
FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL CM42-10108-1E

F2MC-16F FAMILY
16-BIT MICROCONTROLLERS

MB90242A SERIES
HARDWARE MANUAL

PREFACE

This manual contains important information about your Fujitsu semiconductor product. Please read it
through carefully.

The MB90242A Series is a proprietary 16-bit single-chip microcontroller, developed as a general-purpose
version of the F2MC-16F series of microcontrollers and is capable of use with ASIC (application specific
IC) products.

This manual is intended for engineers using this semiconductor product in actual applications, and presents
descriptions of MB90242A series functions and operation. Be sure to read the entire manual carefully. For
details about instructions used with this product, refer to the "F2MC-16F Programming Manual."

*: F2MC is an abbreviation for FUJITSU Flexible Microcontroller, and is a registered trademark.

This manual is organized as follows.

Section 1. Overview

This section presents the models available in the MB90242A series, with an overview of each model.

Section 2. Hardware Configuration

This section presents the internal configuration and operating modes of the F2MC-16F Family CPU, as
well as the specifications of hardware components in the MB90242A series.

Section 3. Operation

This section describes the use of the MB90242A series including reset sequences, external bus opera-
tion and power saving modes.

Appendix

The appendix describes F2MC-16F address notation, and provides a instruction list and instruction
maps.

 1996 FUJITSU LIMITED Printed in Japan

1. The products described in this manual and the specifications thereof may be changed without prior
notice. To obtain up-to-date information and/or specifications, contact your Fujitsu sales
representative or Fujitsu authorized dealer.

2. Fujitsu will not be liable for infringement of copyright, industrial property right, or other rights of a third
party caused by the use of information or drawings described in this manual.

3. The contents of this manual may not be transferred or copied without the express permission of
Fujitsu.

4. The products contained in this document are not intended for use with equipments which require
extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control
systems or medical equipments for life support.

5. Some of the products described in this manual may be strategic materials (or special technology) as
defined by the Foreign Exchange and Foreign Trade Control Law. In such cases, the products or
portions thereof must not be exported without permission as defined under the Law.

i

Contents

Chapter 1: ..1
1.1 Features ..1
1.2 Model Lineup ...3
1.3 Blok Diagram ...4
1.4 Pin Assignment .. 5
1.5 External Dimensions .. 8
1.6 Pin Description ... 10
1.7 Handling of Semiconductor Devices ... 19

Chapter 2: ..21
2.1 CPU ..21
2.2 Maps ...66
2.3 Parallel Ports .. 74
2.4 IIR Filter DSP Unit .. 79
2.5 UART ...93
2.6 SSI (Simple Serial Interface) ... 109
2.7 16-Bit Reload Timer (With Event Count Function) .. 114
2.8 16-Bit I/O Timer .. 124
2.9 A/D Converter .. 133
2.10 External Interrupts .. 141
2.11 Delayed Interrupt Generator Module ... 148
2.12 Watchdog Timer, Timebase Timer Functions ... 150

Chapter 3: ..157
3.1 Clock Generator ... 157
3.2 Reset ...158
3.3 Memory Access Mode ... 161
3.4 External Memory Access ... 166
3.5 Power Saving Modes ... 174
3.6 Pin Status in Sleep, Stop, Hold and Reset Modes .. 180

APPENDIX...183
APPENDIX A F2MC-16F Addressing Specifications ... 184

A.1 Effective Address Fields ... 185
A.2 Detailed Addressing Format Specifications .. 186

APPENDIX B F2MC-16F Instruction Lists ... 200
B.1 Instruction List Heading Descriptions ... 201
B.2 Instruction List Symbols ... 203
B.3 Effective Address Fields ... 205
B.4 Calculation of Execution Cycle Counts ..206
B.5 Transfer Instructions .. 207
B.6 Numerical Calculation Instructions ... 211
B.7 Logical Calculation Instructions ... 216

ii

B.8 Shift Instructions ... 218
B.9 Branching Instructions .. 219
B.10 Other Instructions .. 221
B.11 Execution Cycle Counts for Special Operations ... 226

APPENDIX C F2MC-16F Instruction Map.. 230
C.1 Basic Map Structure .. 231
C.2 Basic Page Map ... 233
C.3 Bit Operation Instruction Map .. 234
C.4 MOVM Instruction Map ... 235
C.5 Character String Operation Map ... 236
C.6 2-Byte Instruction Map ... 237
C.7 ea Instructions .. 238
C.8 MOVEA RWi, ea .. 247
C.9 MOV Ri, ea ... 248
C.10 MOVW RWi, ea .. 249
C.11 MOV ea, Ri ... 250
C.12 MOVW ea, RWi .. 251
C.13 XCH Ri, ea .. 252
C.14 XCHW RWi, ea ... 253

1.1 Features

1

Chapter 1:
Overview

The MB90242A family of 16-bit single-chip microcontrollers is optimized for electro-mechanical control
of devices such as hard disk drive devices.

The instruction system preserves the AT architecture used in the F2MC-16 and 16H series, with the addi-
tion of instructions for supporting high-level languages, expanded addressing mode, enhanced multipli-
cation and division instructions and improved bit processing instructions. Also, the addition of a 32-bit
accumulator enables processing of long-word data.

Peripheral resources include a sum-of-products calculation unit for easier realization of IIR or FIR digital
filter functions. A wealth of additional on-chip components include 6-channel 8/10-bit ADC, UART,
2+1-channel timer, 4-channel input capture, and 4-channel external interrupt.

1.1 Features

• F2MC-16F CPU Core

• Minimum instruction execution time62.5 ns (at crystal oscillator frequency 32 MHz:
5 V±10%)

• Optimum instruction system for controller applications

• Instructions enhanced for high-level language (C) and multitasking

• Improved execution speed8-byte queuing

• Powerful interrupt functions (interrupt processing time 1.0µs: at crystal oscillator frequency 32
MHz)

• Instruction-independent automatic transfer function

• Expanded intelligent I/O service

• DSP Unit

• Functions tailored for IIR calculation

• Adds up to 8-term multiplication results using 16-bit x 16-bit coding

• The following formula execution time 0.625 ns (at crystal oscillator fre-
quency 32 MHz, N=M=3)

• Up to 3 independent settings for N and M in the above formula

• Internal RAM RAM: 2 Kbytes

• Mode selection allows RAM data to execute as CPU instructions

• General-Purpose PortsUp to 38 ports

• A/D Converter ..Analog inputs: 6

• Resolution: 10 bits

• Conversion time: 1.25 µs (minimum)

• 8/10-bit switching available

• Conversion results storage registers: 4

Yk=Σbn Yk-n + ΣamXk-m
Ν Μ

n=0 m=0

1.1 Features

2 Chapter 1: Overview

• 8-Bit UART..1 channel

• 8/16-Bit I/O Simple Serial Interface (max 8 Mbps) ...1 channels

• 16-Bit Free-Run Timer ...Operating clock: 0.25 µs

• 16-Bit Input Capture...4 channels

• Selection of edge detectors

• 16-Bit Reload Timer...2 channels

• External Interrupts ..4 channels

• Timebase Timer..18 bits

• Watchdog Timer

• Clock Gear Function

• Power Saving Modes

• Sleep mode

• Stop mode

• Hardware disk standby mode

• Low Voltage Operation

• Package...SQFP-80

• CMOS 0.8 µm technology

1.2 Model Lineup

3

1.2 Model Lineup
Table 1.2 shows the models in the MB90242A series.

Note: RAM capacity shown above is exclusive of 64-byte RAM used in sum-of-products calculation.

Table 1.2 MB90242A Model lineup

Package RAM capacity Remarks

MB90242A SQFP-80 2 Kbytes
Mass production
device

MB90V241 PGA-256 4Kbytes Evaluation device

1.3 Blok Diagram

4 Chapter 1: Overview

1.3 Blok Diagram

TIN0/TOT0
TIN1/TOT1

Simple serial interface

UART

F
2 M

C
-1

6F
 B

us

I/O port x 38

External Bus interface

Sum-of-products module

RAM

Tool interface

16-bit timer x 2

External interrupt x 4

ICU x 4

16-bit timer
SCK0
SID0
SOD0

SCK1
SID1
SOD1

AVCC
AVRH
AVRL
AVSS
AN0
AN1
AN2
AN3
AN6
AN7
ATGX

A/DC

INT0
INT1
INT2
INT3
X0
X1
RSTX
HSTX
MD2
MD1
MD0

ASR0
ASR1
ASR2
ASR3

Clock controller Block

P10 to P17
P40 to P47
P50 to P55
P57
P60 to P63
P66, P67
P70 to P75
P80 to P82

D00 to D15
A00 to A23
CLK
RDY
HAKX
HRQ
WRHX
WRLX
RDX

A00P to A15P
D00P to D15P
OE
CE
PGM

MB90V241 only

F2MC-16F
CPU

1.4 Pin Assignment

5

1.4 Pin Assignment

MB90242A

P
20

/A
00

P
21

/A
01

P
22

/A
02

P
23

/A
03

P
24

/A
04

P
25

/A
05

P
26

/A
06

P
27

/A
07

 V
ss

P
30

/A
08

P
31

/A
09

P
32

/A
10

P
33

/A
11

P
34

/A
12

P
35

/A
13

P
36

/A
14

P
37

/A
15

P
40

/A
16

P
41

/A
17

S
ID

0/
P

42
/A

18

MD1
MD0
OPEN
OPEN
P67/AN7
P66/AN6
P63/AN3
P62/AN2
Vss
P61/AN1
P60/AN0
AVss
AVRL
AVRH
AVcc
P47/A23/ASR2
P46/A22/ASR1/TIN1
P45/A21/ASR0/TIN0
P44/A20/SCK0
P43/A19/SOD0

R
S

T
X

P
57

/A
S

R
3/

IN
T

3
P

56
/R

D
X

P
55

/W
R

LX
P

54
/W

R
H

X
P

53
/H

R
Q

P
52

/H
A

K
X

P
51

/R
D

Y
P

50
/C

LK
P

82
/IN

T
2/

A
T

G
X

P
81

/IN
T

1
P

80
/IN

T
0

P
75

/S
O

D
1

P
74

/S
ID

1
P

73
/S

C
K

1
P

72
P

71
/T

O
T

1
P

70
/T

O
T

0
H

S
T

X
M

D
2

 Vss
 X0
 X1
 Vcc

P00/D00
P01/D01
P02/D02
P03/D03
P04/D04
P05/D05
P06/D06
P07/D07
P10/D08
P11/D09
P12/D10
P13/D11
P14/D12
P15/D13
P16/D14
P17/D15

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

<<TOP VIEW>>

 F JAPAN

MB90242A

SQFP-80

FPT-80P-M05

1.4 Pin Assignment

6 Chapter 1: Overview

MB90V241

70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 551 72 71

135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 542 73 136

192 191 190 189 188 187 186 185 184 183 182 181 180 179 120 533 74 137

193 240 239 238 237 236 235 234 233 232 231 230 229 178 119 524 75 138

194 Index 256 255 254 253 228 177 118 515 76 139

195 227 176 117 506 77 140

196 241 252 226 175 116 497 78 141

197 225 174 115 488 79 142

198 242 251 224 173 114 479 80 143

199 223 172 113 4610 81 144

200 243 250 222 171 112 4511 82 145

201 221 170 111 4412 83 146

202 244 249 220 169 110 4313 84 147

203 219 168 109 4214 85 148

204 245 246 247 248 218 167 108 4115 86 149

205 206 207 208 209 210 211 212 213 214 215 216 217 166 107 4016 87 150

152 153 154 155 156 157 158 159 160 161 162 163 164 165 106 3917 88 151

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 3818 89 90

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3719 20 21

<<TOP VIEW>>

1.4 Pin Assignment

7

)

P.D. (Pull Down): Requires an external pull-down resistor.

N.C. (Non Connection): Not connected.

I.C. (Internal Connection): Connected to internal pin protection circuit.

Fig. 1.4.3 Pin Assignment

Pin No. Pin
Name Pin No. Pin

Name Pin No. Pin
Name Pin No. Pin

Name Pin No. Pin
Name Pin No. Pin

Name Pin No. Pin Nam

1 I.C. 38 MD2 75 N.C. 112 I.C. 149 P42 186 I.C. 223 VSS

2 I.C. 39 P82 76 P01 113 I.C. 150 P46 187 I.C. 224 I.C.

3 N.C. 40 P53 77 P04 114 I.C. 151 N.C. 188 AVRH 225 I.C.

4 P00 41 N.C. 78 P07 115 I.C. 152 P74 189 P60 226 Vss

5 P03 42 N.C. 79 P12 116 I.C. 153 P81 190 P66 227 I.C.

6 P05 43 I.C. 80 P16 117 I.C. 154 D01P 191 I.C. 228 Vss

7 P10 44 I.C. 81 P21 118 I.C. 155 D05P 192 I.C. 229 N.C.

8 P13 45 I.C. 82 P23 119 I.C. 156 D08P 193 I.C. 230 Vss

9 P17 46 I.C. 83 P27 120 I.C. 157 D12P 194 Vss 231 I.C.

10 N.C. 47 I.C. 84 P31 121 N.C. 158 A00P 195 X1 232 Vss

11 P22 48 I.C. 85 P34 122 I.C. 159 A02P 196 Vss 233 I.C.

12 P26 49 I.C. 86 P37 123 I.C. 160 A06P 197 N.C. 234 I.C.

13 N.C. 50 I.C. 87 P43 124 I.C. 161 CE 198 P14 235 Vss

14 P33 51 I.C. 88 P45 125 I.C. 162 A11P 199 Vss 236 RSTX

15 P35 52 I.C. 89 N.C. 126 I.C. 163 A15P 200 P25 237 N.C.

16 P40 53 I.C. 90 P73 127 I.C. 164 P.D. 201 P30 238 Vss

17 P44 54 I.C. 91 P80 128 N.C. 165 N.C. 202 Vss 239 DVRL

18 P47 55 I.C. 92 D00P 129 I.C. 166 N.C. 203 P41 240 Vss

19 P71 56 I.C. 93 D03P 130 I.C. 167 P51 204 Vss 241 Vcc

20 P72 57 I.C. 94 D06P 131 AVcc 168 P55 205 P70 242 Vcc

21 P75 58 I.C. 95 D09P 132 AVss 169 N.C. 206 Vss 243 Vcc

22 N.C. 59 I.C. 96 D13P 133 P62 170 I.C. 207 N.C. 244 Vcc

23 D02P 60 I.C. 97 N.C. 134 P67 171 I.C. 208 Vss 245 Vcc

24 D04P 61 I.C. 98 A01P 135 I.C. 172 I.C. 209 D07P 246 Vcc

25 N.C. 62 I.C. 99 A05P 136 I.C. 173 I.C. 210 D11P 247 Vcc

26 D10P 63 N.C. 100 PGM 137 N.C. 174 I.C. 211 Vss 248 Vcc

27 D14P 64 N.C. 101 A09P 138 I.C. 175 N.C. 212 A03P 249 Vcc

28 D15P 65 I.C. 102 A12P 139 X0 176 I.C. 213 P.D. 250 Vcc

29 N.C. 66 N.C. 103 OE 140 P02 177 I.C. 214 Vss 251 Vcc

30 A04P 67 AVRL 104 P.D. 141 P06 178 I.C. 215 A14P 252 Vcc

31 A07P 68 P61 105 VPP 142 P11 179 N.C. 216 Vss 253 Vcc

32 A08P 69 P61 106 HSTX 143 P15 180 I.C. 217 MD0 254 Vcc

33 A10P 70 DVRH 107 P50 144 P20 181 I.C. 218 Vss 255 Vcc

34 A13P 71 I.C. 108 P54 145 P24 182 I.C. 219 P52 256 Vcc

35 P.D. 72 I.C. 109 P56 146 N.C. 183 I.C. 220 Vss

36 P.D. 73 I.C. 110 P57 147 P32 184 I.C. 221 I.C.

37 MD1 74 I.C. 111 I.C. 148 P36 185 I.C. 222 I.C.

1.5 External Dimensions

8 Chapter 1: Overview

1.5 External Dimensions
MB90242A

FPT-80P-M05

EIAJ Code: *QFP080-P-1212-1

Plastic SQFP, 80-pin

(FPT-80P-M05)

Lead pitch 0.50 mm

Package width × pack-
age length

2× 12 mm

Lead shape Gull-wing

Sealing method Plastic molding

Plastic SQFP, 80-pin
(FPT-80P-M05)

1.5 External Dimensions

9

MB90V241

PGA-256C-A02

Fig. 1.4.4 PGA-256C-A02

EIAJ Code: *PGA257-C-S19U-2

Ceramic PGA, 256-pin

(PGA-256C-A02)

pin count
257 pins (extra index
pin included)

Lead pitch 100 mil

Pin matrix 19

Sealing method Metal sealing

Ceramic PGA, 256-pin
(PGA-256C-A02)

1.6 Pin Description

10 Chapter 1: Overview

1.6 Pin Description
Table 1.6 Pin Description

Pin No. Name Circuit type Function

1 to 8
P20/A00 to
P27/A07

F
P20 to P27 are not available for use as general-purpose ports.
A00 to A07 are the output pins for the lower 8 bits of the
external address bus.

9 VSS power supply Ground level pin for digital circuits

10 to
17

P30/A08 to
P37/A15

F
P30 to P37 are not available for use as general-purpose ports.
A08 to A15 are the output pins for the middle 8 bits of the
external address bus.

18 P40/A16 F

P40 is a general-purpose I/O port. This function is enabled
when the corresponding bit in the upper address control regis-
ter is set to 'port.'
A16 is the output pin for bit 16 of the external address bus.
This function is enabled when the corresponding bit in the
upper address control register is set to 'address.'

19 P41/A17 F

P41 is a general-purpose I/O port. This function is enabled
when the corresponding bit in the upper address control regis-
ter is set to 'port.'
A17 is the output pin for bit 17 of the external address bus.
This function is enabled when the corresponding bit in the
upper address control register is set to 'address.'

20 P42/A18/SID0 F

P42 is a general-purpose I/O port. This function is enabled
when the corresponding bit in the upper address control regis-
ter is set to 'port.'
A18 is the output pin for bit 18 of the external address bus.
This function is enabled when the corresponding bit in the
upper address control register is set to 'address.'
SID0 is the data input pin for UART #0. Because this function
is in continual use during UART #0 input operations, I/O
access from other functions should not be attempted unless
intended.

21
P43/A19/
SOD0

F

P43 is a general-purpose I/O port. This function is enabled
when UART #0 data output is disabled and the corresponding
bit in the upper address control register is set to 'port.'
A19 is the output pin for bit 19 of the external address bus.
This function is enabled when UART #0 data output is dis-
abled and the corresponding bit in the upper address control
register is set to 'address.'
SOD0 is the data output pin for UART #0. This function is
enabled when UART #0 data output is enabled.

1.6 Pin Description

11

22 P44/A20/SCK0 F

P44 is a general-purpose I/O port. This function is enabled
when UART #0 clock output is disabled and the corresponding
bit in the upper address control register is set to 'port.'
A20 is the output pin for bit 20 of the external address bus.
This function is enabled when UART #0 clock output is dis-
abled and the corresponding bit in the upper address control
register is set to 'address.'
SCK0 is the clock signal output pin for UART #0. This func-
tion is enabled when UART #0 clock output is enabled.

23
P45/A21/ASR0
/TIN0

F

P45 is a general-purpose I/O port. This function is enabled
when the corresponding bit in the upper address control regis-
ter is set to 'port.'
A21 is the output pin for bit 21 of the external address bus.
This function is enabled when the corresponding bit in the
upper address control register is set to 'address.'
ASR0 is the data input pin for input capture #0. This function
is used for input at all times when input capture #0 is receiving
input, and therefore I/O access from other functions should
not be attempted unless intended.
TIN0 is the data input pin for 16-bit timer #0. This function is
used for input at all times when 16-bit timer #0 is receiving
input, and therefore I/O access from other functions should
not be attempted unless intended.

24
P46/A22/ASR1
/TIN1

F

P46 is a general-purpose I/O port. This function is enabled the
corresponding bit in the upper address control register is set to
'port.'
A22 is the output pin for bit 22 of the external address bus.
This function is enabled when the corresponding bit in the
upper address control register is set to 'address.'
ASR1 is the data input pin for input capture #1. This function
is used for input at all times when input capture #1 is receiving
input, and therefore I/O access from other functions should
not be attempted unless intended.
TIN1 is the data input pin for 16-bit timer #1. This function is
used for input at all times when 16-bit timer #1 is receiving
input, and therefore I/O access from other functions should
not be attempted unless intended.

25 P47/A23/ASR2 F

P47 is a general-purpose I/O port. This function is enabled
when the corresponding bit in the upper address control regis-
ter is set to 'port.'
A23 is the output pin for bit 23 of the external address bus.
This function is enabled when the corresponding bit in the
address high control register is set to 'address.'
ASR2 is the data input pin for input capture #2. This function
is used for input at all times when input capture #2 is receiving
input, and therefore I/O access from other functions should
not be attempted unless intended.

Table 1.6 Pin Description (Continued)

Pin No. Name Circuit type Function

1.6 Pin Description

12 Chapter 1: Overview

26 AVCC Power supply
Analog circuit power supply. Power must only be switched on
or off when a potential greater than AVCC is applied to the
VCC terminal.

27 AVRH Power supply
This is an A/D converter external reference voltage input pin.
This pin should only be switched on or off when a potential
greater than AVRH is applied to the AVCC pin.

28 AVRL Power supply
This is an A/D converter external reference voltage
input pin.

29 AVSS Power supply Analog circuit ground level pin.

30 to
31

P60/AN0 and
P61/AN1

H

P60 and P61 are N-channel open drain type I/O ports. When
the corresponding bits in the ADER register is set to '0,' the
level of these pins is read, resulting from read access to data
registers by all read instructions (except for read-modify-write
instructions). Values written in data registers are output
directly from these pins.
AN0 and AN1 are A/D converter analog input pins. To use this
function, set the corresponding bit in the ADER register to '1'
and set the corresponding bits in the data register to '1.'

32 VSS Power supply Digital circuit ground level pin.

33 to
34

P62/AN2 and
P63/AN3

H

P62 and P63 are N-channel open drain type I/O ports. When
the corresponding bits in the ADER register is set to '0,' the
level of these pins is read, resulting from read access to data
registers by all read instructions (except for read-modify-write
instructions). Values written in data registers are output
directly from these pins.
AN2 to AN3 are A/D converter analog input pins. To use this
function, set the corresponding bit in the ADER register to '1'
and set the corresponding bits in the data register to '1.'

35 to
36

P66/AN6 and
P67/AN7

H

P66 and P67 are N-channel open drain type I/O ports. When
the corresponding bits in the ADER register is set to '0,' the
level of these pins is read, resulting from read access to data
registers by all read instructions (except for read-modify-write
instructions). Values written in data registers are output
directly from these pins.
AN6 and AN7 are A/D converter analog input pins. To use this
function, set the corresponding bit in the ADER register to '1'
and set the corresponding bits in the data register to '1.'

37 OPEN Open terminal. No internal connection.

38 OPEN Open terminal. No internal connection.

39 to
41

MD0 to MD2 C
Operating mode setting input pins. These pins should be
directly connected to Vcc or Vss.

42 HSTX D Hardware standby input pin.

Table 1.6 Pin Description (Continued)

Pin No. Name Circuit type Function

1.6 Pin Description

13

43 to
45

P70/TOT0, P71/
TOT1, P72

I

P70 to P72 are general-purpose I/O ports. This function is
enabled when output from 16-bit timers #0 to #1 is also dis-
abled.
TOT0 to TOT1 are 16-bit timer output pins. This function is
enabled when output from 16-bit timers #0 to #1 is also
enabled.

46 P73/SCK1 F

P73 is a general-purpose I/O port. This function is enabled
when clock output from SSI #1 is disabled.
SCK1 is the SSI #1 clock output. This function is enabled
when clock output from SSI #1 is enabled.

47 P74/SID1 F

P74 is a general-purpose I/O port. This function is enabled at
all times.
SID1 is the data input pins for SSI #1. This function is used
for input at all times when SSI #1 is receiving input, and there-
fore I/O access from other functions should not be attempted
unless intended.

48 P75/SOD1 F

P75 is a general-purpose I/O port. This function is enabled
when data output from SSI #1 is disabled.
SOD0 is the SSI #1 data output. This function is enabled when
data output from SSI #1 is enabled.

49 to
50

P80/INT0 and
P81/INT1

G

P80 and P81 are general-purpose I/O ports. This function is
enabled at all times.
INT0 to INT1 are external interrupt input pins. This function
is used for input at all times when the external interrupt func-
tion is enabled, and therefore I/O access from other functions
should not be attempted unless intended.

51
P82/INT2
/ATGX

F

P82 is a general-purpose I/O port. This function is enabled at
all times.
INT2 is an external interrupt input pin. This function is used
for input at all times when the external interrupt function is
enabled, and therefore I/O access from other functions should
not be attempted unless intended. This pin is held at low level
when the CPU is in stop mode, and therefore the signal for
recovery from stop mode should be input at INT0 or INT1.
ATGX is the A/D converter start trigger input pin. This func-
tion is used for input at all times when the A/D converter is in
standby mode, and therefore I/O access from other functions
should not be attempted unless intended.

52 P50/CLK F

P50 is a general-purpose I/O port. This function is enabled
when the clock signal output setting is disabled.
CLK is the clock signal output pin. This function is enabled
when clock signal output setting is enabled.

53 P51/RDY E

P51 is a general-purpose I/O port. This function is enabled
when the ready function is disabled.
RDY is the ready signal input pin. This function is enabled
when the ready function is enabled.

Table 1.6 Pin Description (Continued)

Pin No. Name Circuit type Function

1.6 Pin Description

14 Chapter 1: Overview

54 P52/HAKX E

P52 is a general-purpose I/O port. This signal is enabled when
the hold function is disabled.
HAKX is the hold acknowledge signal output pin. This func-
tion is enabled when the hold function is enabled.

55 P53/HRQ E

P53 is a general-purpose I/O port. This signal is enabled when
the hold function is disabled.
HRQ is the hold request signal input pin. This function is
enabled when the hold function is enabled.

56 P54/WRHX F

P54 is a general-purpose I/O port. This function is enabled
when operating in 8-bit external bus mode or when WR pin
output is disabled.
WRHX is the write strobe signal output pin for the high 8-bit
portion of the data bus. This function is enabled when operat-
ing in 16-bit external bus mode, or when WR pin output is
enabled.

57 P55/WRLX F

P55 is a general-purpose I/O port. This function is enabled
when the WR pin 'output' setting is disabled.
WRLX is the write strobe signal output pin for the low 8-bit
portion of the data bus. This function is enabled when WR pin
output is enabled.

58 P56/RDX F
P56 is not available for use as a general-purpose port.
RDX is the read strobe output signal for the data bus.

59 P57/ASR3/INT3 F

P57 is a general-purpose I/O port.
ASR3 is the data input pin for input capture #3. This function
is used for input at all times when input capture #3 is enabled
for input, and therefore I/O access from other functions should
not be attempted unless intended.
INT3 is the data input pin for external interrupt #3. This func-
tion is used for input at all times when external interrupt #3 is
enabled for input, and therefore I/O access from other func-
tions should not be attempted unless intended.

60 RSTX B External reset request input.

61 VSS Power supply Digital circuit ground level pin.

62
63

X0
X1

A Crystal oscillator signal pins (32 MHz).

64 VCC Power supply Digital circuit power supply.

65 to
72

P00/D00 to
P07/D07

E
P00 to P07 are not available for use as general-purpose ports.
D00 to D07 are I/O pins for the lower 8 bits of the external
data bus.

73 to
80

P10/D08 to
P07/D15

E

P10 to P17 are general-purpose I/O ports. This function is
enabled when in 8-bit external bus mode.
D08 to D15 are I/O pins for the upper 8 bits of the external
data bus. This function is enabled when in 16-bit external bus
mode.

Table 1.6 Pin Description (Continued)

Pin No. Name Circuit type Function

1.6 Pin Description

15

− A15P to A00P F
Piggyback address pins. ROM connected to these pins is
treated as having equivalent operation to internal ROM.

− D15P to D00P F
Piggyback address pins. ROM connected to these pins is
treated as having equivalent operation to internal ROM.

− CE, OE, PGM F
Piggyback address pins. Connect to pins corresponding to
ROM.

Table 1.6 Pin Description (Continued)

Pin No. Name Circuit type Function

1.6 Pin Description

16 Chapter 1: Overview

Table 1.6.1 Input/Output Circuit Configurations (1)

Type Circuit configration Remarks

A

-For 32 MHz operation
-Oscillator feedback resistor:
 approx. 1 MΩ

B

-CMOS level hysteresis input
No standby control
Pull-up resistor: approx. 50 kΩ

C

-CMOS level input
No standby control

D

-CMOS level hysteresis input
No standby control

X0

X1

Clock stopped

Clock input

Vcc

Vss

P-channel type transistor
N-channel type transistor

Diffused

Digital input

resistor

CMOS

Vcc

Vss

P-channel type transistor
N-channel type transistor

Diffused

Digital input

resistor

CMOS

Vcc

Vss

P-channel type transistor
N-channel type transistor

Diffused

Digital input

resistor

CMOS

1.6 Pin Description

17

E

-CMOS level output
 TTL level input
 Standby control included

F

-CMOS level output
 CMOS level hysteresis input
 Standby control included

G

-CMOS level output
 CMOS level hysteresis input
 Standby control included
 (when interrupt disabled)

H

-N-channel open drain CMOS level
 output
 CMOS level hysteresis input
 Analog input
 Analog input control included

Table 1.6.1 Input/Output Circuit Configurations (2)

Type Circuit configration Remarks

Digital input

TTL

Digital output

Digital output

ControllStandby

Digital input

CMOS

Digital output

Digital output

ControllStandby

Digital input
CMOS

Digital output

Digital output

Standby ∩ interrupt disable

Digital input
CMOS

Digital output

ADER

Analog input

1.6 Pin Description

18 Chapter 1: Overview

I

-CMOS level output
 Analog output
 CMOS level hysteresis input
 Standby control included

Table 1.6.1 Input/Output Circuit Configurations (3)

Type Circuit configration Remarks

Digital input
CMOS

Digital output

Digital output

Standby

Analog output

Controll

1.7 Handling of Semiconductor Devices

19

1.7 Handling of Semiconductor Devices

(1) Preventing Latch-Up

A phenomenon called latch-up may occur on CMOS IC devices if voltage higher than Vcc or lower
than Vss is applied to input and output pins, or if voltage exceeding the rated voltage is applied between
Vcc and Vss. When latch-up occurs, supply current levels increase rapidly and can result in thermal
damage to semiconductor elements. Sufficient care must be taken to avoid exceeding maximum rated
values.

For the same reason, care must be taken to ensure that analog power supply levels do not exceed the
level of the digital power supply.

(2) Handling Unused Input Pins

Unused input pins can cause devices to malfunction if left open, and should therefore be pulled up or
down as needed.

(3) Precautions for Use of External Clock

When an external clock is used, the signal should drive the X0 pin only, the X1 pin should be left open.

Figure 1.7.1 shows an example of an external clock connection.

Fig. 1.7.1 Example: Use of an External Clock

(4) Power Supply Pins

When there are multiple Vcc or Vss pins, semiconductor device design requires that in order to prevent
malfunctions such as latch-up, all internal elements of equivalent potential be connected. Also, to pre-
vent abnormal strobe signal operation due to unwanted lowering of emission or increases in ground
level, and to maintain standards for total output current, all elements must be connected to external
power supplies and grounds.

In addition it is recommended that Vcc and Vss of this device be connected with as little impedance as
possible from the current supply source.

It is further recommended that an approx. 0.1 µF ceramic capacitor be placed near the device and con-
nected between the Vcc and Vss terminals as a bypass capacitor.

(5) Crystal Oscillator Circuits

Noise in the vicinity of the X0 and X1 pins can be a cause of abnormal operation in this device. Design-
ers should ensure that the X0 and X1 pins, and the crystal (or ceramic) oscillators as well as the bypass
capacitor to ground be placed as close together as possible, and that PC board wiring layouts provide as
little interference as possible from other wiring.

Also, PC board artwork can contribute toward stable of operation by surrounding the X0 and X1 pins
with ground. This is strongly recommended.

X1

X0

MB90242A/MB90V241

1.7 Handling of Semiconductor Devices

20 Chapter 1: Overview

(6) CLK Signal Pin

* In external bus mode, the CLK output from the P50/CLK pin is selected as the initial value.

(7) HSTX pin

Make the HSTX pin high upon power-up. If the HSTX pin is used as low level, make the
RSTX pin high.

2 frequency divider circuit

To internal circuits

Clock signal output

P50 input

P50 output

Stop
ex. 32MHz X1

X0

P50/CLK

2.1 CPU

21

Chapter 2:
Hardware Configuration

2.1 CPU

The F2MC-16F CPU core is a high-performance 16-bit CPU designed for applications requiring high-
speed, real-time processing such as industrial applications, office automation (OA) products, and automo-
tive devices. The F2MC-16F instruction set is designed to be optimized for controller applications, and can
handle a wide variety of control functions with high speed and high efficiency. In addition, while the
F2MC-16F core is designed as a 16-bit data processing CPU, an on-chip 32-bit accumulator is included for
handling of 32-bit data. This enables a number of instructions to include 32-bit data processing capability.
Memory space can be expanded to a maximum of 16 Mbytes, and can be accessed by either the linear
pointer or bank access method. The instruction set, based on F2MC-16 architecture, has been enhanced
with additional instructions for high level languages, expanded addressing mode and additional coded mul-
tiplication and division instructions. The F2MC-16F is upwardly compatible with F2MC-16 CPUs at object
code level.

The principal features of the F2MC-16F CPU are:

• Minimum instruction execution time62.5 ns (at 32 MHz source oscillation)

• Memory space ...16MB: supports both linear and bank access

Instruction set optimized for controller applications

Wide variety of data typesbit / byte / word / long word

Expanded addressing mode...................................25 modes

High coding efficiency

32-bit accumulator for higher computational accuracy (32-bit length)

Strengthened multiplication/division instructions (coded computation instructions added)

• Powerful interrupt functions

 Priority levels ..8 levels (programmable)

• CPU-independent automatic transfer
Expanded intelligent I/O service

..........................Expanded and accelerated access area

..........................Maximum 15 channels

• Instruction set adapted for high level language (C) and multitasking

System stack pointer

Wide variety of pointers
High-symmetry instruction set

Barrel shift instructions
Stack check function

• Improved execution speed

.......................... Instruction operations revised for higher speed

..........................8-byte queuing

2.1 CPU

22 Chapter 2: Hardware Configuration

2.1.1 Memory Space
All data, programs and internal resources controlled by the F2MC-16F CPU are stored in the chip's mem-
ory area of 16 Mbytes. The CPU is able to access each address in memory as well as each internal resource
through the 24-bit address bus (Figure 2.1.1).

For memory space allocation on the MB90242A series, see Section 2.2, "Map."

Fig. 2.1.1 Memory Map in Relation to F 2MC-16F Device

F2MC-16F Device

Programs

Data

Interrupts

Internal peripheral

General-purpose

Memory Space

Program area

Data area

Interrupt controller

Internal resources
ports

resources

General-purpose
ports

F2MC-16F
CPU

FFFFFFH

FF8000H

000800H

000100H

0000C0H

0000B0H

000020H

000000H

2.1 CPU

23

Types of Addressing

The F2MC-16F CPU uses two main methods to generate addresses. In linear addressing, a instruction
designates one entire 24-bit address, and in bank addressing, the upper 8 bits of the address designate a
bank register for a specific purpose, and the lower 16 bits are used as the addressing operand.

Linear Addressing

Two types of linear addressing are used, including direct designation of a 24-bit address as operand, as
well as use of the lower 24 bits of a 32-bit general-purpose register or accumulator (Figure 2.1.2).

