more than 2000 community
technology centers (CTCs) opened in the United
States, specifically to provide better access to
technology in economically-disadvantaged
communities. But most CTCs support only the most
basic computer activities such as word processing,
email, and Web browsing, so participants do not gain
the type of fluency described in the NRC report.
Similarly, many after-school centers (which, unlike
CTCs, focus exclusively on youth) have begun to
introduce computers, but they too tend to offer only
introductory ~ computer activities, sometimes
augmented by educational games.

A small subset of after-school centers and CTCs,
such as those in the Computer Clubhouse network
[Resnick, Rusk, & Cooke, 1998], explicitly focus on
the development of technological fluency, moving
beyond basic computer skills and helping youth learn
to design, create, and invent with new technologies.
Walk into any Computer Clubhouse and you are likely
to see youth creating and manipulating graphics,
animations, videos, and music. The professional

image-processing tool Photoshop is particularly
popular. Indeed, a “Photoshop culture” has emerged at
many Clubhouses, with youth proudly displaying their
Photoshop creations on bulletin boards (both physical
and online), sharing Photoshop techniques and ideas
with one another, and helping Clubhouse newcomers
get started with the software.

The rise of the Photoshop culture indicates that
after-school computer centers such as the Computer
Clubhouse can make a positive difference. But there is
a further step on the path towards true computer
fluency that is seldom achieved, even at after-school
computer centers that focus on technological fluency:
youth rarely become engaged in computer
programming. There is no “programming culture”
analogous to the Photoshop culture. This is
unfortunate, because skills associated with
programming can play a central role in fluency. “The
algorithmic thinking inherent in programming,” writes
the NRC, “is essential to comprehending how and why
information technology systems work as they do.”
[NRC, 1999]. In addition, the NRC report argues that
“the continual use of abstract thinking in programming
can guide and discipline one’s approach to problems in
a way that has value well beyond the information
technology-programming setting. In essence,
programming becomes a laboratory for discussing and
developing valuable life skills, as well as one element
of the foundation for learning about other subjects.”
Many others (e.g., [Papert, 1980]; [Kay, 1991]; and
[diSessa, 2000]) have made similar arguments.

Unfortunately, previous initiatives to introduce
programming to youth have often failed. Computer
programming has been introduced using programming
languages that are difficult to use, with proposed
activities that do not connect with young people’s
interests and in contexts where no one has enough
expertise to provide guidance. As a result, many
people now view computer programming as a difficult
technical activity, appropriate only for a small segment
of the population. But that need not be the case. The
extraordinary increase in computational power over the
past two decades makes possible a new generation of
programming tools and activities that can help
overcome the shortcomings of previous initiatives,
making computer programming more accessible to
everyone.

2. The Computer Clubhouse network
Scratch is being designed with a particular group in

mind: youth ages 10-18 from economically-
disadvantaged and culturally diverse communities. In

particular, we are focusing on the Computer Clubhouse
(www.computerclubhouse.org). We will test Scratch
with—and solicit feedback from—youth, mentors, and
coordinators at Computer Clubhouse sites in Boston,
Los Angeles, and Dublin.

The MIT Media Laboratory co-founded the first
Computer Clubhouse in 1993 in collaboration with
The Computer Museum (which is now part of the
Boston Museum of Science). Since then, the
Computer Clubhouse Network, with major financial
support from Intel, has grown to more than 85 sites,
including over 50 Clubhouses in the United States and
international Clubhouses in India, China, Taiwan,
Philippines, Australia, Mexico, Costa Rica, Panama,
Colombia, Brazil, Ireland, Denmark, Netherlands,
Germany, lIsrael, and South Africa. The Computer
Clubhouse Network serves more than 20,000 youth
members around the world. In 1997, the Clubhouse
received the prestigious Peter Drucker Award for
Nonprofit Innovation.

Youth at Computer Clubhouses work on design
projects based on their own interests and the needs of
their communities. Adult staff and volunteer mentors
provide technical, intellectual, and emotional support
for the youth. Clubhouse youth use leading-edge
software to create artwork, animations, and musical
compositions. In addition to the Photoshop culture
mentioned earlier, many Clubhouses have also
developed a thriving music-production culture.
However, to date only a handful of Clubhouse youth
have become deeply engaged in computer
programming. We hope that Scratch will change that.