Example 1. Linear Addressing: Designation of 24-bit Operand

JMPP 123456H (Instruction branches to address designated by operand.)

Example 2. Linear Addressing: Indirect Designation Through 32-Bit Register

MOV A@RL1+5 (Instruction reads byte-length results of lower 24-bits from RL1 plus 8-bit offset,
and stores results in AL.)

Fig. 2.1.2 Sample Linear Address Designation

17 452D

12 3456

Program bank and program
counter before execution

Program bank and program
counter after execution

17452DH

123456H

Memory space

JMPP 123456H

Next instruction

XXXX

003A

Register AL before
execution

Register AL after
execution

Access address

+5 (addition)

Memory space

3A

24090200

090205H

 (upper 8 bits ignored)
RL1

2.1 CPU

24 Chapter 2: Hardware Configuration

Bank Addressing

In bank addressing the 16 Mbytes of memory space is divided into 256 banks of 64 Kbytes each, with
bank addresses designated by bank registers. Figure 2.1.3 illustrates the division of the 16 MB memory
space into 256 banks.

Fig. 2.1.3 Schematic Representation of Banks

There are five types of bank registers. Table 2.1.1 lists bank registers, the space accessed by each regis-
ter, and principal uses.

Table 2.1.1 Spaces Accessed by Bank Registers

Bank register Space name Principal uses
Initial value

at reset

Program bank register
(PCB)

Program (PC) space
Storage of instruction codes, vector
tables, and immediate data

FFH

Data bank register (DTB) Data (DT) space

Storage of readable/writable data,
access to internal and external periph-
eral resource control registers and data
registers

00H

User stack bank register
(USB)

Stack (SP) register

Area used for stack access to registers
for saving PUSH/POP instructions and
interrupt instructions etc. SSB is used
when CCR S=1, USB used when S=0.

00H

System stack bank register
(SSB)

00H

Additional bank register
(ADB)

Additional (AD)
space

Storage of data overflow from data
(DT) space

00H

16 MB memory
space

64 Kbyte

64 Kbyte

64 Kbyte

64 Kbyte

Bank FF

Bank FE

Bank 01

Bank 00

FFFFFFH

FF0000H

FE0000H

020000H

010000H

000000H

256 banks

2.1 CPU

25

After reset, DT, SP and AD spaces are located in bank 00 (000000H - 00FFFFH), and PC space is
located in bank FF (FF0000H - FFFFFFH).

In order to improve coding efficiency, each instruction has defined default spaces for each type of
addressing as shown in Table 2.1.2. To use a space other than its default space in any addressing mode,
a prefix code corresponding to the desired bank is designated ahead of the instruction to allow access to
the bank space designated by that prefix code.

Figure 2.1.4 shows an example of memory space divided into banks, and the corresponding register
bank settings.

Fig. 2.1.4 Example: Bank Space Settings and Physical Addresses

Table 2.1.2 Default Spaces

Default space Addressing method

Program space PC indirect, program access, branching

Data space @A, addr16, dir, addressing using @RW0, @RW1, @RW4 and @RW5

Stack space Addressing using PUSHW, POPW, @RW3, @RW7

Additional space Addressing using @RW2, @RW6

Program space

Additional space

Data space

User stack space

System stack space

:PCB (Program bank register)

:ADB (Additional bank register)

:USB (User stack bank register)

:DTB (Data bank register)

:SSB (System stack bank register)4BH

68H

92H

B3H

FFH

FFFFFFH

FF0000H

B3FFFFH

B30000H

92FFFFH

920000H

68FFFFH

680000H

4BFFFFH

4B0000H

000000H

P
hy

si
ca

l a
dd

re
ss

es

2.1 CPU

26 Chapter 2: Hardware Configuration

Memory Space Allocation with Multi-Byte Data Lengths

Figure 2.1.5 shows the configuration of data in memory when multi-byte data lengths are used. Data is
positioned with the lowest 8 bits at address n, and each subsequent 8 bits at address n+1, n+2, n+3, ...

Fig. 2.1.5 Example: Memory Space Allocation with Multi-Byte Data Lengths

Writing to memory is executed starting with the lowest addresses first. For 32-bit data, the lower 16 bits
are transferred first, followed by the upper 16 bits.

[CAUTION] If a reset signal is applied immediately after the lower 16 bits are written, the upper 16 bits
may not be written to memory.

Access to Multi-Byte Data

All accesses are based on bank units, so that for instructions accessing multi-byte data at address
FFFFH, the next byte will be located within the same bank at address 0000H. Figure 2.1.6 shows an
example of instruction of access to multi-byte data.

Fig. 2.1.6 Execution of Instruction MOVPW A, 080FFFF H

01010101

11001100

11111111

00010100

H

L

Address n

Memory space

01010101 11001100 11111111 00010100

MSB LSB

Register AL before execution

Register AL after execution

Memory space

01H

23H

H

L

800000H

 ?? ??

23H 01H

80FFFFH

2.1 CPU

27

2.1.2 Registers
F2MC-16F registers are broadly divided into internal dedicated registers on CPU and general-purpose reg-
isters in internal RAM. The dedicated registers are dedicated hardware located inside the CPU, and their
use is limited by the architecture of the CPU itself. In contrast, the general-purpose registers coexist within
RAM in CPU address space, and are similar to the dedicated registers in that they may be accessed without
designation of addresses, but differ in that they may be used for user-defined purposes in the same way as
ordinary memory. Figure 2.1.7 shows the arrangement of dedicated registers and general-purpose registers
within the F2MC-16F device.

Fig. 2.1.7 Dedicated Registers and General-Purpose Registers

Dedicated registers

Accumulator

User stack pointer

System stack pointer

Processor status

Program counter

User stack upper limit register

System stack upper limit register

Internal bus

General-purpose register

User stack lower limit register

System stack lower limit register

Direct page register

Program bank register

Data bank register

User stack bank register

System stack bank register

Additional bank register

CPU RAM

2.1 CPU

28 Chapter 2: Hardware Configuration

Dedicated Registers

Figure 2.1.8 lists the 15 dedicated registers in the F2MC-16F CPU.

Fig. 2.1.8 Dedicated Registers

Configuration Register name Function

AH AL Accumulator
Two 16-bit registers used to store results of calculation, etc. May
be concatenated for use as a 32-bit register.

USP User stack pointer 16-bit pointer indicating the user stack area

SSP
System stack
pointer

16-bit pointer indicating the system stack area

PS Processor status 16-bit register indicating system status

PC Program counter 16-bit register with the address where the program is stored

USPCU
User stack upper
limit register

16-bit register designating the upper limit of the user stack

SSPCU
System stack
upper limit register

16-bit register designating the upper limit of the system stack

USPCL
User stack lower
limit register

16-bit register designating the lower limit of the user stack

SSPCL
System stack
lower limit register

16-bit register designating the lower limit of the system stack

DPR Direct page register 8-bit register indicating the direct page

PCB
Program bank reg-
ister

8-bit register indicating program space

DTB Data bank register 8-bit register indicating the data space

USB
User stack bank
register

8-bit register indicating the user stack space

SSB
System stack bank
register

8-bit register indicating system stack space

ADB
Additional bank
register

8-bit register indicating additional space

2.1 CPU

29

Accumulator (A)

The accumulator (A) consists of two 16-bit registers for arithmetic operation, labeled AH and AL, used
to hold the results of calculations, and also used as temporary memory for data transfers. Figure 2.1.9
shows the configuration of the accumulator. The AH and AL registers can be linked for 32-bit data pro-
cessing, and only the AL register is used for processing of data in 16-bit word units or 8-bit byte units.

Data stored in the accumulator may be used for calculations involving data in memory/registers (Ri,
RWi, RLi). As with the F2MC-8/16/16H CPU, the F2MC-16F is designed so that when data of word
length or less is transferred to the AL register, the previous contents (immediately before transfer) of
the AL register are automatically transferred to the AH register. This is called the data preservation
function, and increases efficiency by enabling various types of processing using calculations from the
contents of the AL and AH registers.

Figure 2.1.10 shows an example of 32-bit data transfer, and Figure 2.1.11 shows an example of data
transfer between the AL and AH registers.

Fig. 2.1.9 Accumulator (A) Configuration

MOVL A, @RW1+6 (Instruction: Read in long word format the contents of RW1 + 8-bit offset as an
address, and store the resulting contents in A.)

Fig. 2.1.10 Example of 32-Bit Data Transfer

MOVW A, @RW1+6 (Instruction: Read in word format the contents of RW1 + 8-bit offset, and
store the resulting contents in A.)

Fig. 2.1.11 Example of AL - AH Transfer

A AH AL

31 16 15 0

Accumulator

Accumulator

Memory space

A before execution

A after execution

XXXXH XXXXH

8F74H 2B52H

DTB A6H 8FH 74H

2BH 52H

15H 38H

MSB LSB

A61540H

A6153EH

RW1

+6

AH AL

Old A

New A

Memory space

XXXXH 1234H

1234H 2B52H

DTB A6H 8FH 74H

2BH 52H

15H 38H

MSB LSB

A61540H

A6153EH

RW1

+6

AH AL

2.1 CPU

30 Chapter 2: Hardware Configuration

When transferring byte-length or shorter data to register AL, the data is given a coded extension or zero
extension and stored in AL in 16-bit length. Also, data in the AL register can be handled in either word
length or byte length. When an arithmetic calculation instruction is performed on the contents of AL in
byte processing, the upper 8 bits of the value of AL before processing are ignored and the upper 8 bits
in the result will all be set to zero.

MOV A, 3000H (Instruction: Extend the contents of address 3000H with zeros, and store the results
in AL.)

Fig. 2.1.12 Example of Zero Extension

MOVX A, 3000H (Instruction: Extend the contents of address 3000H with coding, and store the results
in AL.)

Fig. 2.1.13 Example of Coded Extension

A before execution

A after execution

Memory space

XXXXH 2456H

2456H 0088H

DTB B5H 77H 88H

MSB LSB

B53000H

AH AL

A before execution

A after execution

Memory space

XXXXH 2456H

2456H FF88H

DTB B5H 77H 88H

MSB LSB

B53000H

AH AL

2.1 CPU

31

User Stack Pointer (USP) and System Stack Pointer (SSP)

The USP and SSP are 16-bit registers, indicating addresses in memory where data is saved or restored
during execution of PUSH/POP instructions and subroutines. The USP and SSP registers are treated in
the same way by stack instructions, but the USP register is enabled when the S flag in the processor sta-
tus register (PS) is set to '0' and the SSP register is enabled when the S flag is set to '1' (see Figure
2.1.14).

Because the S flag is set to '1' when an interrupt is received, saving into a register due to interrupts must
be handled in memory areas indicated by the SSP register. Normally stack processing for interrupt rou-
tines uses the SSP, and stack processing other than for interrupt routines uses the USP register. When
there is no need to divide stack space, the SSP register alone should be used.

If values set in the stack pointers designate odd-numbered addresses, word access will be broken into
two parts, reducing efficiency. Therefore the use of even-numbered addresses is encouraged.

The upper 8 bits of addresses used in stack pointers are stored in the SSB byte in the SSP register, and
in the USB byte in the USP register.

Example 1. PUSHW A, with S flag set to '0'

Example 2. PUSHW A, with S flag set to '1'

Fig. 2.1.14 Stack Operation Instructions and Stack Pointers

USP F328H XX XX

MSB LSB

C6F326HUSB C6H AL A624H

SSP 1234HSSB 56HS flag 0

Before execution ⇒

USP F326H

A6H 24HC6F326H

USB C6H AL A624H

SSP 1234HSSB 56H

After execution ⇒

S flag 0

⇐ User stack is used because S flag is '0

USP F328H XX XX

MSB LSB

561232HUSB C6H AL A624H

SSP 1234HSSB 56HS flag 1

Before execution ⇒

USP F328H A6H 24H561232HUSB C6H AL A624H

SSP 1232HSSB 56H

After execution ⇒

S flag 1 ⇐ User stack is used because S flag is '1'

2.1 CPU

32 Chapter 2: Hardware Configuration

Processor Status Register (PS)

The PS register is configured from bits that perform CPU operating controls and bits that indicate CPU
status. As shown in Figure 2.1.15, The upper byte of the PS register is composed of the register bank
pointer (RP) which indicates the starting address of the register bank, and the interrupt level mask reg-
ister (ILM), and the lower byte of PS consists of the condition code register (CCR) which contains flags
set to '1' or '0' depending on results of instruction execution and interrupt generation.

Fig. 2.1.15 PS Register Configuration

(1) Condition Code Register (CCR)

Figure 2.1.16 shows the configuration of the condition code register, and Table 2.1.3 describes its func-
tions.

Fig. 2.1.16 Condition Code Register Configuration

Table 2.1.3 Flag Functions

Flag name Function

I Interrupt enable flag The I flag is set to '1' to enable all interrupt requests other than software
interrupts. When the flag is '0' interrupts are masked. The reset value is '0.'

S Stack flag The S flag is set to '0' to select the USP register as the pointer used for
stack operations. When the flag is '1' the SSP register is selected. Follow-
ing an interrupt or reset, the value is reset to '1.'

T Sticky bit flag The T flag is set to '1' when one or more "1s" are contained in the data
shifted out from the carry field during execution of logical right-shift or
arithmetic right-shift instructions. The value is '0' at all other times. When
the shift value is zero places, the bit is set to '0.'

N Negative flag This flag is set to '1' if the MSB of the results of arithmetic calculation is
'1' and '0' when the MSB is '0.'

Z Zero flag The Z flag is set to '1' when the results of arithmetic calculation are all
zeros, and is set to '0' at all other times.

V Overflow flag The V flag is set to '1' when execution of an arithmetic calculation results
in a coded value indicating an overflow, and is set to '0' at all other times.

C Carry flag The C flag is set to '1' when an arithmetic calculation requires the MSB to
be carried up or down one or more places, and is set to '0' at all other times.

PS ILM RP CCR

15 13 12 8 7 0

– I S T N Z V C

7 6 5 4 3 2 1 0

:CCR

2.1 CPU

33

(2) Register Bank Pointer (RP)

The RP register indicates the relationship between the general purpose registers of the F2MC-16F core
and internal RAM. The first memory address of the register bank currently in use is indicated using the
conversion formula [000180H + (RP) * 10H]. The RP register has 5-bit configuration and can take val-
ues from 00h to 1Fh corresponding to register banks having memory addresses 000180H to 00037FH.
For a description of the relation between the RP register and internal RAM, as well as the configuration
of register banks, see the description of general-purpose registers.

Instruction execution can transfer 8-bit immediate data values to the RP register, but only the lower 5
bits can be actually used. Following a reset, this register is initialized to the value 00H.

Fig. 2.1.17 Register Bank Pointer

(3) Interrupt Level Mask Register (ILM)

The ILM register has 3-bit configuration, and indicates the level of CPU interrupt masking. To be
received by the CPU, interrupt requests must have a stronger (higher) level than the setting of these
three bits. The strongest (highest priority) level is 0 and the weakest (lowest priority) level is 7 (see
Table 2.1.4). Thus for an interrupt to be received, it must be requested at a level with a smaller value
than the current ILM register value. When an interrupt is received, the value of its level is stored in the
ILM register, and no interrupts of equal or lower priority will then be received.

Instruction execution can transfer 8-bit immediate data values to the ILM register, but only the lower
three bits can be actually used. Following a reset, this register is initialized to the value '0.'

Fig. 2.1.18 Interrupt Level Register

Table 2.1.4 Relative Strength (Priority) of Levels in the Interrupt Level Mask Register (ILM)

ILM2 ILM1 ILM0 Level value Interrupt level enabled

0 0 0 0 Interrupt disabled

0 0 1 1 Level 0 only

0 1 0 2 Level 2 or stronger

0 1 1 3 Level 3 or stronger

1 0 0 4 Level 4 or stronger

1 0 1 5 Level 5 or stronger

1 1 0 6 Level 6 or stronger

1 1 1 7 Level 7 or stronger

B4 B3 B2 B1 B0 :RP

ILM2 ILM1 ILM0 :ILM

2.1 CPU

34 Chapter 2: Hardware Configuration

Program Counter (PC)

The PC register is a 16-bit counter, indicating the lower 16 bits of the memory address containing the
instruction code to be executed by the CPU. The upper 8 bits of the address are indicated by the PCB
register. The value in the PC register is updated by branching instructions, subroutine call instructions,
interrupts and resets. It can also be used as a base pointer for operand access.

Fig. 2.1.19 Program Counter

User Stack Upper Limit Register (USPCU), System Stack Upper Limit Register (SSPCU),
User Stack Lower Limit Register (USPCL), System Stack Lower Limit Register (SSPCL)

These registers are used to indicate when the value in the current stack pointer is outside a given range.
Separate upper and lower limits are used for the user stack and system stack, and settings are made
using the SPCU and SPCL registers for the current stack as indicated by the S flag in the CCR register.
Whenever a subroutine call instruction, interrupt, reset instruction or other procedure causes the top
address of the stack to fall outside the range defined by these registers, stack area error exception pro-
cessing is generated. These values are not initialized by a reset instruction.

For information on the stack check function, see 'Exception Processing.'

Direct Page Register (DPR)

The DPR register indicates the values addr8 through addr15 of the operand in direct addressing instruc-
tions, as shown in Figure 2.1.20. The DPR register has 8-bit length, and is initialized to '01H' following
a reset. Both read and write accesses are enabled.

Fig. 2.1.20 Generation of Physical Addresses by Direct Addressing

Next instruction
to be executed

PCB FEH PC ABCDH

FEABCDH

DTB Register DDR Register Direct address in instruction

24-bit

αααααααα ββββββββ γγγγγγγγ

ααααααααββββββββγγγγγγγγ
MSB LSB

 physical address

2.1 CPU

35

Program Counter Bank Register (PCB),
 Data Bank Register (DTB),
 User Stack Bank Register (USB),
System Stack Bank Register (SSB),
Additional Bank Register (ADB)

This set of bank registers is used to indicate the respective memory banks allocated in PC space, DT
space, SP space (user), SP space (system) and AD space. All these bank registers have 8-bit length. Fol-
lowing a reset, the PCB register is initialized to ‘FFH’ and all others to ‘00H.’ All except the PCB regis-
ter are read/write enabled. The PCB register is enabled for read access only. The PCB register is
overwritten by processing of software interrupt instructions branching to full 16 MB space including
JMPP, CALLP, RETP, RETI, RETIQ, as well as by hardware interrupts and exception processing. The
USB and SSB stack pointers are collectively designated in instructions by the term SPB. When the S
flag in the CCR register is '0' this term selects the USB pointer, and when the S flag is '1' the SSB
pointer is selected.

For the operation of each of these registers, see section 2.1.1 "Memory Space."

2.1 CPU

36 Chapter 2: Hardware Configuration

General-Purpose Registers

The F2MC-16F CPU core has general-purpose registers located at RAM addresses 000180H-00037H on
the memory map. The register bank pointer (RP) is used to indicate which register bank is the currently
active area of memory. Each bank contains the following three types of registers. These registers are
not independent, and are related as shown in Figure 2.1.21.

Fig. 2.1.21 General-Purpose Registers

Register Banks

Register banks have 16-bit x 8 (16-byte) configuration, and can be used as byte registers R0 to R7,
word registers RW0 to RW7, or long-word registers RL0 to RL3 for various calculations. Register
banks can also be used as pointers in various instructions, and the RL0 to RL3 registers can be used as
linear pointers for direct access to full memory space. Table 2.1.5 lists the functions of each register.

Table 2.1.5 Register Function

R0 to R7
Used as operands for various instructions.
Note R0 can also be used as a barrel-shift counter or a counter

for normalize instructions.

RW0 to RW7
Used as pointers, and as operands for various instructions.
Note RW0 can also be used as a counter for string instructions.

RL0 to RL3 Used as long pointers, and as operands for various instructions.

• R0 to R7: 8-bit general-purpose register

• RW0 to RW7: 16-bit general-purpose register

• RL0 to RL3: 32-bit general-purpose register

R7 R6

R5 R4

R3 R2

R1 R0

RW3

RW2

RW1

RW0

16bit
MSB LSB

Higher

Lower

RW7

RW6

RW5

RW4

RL3

RL2

RL1

RL0

000180H+RP*10H

Top address of general-purpose register

2.1 CPU

37

2.1.3 Prefix Codes
Prefix codes may be placed before instructions to partially alter the operation of the instruction. There are
three types of prefixes: bank select prefixes, common register bank prefixes and flag change suppression
prefixes.

Bank Select Prefixes

The area of memory space used in a data access operation is determined by addressing. By placing a
bank select prefix before a instruction, the area of memory space accessed in that instruction can be
specified without regard to the addressing mode. Table 2.1.6 lists bank select prefixes in relation to the
areas of memory space selected.

Table 2.1.6 Bank Select Prefixes

Note that the instructions listed in Table 2.1.7 ignore bank select prefixes. Also, the effect of bank
select prefixes used with instructions listed in Table 2.1.8 is retained until the following instruction.

Bank select prefix Area selected

PCB Program space

DTB Data space

ADB Additional space

SPB
User stack space when the S flag in
the CCR register is '0,' and system
stack space when the S flag is '1.'

Table 2.1.7 Instructions Unaffected by Bank Select Prefixes

Instruction type Instruction Effect of bank select prefix

String instruc-
tions

MOVS MOVSW
SCEQ SCWEQ
FILS FILSW

Instruction uses bank register
designated by operand, regard-
less of prefix.

Stack operation
instructions

PUSHW POPW Instruction uses USB if S flag is
'0' and SSB if S flag is '1',
regardless of prefix.

I/O access
instructions

MOV A,io MOVX A,io
MOVW A,io
MOV io,A MOVW io,A
MOV io,#imm8 MOVW io,#imm16
MOVB A,io:bp MOVB io:bp,A
SETB io:bp CLRB io:bp
BBC io:bp,rel BBS io:bp,rel
WBTC io:bp WBTS io:bp

Space 000000H-0000FFH is
accessed, regardless of prefix.

Stack pointer
indirect address-
ing instructions

MOV A,@SP+disp8 MOVX A,@SP+disp8
MOVW A,@SP+disp8 MOVL A,@SP+disp8
MOV @SP+disp8,A MOVW @SP+disp8,A
MOVL @SP+disp8,A

Instruction uses USB if S flag is
'0' and SSB if S flag is '1',
regardless of prefix.

2.1 CPU

38 Chapter 2: Hardware Configuration

Table 2.1.8 Instructions Retaining Bank Select Prefix Effect Until Next Instruction

Continuous Bank Select Prefix Codes

If bank select prefix codes are continuous, only the last code will become effective.

Fig. 2.1.22 Continuous Bank Select Prefix Codes

Long register
indirect address-
ing instructions
with displace-
ment

MOV A,@RLi+disp8 MOVX A,@RLi+disp8
MOVW A,@RLi+disp8
MOV @RLi+disp8,A MOVW @RLi+disp8,A

Instruction accesses space desig-
nated by (RLi+disp8) value,
regardless of prefix.

Addressing
instructions des-
ignating 24-bit
direct addresses

MOVP A,addr24 MOVPX A,addr24
MOVPW A,addr24 MOVPL A,addr24
MOVP addr24,A MOVPW addr24,A
MOVPL addr24,A

Instruction accesses space desig-
nated by addr24 value, regard-
less of prefix.

Addressing
instructions des-
ignating accumu-
lator indirect 24-
bit addresses

MOVP A,@A MOVPX A,@A
MOVPW A,@A MOVPL A,@A
MOVP @A,Ri MOVPW @A,RWi
MOVPL @A,RLi

Instruction accesses space desig-
nated by value of 'A', regardless
of prefix.

Interrupt recov-
ery instructions

RETI RETIQ Instruction uses SSB value,
regardless of prefix.

Multiple data
transfer instruc-
tions

MOVM MOVMW Instruction uses bank registers
as determined by the instruction,
regardless of prefix.

Instruction type Instruction

Flag change instructions AND CCR,#imm8 OR CCR,#imm8

PS recovery instructions POPW PS

ILM set instructions MOV ILM,#imm8

Table 2.1.7 Instructions Unaffected by Bank Select Prefixes (Continued)

Instruction type Instruction Effect of bank select prefix

Prefix codes

↑ The PCB prefix code will become effective.

…… ……ADB ADD A, 01HDTB PCB

2.1 CPU

39

Common Register Bank Prefix (CMR)

To facilitate exchange of data among multiple tasks, it is necessary to have some relatively simple
means of accessing the same register bank regardless of the value of the RP at the particular moment.
The CMR prefix can be placed before a instruction accessing a general-purpose register, to change all
register access for that instruction to common banks in the range 000180H-00018FH (the register bank
selected when RP=0).

Note that caution is required when using this prefix with the instructions listed in Table 2.1.9.

Table 2.1.9 Instructions Requiring Caution When Used with the Common Register Bank Prefix

Flag Change Suppression Prefix

The flag suppression (or no-change) code (NCC) is used to suppress unwanted flag changes. The NCC
is placed before the instruction in which flag changes are to be suppressed, and will suppress all flag
changes resulting from that instruction. This prefix affects the T, N, Z, V and C flags.

Note that caution is required when using this prefix with the instructions shown in Table 2.1.10.

Table 2.1.10 Instructions Requiring Caution When Used with Flag Change Suppression Prefix

Instruction type Instruction Effect of bank select prefix

String instruc-
tions

MOVS MOVSW
SCEQ SCWEQ
FILS FILSW

Do not use the CMR prefix with string
instructions.

Flag change
instructions

AND CCR,#imm8 OR CCR,#imm8 The effect of the prefix will be retained
for the next instruction.

PS recovery
instructions

POPW PS The effect of the prefix will be retained
for the next instruction.

ILM setting
instructions

MOV ILM,#imm8 The effect of the prefix will be retained
for the next instruction.

Instruction type Instruction Effect of bank select prefix

String instruc-
tions

MOVS MOVSW
SCEQ SCWEQ
FILS FILSW

Do not use the NCC prefix with string
instructions.

Flag change
instructions

AND CCR,#imm8 OR CCR,#imm8 The CCR will change according to
instruction specifications whether the
prefix is used or not. The effect of the
prefix will be retained for the next
instruction.

PS recovery
instructions

POPW PS The CCR will change according to
instruction specifications whether the
prefix is used or not. The effect of the
prefix will be retained for the next
instruction.

ILM setting
instructions

MOV ILM,#imm8 The effect of the prefix will be retained
for the next instruction.

2.1 CPU

40 Chapter 2: Hardware Configuration

About Interrupt Suppressing Instructions

Table 2.1.11 lists ten types of instructions with which generation of hardware interrupt requests is not
detected, and interrupt requests are ignored.

Table 2.1.11 Hardware Interrupt Suppressing Instructions

As Figure 2.1.23 shows, when a valid hardware interrupt is generated during execution of one or more
of these instructions, interrupt processing will be delayed until after the execution of a instruction that is
not one of the above types.

Fig. 2.1.23 Interrupt Handling during Interrupt Suppressing Instructions

Restrictions on Interrupt Suppressing Instructions Used with Prefix Codes

When a prefix code is placed before an interrupt suppressing instruction, the effect of the prefix code is
extended to the first instruction that is not one of the interrupt suppressing instructions. Figure 2.1.24
shows an example.

Fig. 2.1.24 Interrupt Suppressing Instructions Used with Prefix Codes

Interrupt instruc-
tions, interrupt
recovery instruc-
tions

INT #vct8 INT9
INT addr16 INTP addr24
RETI RETIQ

The CCR will change according to
instruction specifications whether the
prefix is used or not.

Context instruc-
tions

JCTX @A The CCR will change according to
instruction specifications whether the
prefix is used or not.

MOV ILM,#imm8 PCB SPB
AND CCR,#imm8 ADB CMR
OR CCR,#imm8 NCC
POPW PS DTB

MOV A,#10

Interrupt suppressing instructions

↑ Interrupt request generated

…OR CCR, #FF

…MOV ILM, #7

↑ Interrupt accepted

ADD A, 01H

Interrupt suppressing instructions

…MOV ILM, #imm8

MOV A, FFH

CCR not changed by NCC prefix.

NCC

CCR:XXX10XX
CCR:XXX10XX

2.1 CPU

41

2.1.4 Interrupts, Expanded Intelligent I/O Services, and Exceptions
The F2MC-16F CPU has four types of functions capable of reacting to the occurrence of a particular event,
interrupting the execution of the instruction that is currently being processed, and transferring control to a
separately defined program.

• Hardware interrupts... Interrupt processing triggered by events occurring
in internal resources.

• Software interrupts .. Interrupt processing triggered by software instruc-
tions that generate specific events.

• Expanded intelligent I/O services (EI2OS) Transfer processing triggered by events occurring
in internal resources.

• Exceptions ... Processing interruptions triggered by the occur-
rence of abnormal circumstances.

Hardware Interrupts

(1) Overview

In a hardware interrupt, the CPU reacts to an interrupt request signal from its internal resources circuit,
temporarily suspends the execution of the program that it has been executing, and transfers control to an
interrupt processing program defined by the user.

Hardware interrupts are initiated when the level of the interrupt request is compared with the interrupt
level mask (ILM) register in the CPU processor status (PS) register, and the contents of the I flag in the
PS register are referenced by hardware, in order to determine that interrupt conditions exist. When a
hardware interrupt is generated, the CPU performs interrupt processing as follows.

• The contents of the A, DPR, ADB, DTB, PCB, PC and PS registers in the CPU are saved to the sys-
tem stack.

• The level of the current interrupt request is stored in the ILM register field in the PS register.

• The CPU branches to the corresponding interrupt vector.

(2) Configuration

Three areas of the F2MC-16F core are involved in hardware interrupt processing.

• Internal resources ... The interrupt enable bit and interrupt request bit are used as reference to control
interrupt requests from internal resources.

• Interrupt controller ... The ICR register assigns interrupt priority levels and determines priority of
interrupts occurring at the same time.

• CPU ... The I and ILM registers compare the level of the interrupt request with the level of the exist-
ing requests and identify an interrupt enable status.
The microcode function executes the necessary steps in interrupt processing.

Each of these functions is realized through register settings -- the internal resource control registers for
the internal resources, the ICR register for the interrupt controller, and the CCR register for the CPU.
Before a hardware interrupt can be used, therefore, settings must be made to these three locations. For
information about the ICR register, see 'Interrupt Control Register (ICR)' in the section "Expanded
Intelligent I/O Services."

The interrupt vector tables referred to during interrupt processing are located in memory area FFFC00H
to FFFFFFH, and the same tables are used for software interrupts. Table 2.1.12 lists interrupt numbers
and interrupt vectors assigned.

2.1 CPU

42 Chapter 2: Hardware Configuration

Table 2.1.12 Interrupt Numbers and Interrupt Vectors Assigned

(3) Operation

Each internal resource with a hardware interrupt function has both an 'interrupt request flag' that indi-
cates whether an interrupt request has been made or not, and an 'interrupt enable flag' used to select
whether that circuit will send its interrupt signal to the CPU or not. Each interrupt request flag is set by
the occurrence of a particular event within that internal resource, and if the interrupt enable flag has an
'enable' setting, the resulting interrupt request will then be output from the internal resource to the inter-
rupt controller.

The interrupt controller compares individual interrupts simultaneously received with the interrupt lev-
els (IL) in the interrupt control register (ICR), selects the highest-level interrupt (the one with the low-
est IL value) and notifies the CPU. If more than one interrupt with the same level is received, the lowest
interrupt number is given priority. For the relation between interrupt requests and ICR values, see sec-
tion 2.2.3 "Interrupt Level Assignments."

The CPU receives the interrupt, compares its level with the ILM field in the processor status (PS) regis-
ter, and if the value of the interrupt level is less than the ILM setting and the I flag in the PS register has
the value '1,' microcoding for interrupt processing will begin as soon as the currently executing instruc-
tion is ended.

The top of the interrupt processing microcode references the ISE bit in the interrupt controller's ICR
register, verifies that the value of that bit is '0' (0=interrupt), and then starts the main sequence of the
interrupt processing routine.

In interrupt processing, the 12 bytes in the A, DPR, ADB, DTB, PCB, PC and PS registers are saved to
the area of memory designated by the SSB and SSP registers, the contents of the 3-byte interrupt vector
is read and loaded into the PC and PCB register, the contents of the ILM field in the PS register are

Software
interrupt

instruction

Vector
address L

Vector
address M

Vector
address H

Mode
register

Interrupt
 No.

Hardware interrupt

INT 0 FFFFFCH FFFFFDH FFFFFEH Not used #0 None

… … … … … … …

INT 7 FFFFE0H FFFFE1H FFFFE2H Not used #7 None

INT8 FFFFDCH FFFFDDH FFFFDEH FFFFDF #8 (RESET vector)

INT 9 FFFFD8H FFFFD9H FFFFDAH Not used #9 None

INT 10 FFFFD4H FFFFD5H FFFFD6H Not used #10 <Exception>

INT 11 FFFFD0H FFFFD1H FFFFD2H Not used #11 Hardware interrupt #0

INT12 FFFFCCH FFFFCDH FFFFCEH Not used #12 Hardware interrupt #1

INT 13 FFFFC8H FFFFC9H FFFFCAH Not used #13 Hardware interrupt #2

INT 14 FFFFC4H FFFFC5H FFFFC6H Not used #14 Hardware interrupt #3

… … … … … … …

INT 254 FFFC04H FFFC05H FFFC06H Not used #254 Open

INT 255 FFFC00H FFFC01H FFFC02H Not used #255 <Stack fault>

2.1 CPU

43

updated to the level of the currently accepted interrupt request, the S flag is set to '1' and CPU process-
ing branches to the interrupt routine.

Accordingly, the next instruction to be executed will be the interrupt processing program defined by the
user.

Figure 2.1.25 shows the flow of interrupt processing from the generation of the hardware interrupt, until
no more interrupt requests remain in the interrupt request program. Figure 2.1.26 shows the flow of
hardware interrupt operations.

Fig. 2.1.25 A Hardware Interrupt from Generation to Exit

(1) Interrupt factor occurs in internal resource.

(2) If the interrupt enable bit in that internal resource is set to 'enable,' an interrupt request is gener-
ated and sent from the internal resource to the interrupt controller.

(3) The interrupt controller receives the interrupt request, determines the priority of simultaneously
received requests, and transfers it to the CPU with the corresponding interrupt level.

(4) The CPU receives the interrupt from the interrupt controller, and compares its interrupt level
with the value of the IL bit in the processor status (PS) register.

(5) If the comparison shows a higher priority level than the interrupt level currently being processed,
the CPU then checks the value of the I flag in the same processor status (PS) register.

(6) If the check in step (5) shows that the I flag is set to 'interrupt enabled' status, the processor waits
for the end of execution of the instruction that is currently being executed, and then sets the ILM
register to the requested level.

(7) The indicated register settings are saved, and the processor branches, thus transferring control to
the interrupt processing routine.

(8) Software in the user-defined interrupt processing routine clears the interrupt factor that occurred
in step (1), and then interrupt processing ends.

F
2 M

C
-1

6
bu

s

Microcoding

Internal resource

Internal
L

ev
el

 c
o

m
pa

ra
to

r

In
te

rr
up

t l
e

ve
l I

L

Interrupt

PS: Processor status register
I: Interrupt enable flag
ILM: Interrupt level mask register
IR: Instruction register

PS,PC… PS I ILM

F2MC-16 bus

peripheral
circuit
block

controller

…

RAM

IR ComparatorCheck

AND
Enable FF

Factor FF

(7)
(2)

(6) (5) (4)

(3)

(1)(8)

2.1 CPU

44 Chapter 2: Hardware Configuration

Fig. 2.1.26 Flow of Interrupt Operations

I: CCR register flag
ILM: CPU interrupt level mask register
IY: Internal resource interrupt request flag
IE: Internal resource interrupt enable flag
ISE: EI2OS enable flag
IL: Interrupt resource interrupt request level
S: CCR register flag

Fetch and decode next instruction

Execute normal processing

Update PC register

Hardware interrupt

ISE = 1

Save contents of PS, PC, PCB,
DTB, ADB, DPR, A registers to
SSP stack, then set ILM=IL

Expanded intelligent I/
O service processing

I & IY & IE = 1
AND

ILM > IL

INT instruction?

End of string
instruction
repetition?

Software interrupt
Save contents of PS, PC, PCB,
DTB, ADB, DPR, A registers to
SSP stack, then set I=0

Set S ←1, fetch interrupt vector,
update PCB and PC registers

YES

NO NO YES

YES

YES

NO

NO

2.1 CPU

45

(4) Sample Sequence for Hardware Interrupt Usage

Fig. 2.1.27 Sample Sequence of Hardware Interrupt Usage

(1) Set system stack area.

(2) Initialize internal resources capable of generating interrupt requests.

(3) Set the ICR register in the interrupt controller.

(4) Place internal resources in ready status, set interrupt enable bits to 'enable.'

(5) Set the ILM and I flags in the CPU to enable acceptance of interrupts.

(6) Interrupt factor occurs in internal resource, generates a hardware interrupt request.

(7) Interrupt processing hardware saves contents of registers, branches to interrupt processing pro-
gram.

(8) Interrupt processing program processes the internal resource that produces the interrupt.

(9) Clears the interrupt request from the internal resource circuit.

(10) Execute interrupt recovery instruction, return to the program before branching.

Start

Set system stack area

Set ICR register in interrupt
controller

Initialize internal resources

Set ILM, I flags in PS register

Generate Interrupt
request generated

Stack processing
Branch to interrupt vector

Hardware
processing

Interrupt processing program

Process internal
resource according to
nature of interrupt

Clear interrupt factor

Interrupt recovery
instruction (RETI)

Place internal resources in
ready status, set interrupt
enable bits to ‘enable.’

(1)

(2)

(3)

(4)

(5)

(6)

(7) (10)

(9)

(8)

2.1 CPU

46 Chapter 2: Hardware Configuration

(5) Hardware Interrupt Requests During Writing to Internal Resource Areas

No hardware interrupt requests will be accepted during writing to internal resource areas. This is in
order to avoid abnormal CPU operations that can occur in response to interrupts made during updating
of resource interrupt control registers. Internal resource areas are not the I/O addressing areas between
000000H-0000FFH, but the areas allocated to the control registers and data registers of internal
resources.

Fig. 2.1.28 Hardware Interrupt Request During Writing to Internal Resource Areas

(6) Interrupt Suppressing Instructions

The F2MC-16F core uses certain interrupt suppressing instructions that do not respond to the presence
of hardware interrupt requests. See table 2.1.11, "Hardware Interrupt Suppressing Instructions."

(7) Multiple Interrupts

The F2MC-16F core supports multiple interrupts. Thus during processing of one interrupt, when
another interrupt of a higher priority level is generated, control is transferred to the higher level inter-
rupt as soon as execution of the current instruction is ended. When processing of the higher level inter-
rupt is completed, control reverts to the first interrupt routine.

When another interrupt of an equal or lower priority level is received, the new instruction is placed on
hold and the current interrupt is processed to completion (unless altered by the ILM register or I flag
setting).

Note that multiple extended intelligent I/O services cannot be initiated, so that when one extended intel-
ligent I/O service is being processed, all other interrupt requests and extended intelligent I/O services
will be placed on hold.

Interrupt processing

Write instruction for internal resource area

…

MOV A, #08

MOV io, A MOV A, 2000H

generated here to interrupt
Interrupt request No branch

Branch to interrupt here

2.1 CPU

47

(8) Register Saved

Figure 2.1.29 shows the sequence of saving of registers to the stack.

Fig. 2.1.29 Registers Saved to Stack

(9) Cautionary Information

In some internal resources, interrupt requests are cleared when the control register or data registers are
read. Once an interrupt request is generated, abnormal results may be produced if the interrupt factor is
cleared by a read operation before control is passed to the interrupt processing hardware.

For this reason, it is important not to execute register read instructions at the time an interrupt request
has occurred when using internal to clear the interrupt request through the register read operation
resources.

Register saved in interrupt processing

SSP (SSP value before interrupt occurred)

SSP (SSP value after interrupt occurred)

A H

A L

DPR

DTB

ADB

PCB

P C

P S

MSB LSB
Word (16 bits)

H

L

2.1 CPU

48 Chapter 2: Hardware Configuration

Software Interrupts

(1) Overview

In a software interrupt, the CPU reacts to the execution of a dedicated instruction, and transfers control
from the execution of the program that it has been executing to an interrupt processing program defined
by the user. Software interrupts are always initiated by execution of a software interrupt instruction.
When a software interrupt is generated, the CPU performs interrupt processing as follows.

• The contents of the A, DPR, ADB, DTB, PCB, PC and PS registers in the CPU are saved to the sys-
tem stack.

• The I flag in the PS register is set to '0' to disable hardware interrupts.

• The CPU branches to the corresponding interrupt vector.

A software interrupt, or interrupt request by execution of INT instruction in this case, is not provided
with an interrupt request flag or enable flag; execution of INT instruction always generates interrupt
request.

INT instruction has no interrupt levels; INT instruction, therefore, does not update ILM and the inter-
rupt request that followed is held in retention mode with the I flag set to "0."

(2) Configuration

All functions related to software interrupts are contained within the CPU. To use a software interrupt, it
is necessary to execute the corresponding instruction.

A shown in Table 2.1.12, interrupt vectors for both hardware interrupts and software interrupts share
the same space. For example, interrupt request number INT11 can be used for hardware interrupt #0,
and can also be used for software interrupt INT #11. Thus the same interrupt processing subroutine will
be called by both hardware interrupt #0 and software interrupt INT #11.

(3) Operation

When the CPU fetches and executes a software interrupt command, it activates the software interrupt
processing microcoding routine. In software interrupt processing microcoding, the 12 bytes of data con-
tained in memory in the A, DPR, ADB, DTB, PCB, PC and PS registers are saved to the area of mem-
ory designated by the SSB and SSP registers, then the contents of the 3-byte interrupt vector is read and
loaded into the PC and PCB register, the I flag is set to '0' and the S flag is set to '1,' and CPU processing
branches to the interrupt routine.

Figure 2.1.30 shows the flow of interrupt processing from the generation of the software interrupt, until
no more interrupt requests remain in the interrupt request program.

2.1 CPU

49

Fig. 2.1.30 A Software Interrupt from Generation to Resolution

(1) Software interrupt instruction is executed.

(2) Contents of dedicated registers saved according to microcoding of software interrupt instruction.

(3) In user-defined interrupt processing routine, interrupt processing with RETI, RETIQ instruction
ends.

(4) Precaution

If the program bank register (PCB) is up to FFH, vector region for CALLV instruction is overlapped
with the table for INT #vct8 instruction. Exercise care for the overlapped address of CALLV instruc-
tion and INT #vct8 instruction.

F
2 M

C
-1

6
bu

s

Microcoding

PS: Processor status re
I: Interrupt enable flag
ILM: Interrupt level mas
IR: Instruction register

PS,PC… PS I ILM

F2MC-16F • CPU

RAM

IR
FetchQueue

Save

Instruction bus

(1)

(2)

2.1 CPU

50 Chapter 2: Hardware Configuration

Extended Intelligent I/O Service (EI2OS)

EI2OS is a set of automatic data transfers between I/O ports and memory, initiated by interrupts gener-
ated from internal resources. These function cause temporary suspension of instruction execution, and
allow exchange of data with the I/O ports which are conventionally executed by the interrupt process-
ing program.

This method has the following advantages in comparison with the conventional interrupt processing
methods.

• Elimination of need to write transfer programs, allowing reduction of overall program size.

• No internal registers used for transfer, eliminating the need to save register contents and thereby
speeding up transfer processing.

• Transfer can be stopped according to I/O status, eliminating unnecessary data transfers.

• Selection of three buffer address handling modes: increment/decrement/no-change.

• Selection of three I/O register address handling modes: increment/decrement/no-change (increment/
decrement settings used only when buffer address is changed).

When EI2OS processing ends, processing branches automatically to the interrupt processing program as
soon as end conditions are set, allowing the user to determine the type of ending conditions used.

Figure 2.1.31 shows an overview of extended intelligent I/O service operation.

Fig. 2.1.31 Overview of Extended Intelligent I/O Service

Memory space

I/O register

Buffer

I/O register
Internal

Interrupt request

Interrupt control register

Interrupt controller

ISD

IOA

BAP

(4)

(1)

(3)

(3)

resources

ICS

(2)

(1) An internal resource generates
an interrupt, and requests transfer

(2) The interrupt controller selects a
descriptor

(3) Transfer source and destination
are read from the descriptor

(4) Transfer is performed to/from I/O
memory locations

DCT

2.1 CPU

51

Structure of Extended Intelligent I/O Service

Functions related to EI2OS may be divided into 4 basic areas.

Internal resources Interrupt enable bit, interrupt request bit: Controls interrupt request
from internal resources.

Interrupt controller ICR: Assigns interrupt level, determines priority of simultaneous inter-
rupt requests, selects E2OS operations.

CPU..................................... I, ILM: Compares requested interrupt level with current level, deter-
mines interrupt enable status.
 Microcoding: Executes EI2OS processing steps

RAM.................................... Descriptor: Writes IE2OS transfer data

A description of each of the above registers follows.

Interrupt Control Register (ICR)

The interrupt control register (ICR) is located inside the interrupt controller, and supports all I/O
resources that have interrupt functions. For the relation between interrupts and the ICR register, see sec-
tion 2.2.3, "Interrupt Vector Allocation." This register has the following three functions.

• Sets interrupt levels for each related internal resource

• Determines whether interrupts from related internal resources are to be handled as normal interrupts
or as extended intelligent I/O services

• Selects channels for extended intelligent I/O services

Caution: Attempted access to this register by read-modify-write instructions (those instructions indi-
cated by an asterisk (*) in the RMW column in the instruction tables) may result in abnormal operation,
and should be avoided.

Figure 2.1.32 shows the bit configuration of the interrupt control register.

Note: Caution: The ICS3 to ICS0 bits are effective only when EI2OS has been started. The ISE bit is set to
'1' to start EI2OS, and otherwise set to '0.' If EI2OS has not been started, the ICS0 to ICS3 bits may
have any value.

Fig. 2.1.32 Interrupt Control Register (ICR)

Interrupt control register (ICR) write configuration
Reset : 00000111B

Interrupt control register (ICR) read configuration
Reset : xx000111B

ICS3 ICS2 ICS1 ICS0 ISE IL2 IL1 IL0

7 6 5 4 3 2 1 0

W W W W W W W W

 –– –– S1 S0 ISE IL2 IL1 IL0

7 6 5 4 3 2 1 0

– – R R R R R R

2.1 CPU

52 Chapter 2: Hardware Configuration

[Bit 2 to 0] IL0, IL1, IL2: Interrupt level setting bits

These bits are used to set interrupt levels. Each bit is read/write enabled and sets the interrupt level of
the corresponding internal resource. The initial value after reset is '7' (no interrupt). For the relation
between interrupt level setting bits and interrupt levels, see Table 2.1.13.

Table 2.1.13 Relation between Interrupt Level Setting Bits and Interrupt Levels

[Bit 3] ISE: Extended Intelligent I/O Service Enable Bit

This bit is used to enable EI2OS. It is read/write enabled, and is set to '1' to initiate EI2OS when an inter-
rupt is generated. A setting of '0' will start the interrupt sequence. Also, when EI2OS ends (either by
count end or internal resource-controlled end), the ISE bit is set to '0.' If the corresponding internal
resource has no EI2OS function, a software instruction must be used to set the ISE bit to '0.'

The value is initialized to '0' after a reset.

IL2 IL1 IL0 Level value

0 0 0 0 (strongest interrupt)

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6 (weakest interrupt)

1 1 1 7 (no interrupt)

2.1 CPU

53

[Bit 7 to 4] ICS3 to ICS0: Extended Intelligent I/O Service Channel Select Bits

These bits are used to select EI2OS channels. Each is write-only, and designates an EI2OS channel. The
values defined by these bits determine the address of an extended intelligent I/O service descriptor
(ISD). The ICS bits are initialized to '0000' following a reset.

Table 2.1.14 shows the relation between the ICS bits and corresponding channel numbers and descrip-
tor (ISD) addresses.

Table 2.1.14 ICS Bit Values, Channel Numbers, and Descriptor Addresses

* Because these areas are shared with the register save areas for stack area errors (see 'Exceptions'),
care should be taken so that one or the other of these areas is used, but not both.

ICS3 ICS2 ICS1 ICS0 Selected channel Descriptor address

0 0 0 0 0 000100H

0 0 0 1 1 000108H

0 0 1 0 2 000110H

0 0 1 1 3 000118H

0 1 0 0 4 000120H

0 1 0 1 5 000128H

0 1 1 0 6 000130H

0 1 1 1 7 000138H

1 0 0 0 8 000140H

1 0 0 1 9 000148H

1 0 1 0 10 000150H

1 0 1 1 11 000158H

1 1 0 0 12 000160H

1 1 0 1 13 000168H

1 1 1 0 14* 000170H

1 1 1 1 15* 000178H

2.1 CPU

54 Chapter 2: Hardware Configuration

[Bit 5 to 4] S0, S1: Extended Intelligent I/O Service Status

These are the EI2OS status bits. They are read-only, and are used to indicate operating status and end
status. The value is initialized to '00' after a reset.

Table 2.1.15 indicates the relation between the S bits and EI2OS status.

Table 2.1.15 S Bits and EI 2OS Status

Extended Intelligent I/O Service Descriptor (ISD)

The extended intelligent I/O service descriptor is located at internal RAM addresses 000100H-00017FH,
and is composed of the following.

• Control data for data transfer

• Status data

• Buffer address pointer

Figure 2.1.33 shows the configuration of the extended intelligent I/O service descriptor.

Fig. 2.1.33 Configuration of the Extended Intelligent I/O Service Descriptor

S1 S2 EI2OS Status

0 0 EI2OS operating or not started

0 1 Stop status caused by count end

1 0 Reserved

1 1 Stop status caused by request from internal resource

Data counter (high)

Data counter (low)

I/O address pointer (high)

I/O address pointer (low)

EI2OS status

Buffer address pointer (high)

Buffer address pointer (middle)

Buffer address pointer (low)Descriptor top address →

8 bits

(DCTH)

(IOAH)

(BAPH)

(DCTL)

(IOAL)

(BAPL)

(BAPM)

(ISCS)

H

L

2.1 CPU

55

Data Counter (DCT)

This 16-bit register is used as a counter for transfer data items. The counter value is decremented by 1
after each data transfer. When this counter value reaches zero, EI2OS is ended. Figure 2.1.34 shows the
configuration of the data counter.

Fig. 2.1.34 Configuration of Data Counter

I/O Register Address Pointer (IOA)

This 16-bit register is used to indicate 16 bits of the lower address (A15 to A00) of the I/O register
transferring data to and from the buffer. The upper address (A23 to A16) is all zeros and can designate
any I/O address between 000000H and 00FFFFH. Figure 2.1.35 shows the configuration of the IOA reg-
ister.

Fig. 2.1.35 Configuration of I/O Register Address Pointer

DCTH DCTL :DCT (undefined at reset)

(R/W) (R/W)

15 14 13 12 11 10 9 8 7 6 5 4 3 12 0

IOAH IOAL :IOA (undefined at reset)

(R/W) (R/W)

15 14 13 12 11 10 9 8 7 6 5 4 3 12 0

2.1 CPU

56 Chapter 2: Hardware Configuration

EI2OS Status Register (ISCS)

This 8-bit register is used to set the direction of update movement (increment/decrement) of the buffer
address pointer and the I/O register address pointer, transfer data length (byte/word), transfer direction,
and update/hold of the buffer address pointer and I/O register address pointer. Figure 2.1.36 shows the
configuration of the ISCS register.

Fig. 2.1.36 Configuration of the ISCS Register

The contents of each bit is defined as follows.

[Bit 7] IF: This bit determines whether the I/O register address pointer is updated or held constant.

0: After data transfer, the I/O register address pointer is updated.

1: After data transfer, the I/O register address pointer is held constant.

[CAUTION] The pointer cannot be updated when the BF bit is '1.'

[Bit 6] BF: This bit determines whether the buffer address pointer is updated or held constant.

0: After data transfer, the buffer address pointer is updated.

1: After data transfer, the buffer address pointer is held constant.

[CAUTION] When updated, only the lower 16 bits of the buffer address pointer are changed.

[Bit 3] ID: This bit determines the buffer address pointer and I/O register address pointer update
direction.

0: Increment

1: Decrement

[CAUTION] The ID bit has no significance when the BF bit is '1.'

[Bit 2] BW: This bit indicates the transfer data length.

0: Byte

1: Word

[Bit 1] DIR: This bit indicates data transfer direction.

0: I/O address pointer → buffer address pointer

1: Buffer address pointer → I/O address pointer

[Bit 0] SE: This bit controls the end of extended intelligent I/O service by request from internal
resources.

0: Not ended by request from internal resources

1: Ended by request from internal resources

:ISCS (undefined at reset) IF BF – – ID BW DIR SE

7 6 5 4 3 2 1 0

(R/W) (R/W) (–) (–) (R/W) (R/W) (R/W) (R/W)

Always write '0' to the two empty bits of the ISCS register.

2.1 CPU

57

Buffer Address Pointer (BAP)

This 24-bit register stores addresses to be used for transfer by the next EI2OS. A separate BAP register
exists for each EI2OS channel, so that each EI2OS channel can execute transfer to any portion of the
entire 16 Mbyte memory space. When the BF bit in the ISCS register is set to 'update enable,' only the
lower 16 bits of the BAP register will be updated, and the BAPH field will not be changed. Figure
2.1.37 shows the configuration of the BAP register.

Fig. 2.1.37 Configuration of Buffer Address Pointer

Figure 2.1.38 shows the operating flow of EI2OS, and Figure 2.1.39 shows the sequence of EI2OS oper-
ation by the user.

BAPM :BAP (undefined at reset)

(R/W)

15 14 13 12 11 10 9 8 7 6 5 4 3 12 023 22 21 20 19 18 17 16

BAPL

(R/W)

BAPH

(R/W)

2.1 CPU

58 Chapter 2: Hardware Configuration

Fig. 2.1.38 Flow of EI 2OS Operation

Read ISD/ISCS

End request

Data indicated by IOA
To (data transfer)
Memory indicated by BAP

Memory indicated by BAP
To (data transfer)
Data indicated by IOA

Update value

Update IOA

Interrupt sequence

BAP: Buffer address pointer
IOA: I/O address pointer
ISD: EI2OS descriptor

ISCS: EI2OS status register
DCT: Data counter
ISE: EI2OS enable bit

S1, S0: EI2OS status

Interrupt request generated
from internal resource

ISE=1

Interrupt sequence

from resource?

DIR=1

BF=0

Update BAP

IF=0

DCT=DCT-1

Set S1, S0 to '00'

Clear interrupt request
flag in internal resource

Resume CPU operation

Set S1, S0 to '01' Set S1, S0 to '11'

Set ISE to '0'

DCT=0

SE=1

NO

YES

YES

YES

NO

NO

NO

YES

YES

NO

YES

NO

YES

NO

determined
by ID, BW

Update value
determined
by ID, BW

2.1 CPU

59

Fig. 2.1.39 Flow of User Operation for EI 2OS

Processing by Software Processing by Hardware

Start

Initial settings

Set system stack area

Set EI2OS descriptor

Initialize internal resource

Set ICR in interrupt controller

Make internal resource

Set ILM, I in PS register

Execute user program
(Interrupt request) and (ISE=1)

Transfer data

Determine branch to

(Branch to interrupt vector)

Reset extended intelligent

Process data in buffer

operating start settings
Set interrupt enable bit

interrupt due to count-out
or end request from resource

I/O service
(switch channel, etc.)

RETI

NO

YES

S1,SO = ‘01’ or
S1,SO = ‘11’

S1,SO = ‘00’

2.1 CPU

60 Chapter 2: Hardware Configuration

Exception Processing

The F2MC-16F core provides exception processing for exceptions arising from the following causes.

(1) Execution of undefined instructions

(2) Program access address errors (for program access to internal RAM and internal I/O areas)

(3) Stack area errors due to stack area check functions

Exception processing is fundamentally the same as interrupt processing, in that exception processing
departs from normal processing sequence at the point where the occurrence of an abnormal condition is
detected at the boundary between instructions. In general, exception processing occurs as a result of
unexpected operation, and its use is recommended only in debugging or for startup of recovery software
in emergency situations.

Exceptions Occurring from Execution of Undefined Instructions

The F2MC-16F considers all codes not defined on the instruction map to be undefined instructions.
Execution of undefined instructions is handled as the equivalent of the software interrupt instruction
'INT 10.' This means that after the contents of the A, DPR, DTB, ADB, PCB, PC and PS registers are
saved to the system stack, the I flag is set to '0' and the S flag to '1' and the program branches to the vec-
tor indicated by interrupt number 10. The value of register PC that is placed in the stack will be the
address containing the undefined instruction. For this reason, recovery using the RETI and RETIQ
instructions is possible but meaningless since another exception will occur.

2.1 CPU

61

Program Access Address Errors with Internal RAM and Internal I/O Areas

The F2MC-16F core treats access to internal RAM or areas defined as internal I/O as the equivalent of
the software interrupt instruction 'INT 10.' This means that after the contents of the A, DPR, DTB,
ADB, PCB, PC and PS registers are saved to the system stack, the I flag is set to '0' and the S flag to '1'
and the program branches to the vector indicated by interrupt number 10. The value of register PC that
is placed in the stack will be the address to which program access was attempted resulting in the excep-
tional condition. For this reason, recovery using the RETI and RETIQ instructions is possible but mean-
ingless since another exception will occur.

Fig. 2.1.40 Program Access Address Error

Stack Area Errors Due to Stack Area Check Functions

The F2MC-16F core has stack area check function, which can detect conditions where the current stack
pointer moves outside the area defined by the stack upper/lower limit register. Exception processing as
a result of this condition is called a stack area error.

After the stack check function is set to 'enable' status, any time the current stack pointer moves outside
of the area defined by the stack upper limit register (SPCU) and stack lower limit register (SPCL), the
contents of the A, DPR, DTB, ADB, PCB, PC, and PS registers will be saved to the area 000174H to
00017FH, after which the I flag will be set to '0', the stack check function will stop, and the program will
branch to the vector indicated by interrupt number 255. The value of the PC register, saved to address
000176H, will be the address containing the instruction following the instruction that contained the
stack access responsible for the exception.

The user is warned that this function is primarily intended for debugging, and therefore it is not possible
to return to the original program by using the RETI and RETIQ instructions.

Separate stack upper limit (SPCU) registers and stack lower limit (SPCL) registers are provided for the
user stack pointer and the system stack pointer. The MOVW SPCU, #imm16/MOVW SPCL, #imm16
instructions can be used for the user stack area settings when the S flag is '0' and for the system stack
area settings when the S flag is '1.'

Figure 2.1.41 shows the flow of the stack check function, and Figure 2.1.42 shows the saving of regis-
ters when a stack area error occurs.

Instruction execution

Exception processing
 -Stack processing
 -Branch to vector of

Execute exception

Memory space

⇐ Execution begins here

⇐ Internal RAM area

processing program

 interrupt number 10

MOV A, #F0FFH

JMPP 000100H

JMPP 000100H

MOV A, #0FFH

MOV, 5000H, A

FF8012H

FF8010H

000100H

2.1 CPU

62 Chapter 2: Hardware Configuration

Fig. 2.1.41 Flow of Stack Check Function

Fig. 2.1.42 Register Saving Due to Stack Area Error

Save dedicated registers

Program Execution

Set stack pointer

Set upper and lower limits of

Enable stack area check

Application program

Stack operation instructions
↑ Stack boundaries are exceeded

Stack area

Hardware Processing

Read vector of interrupt

Set I flag to '0'

Stop stack area check function

Branch to vector of interrupt during execution of this instruction

function (SETSPC)

stack area (SPCU, SPCL)

error occurs

number 255

number 255

Word (16 bits)
MSB LSB

AH

AL

DPR

DTB PCB

ADB

PS

PC

00017EH

00017CH

00017AH

000178H

000176H

000174H

2.1 CPU

63

Stack Area Error Detection Mechanism

Fig. 2.1.43 Block Diagram of Stack Area Error Detection Mechanism

Figure 2.1.43 shows a block diagram of the stack area error detection mechanism.

The S flag in the CCR register alone determines writing to each stack pointer and upper/lower limit reg-
ister.

The upper limit comparator circuit and lower limit comparator circuit are realized on the same hard-
ware for both the user stack area and system stack area, and switching between the two is governed by
the determination "whether user stack or system stack was accessed" with no changes made to the S
flag itself. Also, because stack area error detection takes place at the end of each instruction, the follow-
ing situations may occur.

(1) When the stack check function is enabled, the current stack (according to the value of the S flag)
area may be exceeded, with no stack area error resulted (Figure 2.1.44).

(2) The S flag and current stack may be changed, without a stack area error occurring in the current
stack.

(3) Stack area limits may be exceeded before a stack operation instruction, but no stack area error
may result because the pointer is within the limits after the instruction is executed.

For this reason, when the stack check function is in enabled status, or immediately following a change
in the current stack as a result of changes in the S flag, it is necessary to execute the MOVW A, SP
instruction to check the stack area.

R
ea

d
up

pe
r

R
ea

d
st

ac
k

R
ea

d
lo

w
er

User stack upper limit register

System stack upper limit register

User stack pointer

System stack pointer

User stack lower limit register

Selector

Upper limit

Stack area

lim
it

re
gi

st
er

s
po

in
te

r
lim

it
re

gi
st

er
s

System stack lower limit register

circuit

Selector
circuit

Selector
circuit

comparator
circuit

Lower limit
comparator
circuit

OR

S=0

S=1

S=0

S=1

S=0

S=1

Determine whether user stack or Execute stack pointer access
system stack was accessed

error detected

2.1 CPU

64 Chapter 2: Hardware Configuration

Fig. 2.1.44 Example: No Stack Area Error Occurs

Cautionary Information Related to Stack Check Mechanism

1) The structure of the stack check mechanism does not enable it to check bank addresses.

2) The stack check function is stopped within the stack area error processing hardware, so that it is
unnecessary to execute the CLRSPC instruction in the stack area error processing program.

3) The value of the S flag and stack pointer will indicate which stack pointer and which limit
(upper/lower) was responsible for the error.

Memory Map

User stack upper limit

User stack pointer

User stack lower limit

System stack pointer

System stack upper limit

System stack lower limit

Status before Execution

Instruction Execution

AND CCR, #0DFh : S=0

000600H

000510H

000500H

000446H

000400H

000300H

SSP 0446H

USPCU 0600H

USP 0510H

SSPCL 0300H

SSPCU 0400H

SSPCL 0500H

MOVW A, SP : Read USP
OR CCR, #020h : S=1
SETSPC : Enable stack check

System stack limits are
exceeded, but because the
immediately preceding
access was by the user
stack pointer, no stack
area error results.

2.1 CPU

65

2.1.5 Standby Control Register Access
The MB90242A series microcontroller can be placed in any of the power saving modes (stop or sleep
mode) by writing to the standby control register, provided that the instructions used are those shown in
Table 2.1.16. Operation of the MB90242A series microcontroller is not warranted if instructions other than
those listed in Table 2.1.16 are used to place the chip in power saving modes. When the standby control
register is used to control functions other than change to power saving modes, any instructions may be
used.

Table 2.1.16 Instructions Used to Change To and From Power Saving Modes

MOV io,#imm8 MOV dir,#imm8 MOV eam,#imm8 MOV eam,Ri

MOV io,A MOV dir,A MOV addr16,A MOV eam,A

MOV @RLi+disp8,A MOV @SP+disp8,A MOVP addr24,A

MOVW io,#imm16 MOVW dir,#imm16 MOVW eam,#imm16 MOVW eam,RWi

MOVW io,A MOVW dir,A MOVW addr16,A MOVW eam,A

MOVW @RLi+disp8,A MOVW @SP+disp8,A MOVPW addr24,A

SETB io:bp SETB dir:bp SETB addr16:bp

2.2 Maps

66 Chapter 2: Hardware Configuration

2.2 Maps

This section describes the allocation of MB90242A series memory space, I/O space and interrupt numbers.

2.2.1 Memory Space
Figure 2.2.1 shows MB90242A memory space.

Fig. 2.2.1 MB90242A Memory Space

: Internal

: External

Sum-of-products register

Registers

Peripherals

Ports

RAM

FFFFFFH

001980H

001900H

000900H

000100H
0000C0H

000020H

000000H

2.2 Maps

67

2.2.2 I/O Map
The following table provides an I/O map of the MB90242A microcontroller.

Table 2.2.1 MB90242A I/O Map (1)

Address Register Abbreviation Access Resource name Initial value

000000H System reserved are ———— Note 1 ——————— ————

000001H Port 1 data register PDR1 R/W Port 1 XXXXXXXX

000002H
to 03H

System reserved area ———— Note 1 ——————— ————

000004H Port 4 data register PDR4 R/W Port 4 XXXXXXXX

000005H Port 5 data register PDR5 R/W Port 5 XXXXXXXX

000006H Port 6 data register PDR6 R/W Port 6 11--1111

000007H Port 7 data register PDR7 R/W Port 7 --XXXXXX

000008H Port 8 data register PDR8 R/W Port 8 -----XXX

000009H
to 0FH

Vacancy ————

000010H System reserved area ———— Note 1 ——————— ————

000011H Port 1 direction register DDR1 R/W Port 1 00000000

000012H to
13H

System reserved area ———— Note 1 ——————— ————

000014H Port 4 direction register DDR4 R/W Port 4 00000000

000015H Port 5 direction register DDR5 R/W Port 5 00000000

000016H Analog enable register ADER R/W Analog enable --111111

000017H Port 7 direction register DDR7 R/W Port 7 --000000

000018H Port 8 direction register DDR8 R/W Port 8 -----000

000019H to
1FH

Vacancy ————

000020H Control status register SCR1 R/W I/O simple serial
interface ch1

10000000

000021H Status register SSR1 R -------0

000022H
000023H

Serial data register SDR1L
SDR1H

R/W XXXXXXXX
XXXXXXXX

000024H Vacancy ————

000025H Vacancy ————

000026H
000027H

Vacancy ————

2.2 Maps

68 Chapter 2: Hardware Configuration

000028H Mode control register UMC0 R/W UART ch0 00000100

000029H Status register USR0 R/W 00010000

00002AH Input data register/output data register UIDR0
/UODR0

R/W XXXXXXXX

00002BH Rate and data register URD0 R/W 0000000X

00002CH

to 2FH

Vacancy ————

000030H Interrupt/DTP enable register ENIR R/W DTP/external inter-
rupt

----0000

000031H Interrupt/DTP factor register EIRR R/W ----0000

000032H Request level setting register ELVR R/W 00000000

000033H
to 3FH

Vacancy ————

000040H Timer control status register #0 TMCSR0 R/W 16-bit timer #0 000000000

000041H ----0000

000042H 16-bit timer register #0 TMR0 R XXXXXXXX

000043H XXXXXXXX

000044H 16-bit timer reload register #0 TMRLR0 R/W XXXXXXXX

000045H XXXXXXXX

000046H
to 47H

Vacancy ————

000048H Timer control status register #1 TMCSR1 R/W 16-bit timer #1 000000000

000049H ----0000

00004AH 16-bit timer register #1 TMR1 R XXXXXXXX

00004BH XXXXXXXX

00004CH 16-bit timer reload register #1 TMRLR1 R/W XXXXXXXX

00004DH XXXXXXXX

00004EH

to 4FH

Vacancy ————

Table 2.2.1 MB90242A I/O Map (2)

Address Register Abbreviation Access Resource name Initial value

2.2 Maps

69

000050H
Vacancy

————

000051H ————

000052H Vacancy ————

000053H ————

000054H Vacancy ————

000055H ————

000056H
to 57H

Vacancy ————

000058H Vacancy ————

000059H Vacancy ————

00005AH Vacancy ————

00005BH ————

00005CH Vacancy ————

00005DH Vacancy ————

00005EH Vacancy ————

00005FH Vacancy ————

000060H Capture register 0 ICP0 R/W Input capture 0, 1 XXXXXXXX

000061H XXXXXXXX

000062H Capture register 1 ICP1 R/W XXXXXXXX

000063H XXXXXXXX

000064H Control status register 0, 1 ICS0 R/W 00000000

000065H Vacancy ————

000066H Capture register 2 ICP2 R/W Input capture 2, 3 XXXXXXXX

000067H XXXXXXXX

000068H Capture register 3 ICP3 R/W XXXXXXXX

000069H XXXXXXXX

00006AH Control status register 2, 3 ICS1 R/W 00000000

00006BH Vacancy ————

00006CH Data register TCDT R 16 bit
Free-run timer

00000000

00006DH 00000000

00006EH Control status register TCCS R/W 00000000

Table 2.2.1 MB90242A I/O Map (3)

Address Register Abbreviation Access Resource name Initial value

2.2 Maps

70 Chapter 2: Hardware Configuration

00006FH Vacancy ————

000070H A/D control register ADCS R/W A/D converter 000-0000

000071H -000--00

000072H Conversion time setting register ADCT R/W XXXXXXXX

000073H XXXXXXXX

000074H Conversion data register 0 ADTL0 R XXXXXXXX

000075H ADTH0 ------XX

000076H Conversion data register 1 ADTL1 R XXXXXXXX

000077H ADTH1 ------XX

000078H Conversion data register 2 ADTL2 R XXXXXXXX

000079H ADTH2 ------XX

00007AH Conversion data register 3 ADTL3 R XXXXXXXX

00007BH ADTH3 ------XX

00007CH

to 7FH

Vacancy ————

000080H Sum-of-products control status register MCSR R/W DSP unit -0XXXXXX

000081H XXX0XXX0

000082H Sum-of-products calculation continuous
control register

MCCR R/W 00000000

000083H System reserved area ———— Note 1 ————

000084H Sum-of-products output register MDORLL R XXXXXXXX

000085H MDORLH XXXXXXXX

000086H MDORHL XXXXXXXX

000087H MDORHH XXXXXXXX

000088H MDOROH XXXXXXXX

000089H
to 8FH

Vacancy ————

000090H
to 9EH

System reserved area ———— Note 1 ——————— ————

00009FH Delay interrupt source generate/clear
register

DIRR R/W Delay interrupt
source generator
module

-------0

0000A0H Standby control register STBYC R/W Power saving mode 0001XXXX

Table 2.2.1 MB90242A I/O Map (4)

Address Register Abbreviation Access Resource name Initial value

2.2 Maps

71

Note1: Access prohibited

Note2: Initial value varies depending on bus mode.

Note3: Of the areas at address 0000FFH and lower, this is the only external access area. All addresses not
described in this table are reserved addresses, and access to these addresses is handled as an inter-
nal area operation. No access signal for an external bus is generated.

Description of initial values

'0'This bit is initialized to value 0.
'1'This bit is initialized to value 1.
'X'Initial value of this bit is undefined.
'-'This bit is not used. Initial value undefined.