Figure 1: Youth at a Computer Clubhouse

Figure 2: Using the current version of Scratch to build a two-player car racing game.
The left pane is the content area containing Scratch objects (cars, road), a button, and
the sensor display. The top-right pane is the palette of command blocks. The bottom-

right pane is the scripting area for the selected object (“green car”) containing
scripts. The variable “speed” is set from a sensor

three

input connected to a variable

resistor. Two other sensor inputs (connected to buttons) make the dark green car turn

left and right.

3. Scratch design and features

3.1 Scratch design

The design and development of Scratch is being
guided by the needs and constraints of Computer
Clubhouses. From years of experience in Clubhouses,
we have found that new software tools succeed at
Clubhouses if:

« youth see the value and potential of the tool right

away; it resonates with their interests and passions

« youth can create end-products that they can show

off to others

« the tool supports a wide range of different types of

activities that appeal to youth of different ages,

genders, backgrounds, and cultures

« activities supported by the tool fit into the social
dynamic of the Clubhouse; becoming proficient
with that tool becomes “cool”

* youth can get started with the tool quickly

« youth can learn additional features incrementally

 youth use the tool in more complex ways over
time; they can grow into it over several years

3.2 Core features

With these design criteria in mind, we are designing
Scratch with the following set of core features. These
features were chosen specifically to address problems
that derailed many earlier efforts to introduce
programming to youth.

Building-block programming. Scratch is based on a
building-block metaphor, in which learners build
scripts by snapping together graphical blocks much
like pieces in a jigsaw puzzle. Commands and data

types are represented by blocks of different shapes,
with pieces fitting together in only syntactically-correct
ways. This approach eliminates syntax errors (which
have proven to be a major obstacle for learning text-
based programming languages), allowing youth to
focus on the problems they want to solve, not the
mechanics of programming. The Scratch user drags
command blocks from a palette to create “stacks”
(procedures) that govern behaviors of their objects.
Multiprocessing is smoothly integrated into Scratch:
different stacks of blocks can execute in parallel.

Programmable manipulation of rich media. Initial
activities in traditional programming environments
typically involve manipulation of numbers, strings, or
simple graphics. In contrast, Scratch programs
manipulate images, animations, movies, and sound.
By giving Clubhouse youth control over rich media,
Scratch supports programming activities that resonate
more strongly with youth interests. For example,
Scratch will include image filters similar to the ones in
Photoshop, but under program control so youth can
create projects in which the parameters of a filter vary
over time or in response to sensor inputs.

Deep shareability. Computer Clubhouses have an
important social component. Youth are constantly
looking at one another’s projects, trading ideas,
sharing techniques. To fit into this context, the object
architecture of Scratch supports what we call “deep
shareability.” Youth will be able to export objects at
all levels, from individual animated characters to full
projects, and exchange them with friends running
Scratch on many types of devices—desktops, laptops,
tablets, handhelds, and perhaps even mobile phones or
embedded devices.

Integration with the physical world. Building on
our previous research on LEGO/Logo and
programmable bricks (e.g., [Resnick, 1993]; [Resnick,
Berg, Eisenberg, 2000]), inputs from physical sensors
(such as switches, sliders, distance sensors, motion
detectors, sound sensors) can be used to control the
behavior of Scratch creations. For example, a
Clubhouse member could connect an accelerometer to
her arm and program an animated character to change
its behavior based on how she moves her arm, in the
process gaining new insights into the concepts of
acceleration, sensing, and feedback.

Support for multiple languages. The Computer
Clubhouse is a global community, with sites in more
than a dozen countries, with young people speaking
many different languages. Even in a single Clubhouse
in the U.S., it is not unusual to hear three or four
different languages spoken. To support collaboration
and sharing in this context, it is essential for Scratch
to be a multi-language, multi-cultural environment. In
developing Etoys [Steinmetz, 2001] and LogoBlocks

[Begel, 1996], we discovered that the building-block
programming approach makes it easy to handle
multiple languages and character sets. Like Etoys,
Scratch will allow the user to switch between
languages dynamically, fostering cross-cultural
collaboration both within a single Clubhouse and
between youth in countries halfway around the globe.

3.3 Implementation

Scratch is written in Squeak, an open-source
implementation of the Smalltalk-80 language
(www.squeak.org). Squeak is extremely portable, with
existing implementations for desktop platforms
(Windows, Macintosh, Linux/Unix, Acorn, BeQS),
handhelds (Windows CE, Zaurus OS, Compaq “Itsy”),
and game consoles (Sony Playstation). Squeak has
even been ported to hardware without any underlying
operating system at all. This extreme portability will
allow Scratch applications to be deployed on devices
with a wide range of form factors, from desktops to
pen-based tablet computers to handhelds.