0000A4H Upper address control register HACR W External pins Note 2

0000A5H External pin control register EPCR W External pins Note 2

0000A8H Watchdog timer control register TWC R/W Watchdog timer XXXXXXXX

0000A9H Timebase timer control register TBTC R/W Timebase timer XXX00000

0000B0H
0000B1H
0000B2H
0000B3H
0000B4H
0000B5H
0000B6H
0000B7H
0000B8H
0000B9H
0000BAH

0000BBH

0000BCH

0000BDH

0000BEH

0000BFH

Interrupt control register 00
Interrupt control register 01
Interrupt control register 02
Interrupt control register 03
Interrupt control register 04
Interrupt control register 05
Interrupt control register 06
Interrupt control register 07
Interrupt control register 08
Interrupt control register 09
Interrupt control register 10
Interrupt control register 11
Interrupt control register 12
Interrupt control register 13
Interrupt control register 14
Interrupt control register15

ICR00
ICR01
ICR02
ICR03
ICR04
ICR05
ICR06
ICR07
ICR08
ICR09
ICR10
ICR11
ICR12
ICR13
ICR14
ICR15

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111
00000111

0000C0H
to FFH

External area Note 3 ———— —— ——————— ————

Table 2.2.1 MB90242A I/O Map (5)

Address Register Abbreviation Access Resource name Initial value

2.2 Maps

72 Chapter 2: Hardware Configuration

2.2.3 Interrupt Vector Allocation
The following table shows the allocation of MB90242A interrupt vectors.

Table 2.2.2 MB90242A Interrupt Vector Allocation

[CAUTION] For information about interrupt relation to EI2OS, see Table 2.2.3.

Interrupt Factor
Relation
to EI2OS

Interrupt vector nterrupt control register

Number Address ICR Address

Reset × #08 08H FFFFDCH – –

INT9 instruction × #09 09H FFFFD8H –

Exception × #10 0AH FFFFD4H –

External interrupt #0 #11 0BH FFFFD0H ICR00 0000B0H

External interrupt #1 #13 0DH FFFFC8H ICR01 0000B1H

ICU #0 #15 0FH FFFFC0H ICR02 0000B2H

ICU #1 ∆ #17 11H FFFFB8H ICR03 0000B3H

External interrupt #2 ∆ #19 13H FFFFB0H
ICR04 0000B4H

ICU #2 ∆ #20 14H FFFFACH

External interrupt #3 ∆ #21 15H FFFFA8H

ICR05 0000B5H
ICU #3 ∆ #22 16H FFFFA4H

16-bit timer overflow #23 17H FFFFA0H ICR06 0000B6H

Time base timer interval interrupt #25 19H FFFF98H ICR07 0000B7H

Reload timer #0 overflow #27 1BH FFFF90H ICR08 0000B8H

Reload timer #1 overflow #29 1DH FFFF88H ICR09 0000B9H

– × – – – ICR10 0000BAH

A/D #33 21H FFFF78H ICR11 0000BBH

Simple I/O serial #1 #35 23H FFFF70H ICR12 0000BCH

UART #0 send completed #37 25H FFFF68H ICR13 0000BDH

UART #0 receive completed #39 27H FFFF60H ICR14 0000BEH

Delay interrupt × #42 2AH FFFF54H ICR15 0000BFH

Stack fault × #255 FFH FFFC00H – –

2.2 Maps

73

Table 2.2.3 Description of Interrupt Relation to EI 2OS

Symbol Relation to EI2OS Relation to stop request

Related Yes

Related No

∆
Related, however 2 interrupts are allocated to one ICR, so that when
EI2OS is used with relation to one interrupt source it is not possible
to use both EI2OS and a normal interrupt with relation to the other
factor.

No

× No –

2.3 Parallel Ports

74 Chapter 2: Hardware Configuration

2.3 Parallel Ports

The MB90242A series microcontroller provides 38 I/O ports.

2.3.1 Register List

2.3.2 Block Diagrams
I/O Port

Fig. 2.3.1 I/O Port Block Diagram

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PDR

1 000001H

5, 4 000005H:04H

7, 6 000017H:16H

 8 000018H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DDR

1 000011H

5, 4 000015H:14H

7, 6 000017H:16H

 8 000018H

 (DDR6=ADER)
ADER

F2MC-16 bus

Data register read

Direction register write

Data register write

Direction register read

Data register

Direction register

Pin

2.3 Parallel Ports

75

Open Drain Port

Fig. 2.3.2 Open Drain Port Block Diagram

2.3.3 Detailed Register Descriptions
(1) PDR 1, 4, 5, 6, 7, 8 (Port data registers)

Register Allocation

[CAUTION] Bits 7 and 6 (PD77, PD76) for port 7 have no register bits.

[CAUTION] Bits 5 and 4 (PD65 to PD64) for port 6 have no register bit.
Bits 7 and 6 (PD77 to PD76) for port 7 have no register bit.
Bits 7 to 3 (PD87 to PD83) for port 8 have no register bit.

Register Description

All ports other than port 6 are provided with individual direction registers that can be used to set their
signal pins to input or output when the output pins for corresponding peripheral resource are not in use.
When in input mode, data registers are read from the pin signal levels, while in output mode data regis-
ters are read from the latched data register values. This is true when using read-modify-write instruc-
tions.

When data registers are read for use as control output, the values read will be the values used for control
output regardless of the setting of the direction registers.

Internal data bus

Data register read

ADER register write

Data register write

ADER register read

Data register

A D E R

Pin

RMW
(read-modify-write instruction)

PDx7 PDx6 PDx5 PDx4 PDx3 PDx2 PDx1 PDx0

Port data register

Address : PDR1 000001H
⇐Bit no.

Read/write⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (X) (X) (X) (X) (X) (X) (X) (X)

PDR5 000005H

PDR7 000007H

 15 14 13 12 11 10 9 8

PDx7 PDx6 PDx5 PDx4 PDx3 PDx2 PDx1 PDx0

⇐Bit no.

Read/write⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (X) (X) (X) (X) (X) (X) (X) (X)

Port data register

Address : PDR4 000004H

PDR6 000006H

PDR8 000008H

 7 6 5 4 3 2 1 0

(X) (1) (X) (X) (1) (1) (1) (1)

PDR

2.3 Parallel Ports

76 Chapter 2: Hardware Configuration

[CAUTION] When the above registers are accessed using read-modify-write instructions (such as bit
set instructions), the targeted bit in the command will be set to the designated value, how-
ever for any other bits set for input the designated input value of the signal pin will be
overwritten with the contents of the corresponding output register. For this reason, when-
ever pins used for input are switched to output, it is first necessary to write the desired val-
ues in the PDR register before setting the DDR register to switch to output.

[CAUTION] The process of reading and writing to I/O ports differs from reading and writing to mem-
ory in the following ways.

 Input Mode

Reading: The read value is the signal level of the corresponding pin.

Writing: The write data is stored in the output latch, and cannot be output to the pin.

 Output Mode

Reading: The read value is the value stored in the PDR register.

Writing: The write data is stored in the output latch, and can also be output to the pin.

[CAUTION] Note that read/write operations for port 6 differ from those for other ports.

Port 6 (P67, P66, P63 to P60) is an open-drain type general-purpose I/O port which is designed to also
function as an analog input signal port. When used as a general-purpose port, the bit(s) corresponding
to the ADER register must be set to '0.'

When used as an input port, the contents of the output data register should be set to 'ALL 1' in order to
turn off all open-drain output transistors, and external pull-up resistor should be connected. Also, for
read access, one of the following two operations should be followed depending on the instruction used.

 When reading using read-modify-write instructions

⇒ Read the contents of the output data register. Even when each pin is externally and forcibly
driven to ',0' there should be no change, even to contents of pins not designated by the
instruction.

 For reading using all other instructions

⇒ The level of each signal pin can be read.

When used as an output port, pin values can be changed by writing the desired value to the correspond-
ing output data register.

Also, bits set to '1' in the analog input enable register will always produce the value '0' when read from
the corresponding signal pin.

2.3 Parallel Ports

77

(2) DDR 1, 4, 5, 7, 8 (Direction registers)

Register Allocation

[CAUTION] The value '0' must be written to port 5, bit 6 (DD56).
Port 7, bits 7 and 6 (DD77 to DD76) have no register bit.
Port 8, bits 7 to 3 (DD87 to DD83) have no register bit.

Register Description

When the corresponding signal pins are functioning as ports, the function of each pin is controlled as
follows.

 0: Input mode

 1: Output mode

DDR registers are initialized to '0' after a reset.

(3) ADER (Analog input enable register)

[CAUTION] ADER bits 5 and 4 (AE05, AE04) have no register bit.

Register Description

Port 6 signal pins are controlled as follows.

 0: Port input mode

 1: Analog input mode

The reset value is '1.'

DDx7 DDx6 DDx5 DDx4 DDx3 DDx2 DDx1 DDx0

Port direction register

Address : DDR1 000011H

⇐Bit no.

Read/write ⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value ⇒ (0) (0) (0) (0) (0) (0) (0) (0)

DDR5 000015H

DDR7 000017H

 15 14 13 12 11 10 9 8

DDx7 DDx6 DDx5 DDx4 DDx3 DDx2 DDx1 DDx0

⇐Bit no.

Read/write ⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value ⇒ (0) (0) (0) (0) (0) (0) (0) (0)

Port direction register

Address : DDR4 000014H

DDR6 000018H

7 6 5 4 3 2 1 0

DDR

AE07 AE06 – – AE03 AE02 AE01 AE00

⇐Bit no.

Read/write ⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value ⇒ (1) (1) (1) (1) (1) (1) (1) (1)

Analog input enable register

Address : ADER 000016H

7 6 5 4 3 2 1 0

ADER

2.3 Parallel Ports

78 Chapter 2: Hardware Configuration

2.3.4 Allocation of Port Pins
In the MB90242A series, the signal pins of ports 0-5 are shared with the external bus. Pin functions can be
selected by the bus mode and register settings. Table 2.3.1 shows the allocation of port pins in each mode.

Table 2.3.1 Port Pin Allocation by Mode

• Pins indicated by Note 1 can be used as I/O ports by a setting in the upper address control register.

• Pins indicated by Note 1 (P41 to P47) are shared with peripheral resources (UART, ICU, DTP,
TIMER). Users should note that use of each port as resource I/O operations reduces the amount of
available address space.

• Pins indicated by Note 2 can be used as I/O ports by setting the external pin control registers.

Pin
Function

External data bus
8-bit mode

External data bus
16-bit mode

P07 to P00 D07 to D00

P17 to P10 Port D08 to D15

P27 to P20 A07 to 00

P37 to P30 A15 to 08

P47 to P40 A23 to A16 Note 1

P57 Port 57

P56 RDX

P55 WRX Note 2 WRLX Note 2

P54 Port WRHX Note 2

P53 HRQ Note 2

P52 HAKX Note 2

P51 RDY Note 2

P50 CLK Note 2

2.4 IIR Filter DSP Unit

79

2.4 IIR Filter DSP Unit

This DSP unit provides hardware calculation of sum-of-products calculations (ΣBi*Yj + ΣAm*Xn). It can
be used for fast, easy IIR filter calculations.

• Features

Coefficients A and B, and variables X and Y are 16-bits x 4 banks.

The number of products can be selected in the range (1 to 4) + (1 to 4).

Rounding and clipping functions can be selected at 10-bit or 12-bit length.

Multiple banks can be linked, allowing results of calculations to be transferred into registers in the next
bank.

Calculation time is (M+N+1) x B + 1 machine cycles (where M, N=number of products, B=number of
banks).

2.4.1 Register List

Fig. 2.4.1 DSP Unit Registers

Note: Addresses in registers X and Y are valid only for reading. Write operations are directed to the 0 reg-
isters regardless of address within banks.

00 0080H

00 0082H

00 0084H

00 0086H

00 0088H

Address 15 0
Product control/status

Reserved Sum-of-products calculation

Sum-of-products output

register MCSR

continuous control register MCCR

register MDOR

MDORL

MDORM

MDORH

00 1940H AX0
00 1942H AX1
00 1944H AX2
00 1946H AX3
Status register X

00 1960H AY0
00 1962H AY1
00 1964H AY2
00 1966H AY3
Status register Y

00 1920H AB0
00 1922H AB1
00 1924H AB2
00 1926H AB3
Coefficient RAM B

00 1900H AA0
00 1902H AA1
00 1904H AA2
00 1906H AA3
Coefficient RAM A

Bank A

00 1948H BX0
00 194AH BX1
00 194CH BX2
00 194EH BX3
Status register X

00 1968H BY0
00 196AH BY1
00 196CH BY2
00 196EH BY3
Status register Y

00 1928H BB0
00 192AH BB1
00 192CH BB2
00 192EH BB3
Coefficient RAM B

00 1908H BA0
00 190AH BA1
00 190CH BA2
00 190EH BA3
Coefficient RAM A

Bank B

00 1950H CX0
00 1952H CX1
00 1954H CX2
00 1956H CX3
Status register X

00 1970H CY0
00 1972H CY1
00 1974H CY2
00 1976H CY3
Results register Y

00 1930H CB0
00 1932H CB1
00 1934H CB2
00 1936H CB3
Coefficient RAM B

00 1910H CA0
00 1912H CA1
00 1914H CA2
00 1916H CA3
Coefficient RAM A

Bank C

00 1958H DX0
00 195AH DX1
00 195CH DX2
00 195EH DX3
Status register X

00 1978H DY0
00 197AH DY1
00 197CH DY2
00 197EH DY3
Results register Y

00 1938H DB0
00 193AH DB1
00 193CH DB2
00 193EH DB3
Coefficient RAM B

00 1918H DA0
00 191AH DA1
00 191CH DA2
00 191EH DA3
Coefficient RAM A

Bank D

2.4 IIR Filter DSP Unit

80 Chapter 2: Hardware Configuration

2.4.2 Block Diagram

Fig. 2.4.2 DSP Unit Block Diagram

F2MC-16F internal bus

Select

Coefficient register Status register

Sum of products

Right shift and clip

Output register

A0

A1

A2

A3

B0

B1

B2

B3

X0

X1

X2

X3

Y0

Y1

Y2

Y3

Select

Select
Bank D

Bank C
Bank B

Bank A

Coefficient register Results register

Select Select

35

35 OR 16

2.4 IIR Filter DSP Unit

81

2.4.3 Detailed Register Description
(1) MCSR (Sum-of-products control status register)

[Bit 15] This bit is not used. Read values are undefined. Any values written are invalid.

[Bit 14] WEY (Write enable bit for Y0 register)

• This bit specifies that after calculation, data is transferred to the Y0 register in the bank in which cal-
culation is executed.

• When this bit is '1' the 16-bit calculation results in the MDORL register are transferred to the Y0
register. When the value is '0,' no data is transferred.

• The initial value of this bit is undefined. It must always be set prior to calculation.

• This bit cannot be written to while the DSP unit is executing calculations (when the BF bit=1).

[Bit 13]] WENY (Write enable bit for next Y0 register)

• This bit specifies that after calculation, data is transferred to the next Y0 register following the bank
in which calculation is executed.

• When this bit is '1,' the 16-bit calculation results in the MDORL register are transferred to the Y0
register. When the value is '0,' no data is transferred. (For example, when BNK1,0=01, data is writ-
ten to the Y0 register in the C bank.)

• The initial value of this bit is undefined. It must always be set prior to calculation.

• This bit cannot be written to while the DSP unit is executing calculations (when the BF bit=1).

• When BNK1,0=11, calculation results are not transferred to the Y0 register in the A bank.

[Bit 12] WENX (Write enable bit for next X0 register)

• This bit specifies that after calculation, data is transferred to the next X0 register following the bank
in which calculation is executed.

• When this bit is '1' the 16-bit calculation results in the register are transferred to the X0 register.
When the value is '0,' no data is transferred. (For example, when BNK1,0=01, data is written to the
X0 register in the D bank.)

• The initial value of this bit is undefined. It must always be set prior to calculation.

• This bit cannot be written to while the DSP unit is executing calculations (when the BF bit=1).

• When BNK1,0=11, the result of calculations is not transferred to the X0 in the bank A.

[Bits 11 to 10] Register for setting the number of N1, N0 terms (number of terms for B*Y).

[Bits 9 to 8] Register for setting the number of M1, M0 terms (number of terms for A*X).

• These bit determine the number of product terms for sum-of-products. See Table 2.4.3b, where (the
value for N1,0/M1,0) + 1 represents the number of product terms.

Address 00 0081 H

Initial value

– WEY WENY WENX N 1 N 0 M 1 M 0 -XXX XXXX B

15 14 13 12 10 911 8

R/W R/W R/W R/W R/WR/W R/W

Address 00 0080 H

Initial value

RND CLP DIV BF BNK1 BNK0 TRG MAE XXX0 XXX0 B

7 6 5 4 2 13 0

R/W R/W R R/W WR/W R/WR/W

The MCRS register bits 15 to 05, 03 and 02 can not be changed while the DSP unit is executing calculations
(when the BF bit=1).

2.4 IIR Filter DSP Unit

82 Chapter 2: Hardware Configuration

• The initial values for this bit are indeterminate. Define it before operation.

• Nothing can be written to this bit while the DSP unit is executing operation (BF=1).

Table 2.4.1 Number-of-Products Settings (Bit N1,0/M1,0)

[Bit 7] RND (Rounding-off bit)

• When this bit is set to 1, the calculation results are stored in 16-bit length integer format in the lower
16 bits (MDORL) of the sum-of-products output register (MDOR). In this case the data stored in the
upper bits of the MDOR register (bit 39 to bit 16) has no significance.

• Also in this case, calculation data in integer format stored in the MDORL register is rounded up
(when 1; 0 is dropped), with the DIV bit set for rounding in the direction of positive infinity, in order
to prevent loss of computational accuracy. This represents binary processing similar to the normal
rounding of values in decimal format.

• When this bit is set to 0, rounding-up will not be applied. Also, calculation results will be stored in
the MDOR register, in 16-bit length integer format if CLP=1, and in 35-bit length integer format if
CLP=0.

• The initial value of this bit is undefined. It must always be set prior to calculation.

• This bit cannot be written to while the DSP unit is executing calculations (when the BF bit=1).

[Bit 6] CLP (Clipping bit)

• When this bit is set to 1, the results of calculation are stored in 16-bit integer format in the lower 16-
bits (MDORL) of the sum-of-products output register (MDOR). In this case the data stored in the
upper bits of the MDOR register (bit 39 to bit 16) has no significance.

• Also in this case, any overflow condition created in the calculation data in integer format contained
in the MDORL register will cause that data to be forcibly replaced by the maximum positive or neg-
ative value. Thus either saturation processing or clip processing will be performed on the results of
the calculation. The maximum positive value is 7FFFH, and the maximum negative value is 8000H.

• When this bit is set to 0, clipping processing will not be applied. Also, calculation results will be
stored in the MDOR register, in 16-bit length integer format if RND=1, and in 35-bit length integer
format if RND=0.

• The initial value of this bit is undefined. It must always be set prior to calculation.

• This bit cannot be written to while the DSP unit is executing calculations (when the BF bit=1).

[Bit 5] DIV (Divide bit)

• This bit indicates the position at which rounding or clipping are applied to calculation results.

• When CLP=1 or RND=1, this bit can be set to 1 to round or clip the LSB value to 12 bits. When this
bit is set to 0, the LSB will be rounded or clipped to 10 bits. (When rounded to 10 bits, data having a
'1' in the 10th bit only (hex value 0200H) will be added to the calculation results.)

• The initial value of this bit is undefined. It must always be set prior to calculation.

N1 Number of
products

0

0

1

1

N0

0

1

0

1

1

2

3

4

M1 Number of
products

0

0

1

1

M0

0

1

0

1

1

2

3

4

2.4 IIR Filter DSP Unit

83

• This bit cannot be written to while the DSP unit is executing calculations (when the BF bit=1).

[Bit 4] BF (Busy flag)

• This bit is read-only. No value may be written.

• When the BF=1, the sum-of-products calculator is executing calculations, and no write operations
are allowed to MCSR register bits 15 to 5, or to the MCCR register.

• When the BF=0, the sum-of-products register is not operating. Read access to the sum-of-products
output register (MDOR) should be made when this status is indicated.

• The BF bit is automatically set to 1 when the MAE and TRG bit are set to 1 to start execution of
sum-of-products calculation. It returns to 0 when sum-of-products calculation is ended.

• The BF bit is forcibly cleared to 0 when the MAE bit is set to 0.

[Bit 3, 2] BNK1, BNK0 (Bank bits)

• These bits determine the executing bank. For continuous sum-of-products execution over more than
one bank, the value should be that of the first bank.

• The initial value of this bit is undefined. It must always be set prior to calculation.

• This bit cannot be written to while the DSP unit is executing calculations (when the BF bit=1).

[Bit 1] TRG (Trigger bit)

• The TRG bit indicates the start of sum-of-product calculator operation.

• When '1' is written to this bit while in sum-of-products enable status (MAE=1), the DSP unit starts
sum-of-products calculation, and the busy flag (BF bit) is set to 1 to indicate that execution is in
progress.

• Writing '0' to the TRG bit has no effect.

• When MAE=0, or while sum-of-products calculation is in progress (BF=1), writing '1' to the TRG
bit has no effect.

• The TRG bit always has the read value '0.'

[Bit 0] MAE (MAC enable bit)

• When this bit is set to 1 and the sum-of-products calculator is not operating (BF=0), the DSP unit is
in sum-of-products standby status. In this status, the DSP unit will start sum-of-products calculation
when '1' is written to the TRG bit.

• When this bit is set to 0, the DSP unit is in sum-of-products stop status. It is also possible to forcibly
stop sum-of-products calculations even during execution by writing 0 to the MAE bit. This will
cause the DSP unit to cut off sum-of-products calculation and clear the BF bit.

• This bit is initialized to 0 after reset.

0

0

1

1

0

1

0

1

A

B

C

D

Bank usedBNK1,0

2.4 IIR Filter DSP Unit

84 Chapter 2: Hardware Configuration

(2) MCCR (Sum-of-products control/continue register)

[Bit15-10] These bits are not used. Read values are undefined. Any values written are invalid.

[Bit 9, 8] These bits are reserved. The reset value is '0.' Write values must always be '0.'

[Bit 7] OVF (OVer Flow bit)

• This is the overflow bit. The OVF bit is set to '1' to indicate overflow in the results of 16-bit (DIV
bit) sum-of-products calculation. Note that this bit will not be set to '1' when RND=DLP=0. The
value is reset to 0 by executing a reset, or by writing '0' to this bit.

• This bit has a read value of '1' for read-modify-write instructions.

[Bit 6, 5, 4] CNTD, CNTC, CNTB (CoNTinue bits)

• The value '1' is written to these bits to specify that completion of a calculation is followed by contin-
uous calculations.

• Each bit can be used to execute calculations on successive banks.

• The CNTB bit signifies that calculations on A bank will be followed by calculations on B bank.

• The CNTC bit signifies that calculations on B bank will be followed by calculations on C bank.

• The CNTD bit signifies that calculations on C bank will be followed by calculations on D bank.

• Thus, the CTNB, CTNC and CTND bits may be used in combination to designate various types of
processing as follows.

A→B→C→D (CNTB=CNTC=CNTD=1)

A→B→C, D (CNTB=CNTC=1,CNTD=0)

A→B, C→D (CNTB=CNTD=1,CNTC=0)

A, B→C→D (CNTB=0,CNTC=CNTD=1)

• The CNTB-CNTD bits are set to 0 by a reset or by writing '0.'

• The CNTB-CNTD bits should not be changed during execution.

• Each of these bits has a read value of '1' for read-modify-write instructions.

[Bit 3, 2, 1, 0] CDRA-CDRD (Calculated data ready)

• The CDRA-CDRD bits are set to 0 by a reset or by writing '0.'

• The value '1' is not valid when written to the CDRA-CDRD bits. When sum-of-products calcula-
tions in a bank are ended, the DSP unit automatically writes '1' to the corresponding bit in the corre-
sponding bank. In continuous operation, each of the CDR bits is set when the corresponding
calculation is completed.

Address 00 0083 H

Initial value

– – – – – – Reserved Reserved ---- --00 B

15 14 13 12 10 911 8

R/W R/W

Address 00 0082 H

Initial value

OVF CNTD CNTC CNTB CDRD CDRC CDRB CDRA 0000 0000 B

7 6 5 4 2 13 0

R/W R/W R/W R/W R/WR/W R/WR/W

2.4 IIR Filter DSP Unit

85

(3) MDOR (Sum-of-products output register)

• This register contains the results of sum-of-products calculations, and is read-only. All initial values
are undefined.

• This register is overwritten by the DSP unit upon completion of sum-of-products calculations, and is
used to read the results of calculations after verification of the completed calculation. Read access
should be attempted after the corresponding CDR bit (for example, the CDRA bit when BNK1,0
bits=00) is set to 1.

• Sum-of-products calculation results may be either 16-bit or 35-bit length.

• When either the RND bit or CLP bit is set to 1, the results will be in 16-bit integer format. In this
case, the calculation results are stored in the MDORL bit (the lower 16-bits of the MDOR register),
and the MODRM and MDORH bits will contain invalid data.

• When both the RDN bit and CLP bit are '0,' the results will be in 35-bit length, and will be stored in
the MDORL (the lower 16-bits of the MODR register), the MODRM (the middle 16-bits of the
MDOR register) and the MODRH (the upper 3-bits of the MODR register). The configuration con-
sists of a 34-bit integer portion and a 6-bit coded portion, as shown below. (D34 has the same value
as S flag).

• When the RND or CLP bit is '1', the calculation results can be divided by 1024 or 4096 using the
DIV bit, and stored in the MODRL.

Address 00 0084 H
15 8 7 0

MDORL

MDORM

MDORH

Initial value

(undefined)

(undefined)

(undefined)

Address 00 0086 H

Address 00 0088 H

MDORL D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

15 14 13 12 11 10 19 8 7 6 5 4 3 2 0

D15

MDORM D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

15 14 13 12 11 10 19 8 7 6 5 4 3 2 0

D31

MDORH S S S S S D34 D33 D32

17 6 5 4 3 2 0

2.4 IIR Filter DSP Unit

86 Chapter 2: Hardware Configuration

(4) A0-A3 (Coefficient RAM)

• This register consists of a group of RAM with 4-word configuration from A0 to A3, and contains
coefficients for sum-of-products calculation.

• The ARAM register contains coefficient data in 16-bit length integer format.

• The ARAM register has 4 banks of 4 words each, with a bank bit to determine which bank is used in
sum-of-products calculation.

• ARAM initial values are undefined.

• This RAM cannot be simultaneously accessed from both the DSP and the CPU, so that reading and
writing should not be attempted during execution. If read or write access is attempted during execu-
tion, neither the contents of RAM nor the calculation results are assured.

• This RAM is not enabled for byte access. Always access in word units at even-numbered addresses.

(5) B0 to B3 (Coefficient RAM)

• This register consists of a group of RAM with 4-word configuration from B0 to B3, and contains
coefficients for sum-of-products calculation.

• The BRAM register contains coefficient data in 16-bit length integer format.

• The BRAM register has 4 banks of 4 words each, with a bank bit to determine which bank is used in
sum-of-products calculation.

• BRAM initial values are undefined.

• This RAM cannot be simultaneously accessed from both the DSP and the CPU, so that reading and
writing should not be attempted during execution. If read or write access is attempted during execu-
tion, neither the contents of RAM nor the calculation results are assured.

• This RAM is not enabled for byte access. Always access in word units at even-numbered addresses.

A0

A1

A2

A0

A1

A2

A0

A1

A2

Address 00 1900H A0

A1

A2

A3

Address 00 1902H

Address 00 1904H

Address 00 1906H

 1908H

 190AH

 190CH

 190EH

1918H

191AH

191CH

191EH

1910H

1912H

1914H

1916H

Initial Value

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

15 0

A0

A1

A2

A0

A1

A2

A0

A1

A2

Address 00 1920H B0

B1

B2

B3

Address 00 1922H

Address 00 1924H

Address 00 1926H

 1928H

 192AH

 192CH

 192EH

1938H

193AH

193CH

193EH

1930H

1932H

1934H

1936H

Initial Value

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

15 0

2.4 IIR Filter DSP Unit

87

(6) X0-X3 (Input data register)

• This register consists of a group of registers with 4-word configuration from X0 to X3, and contains
input data to be used for sum-of-products calculation.

• The X register contains input data in 16-bit length integer format.

• The X register has 4 banks of 4 words each, with a bank bit to determine which bank is used in sum-
of-products calculation.

• X initial value register is undefined.

• Write access to the X register is by means of a shift register, so that only the X0 area is write-
enabled. Each time data is written to X0, the previous data is shifted to X1 through X3 in order.

• This register cannot be simultaneously accessed from both the DSP and the CPU, so that reading
and writing should not be attempted during execution. If read or write access is attempted during
execution, neither the contents of the register nor the calculation results are assured.

• This register is not enabled for byte access. Always access in word units at even-numbered
addresses.

• All areas of this register are enabled for read access to each address, however the lower 3 bits of any
write values will be ignored (see example).

(7) Y0 to Y3 (Input data register)

• This register consists of a group of registers with 4-word configuration from Y0 to Y3, and contains
output data to be used for sum-of-products calculation.

• The Y register contains input data in 16-bit length integer format.

• The Y register has 4 banks of 4 words each, with a bank bit to determine which bank is used in sum-
of-products calculation.

• Y register initial values are undefined.

• Write access to the Y register is made by means of a shift register, so that only the Y0 area is write-
enabled. Each time data is written to Y0, the previous data is shifted to Y1 through Y3 in order.

• This register cannot be simultaneously accessed from both the DSP and the CPU, so that reading

A0

A1

A2

A0

A1

A2

A0

A1

A2

Address 00 1940H X0

X1

X2

X3

Address 00 1942H

Address 00 1944H

Address 00 1946H

 1948H

 194AH

 194CH

 194EH

1958H

195AH

195CH

195EH

1950H

1952H

1954H

1956H

Initial Value

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

15 0

A0

A1

A2

A0

A1

A2

A0

A1

A2

Address 00 1960H Y0

Y1

Y2

Y3

Address 00 1962H

Address 00 1964H

Address 00 1966H

 1968H

 196AH

 196CH

 196EH

1978H

197AH

197CH

197EH

1970H

1972H

1974H

1976H

Initial Value

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

(undefined)

15 0

2.4 IIR Filter DSP Unit

88 Chapter 2: Hardware Configuration

and writing should not be attempted during execution. If read or write access is attempted during
execution, neither the contents of the register nor the calculation results are assured.

• This register is not enabled for byte access. Always access in word units at even-numbered
addresses.

• All areas of this register are enabled for read access, however the lower 3 bits of any write values
will be ignored (see example).

Example

Before transfer After transfer

1940H - - AAAAH
1942H - - BBBBH
1944H - - CCCCH
1946H - - DDDDH

1940H - - 0000H
1942H - - AAAAH
1944H - - BBBBH
1946H - - CCCCH

MOVW 1942H, 0000H

2.4 IIR Filter DSP Unit

89

2.4.4 Sample Applications

2.4.4.1 Eighth Order FIR Filter

The 8-stage FIR filter can be represented by the following formula, in which the input time series is repre-
sented by [Un-2, Un-1, Un, ...] and the output time series by [Vn-2, Vn-1, Vn, ...].

Vn = Σ (ai*Un-i)
(i = 0 to 7)

Thus sum-of-products calculation can be performed using coefficient data [a0, a1, a2, ...] stored in the
coefficient registers [A0, A1, A2, A3, B0, B1, B2, B3] and input data [Un-2, Un-1, Un, ...] stored in the
data registers [X0, X1, X2, X3, Y0, Y1, Y2, Y3]. (In this case, a maximum of 4 terms is ideal because no
shift is made from X3→Y0.)

The following diagram shows a sample programming flow using the DSP unit.

Fig. 2.4.4a Sample Flow of Calculations in an 8th order FIR Filter

Further, if we view the contents of the data registers over time during the execution of the above flow of
calculations, the result will appear as shown below. This illustration represents a snapshot view of register
contents immediately following the end of calculations.

The shaded area of the register shows where the latest contents have been retransferred. Also, the coeffi-
cients and variables indicated by the thin two-headed arrows have been multiplied together. Each time the
calculation results in the MDOR register are used as output and one transfer is executed, the value in the
status register will be shifted by one place.

Number of

Trigger start of calculation

Wait for end of calculation

Update input values

Wait for next input (X0)

begin

N=4,
M=4 products=4+4

MCSR=0003H

CDRA==1

Y0←X3

Sampling?

No

No

Yes

Yes

Set initial values:
A0=a0 , X0=Un
A1=a1 , X1=Un-1
 · · · · · · · ·
B=a7 , Y3=Un-7

2.4 IIR Filter DSP Unit

90 Chapter 2: Hardware Configuration

.

Fig. 2.4.4b Snapshot of Data Registers for 8th order FIR Filter Calculations

Lastly, the following is an example of a program using the above flow.

Fig. 2.4.4c Sample Program for 8th order FIR Filter

2.4.4.2 Biquad Filter (second-order IIR Filter)

Biquad filters are widely used for digital controls. The following sample program illustrates a case of five
products (N=2, M=3).

If the input time series is represented by [Un-2, Un-1, Un, ...] and the output time series by [Vn-2, Vn-1,
Vn, ...], the biquad filter can be represented by the following formula.

Vn = a0*Un + a1*Un-1 + a2*Un-2 - b1*Vn-1 - b2*Vn-2

Figure 2.4.4d shows the above formula represented in second order.

Time: n
Coefficient Variable

A0

A1

A2

A3

B0

B1

B2

B3

a0

a1

a2

a3

a4

a5

a6

a7

X0

X1

X2

X3

Y0

Y1

Y2

Y3

Un

Un-1

Un-2

Un-3

Un-4

Un-5

Un-6

Un-7

Time: n+1
Coefficient Variable

A0

A1

A2

A3

B0

B1

B2

B3

a0

a1

a2

a3

a4

a5

a6

a7

X0

X1

X2

X3

Y0

Y1

Y2

Y3

Un+1

Un

Un-1

Un-2

Un-3

Un-4

Un-5

Un-6

Time: n+2
Coefficient Variable

A0

A1

A2

A3

B0

B1

B2

B3

a0

a1

a2

a3

a4

a5

a6

a7

X0

X1

X2

X3

Y0

Y1

Y2

Y3

Un+2

Un+1

Un

Un-1

Un-2

Un-3

Un-4

Un-5

Initial settings Calculation

movw A0,#_a0 ;Set initial value: A bank
movw A1,#_a0
movw A2,#_a0
movw A3,#_a0
movw B0,#_a0
movw B1,#_a0
movw B2,#_a0
movw B3,#_a0

movw Y0,#Un-7 ;Shifted input
movw Y0,#Un-6 ;Set initial value: X, Y registers
movw Y0,#Un-5
movw X0,#Un-3 ;Shifted input
movw X0,#Un-2
movw X0,#Un-1

dsp movw Y0, #Un-4

movw X0, #Un
movw i :mcsr, #0F01H

mov i :mccr, #00H

set b i :mcsr : 1
wbtc i :mccr : 1

movw a, i : mdorl
jmp dsp

; Shift X3→Y0 not possible

; execute through CPU
; Input X0
; Set mcsr
; BANK A N=4, M=4, RND=CLP=0
; CONT=0

; Write start bit
; Wait for end of calculation

; Read filter output results
; End of one iteration

2.4 IIR Filter DSP Unit

91

Fig. 2.4.4d Biquad Filter

Figure 2.4.4e represents the preceding diagram in terms of program flow.

Fig. 2.4.4e Program Flow for Biquad Filter

In this case, if we view the contents of the data registers over time during the execution of the above flow
of calculations, the result will appear as shown below. This illustration represents a snapshot view of the
DSP unit immediately following the end of calculations. The shaded area of the register shows where the
latest contents have been retransferred. Also, the coefficients and variables indicated by the thin two-
headed arrows have been multiplied together. Each time the calculation results in the MDOR register are
used as output and one transfer is executed, the value in the status register will be shifted by one place.

ΣΣ

Z -1

Z -1

Un-1

Un-2

aa0

aa1

aa2

Z -1

Z -1

Vn-1

Vn-2

ab1

ab2

Z -1

Z -1

Vn-1

Vn-2

ba0

ba1

ba2

Z -1

Z -1

V-1

V-2

bb1

bb2

VnUn V

Trigger start of calculation

Wait for end of calculation

Enter Un and wait for input of

begin

N=3, M=2
MCCR=00

MCSR=4EC3H

CDRA==1

Results automatically

Sampling?

No

No

Yes

Yes

Set initial values: A, B register
A0=a0 B0=-b1
A1=a1 B1=-b2
A2=a2

Set initial values: X, Y register
X0=Un-1 Y0=Vn-1
X1=Un-2 Y1=Vn-2

transferred to Y0

start of calculation, X0=Un

2.4 IIR Filter DSP Unit

92 Chapter 2: Hardware Configuration

Fig. 2.4.4f Snapshot of Biquad Filter Calculations

Lastly, the following is an example of a program using the above flow.

Fig. 2.4.4g Sample Program for Biquad Filter

Y0

Y1

Vn

Vn-1

Time: n+1
Coefficient Variable

A0

A1

A2

B0

B1

a0

a1

a2

-b1

-b2

X0

X1

X2

Un+1

Un

Un-1

Y0

Y1

Vn-1

Vn-2

Time: n
Coefficient Variable

A0

A1

A2

B0

B1

a0

a1

a2

-b1

-b2

X0

X1

X2

Un

Un-1

Un-2

Y0

Y1

Vn+1

Vn

Time: n+2
Coefficient Variable

A0

A1

A2

B0

B1

a0

a1

a2

-b1

-b2

X0

X1

X2

Un+2

Un+1

Un

(1 or 1024 or 4096)*Vn

=a0*Un+a1*Un-1+a2*Un-2

-b1-Vn-1-b2*Vn-2

(1 or 1024 or 4096)*Vn+1

=a0*Un+1+a1*Un+a2*Un-1

-b1-Vn-b2*Vn-1

(1 or 1024 or 4096)*Vn+2

=a0*Un+2+a1*Un+1+a2*Un

-b1-Vn+1-b2*Vn

Initial settings Calculation

movw AA0,#_aa0 Set initial value: A bank
movw AA1,#_aa1
movw AA2,#_aa2
movw AB0,#_ab0
movw AB1,#_ab1

movw AX0,#_Un-2 Shifted input
movw AX0,#_Un-1

movw AY0,#_Vn-1

movw BA0,#ba-0 Input initial value
movw BA1,#ba-1
movw BA2,#ba-2
movw BB0,#bb-0

dsp movw AX0, #Un

mov i :mccr, #10H

set b
wbtc

movw
jmp dsp

; Input X0

;Set mcsr, when WEY=WENX=1
; BANK A→B, when N=2, M=3, RND=CLP=1
; CONT=1

; Write start bit
; Wait for end of calculation

; Read results of filter calculation
; End of one iteration

movw AY0,#_Vn-2

movw BB1,#bb-1

movw BX0,#_Vn-2 Shifted input
movw BX0,#_Vn-1

movw BY0,#_V-1
movw BY0,#_V-2

movw

In this sample calculation, the biquad filter is configured by transferring
the results of ABANK calculations to AY0 and BX0.

i :mcsr, #56C1H

i :mcsr : 1
i :mccr : 0

a, i : mdorl

2.5UART

93

2.5 UART

The UART is a serial I/O port for synchronous or asynchronous communication with external circuits, and
provides the following features.

• Full-duplex double buffer

• CLK synchronous and CLK asynchronous data transfer capability

• Multiprocessor mode support (mode 2)

• On-chip baud rate generator (12 types)

• Arbitrary baud rate settings from external clock input or internal timer

• Variable data length (7- to 9-bit (no parity), 6- to 8-bit (with parity))

• Error detection (framing, overrun, parity)

• Interrupt functions (2 sources: transmission and receiving)

• NRZ transfer format

2.5.1 Register Configuration

15 14 13 12 11 10 9 8 7 6 45 3 2 1 0

USR UMC

URD UIDR/UODR

USR:UMC
000029H:28H

URD:UIDR/UODR
00002BH:2AH

2.5UART

94

2.5.2 Block Diagram

Fig. 2.5.2 Overall Block Diagram

Receiving shifter

End receiving

UIDR

Dedicated baud rate clock

Internal timer 1

External clock
Receiving clock

Receiving control circuit

Start bit detection circuit

Receiving bit counter

Receiving parity counter

Receiving status discriminator

EI2OS receiving error

Receiving interrupt

Transmission clock
Transmission

Start

Clock
selector

Transmission control circuit

Transmission start circuit

Transmission bit counter

Transmission parity counter

Transmission shifter

UODR

transmission

F2MC-16 bus

SIN

generator (to CPU)

SOD0

SCK

(to CPU)

interrupt
(to CPU)

CONTROL BUS

UMC
register

PEN
SBL
MC1
MC0
SMDE
RFC
SCKE
SOE

USR
register

RDRF
ORFT
PE
TDRE
RIE
TIE
RBF
TBF

URD
register

BCH
RC3
RC2
RC1
RC0
BCH
P
D8

CONTROL BUS

2.5UART

95

2.5.3 Register Group Descriptions
(8) UMC (Serial mode control register)

■ Register Allocation

■ Register Description

The UMC register sets the operating mode of the UART. Operating mode settings should be entered
when the unit is not in operation. The RFC bit, however, may be accessed during operation.

■ Bit Descriptions

[Bit 7] PEN (Parity Enable)

This bit enables the addition (when transmission) or detection (when receiving) of parity bits in serial
data input and output. In mode 2 the value should be set to "0."

0: No parity

1: Parity

[Bit 6] SBL (Stop Bit Length)

This bit determines the stop bit length for transmission data. The receiving device always looks only at
the first bit of the stop bit, and ignores the second.

0: 1 bit length

1: 2-bit length

[Bits 5, 4] MC1, MC0 (Mode Control)

These bits control the length of transfer data. The two bits in combination are used to select one from
four transfer modes (data length) as shown in Table 2.5.1.

Table 2.5.2 UART Operating Modes

Note: Mode 2 is used when one host CPU is connected to multiple slave CPUs. In this configuration the
receiving parity check function cannot be used, and therefore the PEN bit in the UMC register
should be set to "0" (see section 2.5.4 "Operating Description"). Transmission data length is 9 bits,
and no parity bit can be attached.

Mode MC1 MC0 Data length

0 0 0 7(6) Figures in () indicate data length
with parity bit.1 0 1 8(7)

2 Note 1 0 8+1

3 1 1 9(8)

PEN SBL MC1 MC0 SMDE RFC SCKE SOE

⇐ Bit no.

Read/write ⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (W) (R/W) (R/W)
Initial value⇒ (0) (0) (0) (0) (0) (1) (0) (0)

Serial mode control register

Address : 000028H

7 6 5 4 3 2 1 0

UMC

2.5UART

96

[Bit 3] SMDE (Sync MoDe Enable)

This bit selects the transfer method.

0: CLK synchronous transmission

1: CLK asynchronous transmission

[Bit 2] RFC (Receiver Flag Clear)

When 0 is written to this bit, the RDRF, ORFE and PE flags in the USR register are cleared. A write
value of "1" is not valid, and the read value is always "1."

[Bit 1] SCKE (SCLK Enable)

When "1" is written to this bit in CLK synchronous mode, the port signal pins switch to UART
serial clock output pins, and output a synchronous clock signal to the outside. In CLK asynchronous
mode or in external clock mode, the value "0" should be written to this bit.

0: Pins function as general-purpose I/O port, and the serial clock signal output is disabled. With
ports in input mode (DDR=0) and the RC3 to RC0 bits set to '1111,' the pins will function as
external clock input pins.

1: Pins function as UART serial clock output pins.

[bit 0] SOE (Serial Output Enable)

When 1 is written to this bit, the port pins switch to UART port serial data output pins, and serial
data output is enabled.

0: Pins function as port pins, and serial data output is disabled.

1: Pins function as UART port serial data output pins (SOUT).

(9) USR (Status register)

■ Register Allocation

■ Register Description

The USR register indicates the current operating status of the UART port.

■ Bit Description

[bit 15] RDRF (Receiver Data Register Full)

This flag indicates UIDR (input data register) status. It is set when receiving data is loaded into the
UIDR register, and is cleared when data is read out from the UIDR register, or when "0" is written to
the RFC bit in the UMC register. When the RIE bit is set to 'active' and the RDRF flag is set, an
receiving interrupt request is generated.

0: Empty

1: Data is present

RDRF ORFE PE TDRE RIE TIE RBF TBF

⇐ Bit no.

Read/write ⇒ (R) (R) (R) (R) (R/W) (R/W) (R) (R)
Initial value⇒ (0) (0) (0) (1) (0) (0) (0) (0)

Status Register

Address : 000029H

15 14 13 12 11 10 9 8

USR

2.5UART

97

[Bit 14] ORFE (Over-Run/Framing Error)

This flag is set when an overrun or framing error occurs during receiving operation, and is cleared
when "0" is written to the RFC bit in the UMC register. When this flag is set, data in the UIDR reg-
ister becomes invalid, and no data can be loaded into the UIDR register from the receiving shifter.
When the RIE bit is set to 'active' and the ORFE flag is set, an receiving interrupt request is gener-
ated.

0: No error

1: Error

Table 2.5.2 shows the definition of UIDR status when receiving ends using the RDRF and ORFE
bits.

Table 2.5.3 UIDR Register Status at End of Receiving

The occurrence of framing errors or overrun errors invalidates the data in the UIDR register. Normal
data receiving can resume after the UIDR register is emptied.

[Bit 13] PE (Parity Error)

This bit is set when a parity error occurs during receiving, and is cleared by writing "0" to the RFC
bit in the UMC register. When this flag is set, data in the UIDR register becomes invalid, and no
data can be loaded into the UIDR register from the receiving shifter. When the RIE bit is set to
'active' and the PE flag is set, a receiving interrupt request is generated.

0: No parity error

1: Parity error

[Bit 12] TDRE (Transmitter Data Register Empty)

This flag indicates UODR (output data register) status. It is cleared when transmission data is writ-
ten to the UODR register, and is set when that data is loaded into the transmission shifter. When the
TIE bit is set to 'active' and the TDRE flag is set, a transmission interrupt request is generated.

0: Data present

1: Empty

[Bit 11] RIE (Receiver Interrupt Enable)

This bit enables receiver interrupts.

0: Interrupt disabled

1: Interrupt enabled

RDRF ORFE UIDR data status

0 0 Empty

0 1 Framing error

1 0 Normal data

1 1 Overrun error

2.5UART

98

[Bit 10] TIE (Transmitter Interrupt Enable)

This bit enables transmitter interrupts. When the TDRE bit is set to "1" to enable transmission inter-
rupt requests, interrupts are generated immediately.

0: Interrupt disabled

1: Interrupt enabled

[Bit 9] RBF (Receiver Busy Flag)

This flag indicates that incoming data is being received. It is set when a start bit is detected, and
cleared when a stop bit is detected.

0: Receiving stopped

1: Receiving operation in progress

[Bit 8] TBF (Transmitter Busy Flag)

This flag indicates that outgoing data is being transmitted. It is set when transmission data is written
to the UODR register, and cleared when transmission ends.

0: Transmission stopped

1: Transmission operation in progress

(10) UIDR (Input Data Register) / UODR (Output Data Register)

■ Register Allocation

■ Register Description

The UIDR (Input data register) is used to contain output serial data. The UODR (output data register) is
used to hold output serial data.

When the data length is 6 bits, the upper two bits (D7, D6) contain invalid data, and when the data
length is 7 bits, the upper 1 bit (D7) is invalid. The TDRE flag in the USR register should be set to "1"
when writing to the UODR register.

D7 D6 D5 D4 D3 D2 D1 D0

⇐ Bit no.

Read/write ⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (X) (X) (X) (X) (X) (X) (X) (X)

Input data register / output data register

Address : 00002AH

7 6 5 4 3 2 1 0

UIDR(read)/
 UODR(write)

2.5UART

99

(11) URD (Rate and Data Register)

■ Register Allocation

■ Register Description

The URD register selects the data transfer speed (baud rate) of the UART. When 9-bit data length is
used for communication, this register also contains the highest order MSB bit (bit 8). Baud rate selec-
tion and parity setting should be made when the unit is not operating.

■ Bit Description

[bits 15, 10] BCH, BCH0 (Baud Rate Clock Change)

These bits switch the baud rate clock in terms of machine rate cycles. (For details, see section
2.5.4 "Operating Description.")

Table 2.5.4 Clock Input Selection

[bits 14 - 11] RC3, RC2, RC1, RC0 (Rate Control)

The rate control bits select the UART port clock input signal. (For details, see section 2.5.4 "Operat-
ing Description.")

Table 2.5.4a Clock Input Selection

Note that the settings '1100' and '1110' should not be used.

[bit 9] P

When the parity function is enabled (PEN=1), this bit selects even or odd parity.

0: Even parity

1: Odd parity

BCH BCH0 Machine cycle

0 0 Not availabley

0 1 16 MHz

1 0 12 MHz

1 1 10 MHz

RC3 to RC0 Clock input

"0000" to "1011" Dedicated baud rate generator

"1101" Internal timer (timer 1)

"1111" External clock

BCH RC3 RC2 RC1 RC0 BCH0 P D8

⇐ Bit no.

Read/write ⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (0) (0) (0) (0) (0) (0) (0) (0)

Rate and data register

Address : 00002BH

15 14 13 12 11 10 9 8

URD

2.5UART

100

[bit 8] D8

When the operating mode is mode 2 or mode 3 (9-bit data length) with no parity, this bit is used as
bit 8 in transfer data. When reading data, it is used as bit 8 in the UIDR register, and when writing it
is used as bit 8 in the UODR register. In operating modes other than mode 2 or mode 3, this bit is not
valid. The TDRE flag in the USR register should be set to "1" when writing to this bit.

2.5.4 Operating Description
(1) Operating Mode

The UART has the operating modes shown in Table 2.5.4. Mode settings can be switched by setting the
value in the UMC register.

Table 2.5.5 UART Operating Modes

Note that stop bit length can be set for transmission only. For receiving, the setting is always 1-bit.
The unit does not operate in modes other than those shown, and only these settings should be used.

Mode Parity Data length Clock mode Stop bit length

0
Yes 6

CLK asynchronous
or CLK synchronous

1-bit or 2-bit

No 7

1
Yes 7

No 8

2 No 8+1

3
Yes 8

No 9

2.5UART

101

(2) Clock Selection and Dividing CLK Synchronous/CLK Asynchronous Baud Rate

a) On-Chip Baud Rate Generator

Twelve baud rate settings can be selected, with CLK synchronous baud rates determined by the fol-
lowing formulas.

Baud rate = [bps] (at machine cycle of 16 MHz)

Baud rate = [bps] (at machine cycle of 12 MHz)

Baud rate = [bps] (at machine cycle of 10 MHz)

Where φ represents machine cycle speed, and m is the decimal equivalent of bits RC3 to RC1 (m=2
to 4).

Note: The above formulas do not compute when m=0 or 1.

CLK asynchronous baud rates are transferable in the range -1% to +1%, with baud rates determined
by dividing the CLK synchronous baud rate by 8 x 13 or 8 x 12.

Table 2.5.5 shows baud rates at machine cycle of 16 MHz, 12 MHz and 10 MHz. Note that "-" on
the table should not be set by the user.

Table 2.5.6 Baud Rates

CLK asynchronous (µs/baud) CLK
asynchro

nous
divide
ratio

CLK synchronous (µs/baud)

RC3 RC2 RC1 RC0 16MHz 12MHz 10MHz 16MHz 12MHz 10MHz

0 0 0 0 – – 48/20833 8×12 – – –

0 0 0 1 26/38460 26/38460 52/19230 8×13 – – –

0 0 1 0 – – – 8 – – –

0 0 1 1 2/500000 2/500000 4/250000 8 – – –

0 1 0 0 48/20833 48/20833 96/10417 8×12 – – –

0 1 0 1 52/19230 52/19230 104/9615 8×13 0.5M/2M 0.5M/2M 1M/1M

0 1 1 0 96/10417 96/10417 192/5208 8×12 – – –

0 1 1 1 104/9615 104/9615 208/4808 8×13 1M/1M 1M/1M 2/500K

1 0 0 0 192/5208 192/5208 – 8×12 – – –

1 0 0 1 208/4808 208/4808 416/2404 8×13 2/500K 2/500K 4/500K

1 0 1 0 – – – 8 – – –

1 0 1 1 16/62500 16/62500 35/31250 8 – – –

2 m-1

φ/4

2 m-1

φ/3

2 m-1

φ/5

2.5UART

102

b) Internal Timer and External Clock Signals

When bits RC3 to RC0 are set to "1101," the internal timer signal is selected. The reload value set-
ting varies according to the internal timer used. When The RC3 to RC0 bits are set to "1111," the
external clock signal is selected.

The CLK asynchronous baud rate is the CLK synchronous baud rate divided by 8. Also, the CLK
asynchronous baud rate is transferable in the range of -1% to +1% of the selected baud rate.

Table 2.5.6 shows baud rates with the clock selection set to internal timer. Values on this table are calcu-
lated using a machine cycle of 7.3728 MHz. Note that "-" on the table should not be set by the user.

Baud rate = [bps]

φ: Machine cycle
X: Count clock source frequency divide ratio for internal timer used
n: Decimal equivalent of reload value

Table 2.5.7 Baud Rates and Reload Values

The values on this table (in decimal notation) are reload values using internal timers as reload
counters.

(3) Transfer Data Format

The UART handles only data in NRZ (Non-Return to Zero) format. Figure 2.5.3 shows the relation
between the transmit/receive clock and data in CLK synchronous mode.

Fig. 2.5.3 Transfer Data Format

Reload value X=21 X=23

Baud rate (machine cycle divided by 2) (machine cycle divided by 8)

76800 2 –

38400 5 –

19200 11 2

9600 23 5

4800 47 11

2400 95 23

1200 191 47

600 383 95

300 767 191

8×2(n+1)

φ / X

SCK0

SIN0,SOD0

0 1 0 11 0 0 1 0 1 1
Start LSB MSB Stop

D8 Stop } Varies according
to mode

Transferred data value is 01001101B (mode 1), or 101001101B (mode 3).

2.5UART

103

As shown in Figure 2.5.3 "Transfer Data Format," transfer data always begins with a start bit ('L' level
data value), then the transfer data at the bit-length designated on LSB-first basis, and ends with a stop
bit ('H' level data value). When an external clock signal is selected, the clock should be input at all
times. When an internal clock signal (from the dedicated baud rate generator or internal timer) is
selected, the clock signal will be output at all times. In CLK synchronous transfer operation, transfer
should not begin until the clock has stabilized at the selected baud rate (for two signal periods).

In CLK asynchronous transfer, the SCK0 bit in the UMC register should be set to "0" so that no clock
signal is output. The SID0 and SOD0 data transfer formats are the same as shown in Figure 2.5.3
"Transfer Data Format."

(4) Parity Bit

When parity is enabled, the P bit in the URD register can be used to designate either even parity or odd
parity. Parity is enabled using the PEN bit in the UMC register.

Figure 2.5.4 shows a parity error generated when incoming data at SID0 is received with even parity is
designated. Also shown in Figure 2.5.4 is transmission of an outgoing data value of 001101B with odd/
even parity designated.

Fig. 2.5.4 Serial Data with Parity Enabled

(5) Interrupt Generation and Flag Set Timing

The UART has 6 flags and 2 interrupt sources. The 6 flags are identified by the names RDRF/ORFE/
PE/TDRE/RBF/TBF.

The RDRF flag is set when receiving data is loaded into the UIDR register, and is cleared when data is
read out from the UIDR register, or when "0" is written to the RFC bit in the UMC register. The ORFE
flag is the overrun/framing error flag , and is set when an overrun or framing error occurs during receiv-
ing and cleared when "0" is written to the RFC bit in the UMC register. The PE flag indicates a parity
error, and is set when a parity error occurs during receiving, and is cleared by writing "0" to the RFC bit
in the UMC register. Note that there is no parity detection function in mode 2. The TDRE flag is set
when the UODR register is empty and ready for write, and cleared when transmission data is written to
the UODR register.

The above 4 flags (RDRF/ORFE/PE/TDRE) function as interrupt factor flags for data transmission and
receiving.

0 1 0 1 1 0 0 0 1
Start LSB MSB Stop

(Parity)

0 1 0 1 1 0 0 1 1
Start LSB MSB Stop

(Parity)

0 1 0 1 1 0 0 0 1
Start LSB MSB Stop

(Parity)

SID0

SOD0

SOD0

(Receiving parity error generated, P=0)

(Transmission with even parity, P=0)

(Transmission with odd parity, P=1)

2.5UART

104

The RBF and TBF flags are used to indicate that transmission and receiving are in progress. The RBF
flag is active when incoming data is being received, and the TBF flag is active when outgoing data is
being transmitted.

The two interrupt sources are for receiving and transmission, respectively. During receiving, interrupt
requests are indicated by the RDRF, ORFE and PE flags. During transmission, the TDRE flag indicates
an interrupt request. Flag set timing in each operating mode is shown below.

a) Receiving in Mode 0, Mode 1, Mode 3

The RDRF, ORFE and PE flags are set, and an interrupt request to the CPU is generated, when
receiving transfer has been completed and the last stop bit has been detected. Once the ORFE or PE
flag is active, the data in the UIDR register becomes invalid.

Fig. 2.5.5 RDRF Flag Set Timing (Modes 0, 1, 3)

Fig. 2.5.6 ORFE Flag Set Timing (Modes 0, 1, 3)

Fig. 2.5.7 PE Flag Set Timing (Modes 0, 1, 3)

Stop (Stop)Data

Receiving interrupt

RDRF

StopData

Receiving

ORFE

interrupt

RDRF=1

(Overrun error) (Framing error)

StopData

Receiving

ORFE

interrupt

RDRF=0

Stop (Stop)Data

Receiving interrupt

PE

2.5UART

105

b) Receiving in Mode 2

The RDRF flag is set when the last data bit (D8) set to "1" has been received and the last stop bit has
been detected.

The ORFE flag is set when the last stop bit has been detected, without regard to the last data bit
(D8). Once the ORFE or PE flag is active, the data in the UIDR register becomes invalid.

The interrupt request to the CPU is generated when the flag is set (for use of mode 2 see section
2.5.6. "Sample Applications").

Fig. 2.5.8 RDRF Flag Set Timing (Mode 2)

Fig. 2.5.9 ORFE Flag Set Timing (Mode 2)

Stop (Stop)Data

Receiving interrupt

RDRF

D6 D7 D8

StopData

Receiving

ORFE

interrupt

RDRF=1

(Overrun error) (Framing error)

StopData

Receiving

ORFE

interrupt

RDRF=0

D7 D8D8D7

2.5UART

106

c) Sending

The TDRE flag is set when data written to the UODR register is transferred to the internal shift reg-
ister, and writing of the next data is enabled. An interrupt request is then generated and sent to the
CPU.

ST: Start bit, D0 to D7: Data bits, SP: Stop bit

Fig. 2.5.10 TDRE Flag Set Timing (Mode 0)

d) Status Flag during Transmission

The RBF flag is set when a start bit is detected, and cleared when a stop bit is detected. Once the
RBF flag is cleared, transmission data in the UIDR register is no longer correct. At the point that the
RDRF flag is set, data in the register is correct data. The relation between the timing of the RBF flag
and receiving interrupt flags is shown in figure 2.5.4i.

ST: Start bit, D0 to D7: Data bits, SP: Stop bit

Fig. 2.5.11 RBF Flag Set Timing (Mode 0)

The TBF flag is set when transmission data is written to the UODR register, and cleared when trans-
mission ends.

ST D0 D1 D2 D3 D4 D5 D6 D7 SP SP ST D0 D0 D2 D3

SODR write

Transmission interrupt

SOD0 output

Interrupt request to CPU

TDRE

ST D0 D1 D2 D3 D4 D5 D6 D7 SPSID0 input

RBF

RDRF, PE, ORFE

2.5UART

107

ST: Start bit, D0 to D7: Data bits, SP: Stop bit

Fig. 2.5.12 TBF Flag Set Timing (Mode 0)

2.5.5 Notes on Usage
After release of a reset signal, receiving operations will continue unless the SID0 input pin is fixed to "1."
Any receiving flags that were set before determination of the mode setting should therefore be cleared by
writing "0" to the RFC bit in the UMC-register.

Transmission mode settings should be made when the RBF/TBF flags in the SSR register are set to "0."
Data received during mode settings is not assured.

2.5.6 Sample Application
Mode 2 is used when one host CPU is connected to multiple slave CPUs (see Figure 2.5.11 "RBF Flag Set
Timing (Mode 0)").

Fig. 2.5.13 Sample System Configuration Using Mode 2

Communication begins when the host CPU transfers address data. Address data is data in which the ninth
bit (=D8) is set to and '1' to select the slave CPU that is to receive the transmission. The selected slave CPU
then communicates with the host CPU according to conventions established by the user. In normal data,
the ninth bit is set to "0." The slave CPU that was not selected waits until the next communication begins.
Figure 2.5.14 illustrates the flow of this process.

No parity check function is available in mode 2, so that the PEN bit in the UMC register should be set to
"0."

ST D0 D1 D2 D3 D4 D5 D6 SP SP

SODR write

SOD0 output

TBF

Host CPU

Slave CPU #0

SOD0

SID0

SOD0 SID0

Slave CPU #1

SOD0 SID0

2.5UART

108

Fig. 2.5.14 Communication Flowchart Using Mode 2

Slave CPUHost CPU

Set transfer mode to 3

Set D0 to D7 to data

Set D8 to '0' and

Start

selecting slave CPU,
set D8 to '1' and
transfer 1 byte

communicate

End

Receive 1 byte

Selected?

Set transfer mode to 3,

Communicate with master

Verify transfer end from

Start

Set transfer mode to 2

enable SOD0 output

CPU

status flag, with transfer
mode set to 2, and with
SOD0 output disabled

No

Yes

2.6 SSI (Simple Serial Interface)

109

2.6 SSI (Simple Serial Interface)

This block is a serial I/O interface for clock synchronous data transfer using 16/8-bit configuration.

The serial I/O interface provides the following features.

• MSB/LSB-first shift

• 16/8-bit transfer data length

• Maximum shift rate of 8 Mbps (at 32 MHz)

• Shift clock waveform output during data transfer only

• Communications start by writing to SDRH register (SDR word write)

• MB90242A series features 1-channel SSI module

2.6.1 Register List

2.6.2 Block Diagram

Address:000021H
Serial status register

Serial control status register

Serial data register (high)

Serial data register (low)

15 14 13 12 11 10 9 8

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

(SSR)

(SCR)

(SDRH)

(SDRL)

Address:000020H

Address:000023H

Address:000022H

– BUSY– – – –– BDS

STOP SMD0SOE SIE SIR WBSOCKE SMD1

D15 D08D13 D12 D11 D10D14 D09

D07 D00D05 D04 D03 D02D06 D01

F2MC-16 bus

Shift circuit

Data register (H) Data register (L)

Read signal

Write signal

Control

SID1

Interrupt signal

➯

SDRH SDRL

register

SCR

Status
register

SSR

Control circuit

Shift clock counter

SOD1

SCK1

2.6 SSI (Simple Serial Interface)

110

2.6.3 Register Group Description
a) SCR (Serial control status register)

This register controls the serial I/O transfer mode.

[Bit 7] Stop bit (STOP)

Transfer operations can be stopped at any time by writing 1 to this bit. Also no transmissions are
performed when STOP=1.

0: Normal operation

1: Transfer stop [Initial value]

[Bit 6] SCK1 enable bit (OCKE: Output Clock Enable)

This bit enables output from the SCLK (output clock) pins.

0: Pins function as an I/O port [Initial value]

1: Pins function as an SCLK output.

[Bit 5] SOD1 enable bit (SOE: Serial Output Enable)

This bit enables output from the Sout (serial clock) pins.

0: Pins function as I/O port [initial value]

1: Pins function as SOUT output.

[Bit 4] Transmission interrupt enable bit (SIE: Serial I/O Interrupt Enable)

This bit controls transmission interrupt requests as follows.

0: Serial I/O interrupt disabled [Initial value]

1: Serial I/O interrupt enable

[Bit 3] Serial I/O interrupt request bit (SIR: Serial I/O Interrupt Request)

0: No interrupt request. However, with read-modify-write commands, the read value will always be '1.'

1: Set at end of serial data transfer. To enable interrupt (SIE=1). Interrupt request generated to
CPU when interrupt is enabled (SIE=1).

Writing '1' to this bit has no significance.

SIR bit clear conditions

• Cleared by reading or writing operations to data registers

• Cleared when STOP=1

• Cleared by a reset

• Cleared by writing '0' to the SIR bit

[Bit 2] Word/byte select bit (WBS: Word Byte Select)

This bit switches between 8- and 16-bit data length.

0: 8-bit transfer [Initial value]

1: 16-bit transfer

Writing to this bit during transmission is prohibited.

Initial value: 1000 0000 B

7 6 5 4 3 2 1 0

R/W

Address:000020H STOP SMD0SOE SIE SIR WBSOCKE SMD1

R/W R/W R/W R/W R/W R/W R/W

2.6 SSI (Simple Serial Interface)

111

[Bit 1, 0] Shift clock select bit (SMD1, SMD0: Serial shift clock mode)

This bits are used to select serial clock mode while in source oscillation at 32 MHz operation, as
shown in the following table.

Note: • Writing to these bits during transmission is prohibited.

• Use of the gear function causes changes in communication speeds,and therefore requires set-
ting of the SMD0, SMD1 bits.

b) Serial Status Register (SSR)

[Bit 15 to 10] Not used.

• Read values are undefined.

[Bit 8] Transfer status bit (BUSY)

• This bit indicates whether the serial transfer is in progress or not.

0: Stop status [Initial value]

1: Serial transfer status

[Bit 9] Transfer direction selection bit (BDS)

• This bit determines, on the serial data input/output, whether the bits from the LSB be transferred
first or from the MSB first.

0: MSB first [Initial value]

1: LSB first

• Updating the bits is prohibited during the transfer.

c) Serial Data Register (SDR)

These registers are used for reading and writing of transfer data.

• Writing to these registers during transfer is prohibited.

• Data is transferred by writing to the SDRH register (SDR word write).

SMD1 SMD0 Gear function 1/1 Gear function 1/2 Gear function 1/4 Gear function 1/16

0 0 8Mbps 4Mbps 2Mbps 500Kbps

0 1 4Mbps 2Mbps 1Mbps 250Kbps

1 0 2Mbps 1Mbps 500bps 125Kbps

1 1 1Mbps 500Kbps 250bps 62.5Kbps

Address:000021H Initial value: ---- ---00B

15 14 13 12 11 10 9 8

R

– BUSY– – – –– BDS

R/W

Initial value: XXXX XXXXB

Initial value: XXXX XXXXB

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

R/W R/W

Address:000023H

Address:000022H

D15 D08D13 D12 D11 D10D14 D09

D07 D00D05 D04 D03 D02D06 D01

R/W R/W R/W R/W R/W R/W

R/W R/WR/W R/W R/W R/W R/W R/W

2.6 SSI (Simple Serial Interface)

112

2.6.4 Operating Description
a) Operating Overview

The SSI block consists of the serial control register, serial status register and serial data register, and
is used for input and output of 16/8-bit data. In serial data input/output operation, the contents of the
shift register (SDR) are output to the serial output pins (SOUT) in bit series synchronously with the
falling edge of the serial clock (SCLK), the signal from the serial input pin (SIN) changes at the fall-
ing edge of the serial clock (SCLK) and should be allowed to remain stable until the rising edge of
the clock signal. When a transfer ends, an interrupt is generated using the serial I/O interrupt enable
bit.

b) Serial I/O Operating Status

There are two types of operating status: transfer status and stop status.

• Transfer status

 Transfer status is indicated by the value BUSY=1.

• Stop status

Stop status is indicated by the value BUSY=0.

Stop status is initiated by the end of a transfer, or by setting the STOP bit to 1.

c) Shift Operation Start/Stop Bit and I/O Timing

d) Interrupts

The SSI block has the ability to generate interrupt requests to the CPU. When the interrupt flag (SIR
bit) is set at the end of a data transfer, if the interrupt enable (SIE) bit is '1', an interrupt request is
output to the CPU.

Fig. 2.6.1 Interrupt Signal Timing

e) SDR Register Read/Write Operation in 8-bit Mode

In 8-bit transfer mode, SDR register read/write operation depends on the data transfer direction.

When the MSB first mode is selected, write data into SDH for reading out the data from SDRL.

D15 D14 D13 D12 D00Undefined

SCK1

SOD1
SID1

SDR register
read/write

BUSY

D01 D00

SCK1

SOD1
SID1

(Transfer end)

SDR read/write

SIR

2.6 SSI (Simple Serial Interface)

113

When the LSB first mode is selected, write data into SDRL for reading out the data from SDRH.

f) Receiving Serial Data

 When receiving serial data, dummy write cycles should be used.

g) Expected SIN Signal Value

• The SID1 signals should be held stable until the rising edge of the SCK1 signals. If the value is
not stabilized at this time, the shift rate should be reduced.

h) Continuous Transfer

• The SSI module outputs an interrupt signal immediately after the rising edge of the SCK1 signal,
so that in continuous transfer operation the 'H' width of the SCK1 signal may be reduced. The
SCLK signal may not be picked up for reasons such as use of gear functions at the other end of
the communication. Therefore full consideration must be given to possible use of gear functions,
or the time interval required between the module interrupt and the next transfer mode.

Write Read

➯➯

SDRH SDRLSOD1 SID1

➯

Read Write

➯➯ SDRH SDRLSID1 SOD1➯

(1) SDR register read/write in the MSB first mode

(2) SDR register read/write in the LSB first mode

SCK1

Expected SID1, 2 value

Actual SID1 value

Waveform droop due to wiring capacitance

Signal delayed

Transfer frame 2nd transfer frame

Interrupt signal

SDRH write

Transfer ends

Clear by SDRH write

SCK1

SOD1 D01 D00 D15 D14

(SDR word write)

2.7 16-Bit Reload Timer (With Event Count Function)

114

2.7 16-Bit Reload Timer (With Event Count Function)

The individual 16-bit timers comprise a 16-bit down-counter, 16-bit reload register, one input pin (TIN0 or
TIN1), one output pin (TOT0 or TOT1) and a control register. The choice of input clock signals includes 3
types of internal clock plus an external clock signal. The output pins in reload mode output a toggle-output
waveform, and in one-shot mode a square wave to indicate that the count is in progress. The input pins in
event count mode are used for event input, and in internal clock mode can be used for trigger input or gate
input. The MB90242A series includes three channels of this type of timer.

2.7.1 Block Diagram
Figure 2.7.1 shows a block diagram of the 16-bit timer.

Fig. 2.7.1 16-Bit Timer Block Diagram

16-bit reload register

Clock selector

Clear prescaler

Internal clock

Re-trigger

Reload

Port

16-bit down-counter

F
F

M
C

-1
6F

B
U

S

16
/

OUT
CTL.

UF

IRQ

Clear

EI2OSCLR

UF

RELD

OUTE

OUTL

INTE

CNTE

TRG

/
2

TIN0
TIN1

Port
TOT0
TOT1

/
16

/
8

/
2

/
3

2
/

CSL1

CSL0

IN CTL.

MOD2

MOD1

MOD0

φ
21

φ
23

φ
25

GATE

EXCK

3

2.7 16-Bit Reload Timer (With Event Count Function)

115

2.7.2 Register List

Fig. 2.7.2 16-Bit Timer Register Configuration

2.7.3 Detailed Register Description
(1) Control Status Register (TMCSR)

This register controls the 16-bit timer operating mode and interrupts.

Rewriting of bits other than the UF, CNTE, and TRG bits should be done when CNTE=0.

[Bits 11, 10] CLS1, CSL0

Count clock select bits.

Table 2.7.3a shows the clock source selection options. When external event count mode is selected,
the valid edge for outing is determined by the MOD1, MOD0 bits.