Sharing and exchanging of Scratch projects and
their components will be supported through a
combination of standard web servers (with content
viewed in a web browser) and a custom “Scratch
Object Library” server. The latter will allow Scratch
components from personal, Clubhouse, and Clubhouse
network-wide libraries to be queried, explored, and
downloaded without leaving the Scratch environment.

Scratch source code will be made freely available
via periodic code releases to allow collaborators to
augment the core system with their own custom
features and extensions.

4. Three scenarios

In this section, we present three short scenarios of
how youth might wuse Scratch at Computer
Clubhouses.

Programmable image processing. In Clubhouses
today, youth often use Photoshop filters (e.g., blur,
distort, pixelate, sharpen) to manipulate and transform
photographs and scanned images. Scratch adds the
ability to control the image-filtering process through
programming, expanding the expressive possibilities.
For example, a Clubhouse member could build a
Scratch program to transform an image by adding
color-to-monochrome or hue-shifting effects that vary
over time. Later, she might place a virtual fish-eye lens
at the edge of an image and program the motion of that
lens so that it gradually spirals in. By combining these
programs with sensor input, she could create an
intriguing piece of interactive video art.

Sensor-controlled music. Many Clubhouse
members enjoy the arcade game “Dance Dance
Revolution” (DDR), in which players dance on a floor

pad with embedded sensors, aiming to synchronize
their movements with music and images on the screen.
With Scratch, Clubhouse youth could create their own
version of DDR. A Clubhouse member might
download MIDI files of songs from the Web (or
compose and mix new songs in the Clubhouse music
studio), design a floor pad with four touch sensors,
connect the sensors to the computer, then create
programs that check how well the player’s dance steps
synchronize with the music. Later, another Clubhouse
member might decide to use the floor pad to generate
music (rather than to follow it). She would write
programs to map the floor pad sensor inputs to
different sound and music clips.

Networked animations. Making animations (with
tools such as Macromedia Flash) is an increasingly
popular activity at Clubhouses. With Scratch,
Clubhouse members will be able to create an
animation, upload it to a Scratch library server, and
then track how it is used or modified by others. A
future version of Scratch may even allow youth to
download animations to handheld devices and
exchange them via IR or Bluetooth. Youth can modify
animations that they receive (since all Scratch
“program blocks” are accessible), or they could even
program an object to behave differently depending on
the age, gender, or location of the person receiving it.
The Scratch server will automatically keep track of all
transactions, so youth can view tree-like graphs
representing the spread of their animations, with
indicators of how and where the animations have been
modified. Through these activities, we hope that an
ecosystem of Scratch creations will develop, with
Clubhouse youth trading and modifying one another’s
creations.

5. Related programming environments

The Scratch design builds on a number of earlier
programming environments designed for young people
or novice programmers. The building-block approach
grew out of previous research on LogoBlocks, which
served as the basis for the programming language used
in LEGO MindStorms, and Squeak’s Etoys, which has
been successfully used in classroom settings for over
five years. Alice2 [Pausch, 1995]—itself inspired by
Etoys—also employs a building-block approach to
make programming easier for novices.

The Scratch user interface was partly inspired by
Logo Microworlds. Like AgentSheets [Repenning &
Ambach, 1996], Scratch encourages sharing of projects
and components on the web and, like Boxer [diSessa,
2000], Scratch makes program elements such as
variables into visible, manipulable objects on the
screen.

6. Project status and next steps

The Scratch project is a multiple year effort. A
series of working prototypes will be built, tested, and
revised. Implementation of the first prototype began in
January of 2003, based on design discussions over the
previous year. This prototype, Scratch 0.1, was tested
in early October of 2003 by Harvard and MIT students
taking a seminar course on the use of technology for
learning in informal educational settings. This test lead
to a redesign of Scratch (currently in progress) with
several important changes:

» A place for global scripts. Many of the student
projects included scripts to setup and start a number of
other objects. While a few students created a “master of
ceremonies” object to hold these global setup and start
scripts, quite a few others felt that there should be a
centralized place for such global scripts. The next
Scratch prototype will have provide one.