15 8 7 0

(R/W)

(R/W)

(R)

(R)

(W)

(W)

TMCSR1

TMR0

TMR1

TMRLR0

TMRLR1

16bit

TMCSR0

Address:000040H

Control status register

16-Bit timer register

16-bit reload register

15 14 13 12 11 10 9 8

15

7 6 5 4 3 2 1 0

0

(TMCSR0,TMCSR1)

(TMR0,TMR1)

(TMRLR0,TMRLR1)

000048H

Address:000041H

000049H

Address:000042H

000043H

Address:000044H

000045H

– MOD1– – CSL1 CSL2– MOD0

MOD0 TRGOUTL RELD INTE UFOUTE CNTE

15 0

Address:00004AH

00004BH

Address:00004CH

00004DH

CSL1 CSL0 OUTE OUTL RELD INTE UF CNTE

⇐ Read/writeR/W R/W R/W R/W R/W R/W R/W R/W

⇐ Initial value(0) (0) (0) (0) (0) (0) (0) (0)

11 6 5 4 3 2 1 0

Address:000040H

000041H
Address:000048H

000049H

TMCSR 10 9 8 7

MOD1MOD2 MOD0 TRG

R/W R/WR/W R/W

(0)(0) (0) (0)

2.7 16-Bit Reload Timer (With Event Count Function)

116

Table 2.7.3a Clock Source Setting Using CSL Bits

[Bits 9, 8, 7] MOD2, MOD1, MOD0

These bits determine operating mode as well as I/O pin functions.

The MOD2 bit is used to select input pin functions. When this bit is '0' the input pin is used as a
retrigger pin, so that whenever a valid edge is input the contents of the reload register are loaded into
the counter and count operation continues. When this bit is '1,' gate count mode is selected, and the
signal to the input pin is gated in, meaning that the count will continue only as long as a valid level
signal is input.

The MOD1, 0 bits are used to determine the pin functions in each mode. Tables 2.7.3b and 2.7.3c
list the combinations of MOD2, 1, 0 bit settings.

Table 2.7.3b MOD2, 1, 0 bit settings (1)

Internal clock mode (CSL0, 1=00, 01, 10)

CSL1 CSL0 Clock source (machine cycle:φ=16 MHz)

0 0 φ / 21 (0.125µs)

0 1 φ / 23(0.5µs)

1 0 φ / 25(2.0µs)

1 1 External event count mode

MOD2 MOD1 MOD0 Input pin function Valid edge or level

0 0 0 Trigger disabled –––

0 0 1 Trigger input Rising edge

0 1 0 ↑ Falling edge

0 1 1 ↑ Both edges

1 X 0 Gate input L' level

1 X 1 ↑ H' level

2.7 16-Bit Reload Timer (With Event Count Function)

117

Table 2.7.3c MOD2, 1, 0 bit settings (2)

Event count mode (CSL0, 1=11)

X : Don't care

[Bit 6] OUTE

This is the output enable bit. When the value is '0' the TOT0 (or TOT1) pins become a general-pur-
pose port, and when the value is '1' the TOT0 (or TOT1) pins become timer output pins. The output
waveform is a toggle output in reload mode, and in one-shot mode is a square wave output indicat-
ing that the count is in progress.

[Bit 5] OUTL

This bit sets the output level of the TOT0 (or TOT1) pins. Pin levels are reversed by switching
between settings of '0' and '1.'

Table 2.7.3d OUTE, RELD, OUTL Pin Settings

[Bit 4] RELD

This is the reload enable bit. When the value is '1' the timer is in reload mode, and each time the
counter value reaches an underflow condition by going from 0000H to FFFFH the contents of the
reload register are loaded into the counter and the count operation continues. If the value is '0,' count
operation stops when the counter value reaches an underflow condition by going from 0000H to
FFFFH.

[Bit 3] INTE

This is the interrupt enable bit. When the value is '1' an interrupt request is generated each time the
UF bit is set to '1.' When the value is '0' no interrupt request is generated.

[Bit 2] UF

This is the timer interrupt request bit, and is set to '1' each time the counter value reaches an under-
flow condition by going from 0000H to FFFFH. This bit can be cleared by writing '0' or by the intel-
ligent I/O service. Writing '1' to this bit has no effect.

MOD2 MOD1 MOD0 Input pin function Valid edge or level

X

0 0 ––– –––

0 1 Event input Rising edge

1 0 ↑ Falling edge

1 1 ↑ Both edges

OUTE RELD OUTL Output waveform

0 X X General-purpose port

1 0 0 H' square wave during count

1 0 1 L' square wave during count

1 1 0 L' toggle output at start of count

1 1 1 H' toggle output at start of count

2.7 16-Bit Reload Timer (With Event Count Function)

118

With read-modify-write commands, the read value is always '1.'

[bit 1] CNTE

This is the timer count enable bit. Writing '1' to this bit enters the state waiting for a trigger for acti-
vation. Writing '0' stops the count operation.

[bit 1] TRG

This is the software trigger bit. Writing '1' to this bit applies a software trigger, loading the contents
of the reload register into the counter, and starting count operation. Writing '0' to this bit has no
effect. The read value is always '0.' Trigger input applied by this register is valid only when the
CNTE bit is '1.' Nothing will occur when the CNTE bit is '0.'

(2) 16-Bit Timer Register (TMR)

This register is able to read the count value from the 16-bit timer. Its initial value is indeterminate. This
register should always be read using word transfer commands.

(3) 16-Bit Reload Register (TMRLR)

The 16-bit reload register saves the initial count value. Its initial value is indeterminate. This register
should always be read using word transfer commands.

⇐ Read/write

⇐ Initial value

15
Address:000042H

000043H
Address:00004AH

00004BH

TMR 0

R

(X)

8 7

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

R

(X)

⇐ Read/write

⇐ Initial value

15
Address:000044H

000045H
Address:00004CH

00004DH

TMR 0

W

(X)

8 7

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

W

(X)

2.7 16-Bit Reload Timer (With Event Count Function)

119

2.7.4 Operating Description
(1) Internal Clock Operation

A selection of clock sources is provided to enable timers to operate on clock signals that are multiples
of the internal clock frequency, by dividing the machine clock period by 21, 23, or 25. A register setting
allows the external input pins to severe as a trigger input or gate input type.

To start count operations simultaneously with the count-enable signal, both the CNTE bit and TRG bit
in the control register should be set to '1.' When the timer is in startup status (CNTE=1), trigger input
from the TRG bit is valid at all times regardless of operating mode.

Counter startup and counter operation are shown in Figure 2.7.4a.

The time interval T (T= machine cycles) is required between the trigger input that starts the counter,
and the loading of data from the reload register into the counter.

Fig. 2.7.4a Counter Startup and Operation

(2) Underflow Operation

An underflow condition results when the counter value changes from 0000H to FFFFH. Thus an under-
flow will occur after an interval of "reload register setting value +1" counts.

When an underflow is generated, and the control register RELD bit is '1' the contents of the reload reg-
ister are loaded into the counter, and count operations continue. When the RELD bit is '0' the count
stops at FFFFH.

An underflow condition sets the UF bit in the control register, and if the INTE bit is set to '1' and inter-
rupt request is generated.

Figure 2.7.4b illustrates underflow operation.

Count clock

Counter

Data load

T

-1 -1 -1Reload data

CNTE (register)

TRG (register)

2.7 16-Bit Reload Timer (With Event Count Function)

120

Fig. 2.7.4b Underflow Operation

(3) Input Pin Functions (Internal Clock Mode)

When an internal clock is selected as a clock source, the TIN pin can be used as either a trigger input or
a gate input. When the TIN pin is used as a trigger input, the contents of the reload register are loaded
into the counter whenever a valid edge is input, and count operation starts after the input prescaler is
cleared. The TIN input pulse should be at least 2 × T (T= machine cycles). Figure 2.7.4c illustrates trig-
ger input operation.

Fig. 2.7.4c Trigger Input Operation

Count clock

Counter

Data load

Underflow set

Count clock

Counter

Underflow set

0000H Reload data -1 -1 -1

0000H FFFFH

[RELD=1]

[RELD=0]

Count clock

Clear prescaler

Counter

Load

Rising edge detected

2T to 2.5T

-1 -1 -1 -1Reload data

TIN

2.7 16-Bit Reload Timer (With Event Count Function)

121

When the TIN pin is used as a gate input, the count functions only as long as the signal input from the
TIN pin is at the valid level as determined by the MOD0 bit in the control register. During this time the
count clock continues to operate without stopping. In gate mode, software triggers are enabled regard-
less of gate level. The pulse width at the TIN pin should be 2 × t (T = machine cycles). Figure 2.7.4d
illustrates gate input operation.

Fig. 2.7.4d Gate Input Operation

(4) External Event Count

When the external clock source is selected, the TIN pin becomes an external event input pin, and counts
valid edges as defined by register setting. The pulse width at the TIN pin should be 2 × t (T = machine
cycles).

(5) Output Pin Function

In reload mode the TOT pin functions as a toggle output inverted by underflow conditions, and in one-
shot mode the TOT pin functions as a pulse output indicating that the count is in progress. Output polar-
ity can be set by the DUTL bit, such that when OUTL=0, the toggle output has an initial value of "0,"
and the one-shot pulse is output as '1' while the count is in progress. When OUTL=1, the output wave-
form is inverted.

Fig. 2.7.4e Output Pin Function (1)

Count clock

Counter

When MOD0 bit is '1'
 (count functions during 'H' level input)

TIN

-1 -1 -1

Underflow

Start trigger

Count start

General-purpose port

 Inverted when TOT

CNTE

OUTL=1

[RELD=1, OUTL=0]

2.7 16-Bit Reload Timer (With Event Count Function)

122

Fig. 2.7.4f Output Pin Function (2)

(6) Extended Intelligent I/O Service (EI 2OS) Function and Interrupts

This timer circuit has a circuit adapted for EI2OS. This means that a timer overflow can be used to start
the EI2OS operation. The MB90242A series has three timers, and all can be used with EI2OS.

Underflow

Start trigger

General-purpose port

Inverted when

Waiting for
start trigger

TOT

CNTE

OUTL=1

[RELD=0, OUTL=0]

2.7 16-Bit Reload Timer (With Event Count Function)

123

(7) Counter Operating Status

Counter status is determined by the CNTE bit in the control register and the internal WAIT signal.
Available settings include CNTE=0 and WAIT=1 for STOP status, CNTE=1 and WAIT=1 for start
trigger WAIT status, and CNTE=1 and WAIT=0 for RUN status. Figure 2.7.4g shows the transitions
among these three status.

Fig. 2.7.4g Counter Status Transition

 Trigger from TIN

Status transition by hardware

Status transition by register access

End load operation
Loads contents of reload register

LOAD CNTE=1,WAIT=0

into counter

TIN: Trigger input only enabled

TOT: Output initial value

Counter: Holds value at stop
Indeterminate immediately after
reset, until loaded

WAIT CNTE=1,WAIT=1

TIN: Functions as TIN

TOT: Functions as TOT

Counter: Run

RUN CNTE=1,WAIT=0

TIN: Input disabled

TOT: General-purpose port

Counter: Holds value at stop
Indeterminate immediately after
reset

STOP CNTE=0,WAIT=1

Reset

CNTE=‘0’ CNTE=‘0’

CNTE=‘1’ CNTE=‘1’
TRG=‘0’ TRG=‘1’

TRG=‘1’ TRG=‘1’

RELD·UF

RELD·UF

2.8 16-Bit I/O Timer

124

2.8 16-Bit I/O Timer

The 16-bit I/O timer consists of one 16-bit free-running timer with four input capture modules.

This function can be used to measure input pulse width or external clock cycle by using the 16-bit free-run-
ning timer as a base.

2.8.1 Functional Overview
■ 16-bit Free Run Timer (x1)

The 16-bit free-running timer consists of a 16-bit up-counter, control register and prescaler. Output val-
ues from this timer/counter are used as reference time for the input capture modules.

• One of four counter operation clock signals can be selected.
 Four types of internal clock signals (φ /4. φ /16, φ /32, φ 64)

• Interrupts can be generated by counter value overflow conditions.

• Counter values can be initialized to '0000H' by reset or software clear commands.

■ Input Capture Modules (×4)

The input capture module consists of four independent external input pins and corresponding capture
registers, and a control register.

Detection of any given edge of the signals from the external input pins can be used to save the value of
the 16-bit free-running timer in a capture register and to simultaneously generate an interrupt.

• Any edge of the external input signal may be selected.
Rising edge, falling edge, both edges may be selected

• All four input capture modules function independently.

• Interrupts can be generated by the valid edge of the external input signal.

Input capture interrupts can be used to start intelligent I/O services.

2.8 16-Bit I/O Timer

125

2.8.2 16-Bit I/O Timer Module Register Configuration

2.8.3 16-bit I/O Timer Module Block Diagram

16-bit free-running timer

Timer data register

Control status register

16-bit input capture module

TCDT

TCCS

15 0

IPCP

ICS

15 0
Timer data register

Control status register

00006CH

00006EH

000060, 62, 66, 68H

000064, 6AH

Control logic

16-bit free-running timer

16-bit timer

B
us

Input capture 0

Capture register 0

Interrupt

T
o

in
di

vi
d

ua
l b

lo
ck

s

Edge detector

Capture register 1 Edge detector

Input capture 1

Capture register 2 Edge detector

Capture register 3 Edge detector

ASR0

ASR1

ASR2

ASR3

4

2.8 16-Bit I/O Timer

126

2.8.4 16-Bit Free-Running Timer
The 16-bit free-running timer consists of a 16-bit up-counter and control status register.

Count values from this timer are used as a reference time for the input capture modules.

• One of four counter operation clock signals can be selected.

• Interrupts can be generated by counter value overflow conditions.

2.8.5 16-Bit Free-Running Timer Module Register Configuration

2.8.6 Block Diagram

Timer counter data register

Timer counter control status

TCDT

TCCS

15 0

00006CH

00006EH register

B
us

Interrupt request

Comparator 0

16-bit up-counter

Frequency divider

Clock

Count value output

IVF CLK0CLK1CLRIVFE STOP MODE

T15 to T00

φ

2.8 16-Bit I/O Timer

127

2.8.7 Detailed Register Description for 16-Bit Free-Running Timer Module
(1) Data Register

This register can read the count value from the 16-bit free-running counter. The counter value is cleared
to '0000' at a reset.

Timer values can be set by writing to this register, however this should always be done when the timer
is in stop status (STOP=1).

This register should be accessed by word access.

The 16-bit free-running timer can be initialized by the following two factors.

• Initialization by a reset

• Initialization by the clear bit (CLR) in the control status register

(2) Control Status Register

[Bit 7] Reserved

Always write '0' to this bit.

[Bit 6] IVF

This is the 16-bit free-running timer interrupt request flag.

This bit is set to '1' when the 16-bit free-running timer creates an overflow condition.

In this case an interrupt will be generated if the interrupt request enable bit (bit 4: IVFE) has been
set. This bit can be cleared by writing '0.' Writing '1' to this bit has no effect.

With read-modify-write commands the read value is always '1. '

0 No interrupt request (initial value)

1 Interrupt request

T15 T14 T13 T12 T11 T10 T09 T0800006CH

15 14 13 12 11 10 9 8

T07 T06 T05 T04 T03 T02 T01 T00

⇐ AttributesR/W R/W R/W R/W R/W R/W R/W R/W
⇐ Initial value0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

bit

⇐ AttributesR/W R/W R/W R/W R/W R/W R/W R/W
⇐ Initial value0 0 0 0 0 0 0 0

bit

Reserved IVF IVFE STOP Reserved CLR CLK1 CLK000006CH

bit

⇐ AttributesR/W R/W R/W R/W R/W R/W R/W R/W
⇐ Initial value0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

2.8 16-Bit I/O Timer

128

[Bit 5] IVFE

This is the 16-bit free-running timer overflow interrupt enable bit.

When this bit is '1' an interrupt will be generated whenever the interrupt flag (bit 5: IVF) is set to '1.'

[Bit 4] STOP

This bit is used to stop the counting by the 16-bit free-running timer.

When '1' is written to this bit the timer counting is stopped.

When '0' is written to the bit the timer counting is started.

[Bit 3] Reserved

Always write '0' to this bit.

[Bit 2] CLR

This bit initializes the 16-bit free-running timer to '0000' during operation.

When '1' is written to this bit, the counter value is initialized to '0000.'

When '0' is written to this bit, there is no effect. The read value is always '0.'

Counter value initialization occurs at the transition of the count value.

To initialize the timer while it is stopped, write '0000' to the data register.

0 Interrupt disabled (initial value)

1 Interrupt enabled

0 Enable count (run) (initial value)

1 Disable Count (stop)

0 No effect (initial value)

1 Initialize counter value to '0000.'

2.8 16-Bit I/O Timer

129

[Bits 1, 0] CLK1, CLK0

These bits select the 16-bit free-running timer count clock.

The clock signal will switch immediately after writing to these bits, so that changes should only be
made when the output compare and input capture functions are in stop status.

External Clock (X0, X1) at 32 MHz

External Clock (X0, X1) at 24 MHz

Gear 1/1 Gear 1/2 Gear 1/4 Gear 1/16

CLK1 CLK0 Count clock φ =16MHz φ =8MHz φ =4MHz φ =1MHz

0 0 φ / 4 0.25µs 0.5µs 1µs 4µs

0 1 φ / 16 1µs 2µs 4µs 16µs

1 0 φ / 32 2µs 4µs 8µs 32µs

1 1 φ / 64 4µs 8µs 16µs 64µs

Gear 1/1 Gear 1/2 Gear 1/4 Gear 1/16

CLK1 CLK0 Count clock φ =12MHz φ =6MHz φ =3MHz φ =750KHz

0 0 φ / 4 0.33µs 0.66µs 1.33µs 5.33µs

0 1 φ / 16 1.33µs 2.67µs 5.33µs 21.3µs

1 0 φ / 32 2.67µs 5.33µs 10.7µs 42.7µs

1 1 φ / 64 5.33µs 10.7µs 21.3µs 85.3µs

2.8 16-Bit I/O Timer

130

2.8.8 Input Capture
The module is equipped with a function that can detect either the rising or falling edge, or both edges, of a
signal input externally, and can save the value of the 16-bit free-running timer at that moment. Interrupts
can also be generated at the moment of edge detection.

The input capture module consists of an input capture data register and a control register.

Each input capture module has its own external input pin.

• Three types of valid edge detection can be applied to external signals.
 Rising edge (↑)
 Falling edge (↓)
 Both edges (↑↓)

• Interrupts can be generated at the moment the valid edge is detected in the external signal input.

2.8.9 Input Capture Module Register Configuration

2.8.10 Input Capture Module Block Diagram
(2 channels: This model contains two of these units, for a total of 4 channels.)

Input capture data registers

Input capture control status

15 0
000060, 62 H

000064 H
register

IPCx

ICSx

7 0

x=0 to 3

x=0 to 3

000066, 68 H

00006A H

B
us

16-bit timer counter value (T15 to T00)

Capture data register 0

Interrupt

Capture data register 1

16-bit timer counter value (T15 to T00)

Edge detector

Edge detector

EG11 EG00EG10 EG01

ICP1 ICE0ICP0 ICE1

Interrupt

ASR1
(ASR3)

ASR0
(ASR2)

2.8 16-Bit I/O Timer

131

2.8.11 Detailed Register Description for Input Capture Module
(1) Input Capture Data Registers

These registers save the value of the 16-bit free-running timer when the valid edge of the waveform
input from the corresponding external pin is detected.

Values at reset are indeterminate.

Access to these registers should be a word access type. Write access is not allowed.

(2) Control Status Register

[bits 7, 6] ICP1, ICP0

This is the input capture interrupt flag.

When a valid edge of the external input pin is detected, this bit is set to '1.'

If the interrupt enable bit (ICE0, ICE1) is set an interrupt will be generated when a valid edge is
detected.

This bit can be cleared by writing '0.' Writing '1' has no effect. With read-modify-write commands,
the read value is '1.'

The IPC0 bit corresponds to input capture 0

The ICP1 bit corresponds to input capture 1.

0 No valid edge detected (initial value)

1 Valid edge detected

CP15 CP14 CP13 CP12 CP11 CP10 CP09 CP08000060, 62H

15 14 13 12 11 10 9 8

CP07 CP06 CP05 CP04 CP03 CP02 CP01 CP00

⇐ AttributesR R R R R R R R
⇐ Initial valueX X X X X X X X

7 6 5 4 3 2 1 0

bit

⇐ AttributesR R R R R R R R
⇐ Initial valueX X X X X X X X

bit

000066, 68H

ICP1 ICP0 ICE1 ICE0 EG11 EG10 EG01 EG00000064H

bit

⇐ AttributesR/W R/W R/W R/W R/W R/W R/W R/W
⇐ Initial value0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

00006AH

2.8 16-Bit I/O Timer

132

[bits 5, 4] ICE1, ICE0

This is the input capture interrupt enable bit.

When this bit is set to '1' an input capture interrupt is generated whenever the interrupt flags (ICP0,
ICP1) are set.

The ICE0 bit corresponds to input capture 0

The ICE1 bit corresponds to input capture 1.

[bits 3, 2, 1, 0] EG11, EG10, EG01, EG00

These bits determine the polarity of the valid edge from the external input pin. They also serve to
enable the operation of the input capture module.

The EG01, EG00 bits correspond to input capture 0.

The EG11, EG10 bits correspond to input capture 1.

0 Interrupt disabled (initial value)

1 Interrupt enabled

EG11
EG01

EG10
EG00

Edge detection polarity

0 0 No edge detection (stop mode) (initial value)

0 1 Rising edge detection ↑

1 0 Falling edge detection ↓

1 1 Dual edge detection ↑↓

2.9 A/D Converter

133

2.9 A/D Converter

The A/D Converter converts analog input voltage into digital values, and provides the following features.

• Conversion time: minimum 1.25µs per channel

• Series-parallel conversion with sample-and-hold circuit

• 10-bit resolution (8/10-bit switching)

• Program selection from 6 analog input channels

• Conversion modes
 Single conversion mode: one-time conversion of one selected channel
 Scan conversion mode: scan conversion of maximum of 4 channels

• Conversion data stored in data buffers (total of four data buffers)

• On completing the A/D conversion, the interrupt request that the A/D conversion has ended may be
generated to CPU. This interrupt can also be used to start EI2OS.

• Startup may be triggerable by software, external trigger (falling edge) or timer (rising edge).

2.9.1 Block Diagram
Analog input

F
M

C
-1

6F
 b

us

Timer input

External input

 Interrupt
Control logic

AVCC,AVSS,AVRH,AVRL

AN0

AN7

AN1

AN2

AN3

AN6

S / H
10bit
A/D
Converter

ADT0

ADT1

ADT2

ADT3

M
P
X

M
P
X

2.9 A/D Converter

134

2.9.2 Register Configuration
The A/D converter has the following registers.

2.9.3 Detailed Register Description
(1) Control & Status Register (ADCS1)

This register provides control and status indicators for the A/D converter.

[Bit 7] BUSY (BUSY):

Do not execute a software start and forced stop at the same time (STAR=1, BUSY=0).

For RMW commands, the read value is '1.' The initial value at a reset is '0.'

[Bit 6] INT (INTerrupt):

This bit is set by the end of conversion processing (either by the end of 1 conversion cycle in single
conversion mode, or by the end of conversion on all channels in scan conversion mode).

This bit can be cleared by writing '0' or starting conversion, or by an EI2OS interrupt clear or reset.
Writing '1' has no effect.

With read-modify-write commands, the read value is always '1.'

Read values
0 A/D converter stopped

1 A/D converter busy

Write values
0 A/D converter forced stop

1 No effect

0 No interrupt request

1 Interrupt request

Address:000070H Control & status register.

Conversion time setting register

Conversion data register 0

Conversion data register 1

Conversion data register 2

Conversion data register 3

Address:000072H

Address:000074H

Address:000076H

Address:00007AH

Address:000078H

ADCS2 ADCS1

ADCT2 ADCT1

ADTH0 ADTL0

ADTH1 ADTL1

ADTH2 ADTL2

ADTH3 ADTL3

bit 15 8 7 0

BUSY INT INTE – STS1 STS0 STAR ReservedAddress:000070H

bit

⇐ AttributesR/W R/W R/W – R/W R/W R/W R/W
⇐ Initial value0 0 0 – 0 0 0 0

7 6 5 4 3 2 1 0

ADCS1

2.9 A/D Converter

135

[bit 5] INTE (INTerrupt Enable):

This bit is used to enable/disable interrupts resulting from the end of conversion.

This bit should be set when using EI2OS.

This bit is initialized to '0' at reset.

[Bit 4] Not used

[Bits 3, 2] STS1, STS0 (Start select);

These bits can be set to determine the A/D conversion start factors.

In modes with more than one start factor, A/D conversion will be started by the first factor to occur.

Any start factors occurring during A/D operation (BUSY bit=1) will be ignored (no restart function
enabled).

When restarting, stop A/D conversion once (write '0' to the BUSY bit), then restart.

External trigger startups operate on detection of a falling edge, and timer 1 startups on a rising edge.

Initial value at reset is '00.'

[Bit 1] STAR (Start):

Write '1' to this bit to start A/D conversion.

When the A/D converter is operating (BUSY=1), writing '1' has no effect.

Read value is always '0.'

Do not execute a software start and forced stop at the same time (STAR=1, BUSY=0).

[Bit 0] Reserved:

Always write '0' to this bit.

(2) Control & Status Register (ADCS2)

This register provides control and status indicators for the A/D converter.

[Bits 15] Not used

0 Interrupt disabled

1 Interrupt enabled

STS1 STS0 Function

0 0 Software start

0 1 External pin-triggered start and software start

1 0 Timer 1 start and software start

1 1
External pin-triggered start, timer 1 start and
software start

– ACS2 ACS1 ACS0 – – CREG SCANAddress : 000071H

15 14 13 12 11 10 9 8

ADCS2

⇐ Attributes– R/W R/W R/W – – R/W R/W
⇐ Initial value– 0 0 0 – – 0 0

bit

2.9 A/D Converter

136

[Bits 14, 13, 12] ACS2, ACS1, ACS0 (Analog channel set)

These bits are used to select the A/D conversion channel.

• In single conversion mode, these bits change the channel selection.

• In scan conversion mode, these bits select the scan start channel (see section 2.9.4 "Operating
Description").

 When AN0to AN3 are selected, scan conversion will cover the selected channel through AN3.

 When AN6 to AN7 are selected, scan conversion will cover the selected channel through AN7.

• Results are stored in different registers depending on channels selected.

Note that the AN2 to AN3 and AN6 to AN7 data registers overlap.

When conversion on AN2 is followed by conversion on AN6, data will be overwritten causing loss
of the conversion data on AN2.

[Bits 11, 10] Not used

[Bit 9] CREG:

This bit is used to set the number of bits to save from A/D conversion (see section 2.9.3(4)).

0: 10-bit mode

The upper 2 bits of the conversion value are stored in the ADTHx register, and the lower 8 bits
in the ADTLx register.

1: 8-bit mode

The upper 8 bits of the conversion value are stored in the ADTLx register.

The initial value at reset is '0.'

[Bit 8] SCAN:

This bit selects the conversion mode.

The initial value after reset is '0.'

ACS2 ACS1 ACS0 Channel Corresponding data register

0 0 0 AN0 ADTH0, ADTL0

0 0 1 AN1 ADTH1, ADTL1

0 1 0 AN2 ADTH2, ADTL2

0 1 1 AN3 ADTH3, ADTL3

1 0 0 Setting prohibited –

1 0 1 Setting prohibited –

1 1 0 AN6 ADTH2, ADTL2

1 1 1 AN7 ADTH3, ADTL3

Function

0 Single conversion mode

1 Scan conversion mode

2.9 A/D Converter

137

(3) Conversion time setting registers (ADCT1, ADCT2)

This register determines the length of the sampling period and conversion interval periods a to c (see
Figure 2.9.3). The width of each interval can be expressed by the following formula:

(Register setting value + 1) x 0.1 µs (at machine clock of 10 MHz)

This register should be accessed by word access.

This register is undefined at reset. Settings must always be entered before starting A/D conversion.

Fig. 2.9.3 Conversion time

[Bits 15, 14, 13, 12] SMP3, SMP2, SMP1, SMP0 (sampling time):

These bits determine the length of the sampling period.

[Bits 11, 10, 9, 8] CV03, CV02, CV01, CV00 (convert time a):

These bits determine the length of conversion period a.

[Bits 7, 6, 5, 4] CV13, CV12, CV11, CV10 (convert time b):

These bits determine the length of conversion period b.

[Bits 3, 2, 1, 0] CV23, CV22, CV21, CV20 (convert time c):

These bits determine the length of conversion period c.

Note: For setup of sampling time and convert time a to c, refer to the electrical characteristics. Total A/D
conversion time from its activation to the completion is equivatlent to [sampling time + convert
time a + convert time b + convert time c+3 machine clocks].

SMP3 SMP2 SMP1 SMP0 CV03 CV02 CV01 CV00Address:000073H

15 14 13 12 11 10 9 8

ADCT2

⇐ AttributesR/W R/W R/W R/W R/W R/W R/W R/W
⇐ Initial valueX X X X X X X X

bit

CV13 CV12 CV11 CV10 CV23 CV22 CV21 CV20Address:000072H

bit

⇐ AttributesR/W R/W R/W R/W R/W R/W R/W R/W
⇐ Initial valueX X X X X X X X

7 6 5 4 3 2 1 0

ADCT1

Sampling interval period Conversion period a Conversion period b Conversion period c

A/D conversion start Conversion end
(interrupt generated)

2.9 A/D Converter

138

(4) Data Registers (ADTHx, ADTLx)

These registers contain the digital values resulting from A/D conversion.

The ADCS2 register uses different data save formats, depending on the value of the CREG bit. (Switch-
ing may be made at any time without regard to A/D operation.)

Values in these registers are updated after the end of each single conversion cycle. The value is nor-
mally the last conversion value. The value of these registers is indeterminate at reset.

a) When CREG bit = '0'

The ADTHx register corresponds to the upper 2 bits of the conversion value, and the ADTLx regis-
ter to the lower 8 bits.

Bits 15 to 10 of the ADTLx register have the read value '0.'

b) When CREG bit = '1'

The ADTLx register corresponds to the upper 8 bits.

The ADTHx register has the read value '00H.'

Address:000075H

000077H
0 0 0 0 0 0 D9 D8

15 14 13 12 11 10 9 8

ADTHx

⇐ Attributes– – – – – – R R
⇐ Initial value0 0 0 0 0 0 X X

bit

D7 D6 D5 D4 D3 D2 D1 D0Address:000074H

bit

⇐ AttributesR R R R R R R R
⇐ Initial valueX X X X X X X X

7 6 5 4 3 2 1 0

ADTLx
000076H

000078H

00007AH

000079H

00007BH

Address:000075H

000077H

0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8

ADTHX

⇐ Attributes– – – – – – – –
⇐ Initial value0 0 0 0 0 0 0 0

bit

D7 D6 D5 D4 D3 D2 D1 D0Address:000074H

bit

⇐ AttributesR R R R R R R R
⇐ Initial valueX X X X X X X X

7 6 5 4 3 2 1 0

ADTLX
000076H

000078H

00007AH

000079H

00007BH

2.9 A/D Converter

139

2.9.4 Operating Description
The A/D converter uses the 10-bit series-parallel method, and has a minimum conversion time of 1.25µs.

This A/D converter provides a selection of single conversion mode and scan conversion mode.

(1) Single Conversion Mode

When the SCAN bit in the control & status register is set to '0' single conversion mode is selected. A
single conversion is performed on the signal from the analog input channel selected by bits ACS2 to
ACS0 in the control & status register, and then a single conversion ends.

(Example) ACS=010B (AN2 selected)

Fig. 2.9.4a Single Conversion Mode

When A/D conversion starts, the analog signal input from AN2 is converted to digital expression, then
the operation ends and the INT bit is set.

The interrupt request flag is set after each single conversion.

STAR

A/D stop

INT

A/D start
A/D conversion period

2.9 A/D Converter

140

(2) Scan Conversion Mode

When the SCAN bit in the control & status register is set to '1' scan conversion mode is selected.

Scan conversion begins with the signal from the analog input channel selected by bits ACS2 to ACS0 in
the control & status register. The last channel scanned depends on the setting of the ACS2 to ACS0 bits.
Up to 4 channels may be scanned. Note, however, that the MB90242A series has only 6 channels, so
that AN6 and AN7 can only be scanned in a two-channel scan.

Table 2.9.4 Channel Settings in Scan Conversion Mode

(Example) ACS=000B (Scan conversion from AN0 to AN3)

Fig. 2.9.4b Scan Conversion Mode

When A/D conversion starts channels AN0 to AN3 are scanned in sequence, then after all scanning is
ended the INT bit is set and the operation ends.

The interrupt request flag is set when scan conversion ends.

ACS2 ACS1 ACS0 Start channel End channel Remarks

0 0 0 AN0 AN3 4-channel scan conversion

0 0 1 AN1 AN3 3-channel scan conversion

0 1 0 AN2 AN3 2-channel scan conversion

0 1 1 AN3 AN3 1-channel single conversion

1 1 0 AN6 AN7 2-channel scan conversion

1 1 1 AN7 AN7 1-channel single conversion

STAR

A/D stop

INT

A/D start

Conversion

AN0

Conversion

AN1

Conversion

AN2

Conversion

AN3

Sequential conversion

2.10External Interrupts

141

2.10 External Interrupts

The DTP (Data transfer peripheral) module is a peripheral circuit placed between external peripheral
resources and the F2MC-16F CPU to receive the DMA requests and interrupts generated from the external
peripheral resources and pass them to the F2MC-16F CPU in order to trigger the extended intelligent I/O
services or interrupt processing as necessary. Two request levels (H and L) can be handled for extended
intelligent I/O services, and four (H and L, plus rising and falling edges) are handled for external interrupt
requests. In addition, this module has the ability to initiate extended intelligent I/O services or interrupt
processing. Only factor detection is enabled for signal pins corresponding to other bits.

2.10.1 Register List

2.10.2 Block Diagram

Fig. 2.10.1 Block Diagram

15 14 13 12 11 10 9 8 7 6 45 3 2 1 0

EIRR ENIR

ELVR

EIRR:ENIR
000031H:30H

ELVR
000032H

F2MC-16F bus

Interrupt/DTP enable register

Gate Source F/F Edge detection circuit Request input

Interrupt/DTP source register

Request level setting register

8

8

8

8

8

(INT0 to INT3)

2.10External Interrupts

142

2.10.3 Detailed Register Description
(1) ENIR (Interrupt/DTP Enable Register)

■ Register Allocation

■ Register Description

The ENIR register determines the operation of the external interrupt/DTP request input functions that
generate interrupt requests to the interrupt controller. When '1' is written to a bit in this register, the cor-
responding pin is used as an external interrupt/DTP request input and has the function of generating
interrupt requests to the interrupt controller. When '0' is written to a bit, the corresponding pins will
retain external interrupt/DTP request input factors, but will not generate requests to the interrupt con-
troller.

(2) EIRR (Interrupt/DTP Factor Register)

■ Register Allocation

■ Register Description

The EIRR register can be read-accessed to show the presence of external interrupt/DTP requests, and
can be write-accessed to clear the flip-flop settings that indicate these requests. A read value of '1' indi-
cates that an interrupt/DTP request has been generated at the pin corresponding to that bit. Writing '0' to
this register clears the request flip-flop setting at the corresponding bit. Writing '1' has no effect. With
read-modify-write commands, the read value is always '1.'

– – – – EN3 EN2 EN1 EN0

⇐ Bit no.

Read/write ⇒ (–) (–) (–) (–) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (–) (–) (–) (–) (0) (0) (0) (0)

Interrupt/DTP enable register

Address : 000030H

7 6 5 4 3 2 1 0

ENIR

– – – – ER3 ER2 ER1 ER0

⇐ Bit no.