* Only one kind of object. Scratch 0.1 has a
different kind of programmable object for each different
type of media (still images, movies, and sounds), and
the set of command blocks available in the palette
changes as different objects are selected. While the
notion of different kinds of objects having different
sets of operations (i.e.,, the object-oriented
programming model) has become common among
professional programmers, it proved confusing for the
students in the seminar. Also, some students wanted
to create objects with a combination of functions that
existed in separate object types (for example, a movie
that rotated as it moved around the screen), and Scratch
0.1 did not provide a way to do that. We concluded
that it would be better to have only a single type of
object in the next prototype. This means that the
palette of command blocks will be larger—since it
must subsume the functionality of the three object
types of Scratch 0.1—but the fact that the palette
won’t depend on which object is selected should prove
less confusing.

* No inter-object script invocation. In Scratch 0.1,
one object can invoke another object’s command
blocks and scripts. For example, a “cat” object could
invoke a “dog” object’s “chase” script. This feature was
heavily used. As a result, very few of the student-
created objects were self-contained; most objects had
scripts that invoked scripts in other objects. Objects
with such inter-object references cannot be easily
exported and used in other projects (which would lack
the object being referred to), making it difficult to
support the free-form object exchange that we envision
for Scratch. In fact, we realized that Scratch 0.1
actually encourages the construction of non-
exchangeable objects. Scratch 0.2 will therefore
disallow directly inter-object script invocation, and we

are in the process of designing more loosely-coupled
ways for objects to interact.

7. Conclusions

It is too early in the development of Scratch to draw
any conclusions. We have not yet begun formal testing
at Computer Clubhouses, although initial informal
interactions with Computer Clubhouse members have
gotten a positive response. We will spend the spring of
2004 creating the Scratch 0.2 prototype which we hope
to begin testing at Computer Clubhouses by summer
2004.

Acknowledgements

We are grateful to generous support from the
National Science Foundation (award EIA-0325828),
Intel Corp., Intel Foundation, and the LEGO
Company. Portions of this paper previously appeared
in our proposal to the National Science Foundation.

References

[Begel, 1996] Begel, A. (1996). LogoBlocks: A Graphical
Programming Language for Interacting with the World.
Unpublished Advanced Undergraduate Project, MIT
Media Lab.

[diSessa, 2000] diSessa, A. (2000). Changing Minds:

Computers, Learning, and Literacy. MIT Press:
Cambridge, MA.

[ITEA, 2000] International Technology Education
Association (2000). Standards for Technological
Literacy.

[Kay, 1991] Kay, A. (1991). Computers, Networks and
Education, Scientific American, September, 1991, pp. 138-
48.

[NAE, 2002] National Academy of Engineering and
National Research Council (2002). Technically Speaking:
Why All Americans Need to Know More About Technology.

[NRC, 1999] National Research Council (1999). Being
Fluent with Information Technology. National Academy
Press: Washington DC.

[Papert, 1980] Papert, S. (1980). Mindstorms: Children,
Computers, and Powerful Ideas. Basic Books: New York.

[Pausch, 1995] Pausch, R., et al. (1995). Alice: Rapid
Prototyping System for Virtual Reality. IEEE Computer
Graphics and Applications.

[Repenning & Ambach, 1996] Repenning, A. and Ambach,
J. (1996). Tactile programming: A unified manipulation
paradigm supporting program comprehension,
composition, and sharing. IEEE Symposium on Visual
Languages, Boulder, CA.

[Resnick, 1993] Resnick, M. (1993). Behavior
Construction Kits. Communications of the ACM, vol. 36,
no. 7, pp. 64-71.

[Resnick, Berg, Eisenberg, 2000] Resnick, M., Berg, R,
and Eisenberg, M. (2000). Beyond Black Boxes: Bringing
Transparency and Aesthetics Back to Scientific
Investigation. Journal of the Learning Sciences, vol. 9,
no. 1, pp. 7-30.

[Resnick, Rusk, & Cooke, 1998] Resnick, M., Rusk, N.,
and Cooke, S. (1998). The Computer Clubhouse:
Technological Fluency in the Inner City. In Schon, D.,
Sanyal, B., and Mitchell, W. (eds.), High Technology and
Low-Income Communities, pp. 266-286. MIT Press:
Cambridge, MA.

[Steinmetz, 2001] Steinmetz, J. (2001). Computers and
Squeak as Environments for Learning. In Rose, K. and
Guzdial, M. (eds.), Squeak: Open Personal Computing
and Multimedia. Prentice Hall: New York.