Read/write ⇒ (–) (–) (–) (–) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (–) (–) (–) (–) (0) (0) (0) (0)

Interrupt/DTP register

Address : 000031H

15 14 13 12 11 10 9 8

EIRR

2.10External Interrupts

143

(3) ELVR (Request Level Setting Register)

■ Register Allocation

■ Register Description

The ELVR register is used to select the mode of request detection. 2 bits are assigned to each pin, and
are set in combination as shown below. When the request input is in level, clearing the register setting
will reset the signal if the input is at active level.

Table 2.10.1 ELVR Bit Settings

2.10.4 Operating Description
(1) External Interrupt Operations

When external interrupt requests are used, this resource will generate an interrupt request signal to the
interrupt controller whenever an interrupt designated in the ELVR register is received at the corre-
sponding input pin. Interrupts generated simultaneously are assigned priority values by the interrupt
controller. If an interrupt from this resource has the current highest priority, the interrupt controller will
generate an interrupt request to the F2MC-16F CPU, which will compare the interrupt with the ILM bit
in its own internal CCR register. If the interrupt has a higher priority level than the ILM bit, the CPU
will start the hardware interrupt processing microprogram as soon as the current instruction being exe-
cuted is terminated.

Fig. 2.10.2 External Interrupt Operation

LBx LAx Detection mode

0
0
1
1

0
1
0
1

Interrupt if L level signal
Interrupt if H level signal
Interrupt if rising edge
Interrupt if falling edge

LB3 LA3 LB2 LA2 LB1 LA1 LB0 LA

⇐ Bit no.

Read/write ⇒ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (0) (0) (0) (0) (0) (0) (0) (0)

Request level setting register

Address : 000032H

7 6 5 4 3 2 1 0

ELVR

External interrupt/DTP

Interrupt

Other requests

Interrupt controller F2MC-16F CPU

ELVR

EIRR

ENIR

ICR yy

ICR xx

CMP

source

IL

ILM

CMP

INTA

2.10External Interrupts

144

In the hardware interrupt processing microprogram, the CPU reads the information in the ISE bit from
the interrupt microcontroller to determine that the current request is concerned with interrupt process-
ing, and then branches to the interrupt processing microprogram. The interrupt processing micropro-
gram executes the user-defined interrupt processing program by reading interrupt vector areas and
generating interrupt acknowledge signals to the interrupt controller on the interrupt microcontroller,
and then by transferring to the program counter the jump destination address of the macro command
generated by the vectors.

(2) DTP Operation

Extended intelligent I/O service processing is started with an initialization procedure that sets the I/O
address pointer in the extended intelligent I/O service descriptor to the address of the register allocated
to addresses 000000H to 00FFFFH, and at the same time sets the buffer address pointer to the start
address of the memory buffer.

The DTP operating sequence is entirely identical to external interrupt processing up to the point that the
F2MC-16F CPU starts the hardware interrupt processing microprogram. At this point, the value of the
ISE bit that the F2MC-16F CPU reads within the hardware interrupt processing microprogram indicates
DTP processing, and accordingly control is passed to the extended intelligent I/O service processing
microprogram. When the extended intelligent I/O service starts up, read or write signals are sent with
addressing that designates specific external peripheral resources, and data is transferred to and from the
MB90242A chip. The interrupt request to the MB90242A chip should be dismissed within three
machine cycles after the transfer to or from the external peripheral resources. Once the transfer is com-
plete, the descriptor is updated, and then a signal for clearing the transfer factor is sent to the interrupt
controller. This resource receives the clearing signal, clears the flip-flop setting where the factor has
been stored, and awaits the next request from the signal pin. For a detailed description of extended
intelligent I/O service processing, see the MB90200 Programming Manual.

2.10External Interrupts

145

Fig. 2.10.3 External Interrupt Dismissal Timing at End of DTP Operation

Fig. 2.10.4 Simplified Example of Interface and External Peripheral Resource

(3) Switching between External Interrupt Requests and DTP Requests

Switching between external peripheral requests and DTP requests is accomplished by setting the ISE
bit in the ICR register that corresponds to this resource. Each signal pin is provided with an individual
ICR register, so that DTP can be requested for that signal pin by writing '1' to the ISE bit in the corre-
sponding ICR register, and '0' can be requested by writing '0.'

Fig. 2.10.5 Switching between External Interrupt Requests and DTP Requests

Interrupt factor

Internal operation

Address bus pin

Data bus pin

Read signal

Write signal

Descriptor selected

Rising edge request, or H level request
 *At the time that extended intelligent I/O services transfer

I/O register to memory

Read address Write address

Read data Write data

Remove within 3 machine cycles

and read

(1)

(2)

E
xt

er
na

l p
e

rip
he

ra
l

R
eg

is
te

r

Data, address bus Internal bus

MB90240 series
Remove within 3 machine
cycles after transfer end

IRQ DTP F2MC-16F
CPU

MEMORY

(1) (2)

INT

Pin

External interrupt

External interrupt/DTP

0
1

ICR xx
ICR yy

Interrupt controller

DTP

F2MC-16F
CPU

2.10External Interrupts

146

2.10.5 Notes on Usage
(1) Conditions for External Peripheral Resources Connected for Use with DTP

External peripheral resources supported by DTP must be able to clear requests automatically after
transfers have been completed. In addition, unless transfer requests can be removed within 3 machine
cycles (tentative value) after the start of transfer operation, the resource will react as if the next transfer
request has been generated.

(2) Recovery from Standby

When external interrupts are used to recover from standby status in clock stop mode, the input signal
should be an H level request. Use of an L level signal may result in abnormal operation. Edge requests
cannot be used to recover from standby status in clock stop mode. The MB90242A series has four
external interrupt signal pins, however, only CH0 or CH1 should be used to recover from standby sta-
tus. CH2 and CH3 should be set to Hi-Z status to cut off input signals at standby.

(3) External Interrupt/DTP Operating Procedure

External interrupt/DTP register settings should be made using the following procedure.

4. Disable the corresponding bits in the enable register.

5. Set the corresponding bits in the request level setting register.

6. Clear the corresponding bits in the interrupt source register.

7. Enable the corresponding bits in the enable register.

(Note that steps 3 and 4 may be done with simultaneous write operations using word access.)

When making settings to registers within this resource, it is first necessary to make a 'disable' setting in
the enable register. Also, it is necessary to clear the interrupt source register before returning the enable
register to 'enable' status. This is in order to avoid setting erroneous interrupt sources when making reg-
ister settings or enabling interrupt status.

2.10External Interrupts

147

(4) External Interrupt Request Levels

(1) When the interrupt level uses edge interrupt detection, the pulse width must be at least three
machine cycles to allow the edge detection function to operate.

(2) When the interrupt input level involves a level setting, incoming external interrupt signals are
retained, even after removal, in an internal interrupt source hold circuit, and the request to the inter-
rupt controller remains active. Thus to dismiss requests to the interrupt controller, it is necessary to
clear the interrupt source hold circuit.

Fig. 2.10.6 Clearing Interrupt Source Hold Circuit when Level Setting is Used

Fig. 2.10.7 Timing of Interrupt Source and Interrupt Request to Interrupt Controller when Interrupt Enabled

Interrupt
Level detection

Source F/F
Enable gate

To interrupt

Source remains held until cleared

(interrupt source hold circuit) controllersource

H level

Interrupt request to interrupt controller

Inactive due to clearing of source F/F

Interrupt source

2.11 Delayed Interrupt Generator Module

148

2.11 Delayed Interrupt Generator Module

The Delayed interrupt generator module is used to generate interrupts for task switching. This module can
be used to generate or delete software interrupt requests to the F2MC-16F CPU.

2.11.1 Register List

2.11.2 Block Diagram

Fig. 2.11.1 Block Diagram

2.11.3 Detailed Register Description
(1) DIRR (Delayed Interrupt Source Generate/Dismiss Register)

The DIRR register controls the generation and dismissal of delayed interrupt requests. Writing '1' to this
register causes a delayed interrupt request to be generated, and writing '0' dismisses the delayed inter-
rupt request. After a reset, this register is in a state of interrupt source being dismissed. Either '0' or '1'
may be written to the reserved bits, however in view of future extension it is recommended that set-bit
and clear-bit instruction be used when accessing this register.

15 14 13 12 11 10 9 8 7 6 45 3 2 1 0

DIRR
DIRR

00009FH

F2MC-16F bus

Decoder for delayed interrupt source generate/dismiss

Source latch

– – – – – – – R0

⇐ Bit no.

Read/write ⇒ (–) (–) (–) (–) (–) (–) (–) (R/W)
Initial value⇒ (–) (–) (–) (–) (–) (–) (–) (0)

Address : 00009FH

15 14 13 12 11 10 9 8

TBTC

2.11 Delayed Interrupt Generator Module

149

2.11.4 Operating Description
(1) Delayed Interrupts

When the CPU uses software commands to write '1' to the corresponding bit in the DIRR register, the
request latch is set in the delayed interrupt generator module, and an interrupt request is sent to the
interrupt controller. If other interrupt requests have a lower priority, or if there are no other requests, an
interrupt is then generated and sent to the F2MC-16F CPU by the interrupt controller. Then, the F2MC-
16F CPU compares the request with the ILM bit in its own internal CCR register. If the request level is
higher than the ILM bit, then as soon as the current instruction finishes executing, the hardware inter-
rupt processing microprogram is started. This causes the interrupt processing routine for this interrupt
to be executed.

Fig. 2.11.2 Delayed Interrupt Generator Operation

During the interrupt processing routine, the source of interrupt is cleared by writing '0' to the corre-
sponding bit in the DDIR register, and by switching tasks.

2.11.5 Notes on Usage
(1) Delayed Interrupt Request Latch

This latch is set by writing '1' to the corresponding bit in the DIRR register, and cleared by writing '0' to
the same bit. Therefore the interrupt processing routine must contain software to clear the source of
interrupt within the interrupt processing routine, or else recovery from interrupt processing will only
result in the immediate start of another interrupt processing routine. Users should ensure that interrupt
processing software is programmed to avoid this problem.

 Delayed interrupt generator module

Other requests

Interrupt controller F2MC-16F CPU

DDIR

ICR yy

ICR xx

CMP

IL

ILM

CMP

INTA

WRITE

2.12 Watchdog Timer, Timebase Timer Functions

150

2.12 Watchdog Timer, Timebase Timer Functions

The watchdog timer is composed of a 2-bit watchdog counter that uses as a clock source the carry signal of
the 18-bit timebase timer, plus a control register and a watchdog reset control unit. The timebase timer con-
sists of an 18-bit timer plus circuits that control interrupt signals at intervals. Figure 2.12.1 shows the con-
figuration of the watchdog timer and timebase timer.

2.12.1 Register List

2.12.2 Block Diagram

Fig. 2.12.1 Watchdog Timer and Timebase Timer Block Diagram

15 14 13 12 11 10 9 8 7 6 45 3 2 1 0

TBTC WTC
TBTC:WTC

0000A9H:A8H

F
2 M

C
-1

6F
 b

u
s Timebase

Selector
Clock input

Timebase timer

Source oscillation clock

2-bit counter Watchdog reset

To WDGRST

From power-on

From hardware

RSTX pin

From RST bit in

interrupt

TBC1

TBTC

TBC0

TBR

TBIE

TBOF

WTC

WT1

WT0

WTE

PONR

STBR

WRST

ERST

SRST

AND
S

Q R

212

214

216

218

TBTRES

Selector

214 216 217 218

OF
CLR

generator circuit

CLR internal reset
generator circuit

generated

standby control
circuit

STBYC register

2.12 Watchdog Timer, Timebase Timer Functions

151

2.12.3 Detailed Register Description
(1) WTC (Watchdog timer control register)

■ Register Allocation

■ Register Description

This register comprises bits used to control watchdog timer-related functions, plus bits that identify
reset sources.

■ Bit Descriptions

[Bits 7 to 3] PONR, STBR, WRST, ERST, SRST

These bits are flags that indicate reset sources. When a reset source occurs, the corresponding bit is
set as shown in Table 2.11.1. These bits are all cleared to '0' after a WTC read operation. This regis-
ter is read-only. Note that at power-on, the value of bits other than the power-on bit is not warranted.
Therefore software should be programmed to ignore the value of other bits when the PONR bit is '1.'

Table 2.12.1 Reset Source Bits and Reset Sources

[Bit 2] WTE

When the watchdog timer is in stop status, it can be returned to operating status by writing '0' to this
bit. The second and subsequent writing of '0' will clear the watchdog timer counter. Writing '1' to
this bit has no effect.

The watchdog timer can be placed in stop status by power-on, hardware standby or watchdog timer
reset. The read value is '1.'

Reset source PONR STBR WRST ERST SRST

Power-on 1 – – – –

Hardware standby * 1 * * *

Watchdog timer * * 1 * *

External pin * * * 1 *

RST bit * * * * 1

* indicates prior value retention.

PONR STBR WRST ERST SRST WTE WT1 WT0

⇐ Bit no.

Read/write ⇒ (R) (R) (R) (R) (R) (W) (W) (W)
Initial value⇒ (X) (X) (X) (X) (X) (X) (X) (X)

Watchdog timer control register

Address : 0000A8H

7 6 5 4 3 2 1 0

WTC

2.12 Watchdog Timer, Timebase Timer Functions

152

[Bit 1, 0] WT1, WT0

These bits select the interval time used for the watchdog timer. To be valid, data must be written to
this bit when the watchdog timer starts. All write data written at other times is ignored.

Table 2.13.2 shows interval time settings.

They are write-only bits.

Table 2.12.2 Watchdog Timer Interval Select Bit

(2) TBTC (Timebase timer control register)

■ Register Allocation

■ Register Description

This register controls the operation of the timebase timer, as well as the interval interrupt time.

■ Bit Description

[Bit 15] Reserved bit

This is a test bit. The write value should always be '0.'

[Bits 14 to 13] Not used

[Bit 12] TBIE

This bit enables interval interrupts from the timebase timer. Write '1' to enable interrupt, and '0' to
disable it. The initial value is '0' after reset. This bit is read/write enabled.

WT1 WT0
Interval time (machine clock: 16 MHz)

Min Max

0 0 approx. 3.58 ms approx. 4.61 ms

0 1 approx. 14.33 ms approx. 18.44 ms

1 0 approx. 28.67 ms approx. 36.87 ms

1 1 approx. 57.34 ms approx. 73.73 ms

Note: The maximum interval time assumes that the time-
base counter is not reset while the watchdog timer
is operating.

Reserved – – TBIE TBOF TBR TBC1 TBC0

⇐ Bit no.

Read/write ⇒ (R/W) (–) (–) (R/W) (R/W) (R) (R/W) (R/W)
Initial value⇒ (0) (X) (X) (0) (0) (0) (0) (0)

Timebase timer control register

Address : 0000A9H

15 14 13 12 11 10 9 8

TBTC

2.12 Watchdog Timer, Timebase Timer Functions

153

[Bit 11] TBOF

This is the timebase timer interrupt request flag. If the TBIE bit has the value '1' then setting this bit
to '1' will cause an interrupt request to be generated. This bit will be set to '1' at every interval
defined by the TBC1, TBC0 bits. This bit can be cleared by writing '0,' changing into stop mode or
hardware standby mode, or by a reset. Writing '1' to this bit is meaningless.

With read-modify-write commands, the read value is always '1.'

[Bit 10] TBR

This bit clears all bits in the timebase timer counter to '0.' Write '0' to this bit to clear the timebase
timer counter. Writing '1' to this bit is meaningless. The read value is always '1.'

[Bits 9, 8] TBC1, TBC0

These bits specify the time interval settings for the timebase timer. Interval settings are shown in
Table 2.11.3. The value is initialized to '00B' by a reset. This bit is read/write enabled.

Table 2.12.3 Timebase Timer Interval Selection

TBC1 TBC0
Interval time

(machine clock at 16 MHz)

0 0 0.256 ms

0 1 1.024 ms

1 0 4.096 ms

1 1 16.384 ms

2.12 Watchdog Timer, Timebase Timer Functions

154

2.12.4 Operating Description
(1) Watchdog Timer

The watchdog timer function is used to detect program loops. If a program loop condition causes the
designated time to elapse before '0' is written to the WTE bit in the watchdog timer, the watchdog timer
will generate a watchdog reset request.

■ Startup

When the watchdog timer is stopped, it can be started by writing '0' to the WTE bit in the WTC register.
At this moment, the value of the WT0, WT1 bits is used to determine the watchdog timer reset interval.
The interval can only be defined by the data values effective at the time of startup.

■ Watchdog Timer Reset

Once the watchdog timer has been started, the program must clear the 2-bit watchdog counter at regular
intervals. Specifically, this means that '0' must be written to the WTE bit in the WTC register at regular
intervals. The watchdog counter is configured as a 2-bit counter and uses the carry signal of the time-
base counter as its clock source. Thus when the timebase timer is cleared, the watchdog reset generation
time may be longer than the setting.

Figure 2.13.2 shows the operation of the watchdog timer.

Fig. 2.12.2 Watchdog Timer Operation

■ Watchdog Stop

The watchdog timer is initialized and placed in stop status after startup, by power-on, hardware standby
or watchdog reset. The watchdog counter is cleared by a reset from an external pin or software signal,
but in these cases the watchdog function does not stop.

■ Other

The watchdog counter may be cleared by writing '0' to the WTE bit, but is also cleared by reset, transi-
tion to sleep mode or stop mode, or by a hold acknowledge signal.

Timebase

Watchdog

WTE write
Watchdog started Watchdog cleared

 Watchdog reset generated

00 01 10 00 01 10 11 00

➱

2.12 Watchdog Timer, Timebase Timer Functions

155

(2) Timebase Timer

The timebase timer functions as clock source for the watchdog counter, timer for oscillation stabiliza-
tion time, and as an interval timer generating interrupts at designated regular intervals.

■ Timebase Timer

The timebase timer consists of an 18-bit counter that counts the source oscillation input produced by the
machine clock. The count operation continues as long as the source oscillation signal is input. The time-
base timer is cleared by a power-on reset, transition to stop mode or hardware standby mode, or by writ-
ing '0' to the TBR bit in the TBTC register.

Clearing the timebase timer affects the watchdog counter and interval interrupt functions that operate
using the output from the timebase timer.

■ Interval Interrupt Function

This function generates interrupts at regular intervals according to the time base counter carry signal.
The TBOF flag is set at an interval determined by the TBC1, TBC0 bits in the TWC register. The
setting of this flag is based on the last time that the timebase timer was cleared.

In transition to stop mode or hardware standby mode, the timebase timer is used to time the oscillation
stabilization period after recovery. Therefore the TBOF flag is cleared simultaneously with mode
transition.

156

3.1 Clock Generator

157

Chapter 3:
Operation

3.1 Clock Generator

The clock generator unit controls internal clock operations including sleep mode, stop mode and gear
functions. The internal clock is referred to as the machine clock, and one period of this signal is called a
machine cycle.

Figure 3.1.1 shows a block diagram of the clock generator unit.

Fig. 3.1.1 Clock Generator Unit Block Diagram

Reset

Interrupt HSTX SLP bit set Machine clock selected

Internal clock

Oscillator stabilization

divide2

Watchdog interval selected

Watchdog timer

STP bit set

S Q

R

S Q

R

S Q

R
1/2 1/2 1/4

1/41/4096
frequency
divider

1/41/4

wait time selected

X0 X1

1/2

3.2 Reset

158 Chapter 3: Operation

3.2 Reset

3.2.1 Reset Factor Generation
When a reset factor occurs, the reset device immediately stops processing, and goes into reset release
standby mode. Resets are generated by the following multiple factors.

• Occurrence of a power-on reset

• Exit from hardware standby status

• Watchdog timer overflow

• Generation of an external reset request from the RSTX pin

• Generation of a reset request by software

When an external bus is used, the device where a reset factor occurs will generate an address that will be
indeterminate all signals used for external bus access, such as the RDX and WRX signals, will be inactive.

3.2.2 Operation after Reset Release
Once a reset factors is removed, the reset device immediately outputs the address containing the reset vec-
tor, and the reset vector and mode data are fetched by the system. Reset vectors and mode data are allo-
cated to the 4 bytes from FFFFDCH to FFFFDFH, and are transferred after reset release by the register
hardware shown in Figure 3.2.1.

Fig. 3.2.1 Reset Vector and Mode Data Location and Transfer Destinations

Memory space

Mode data

Reset vector bits 23 to 16

Reset vector bits 15 to 8

Reset vector bits 7 to 0

F2MC-16F CPU

Mode

Register

Micro ROM

Reset sequence

FFFFDFH

FFFFDEH

FFFFDDH

FFFFDCH

PCB

PC

3.2 Reset

159

3.2.3 Reset Factors
There are five types of reset factor, as listed in Table 3.2.1, each using different machine clock (gear func-
tion) and watchdog function default settings.

Reset factors can be determined from the reset factor bit in the watchdog control register.

Table 3.2.4 Reset Factors

Figure 3.2.2 shows flip-flop settings corresponding to each reset factor. Each of these settings can be read
from the watchdog timer control register, so that if it is necessary to determine a reset factor after the reset
has been released, software commands can be used to process values read from this register and to branch
to the appropriate program. The watchdog timer control register is illustrated in Figure 3.2.3.

Fig. 3.2.2 Reset Factor Bit Block Diagram

Reset Originating factor
Machine

clock
Watchdog

timer

Oscillation
stabilization

wait

Power-on reset At power-up '11' Stop Yes

Hardware standby 'L' level input to HSTX pin '11' Stop Yes

Watchdog timer Watchdog timer overflow '11' Stop No

External pin 'L' level input to RSTX pin
Hold prior

status
Hold prior

status
No

Software Write '0' to STBYC register RST bit
Hold prior

status
Hold prior

status
No

* When an external pin reset signal is input during stop mode, an oscillation stabilization wait period is
applied regardless of reset factor.

Power-on

HSTX pin

Power-on

RSTX pin

External reset request

No periodic clearing

Watchdog timer reset

RST bit set

STBYC.RST bit write

WTC register

WTC register read

F2MC-16 bus

detection circuit
Hardware standby
exit detection circuit detection circuit detection circuit detection circuit

HSTX=→H RSTX=L

S R
F / F

S R
F / F

S R
F / F

S R
F / F

S R
F / F Delay circuit

3.2 Reset

160 Chapter 3: Operation

Fig. 3.2.3 WTC (Watchdog Timer Control) Register

The watchdog timer control circuit can handle multiple reset requests, by setting each of the corresponding
reset factor bits in the watchdog timer control register. Thus if an external reset request and watchdog reset
request occur at the same time, both the ERST and WRST bits will be set to '1.'

Note that an exception occurs with power-on resets, where if the PONR bit is set to '1' all other bits do not
indicate their corresponding normal reset factors. For this reason, software should be programmed so that
if the value of the PONR bit is '1' all other reset factor bits will be ignored.

Table 3.2.5 Reset Factor Bit Values and Corresponding Reset Factors

Reset factor bits can only be cleared by reading the watchdog timer control register, so that once a reset
factor has occurred and the reset factor bit is set to '1' that value will remain '1' when any other reset factors
occur.

Reset Factor PONR STBR WRST ERST SRST

Power-on 1 Indeterminate Indeterminate Indeterminate Indeterminate

Hardware standby * 1 * * *

Watchdog timer * * 1 * *

External pin * * * 1 *

RST bit * * * * 1

(an asterisk (*) indicates prior value retained)

PONR STBR WRST ERST SRST WTE WT1 WT0

⇐ Bit no.

Read/write ⇒ (R) (R) (R) (R) (R) (W) (W) (W)
Initial value⇒ (*) (*) (*) (*) (*) (*) (*) (*)

Address : 0000A8H

7 6 5 4 3 2 1 0

WTC

3.3 Memory Access Mode

161

3.3 Memory Access Mode

3.3.1 Mode Types
The F2MC-16F CPU uses separate modes for access method, access area and operation as shown in the fol-
lowing diagram.

Fig. 3.3.1 Mode Types

■ Operating Modes

Operating modes control the operating status of the MB90242A device and are set by the mode setting
pins MD2 to MD0.

■ Bus Modes

 Bus modes control external ROM operation and external access functions, and on the MB90242A are
set for external ROM, external bus operation.

■ Access Modes

 Access modes control external data bus width, and are set by the mode setting pins MD2 to MD0
together with the value of the S0 bit in the mode data. The access mode may be selected to specify
either 8-bit or 16-bit external data bus width.

Operation modes

External data bus length

Normal operation External ROM external bus { 8-bit / 16-bit }

Bus mode Access modes

3.3 Memory Access Mode

162 Chapter 3: Operation

3.3.2 Mode Pins
The mode setting pins MD2 to MD0 are three external pins that are used in combination to select the oper-
ating mode as shown in Table 3.3.1.

Input to the MD2 to MD0 pins should be connected directly to Vcc or GND.

Table 3.3.1 Mode Pins and Mode Selection

3.3.3 Mode Data
Mode data is located at memory address FFFFDFH, and is used to control CPU operation. During reset
sequences this data is read and stored in 'Iternal mode register on the device.' The contents of the mode reg-
ister can only be changed by a reset sequence.

Settings made to this register are valid after the reset sequence ends, but some mode pin settings may ren-
der a portion of the values in this register invalid.

Figure 3.3.2 shows the values of bits in the mode data register.

Fig. 3.3.2 Mode Data Structure

Mode pin setting
Mode name

Reset vector
access area

External data
bus width

Remarks
MD2 MD1 MD0

0 0 0
External vector
mode 0

External 16-bit

0 0 1
External vector
mode 1

External 8-bit
No upper data
byte(s)

0 1 0

(Setting prohibited)

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Mode data

Extended bits

Access mode setting bits

Bus mode setting bits

M1 M0 S2 S1 S0 E2 E1 E0

7 6 5 4 3 2 1 0

3.3 Memory Access Mode

163

■ Extended Bits (E2 to 0)

Table 3.3.2 Extended Bit Functions

■ Access Mode Setting Bits

These bits are used to set the access mode after the end of a reset sequence. Table 3.3.2 lists bit values
and functions. The S2 and S1 bits should always be set to '00.'

Table 3.3.2 Access Mode Setting Bits and Their Functions

■ Bus Setting Bits

These bits are used to set the operating mode after a reset sequence terminated. Table 3.3.3 lists bit
values and functions.

Table 3.3.3 Bus Mode Setting Bits and Their Functions

E2 E1 E0 Function Remarks

0 0 0
Internal RAM program
use disabled

Attempts to execute programs using internal
RAM will cause an exception interrupt.

1 1 0
Internal RAM program
use enabled

No exception interrupts generated. Note that
this setting will not allow use of tools for
debugging of RAM programs.

S2 S1 S0 Function Remarks

0 0 0 External data bus 16-bit mode

0 0 1 External data bus 8-bit mode

M1 M0 Function Remarks

0 0 (Setting prohibited)

0 1 (Setting prohibited)

1 0 External ROM, external bus mode

1 1 (Setting prohibited)

3.3 Memory Access Mode

164 Chapter 3: Operation

3.3.4 Mode Pin and Mode Data Settings
After reset release, both a mode pin setting and a mode data setting are required to allow the MB90242A
device to operate in the desired mode.

■ Mode Pin Setting Method

Mode pins are used to determine the method of fetching reset vectors and mode data.

Fig. 3.3.3 Mode Pin Setting Method

Mode pin settings result in different initial values for the upper address control register (HACR) and exter-
nal pin control register (EPCR) after a reset release.

Mode pin setting method

16-bit external

External vector mode 0 External vector mode 1

data bus width?

MD0=2, MD1=0, MD0=0 MD0=0, MD1=0, MD0=1

No

Yes

3.3 Memory Access Mode

165

■ Mode Data Setting Method

Mode data is contained in the mode register and is used to determine the operating mode after fetching
reset vectors and mode data.

In internal vector mode, mode data setting is made in address FFFFDFH in internal ROM. In external
mode 0 or 1, mode data setting is made in address FFFFDFH in the external memory area.

Fig. 3.3.4 Mode Data Setting Method

Fig. 3.3.5 Mode Data and Reset Vector Memory Allocation

Mode pin setting method

16-bit external

External ROM external bus mode, External ROM external bus mode,

data bus width?

Mode data = 80H Mode data = 88H

No

Yes

16-bit external bus width 8-bit external bus width

Memory space

Mode data

Reset vector bits 23 to 16

Reset vector bits 15 to 8

Reset vector bits 7 to 0

FFFFDFH

FFFFDEH

FFFFDDH

FFFFDCH

3.4 External Memory Access

166 Chapter 3: Operation

3.4 External Memory Access

Access to memory and peripheral devices outside the MB90242A device is enabled by the use of the fol-
lowing address/data/control signals.

A23-A00 (P47 to P20) : Address output

D15-D00 (P17 to P00) : Data input and output

CLK (P50) : Machine cycle clock output

RDY (P51) : External ready signal input

WRHX (P54) : Data bus upper 8-bit write signal

WRLX/WRX (P55) : Data bus lower 8-bit write signal

RDX (P56) : Read signal

External memory access takes place by means of the external bus pin control circuit.

3.4.1 Register Configuration

AR1 AR2 IOR – WRE CKE RYE HDEAddress : 0000A5H

15 14 13 12 11 10 09 08
External pin

E23 E22 E21 E20 E19 E18 E17 E16Address : 0000A4H

07 06 05 04 03 02 01 00
Upper address

⇐ Bit no.

Bit no. ➯

control register
(HACR)

control register
(EPCR)

3.4 External Memory Access

167

3.4.2 Block Diagram

Fig. 3.4.1 Block Diagram

3.4.3 Detailed Register Description
(1) HACR (Upper address control register)

This register controls output of addresses A23 to A16 to external circuits. Each bit represents one of the
address bits A23 to A16 and controls the corresponding address output pin as follows.

All bits in this register are write-only, and have the read value '1' at all times.

The initial values of the bits in this register are determined according to the operating mode of the
device at reset, as follows.

0 The corresponding pin serves as an address output (Axx) pin.

1 The corresponding pin severes as an I/O port (Pxx) pin.

When reset vectors are read from internal ROM 1 (I/O port)

When reset vectors are read from external ROM 0 (address output)

P5
P4

P3
P2

P1

Internal

Internal

P0 data

Access

P0 direction

P0

address
bus

data bus

P5

P0

control

Address control

Access control

Data control

E23 E22 E21 E20 E19 E18 E17 E16

⇐Bit no.

Read/write ⇒ (W) (W) (W) (W) (W) (W) (W) (W)
Initial value⇒ (*) (*) (*) (*) (*) (*) (*) (*)

Address : 0000A4H

07 06 05 04 03 02 01 00
 HACR
(Upper address
control register)

3.4 External Memory Access

168 Chapter 3: Operation

(2) EPCR (External Pin Control Register)

This register determines control functions for external bus operation.

This register cannot be accessed when the MB90242A device is operating in single-chip mode. In this
situation, all pins function as I/O ports regardless of the values in this register.

All bits in this register are write-only, and have the read value '1' at all times.

[Bits 15, 14] AR1, AR0

This bits determine the automatic wait function for external access to the area 000100H to FFFFFFH.
The two bits are used in combination to make the following settings.

*: Initial values for these bits are determined by the operating mode of the device at reset, as fol-
lows.

When the external ready function is enabled, a wait request from an external ready pin will cause the
automatic wait period of the number of cycles designated by this setting to be followed by continu-
ous wait status.

[Bit 13]:IOR

This bit will cause an automatic wait of 2 machine cycles to be inserted for external access to the
area 0000C0H to 0000FFH.

This bit is set to '0' by a reset.

When the external ready function is enabled, a wait request from an external ready pin will cause the
automatic wait period of 2 machine cycles to be followed by continuous wait status.

[Bit 12]:Reserved

This bit is reserved. The write value must always be '0.'

[Bit 11]:WRE

AR1 AR0 Setting

0 0 Automatic wait prohibited

0 1 1-machine cycle automatic wait inserted for external access

1 0 2-machine cycle automatic wait inserted for external access

1 1 3-machine cycle automatic wait inserted for external access

When reset vectors are read from internal ROM 00B (automatic wait disabled)

When reset vectors are read from external ROM 11B (3-machine cycle wait inserted)

0 Wait (initial value)

1 No wait

AR1 AR0 IOR Reserved WRE CKE RYE HDE

⇐Bit no.

Read/write ⇒ (W) (W) (W) (W) (W) (W) (W) (W)
Initial value⇒ (*) (*) (0) (–) (0) (*) (0) (0)

Address : 0000A5H

15 14 13 12 11 10 09 08

 EPCR
(External Pin
Control Register)

3.4 External Memory Access

169

This bit controls the output of the external write signal (in 16-bit bus mode, using the WRHX/
WRLX signal pins, and in 8-bit bus mode, using the WRX signal pin) as follows.

When the external data bus in 8-bit mode, this bit can enable use of P54 as an I/O port regardless of
the bit value set.

This bit is set to '0' at a reset.

When this bit is set to '1,' it is recommended that the port 5 data register (PDR5) write strobe bit
(P55 in 8-bit external data bus mode, and P54 and P55 in 16-bit external data bus mode) be set to '1'
due to the possibility of spikes being generated at on the write strobe pin due to occurrence of a reset
during system operation.

[Bit 10]:CKE

This bit controls the external clock signal (CLK) output as follows.

The initial value of this bit is determined by the operating mode of the device at reset, as follows.

[Bit 9]:RYE

This bit controls the external read (RDY) input signal as follows.

This bit is set to 0 at a reset.

0 I/O port (P55, P54) operation (write signal output disabled) (initial value)

1 Write strobe signal (WRHX/WRLX or WRX) output enabled

0 I/O port (P50) operation (clock output disabled)

1 Clock signal (CLK) output enabled

When reset vectors are read from internal ROM 1 (I/O port)

When reset vectors are read from external ROM 0(clock signal output)

0 I/O port (P51) operation (external RDY input disabled) (initial value)

1 External ready (RDY) signal input enabled

3.4 External Memory Access

170 Chapter 3: Operation

[Bit 8]:HDE

This bit enables input/output of signals related to the hold function. The value controls the hold
request input signal (HRQ) and hold acknowledge output signal (HAKX) as follows.

These bits are set to '0' at a reset.

[CAUTION] In 16-bit bus mode, if the WRE bit is used to enable the WRHX and WRLX functions,
P55 and P54 must not be set to output mode (Bits 5 and 4 in the DDR5 register should be
set to '0').

In 8-bit bus mode, if the WRE bit is used to enable the WRX function, P55 must not be set
to output mode. (Bit 5 in the DDR5 register should be set to '0.')

Also, even if the RYE and HDE bits are used to enable the RDY and HRQ input, the cor-
responding I/O port functions will be enabled. For this reason the corresponding bits in
the DDR5 register must be set to '0' (input mode).

0 I/O port (P53, P52) operation (hold function I/O disabled) (initial value)

1 Hold request (HRQ) input/hold acknowledge (HAKX) output enabled

3.4 External Memory Access

171

3.4.4 External Memory Access Control Signal
Access to external memory requires 2 cycles unless the ready function is used. Figure 3.4.2 presents an
overview of the signal timing involved in external access.

■ 8-Bit External Bus Mode

Timing for Byte Access

Timing for Word Access (the same is true for both even and odd addresses)

■ 16-Bit External Bus Mode

* Design the external circuit so that the word is always read.

Fig. 3.4.2 External Memory Access Timing Chart

The P51/RDY pin or the external pin control register (EPCR) may be set to enable access to low-speed
memory or peripheral circuits.

 Read data Write data

(Read address) (Write address) (Read address)(Read address)

(Port)

(Port)

Read data Read data

Read

P50/CLK

Write Read Read

P54
P55/WRX

P56/RDX

P47 to 20/A23 to 00

P17-10

P07 to 00/D07 to 00

 Write data Write data

(Lower address) (upper address) (upper address)(Lower address)

(Port)

(Port)

Read data Read data

Write

P50/CLK

Read

P54

P55/WRX

P56/RDX

P47 to 20/A23 to 00

P17 to 10

P07 to 00/D07 to 00

Byte read

➱Read data ➱Write data

Even address Even address Even addressOdd address

Write data➱➱Write data

P50/CLK

P54/WRHX

P55/WRX

P56/RDX

P47 to 20/A23 to 00

P17 to 10/D15 to 08

P07 to 00/D07 to 00

Byte write Byte write Word write

Indeterminate

Indeterminate

3.4 External Memory Access

172 Chapter 3: Operation

3.4.5 Ready Function
The RYE bit in the EPCR register can be set to '1' to extend the access cycle by creating a wait cycle for the
period in which the P51/RDY pin is input at 'L' level during access to external circuits.

Fig. 3.4.3 Ready Function Timing Chart

The MB90242A device also provides an on-chip auto-ready function for external memory access. The auto
ready function operates only for access to external memory allocated to addresses 000100H to FFFFFFH,
and extends the access cycle to 4 machine cycles by automatically inserting 1 to 3 cycles without the use of
external circuits. This function is activated by setting the AR1 or AR0 bit in the EPCR register.

In addition, the MB90242A device provides an external I/O auto-ready function that is independent of the
memory auto-ready function. When the IOR bit in the EPCR register is set to '0' a wait cycle of 2 machine
cycles is automatically inserted for access to external addresses 0000C0H to 0000FFH, creating an access
cycle of 4 machine cycles.

When either the external memory auto-ready function or the external I/O auto-ready function is used with
the RYE bit in the EPCR register set to '1,' the wait cycle can be continually extended by input of the 'L'
level signal at the P51/RDY pin after the end of the wait cycle introduced by the corresponding auto-ready
function as described above.

Wait cycle Read data Write data →Wait cycle←

P50/CLK

P51/RDY

P54/WRHX

P55/WRLXX

P56/RDX

P17 to 00/D15 to 00

P47 to 20/A23 to 00 (External address)

WriteRead

(External address)

3.4 External Memory Access

173

3.4.6 Hold Function
When the HDE bit in the EPCR register is set to '1,' the use of the external address hold function is enabled
for the P53/HRQ and P52/HAKX pins. When an 'H' level signal is input at the P53/HRQ pin, hold status
will be applied at the next break in bus operations, an 'L' level signal will be output from the P52/HAKX
pin, and the following pins will be placed in high impedance state.

• Address output: P47/A23 to P20/A00

• Data I/O: P17/D15 to P00/D00

• Bus control signal: P56/RDX, P55/WRLX, P54/WRHX

This enables use of the external bus by external circuits.

When an 'L' level signal is input at the P53/HRQ pin, the P52/HAKX pin output becomes 'H' level, the pins
revert to external signal pin status, and then bus operation is resumed.

In stop state, no hold request inputs are accepted.

■ Hold Function Timing (in 16-Bit External Bust Mode)

Fig. 3.4.4 Hold Function Timing

Read cycle

 Read data

(even addresses)

 Write data

P50/CLK

P53/HRQ

P52/HAKX

P54/WRHX

P55/WRLX

P56/RDX

Hold cycle Write cycle

P17 to 10/D15 to 08

P07 to 00/D07 to 00

Hiz

Hiz

Hiz

P47 to 20/A23 to 00 Hiz

Hiz

Hiz

(odd addresses)

3.5 Power Saving Modes

174 Chapter 3: Operation

3.5 Power Saving Modes

The following power-saving modes are supported: sleep mode, stop mode, hardware standby mode, and
gear functions.

In sleep mode, only the CPU operating clock is stopped and all other functions remain operating. In com-
parison, oscillator functions stop in both stop mode and hardware standby mode, offering data retention at
the lowest level of power consumption. Gear functions allow the external clock to be used as internal clock
speeds divided by a choice of 2, 4, or 16, resulting in lower-power operation.

Sleep mode, stop mode and gear functions are controlled by settings in the standby control register
(STBYC). Hardware standby mode is controlled by signal input to the HSTX pin.

3.5.1 Register Configuration

8 7 6 45 3 2 1 0

Standby control
STBYC

STBYC
0000A0H register

3.5 Power Saving Modes

175

3.5.2 Block Diagram

Fig. 3.5.1 Power Saving Mode Control Circuit and Clock Generator

3.5.3 Detailed Register Description
(1) STBYC (Standby control register)

[Bit 7] STP

Write '1' to this bit for transition to stop mode. Writing the value '0' has no effect on operation. The
value is set to '0' at a reset or wake-up from stop mode. This bit is write-only, and the read value is
always '0.'

F
2 M

C
-1

6F
 b

us

Gear divider circuits divide 2 frequency divider

CPU clock

Peripheral clock

Source oscillation

CPU clock

Peripheral clock

HSTX pin

Interrupt request

Clock input

 Timebase timer

Pin high-impedance Pin Hi-Z

Internal RST

To watchdog timer

CLK1

CLK0

SLP

STP

OSC1

OSC0

SPL

RST

1/1 1/2 1/4 1/16

Selector

Standby control circuit

RST Release HST start

generator

generator

clock

or RST

Selector

20

216

217

218 214 216 217 218

control circuit

Internal reset
generator circuit

RSTX pin

WDGRST

STBYC

STP SLP SPL RST OSC1 OSC0 CLK1 CLK0

⇐Bit no.

Read/write ⇒ (W) (W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value⇒ (0) (0) (0) (1) (*) (*) (*) (*)

Address : 0000A0H

7 6 5 4 3 2 1 0

 STBYC

3.5 Power Saving Modes

176 Chapter 3: Operation

[Bit 6] SLP

Write '1' to this bit for transition to sleep mode. Writing the value '0' has no effect on operation. This
bit is set to '0' at reset, wake-up from sleep mode or stop mode.

When '1' is simultaneously written to both the STP bit and SLP bit, the MB90242A will go into stop
mode. This bit is write-only, and the read value is always '0.'

[Bit 5] SPL

When this bit is '0,' the level of external pins will be retained in stop mode. When this bit is '1,' exter-
nal pins will be placed in high-impedance state. The value is set to '0' at reset. This bit is read-write
enabled.

[Bit 4] RST

When '0' is written to this bit an internal reset signal will be generated for 3 machine cycles. Writing
'1' to this bit has no effect. The read value is '1.'

[Bits 3, 2] OSC1, OSC0

These bits set the oscillation stabilization wait period at wake-up from stop mode or hardware
standby mode.

The initial value at power-on reset is '11,' but these bits are not initialized following resets due to
other factors. These bits are read-write enabled.

Table 3.5.1 OSC Bit Settings

[Bits 1, 0] CLK1, CLK0

These bits select the machine clock operating frequency and gear function ratios. They are not
initialized following resets from the RSTX pin or RST bit. The initial value is '11' following power-on
reset, hardware standby or watchdog reset.

These bits are read-write enabled.

Table 3.5.2 CLK Bit Settings

OSC1 OSC0
Oscillation stabilization wait period

(at 32 MHz source oscillation)

0 0 No stabilization wait period

0 1 approx. 2.05 ms (215 source oscillation count)

1 0 approx. 4.10 ms (216 source oscillation count)

1 1 approx. 8.19 ms (217 source oscillation count)

CLK1 CLK0
Machine clock

(at 32 MHz source oscillation)
Gear ratio

0 0 16 MHz 1/1

0 1 8 MHz 1/2

1 0 4 MHz 1/4

1 1 1 MHz 1/16

3.5 Power Saving Modes

177

3.5.4 Operating Description
(1) Overview of Power Saving Modes

Table 3.5.3. lists the status of units in the MB90242A in each operating mode.

Table 3.5.3 Operating Status in Power Saving Modes

(2) Sleep Mode

■ Transition to Sleep Mode

Transition to sleep mode is initiated by writing '1' to the SLP bit, and '0' to the STP bit in the standby
control register (STBYC).

Sleep mode stops only the clock signal supplied to the CPU, stopping the CPU while the internal
peripheral resource circuits continue to operate. A number of program fetch operations may be made
after writing to the STBYC register and before the CPU stops.

If an interrupt request is generated at the time that '1' is written to the SLP bit, transition to sleep mode
will not occur. In this case if the CPU status does not accept the interrupt, it will execute the next
command. If the CPU status does accept the interrupt, it will execute the next command following the
STBYC write command (as long as it does not hold an interrupt), and then branch to the interrupt
processing program after the completion of the next program.

In sleep mode, the dedicated registers (such as accumulators) and contents of internal RAM are
retained.

Transition
condition

Oscillator Clock CPU
Internal

peripherals
Pins

Exit
method

Sleep SPL=1 Operating Operating Stopped Operating Operating
Reset
Interrupt

Stop
(SPL=0)

STP=1 Stopped Stopped Stopped Stopped Hold
Reset
Interrupt

Stop
(SPL=1)

STP=1 Stopped Stopped Stopped Stopped Hi-z
Reset
Interrupt

Hardware
standby

HSTX=L Stopped Stopped Stopped Stopped Hi-z HSTX=H

Gear
function

Write to
STBYC
register
CLK bit

Operating
Operate at
divided
frequency

Operate at
divided
frequency

Operate at
divided
frequency

Operating

Write to
STBYC
register
CLK bit

3.5 Power Saving Modes

178 Chapter 3: Operation

■ Wake-up from Sleep Mode

Sleep mode can be exited by input of a reset signal or occurrence of an interrupt.

If a reset is used to release sleep mode, the MB90242A will apply a reset upon wake-up from sleep
mode.

Sleep mode will also be released when an interrupt of level 7 or higher (priority level) is generated by
an internal resource circuit. After release, the same processing is applied as for a normal interrupt. If the
interrupt is accepted according to the set values of the I flag, ILM bit and interrupt control register
(ICR), the CPU will execute the next command following the STBYC write instruction (as long as it
does not hold an interrupt) and then will execute the interrupt processing after that instruction. If the
interrupt is not accepted, execution will continue with the next instruction following the command that
caused the transition to sleep mode.

(3) Stop Mode

■ Transition to Stop Mode

Transition to stop mode is initiated by writing '1' to the STP bit in the standby control register
(STBYC).

In stop mode, the source oscillation is stopped, stopping all MB90242A device functions. This is
therefore the mode with the lowest power mode in which data is retained.

Also, the SPL bit in the STBYC register can be used to determine whether external pins are placed in
high-impedance state or retain their values at the state immediately preceding the transition to stop
mode.

If an interrupt request is generated at the time that '1' is written to the STP bit, transition to stop mode
will not occur. In this case if the CPU status does not accept the interrupt, it will execute the next
instruction. If the CPU status does accept the interrupt, it will execute the next command following the
STBYC write instruction (as long as it does not hold an interrupt), and then branch to the interrupt
processing program after the completion of the next instruction.

In sleep mode, the dedicated registers (such as accumulators) and contents of internal RAM are
retained.

■ Wake-up from Stop Mode

Stop mode can be exited by input of a reset signal or occurrence of an interrupt.

If a reset is used to exit stop mode, the MB90242A will apply a reset upon wake-up from stop mode.

After wake-up from stop mode, the standby control circuit will move first to oscillation stabilization
wait mode before releasing the stop mode control. Also, a reset factor is used for wake-up from stop
mode, the reset sequence applies an oscillation stabilization wait period before reset.

During stop mode, an interrupt of level 7 or higher (priority level) can be generated using an external
interrupt signal to release the MB90242A from stop mode. The wake-up sequence first passes through
an oscillation stabilization period defined by the OSC1, OSC0 bits, then follows the normal interrupt
processing sequence according to the values of the I flag, ILM bit and interrupt control register (ICR),
and the CPU will execute the next instruction following the STBYC write instruction (as long as it does
not hold an interrupt) and then will execute the interrupt processing after the completion of the next
program. If the interrupt is not accepted, execution will continue with the next instruction following the
command that caused the transition to spot mode.

3.5 Power Saving Modes

179

(4) Hardware Standby Mode

■ Transition to Hardware Standby Mode

The MB90242A can be placed in hardware standby mode from any mode, by entering an 'L' level
signal at the HSTX pin. In hardware standby mode, oscillator signals are stopped and all external pins
are placed in high impedance state as long as the HSTX signal remains at 'L' level, regardless of any
other modes including reset signals.

In hardware standby mode the contents of RAM are not retained, however a reset may be applied to
initialize dedicated registers having initial value settings.

■ Wake-up from Hardware Standby Mode

Hardware standby mode can only be exited by a signal from the HSTX pin. When the HSTX signal
changes to 'H' level, hardware standby mode is exited, the internal reset signal is enabled and then the
MB90242A moves into oscillation stabilization wait mode. After the oscillation stabilization period has
passed, the internal reset is released and the CPU begins operation by executing its own reset sequence.

(5) Oscillation Stabilization Wait Period Settings

The OSC1, OSC0 bits are used to select the length of the oscillation stabilization wait period applied
after wake-up from stop mode and hardware standby mode. The user should select the appropriate wait
period according to the characteristics of oscillator circuits connected to the X0 and X1 pins, as well as
the types of oscillator elements used.

These bits are not initialized by any reset signals other than the power-on reset. At a power-on reset, the
value is initialized to '11.' As a result, the oscillation stabilization wait period at a power-on reset is
approximately 217counts of the source oscillation.

(6) Gear Functions

■ Machine Clock Switching

Machine clock speeds can be switched by writing values to the CLK1, CLK0 bits in the STBYC
register. The STBYC register signal resets the machine clock frequency divider and the desired
machine clock speed begins with the next machine cycle.

Even when not switching machine clock frequency, unless 16 MHz is selected, the STBYC write cycle
can be used to set the machine clock 4 periods longer than the source oscillation.

■ Machine Clock Initialization

The CLK0, CLK1 bits are not initialized by resets from external pins or the RST bit. The initial value
following a reset is '11.'

3.6 Pin Status in Sleep, Stop, Hold and Reset Modes

180 Chapter 3: Operation

3.6 Pin Status in Sleep, Stop, Hold and Reset Modes

Tables 3.6.1 and 3.6.2 show pin status both in bus modes, when the MB90242A is in sleep, stop, hold and
reset modes.

Table 3.6.1 Pin Status in 16-Bit External Bus Mode

Note1: Same as other ports when used for output port functions. 'Input enabled' means that input functions
are available for use. However, input is shut off when the corresponding interrupts are disabled.

Note2: In this mode, the immediately preceding output values are retained and output. If in input state,
input is disabled. 'Input disabled' means that the first input gate at the pin is enabled for operation,
but that internal circuits are not operating so that the signal from the pin is not accepted internally.

Note3: Input shut off' means that the first input gate at the pin is disabled. 'Output Hi-Z' means that the
transistor driving the pin is disabled placing the pin in high-impedance state.

Note4: 'Output mode' means that the transistor driving the pin is in drive enabled state, but since the inter-
nal circuit operation is stopped, a fixed 'H' or 'L' value is output.

Note5: 'Output enabled' means that the transistor driving the pin is in drive enabled state, and because
internal circuit operations are enabled, the process of operation can be sensed from the pin.

Note6: When used as a general-purpose port, the immediately prior status is retained.

Pin Sleep mode
Stop mode

Hold mode Reset
SPL=0 SPL=1

P07 to P00 Input disabled
Output Hi-Z

Input disabled

Input shut off
Output Hi-Z
Note 3

Input disabled
Output Hi-Z

Input disabled
Output Hi-ZP17 to P10

P27 to P20
P37 to P30
P47 to P40

Output status
Note 4

Output status Output status

P50/CLK
Input disabled
Output enabled
Notes 5 and 6

Input disabled
Output status

Input disabled
Output enabled
Notes 5 and 6

Output enabled

P51/RDY RDY input Note 6

Immediately prior
status retained

RDY input Note 6

Input disabled
Output Hi-Z

P52/HAKX 'H' output Note 6 'L' output

P53/HRQ HRQ input Note 6 '1' input

P54/WRHX
'H' output Note 6 'H' Hi-Z Note 6

P55/WRLX

P56/RDX 'H' output 'H'
Output mode 'H'
Input mode Hi-Z

'H' output

P57

Immediately prior
status retained
Note 2

Immediately prior
status retained
Note 2

Immediately prior
status retained
Note 2

Input disabled
Output Hi-Z

P67 to P66
P63 to P60

P75 to P70

P82

P81 to P80 Input enabled Input enabled Note 1

3.6 Pin Status in Sleep, Stop, Hold and Reset Modes

181

Table 3.6.2 Pin Status in 8-Bit External Bus Mode

Note1: Same as other ports when used for output port functions. 'Input enabled' means that input functions
are available for use. However, input is shut off when the corresponding interrupts are disabled.

Note2: In this mode, the immediately preceding output values are retained and output. If in input state,
input is disabled. 'Input disabled' means that the first input gate at the pin is enabled for operation,
but that internal circuits are not operating so that the signal from the pin is not accepted internally.

Note3: 'Input shut off' means that the first input gate at the pin is disabled. 'Output Hi-Z' means that the
transistor driving the pin is disabled placing the pin in high-impedance state.

Note4: 'Output mode' means that the transistor driving the pin is in drive enabled state, but since the inter-
nal circuit operation is stopped, a fixed 'H' or 'L' value is output.

Note5: 'Output enabled' means that the transistor driving the pin is in drive enabled state, and because
internal circuit operations are enabled, the process of operation can be sensed from the pin.

Note6: When used as a general-purpose port, the immediately prior status is retained.

Pin Sleep mode
Stop mode

Hold mode Reset
SPL=0 SPL=1

P07 to P00
Input disabled
Output Hi-Z

Input disabled

Input shut off
Output Hi-Z

Input disabled
Output Hi-Z

Input disabled
Output Hi-Z

P17 to P10
Immediately prior

status retained

Immediately prior

status retained

P27 to P20
P37 to P30
P47 to P40

Output status
Note 4

Output status
Input disabled

Output Hi-Z
Output status

P50/CLK
Input disabled
Output enabled
Notes 5 and 6

Output status
Note 6

Input disabled
Output enabled
Notes 5 and 6

Output enabled

P51/RDY RDY input Note 6

Immediately prior
status retained
Note 2

RDY input Note 6

Input disabled
Output Hi-Z

P52/HAKX 'H' output Note 6 'L' output

P53/HRQ HRQ input Note 6 '1' input

P54/WRHX
Immediately prior
status retained

Immediately prior
status retained

P55/WRLX 'H' output Note 6 'H' Note 6 Hi-Z Note 6

P56/RDX 'H' output 'H'
Output mode 'H'
Input mode Hi-Z

'H' output

P57

Immediately prior
status retained
Note 2

Immediately prior
status retained
Note 2

Immediately prior
status retained

Input disabled
Output Hi-Z

P67 to P66
P63 to P60

P75 to P70

P82

P81 to P80 Input enabled Input enabled Note 1

182 Chapter 3: Operation

183

APPENDIX

This part of the manual contains F2MC-16F addressing specifications, instruction lists and instruction
maps.

Appendix A. F2MC-16F Addressing Specifications

A.1 Effective Address Fields

A.2 Detailed Addressing Format Specifications

Appendix B. F2MC-16F Instruction Lists

B.1 Instruction List Heading Descriptions

B.2 Instruction List Symbols

B.3 Effective Address Fields

B.4 Calculation of Execution Cycle Counts

B.5 Transfer Instructions

B.6 Numerical Calculation Instructions

B.7 Logical Calculation Instructions

B.8 Shift Instructions

B.9 Branching Instructions

B.10 Other Instructions

B.11 Execution Cycle Counts for Special Operations

Appendix C. F2MC-16F Instruction Map

C.1 Basic Map Structure

C.2 Basic Page Map

C.3 Bit Operation Instruction Map

C.4 MOVM Instruction Map

C.5 Character String Operation Map

C.6 2-Byte Instruction Map

C.7 ea Instructions

C.8 MOVEA Rwi, ea

C.9 MOV Ri, ea

C.10 MOVW Rwi, ea

C.11 MOV ea, Ri

C.12 MOVW ea, Rwi

C.13 XCH Ri, ea

C.14 XCHW Rwi, ea

184 F2MC-16F Addressing Specifications

APPENDIX A:
F2MC-16F Addressing Specifications

This section of the manual describes addressing specifications for the F2MC-16F.

A.1 Effective Address Fields

A.2 Detailed Addressing Format Specifications

A.1Effective Address Fields

185

A.1 Effective Address Fields

Appendix A.1 shows the address format for designating effective address fields.

Table A.7 Effective Address Fields

Code Notation Address format Default Bank

00
01
02
03
04
05
06
07

R0
R1
R2
R3
R4
R5
R6
R7

RW0
RW1
RW2
RW3
RW4
RW5
RW6
RW7

RL0
(RL0)
RL1

(RL1)
RL2

(RL2)
RL3

(RL3)

Register direct
ea corresponds to

byte,
word,
long-word

formats in order from left.

None

08
09
0A
0B

@RW0
@RW1
@RW2
@RW3

Register indirect DTB
DTB
ADB
SPB

0C
0D
0E
0F

@RW0+
@RW1+
@RW2+
@RW3+

Register indirect with post increments DTB
DTB
ADB
SPB

10
11
12
13

@RW0+disp8
@RW1+disp8
@RW2+disp8
@RW3+disp8

Register indirect with 8-bit displacement DTB
DTB
ADB
SPB

14
15
16
17

@RW4+disp8
@RW5+disp8
@RW6+disp8
@RW7+disp8

Register indirect with 8-bit displacement DTB
DTB
ADB
SPB

18
19
1A
1B

@RW0+disp16
@RW1+disp16
@RW2+disp16
@RW3+disp16

Register indirect with 16-bit displacement DTB
DTB
ADB
SPB

1C
1D
1E
1F

@RW0+RW7
@RW1+RW7
@PC+disp16
addr16

Register indirect with index
Register indirect with index
PC indirect with 16-bit displacement
Direct address

DTB
DTB
PCB
DTB

A.2Detailed Addressing Format Specifications

186 F2MC-16F Addressing Specifications

A.2 Detailed Addressing Format Specifications

The F2MC-16F uses 25 types of addressing formats.

Immediate addressing (#imm)

Operand values are specified directly.

• #imm4

• #imm8

• #imm16

• #imm32

Operating Example

MOVW A,#01212H (Instruction: store operand value in A)

Fig. A.2a Example of Immediate Addressing

Condensed Direct Addressing (dir)

Operands specify the lower 8 bits of the memory address. Addresses bits 8 to 15 are determined by the
DPR register. Addresses bits 16 to 23 are set by the DTB register.

Operating Example

MOV dir 20H, A (Instruction: write lower 8 bits of A in condensed direct addressing)

Fig. A.2b Example of Condensed Direct Addressing

Before execution

After execution
(AL→AH transfer)

A 2 2 3 3 4 4 5 5

A 4 4 5 5 1 2 1 2

Before execution A 4 4 5 5 1 2 1 2

DIR 6 6

Memory space

? ?776620H

Memory space

12776620H

DTB 7 7

After execution A 4 4 5 5 1 2 1 2

DIR 6 6 DTB 7 7

A.2Detailed Addressing Format Specifications

187

Direct Addressing (addr16)

Operand values specify lower 16 bits of the memory address directly. Addresses bits 16 to 23 are deter-
mined by the DTB register.

Operating Example

MOVW A, 4444H (Instruction: read 16 bits in direct addressing, and store in A)

Fig. A.2c Example of Direct Addressing (addr16)

Direct Addressing (addr24)

Operand values specify a 24-bit memory address directly.

Operating Example

MOVPL A, CCCCCCH (Instruction: read 24 bits in direct addressing, and store in A.)

Fig. A.2d Example of Direct Addressing (addr24)

Before execution A 3 4 3 4 A B C D

DTB 8 8

Memory space

F2884445H

4E884444H

After execution A A B C D F 2 4 E

DTB 8 8

Before execution A A A A A B B B B
Memory space

07CCCCCFH

16CCCCCEH

After execution A 0 7 1 6 2 5 3 4

25

34

CCCCCDH

CCCCCCH

A.2Detailed Addressing Format Specifications

188 F2MC-16F Addressing Specifications

Register Direct Addressing

Operand values specify registers directly.

General-purpose registers: Byte: R0, R1, R2, R2, R4, R5, R6, R7

Word: RW1, RW2, RW3, RW4, RW5, RW6, RW7

Long-word: RL0, RL1, RL2, RL3

Dedicated registers: Accumulators: A, AL

Pointer: SP

Bank: PCB, DTB, USB, SSB, ADB

Page: DPR

Control: PS, CCR, RP, ILM

* The SP register functions as a USP when the S-bit in the CCR register is '0', and as an SSP
when the S-bit is '1.'
The SPB functions as a USB when the S-bit in the CCR register is '0' and as an SSB when the
S-bit is '1.'

Operating Example

MOV R0,A (Instruction to transfer lower 8-bits of A to general-purpose register R.)

Fig. A.2e Example of Register Direct Addressing

Before execution A 0 7 1 6 2 5 3 4

After execution A 0 7 1 6 2 5 3 4

Memory space

? ?R0

Memory space

34R0

A.2Detailed Addressing Format Specifications

189

Register Indirect Addressing (@RWj j=0 to 3)

This type of addressing accesses memory containing the contents of the general-purpose register RWj
as address data. Addresses bits 16 to 23 are designated by the DTB register if using RW0 or RW1, by
the SPB register if using RW3, and by the ADB register if using RW2.

Operating Example

MOVW A,@RW1 (Instruction to read the contents of the register in indirect addressing, and store in A.)

Fig. A.2f Example of Register Indirect Addressing

Register Indirect Addressing with Post Increments (@RWj+j=0 to 3)

This type of addressing accesses memory containing the contents of the general-purpose register RWj
as address data. After manipulating the operand, register RWj is incremented by the operand data
length (1 for byte length, 2 for word length, 4 for long-word length). Addresses bits 16 to 23 are desig-
nated by the DTB register if using RW0 or RW1, by the SPB register if using RW3, and by the ADB
register if using RW2. Note that if the results of the post increment operation are the address of the
same register that was set to incremented addressing, the value to be referenced after increment opera-
tion will be the incremented value. Also, if a write instruction is used, the write operation will have pri-
ority, so that the register that is to receive the increment will become write data.

Operating Example

MOVW A,@RW1+ (Instruction to read the contents of the register in indirect addressing for storage in A.)

Fig. A.2g Example of Register Indirect Addressing with Post Increments

Before execution A 0 7 1 6 2 5 3 4

RW1 D 3 0 F

Memory space

FF78D310H

FE78D30FH

After execution A 2 5 3 4 F F E E

DTB 7 8

RW1 D 3 0 F DTB 7 8

Before execution A 0 7 1 6 2 5 3 4

RW1 D 3 0 F

Memory space

FF78D310H

FE78D30FH

After execution A 2 5 3 4 F F E E

DTB 7 8

RW1 D 3 1 1 DTB 7 8

A.2Detailed Addressing Format Specifications

190 F2MC-16F Addressing Specifications

Register Indirect Addressing with Displacement (@RWi+disp8 i=0 to 7, @RWj+disp16 j=0 to 3)

This type of addressing accesses memory containing addresses derived from the contents of the gen-
eral-purpose memory RWj with a displacement added. Displacements may be either byte or word
length, and are added as signed numerical values. Addresses bits 16 to 23 are designated by the DTB
register if RW0, RW1, RW4 or RW5 is used, by the SPB register if RW3 or RW7 is used, and by the
ADB if RW2 or RW6 is used.

Operating Example

MOVW A,@RW1+10H (Instruction to read the contents of the register in indirect addressing with
displacement added for storage in A.)

Fig. A.2h Example of Register Indirect Addressing with Displacement

Register Indirect with Base Index (@RW0+RW7, @RW1+RW7)

This type of addressing accesses memory containing addresses in which the contents of general-pur-
pose register RW7 are added with either RW0 or RW1. Addresses bits 16 to 23 are designated by the
DTB register.

Operating Example

MOVW A,@RW1+RW7 (Instruction to read register in indirect addressing with base index for stor-
age in A.)

Fig. A.2i Example of Register Indirect Addressing with Base Index

Before execution A 0 7 1 6 2 5 3 4

RW1 D 3 0 F

Memory space

FF78D320H

FE78D31FH

After execution A 2 5 3 4 F F E E

DTB 7 8

RW1 D 3 0 F DTB 7 8

(+10H)

Before execution A 0 7 1 6 2 5 3 4
Memory space

FF78D411H

FE78D410H

After execution A 2 5 3 4 F F E E

DTB 7 8

RW1 D 3 0 F DTB 7 8

RW7 0 1 0 1

RW1 D 3 0 F

RW7 0 1 0 1
+

A.2Detailed Addressing Format Specifications

191

Program Counter Indirect Addressing with Displacement (@PC+disp16)

This type of addressing accesses memory containing addresses calculated with the formula 'instruction
address + 4 + disp16'. Displacement is in word length units. Addresses bits 16 to 23 are designated by
the PCB register.

The operand address is normally considered to be 'next instruction address + disp16', but note that there
are differences when using the following instructions.

• DBNZ eam,rel • MOVM @A,eam#imm8 • MOVM eam,addr16,#imm8

• DWBNZ eam,rel • MOVWM @A,eam,#imm • MOVWM eam,addr16,#imm8

• MOV eam,#imm8 • MOVM addr16,eam,#imm8

• MOVW eam,#imm16 • MOVMW addr16,eam,#imm8

• CBNE eam,#imm8,rel • MOVM eam,@A,#imm8

• CWBNE eam,#imm16,rel • MOVWM eam,@A,#imm8

Operating Example

MOVW A,@PC+20H (Instruction to read PC in indirect addressing with displacement for storage in A.)

Fig. A.2j Example of Program Counter Indirect Addressing with Displacement

Before execution A 0 7 1 6 2 5 3 4

PCB C 5

Memory space

FFC5457BH

EEC5457AH

After execution A 2 5 3 4 F F E E

PCB C 5
9FC54557H

73C54556H MOVW
A, @PC+20H

•
•

•

+20H

+4

A.2Detailed Addressing Format Specifications

192 F2MC-16F Addressing Specifications

Stack Pointer Indirect Addressing with Displacement (@SP+disp8)

This type of addressing accesses memory using addresses calculated with the formula 'stack pointer
value + disp8'. Displacement is in byte length units. Addresses bits 16 to 23 are designated by the SPB
register.

Operating Example

MOVW A,@SP+30H (Instruction to read SP in indirect addressing with displacement for storage in A.)

Fig. A.2k Example of Stack Pointer Indirect Addressing with Displacement

Accumulator Indirect Addressing (@A)

There are two types of accumulator indirect addressing; one in which addresses bits 00-15 are desig-
nated by the contents of the AL register and address bits 16-23 by the DTB register, and one in which
addresses bits 00-23 are designated by the lower 24 bits of the A register.

Mnemonic designations are used.

Operating Example

MOVW A,@A (Instruction to read accumulator in indirect addressing for storage in A.)

Fig. A.2l Example of Accumulator Indirect Addressing

Before execution A 0 7 1 6 2 5 3 4
Memory space

FF91BBECH

FE91BBEBH

After execution A 2 5 3 4 F F E E

S 0USB 9 1

S 0

USP B B B B

USB 9 1

(+30H)USP B B B B

Before execution A 0 7 1 6 2 5 3 4

DTB B B

Memory space

FFBB2535H

EEBB2534H

After execution A 0 7 1 6 F F E E

DTB B B

A.2Detailed Addressing Format Specifications

193

I/O Indirect Addressing (io)

This method specifies memory addresses of the operand directly using an 8-bit displacement. Regard-
less of the values of the DTB and DPR registers, access is to I/O space at physical addresses 000000H to
0000FFH With this type of addressing, prefix instructions designating access space are invalid.

Operating Example

MOVW A,io C0H (Instruction to read I/O directly for storage in A.)

Fig. A.2m Example of I/O Direct Addressing

Long-Word Register Indirect Addressing with Displacement (@RLi+disp8 i=0 to 3)

This type of addressing accesses memory using addresses derived by using the lower 24 bits of the sum
of the general-purpose register RLi plus a displacement. The displacement is 8 bits, and is added as
signed numerical values to the RLi contents.

Operating Example

MOVW A,@RL2+25H (Instruction to read long-word register in indirect addressing with displace-
ment for storage in A.)

Fig. A.2n Example of Long-Word Register Indirect Addressing with Displacement

Before execution A 0 7 1 6 2 5 3 4
Memory space

FF0000C1H

EE0000C0H
After execution A 2 5 3 4 F F E E

Before execution A 0 7 1 6 2 5 3 4
Memory space

FF824B28H

EE824B27H

After execution A 2 5 3 4 F F E E

RL2 F 3 8 2 4 B 0 2

(+25H)

RL2 F 3 8 2 4 B 0 2

A.2Detailed Addressing Format Specifications

194 F2MC-16F Addressing Specifications

Condensed Direct Bit Addressing (dir:bp)

This method uses the operand to designate the lower 8 bits of the memory address. Addresses bits 8 to
15 are designated by the DPR register, and addresses bits 16 to 23 are designated by the DTB register.
The bit location is expressed as bp, with the higher values representing MSB, and the lower values
LSB.

Operating Example

SETB dir 10H:0 (Instruction to set bit using condensed direct addressing.)

Fig. A.2o Example of Condensed Direct Bit Addressing

I/O Direct Bit Addressing (io:bp)

This method directly designates bits within the physical address range 000000H to 0000FFH. The bit
location is expressed as bp, with the higher values representing MSB, and the lower values LSB.

Operating Example

SETB io C1H:0 (Instruction to set bit using I/O direct addressing.)

Fig. A.2p Example of I/O Direct Bit Addressing

Before execution DTB 5 5
Memory space

00556610H

After execution

DPR 6 6

DTB 5 5 DPR 6 6 Memory space

01556610H

Before execution Memory space

000000C1H

After execution
Memory space

010000C0H

A.2Detailed Addressing Format Specifications

195

Direct Bit Addressing (addr16:bp)

This method directly designates any bits within the 64-Kbyte area. Addresses bits 16 to 23 are desig-
nated by the DTB register. The bit location is expressed as bp, with the higher values representing
MSB, and the lower values LSB.

Operating Example

SETB 2222H:0 (Instruction to set a bit using direct addressing.)

Fig. A.2q Example of Direct Bit Addressing

Register List (rlst)

This method designates the register that is the object of push/pop instructions for a stack.

Fig. A.2r Register List Configuration

For operating example, see the 'F2MC-16F MB90200 Series Programming Manual.'

Before execution DTB 5 5
Memory space

00552222H

After execution DTB 5 5 Memory space

01552222H

MSB LSB

RW7 RW6 RW5 RW4 RW3 RW2 RW1 RW0

Register selected when the corresponding bit is '1,' not selected when value is '1,'

A.2Detailed Addressing Format Specifications

196 F2MC-16F Addressing Specifications

Program Counter Relative Branch Addressing

Branch destination addresses are represented as PC values plus 8-bit displacement values. If the result
is over 16 bits, no increment/decrement is applied to the bank register and the overflow portion is
ignored, so that the result is an address within the 64-Kbyte bank. This method is used for unconditional
and conditional branching. Addresses bits 16 to 23 are designated by the PCB register.

Operating Example

BRA 3B20H (Instruction to execute unconditional relative branching.)

Fig. A.2s Example of Program Counter Relative Branch Addressing

Direct Branch Addressing (addr16)

Branch destination addresses are designated directly by displacement. The displacement is 16-bit data
length and the displacement is used to designates a branch destination within logical space. This
method is used for unconditional branching and subroutine call instructions. Addresses bits 16 to 23 are
designated by the PCB register.

Operating Example

JMP 3B20H (Instruction to perform unconditional branching, with direct address designation within bank.)

Fig. A.2t Example of Direct Branch Addressing with 16-Bit Branch Designation

Before execution PC 3 C 2 0
Memory space

FE4F3C22H

After execution

PCB 4 F

Next instruction4F3B20H

PC 3 B 2 0 PCB 4 F

FE4F3C21H

604F3C20H BRA 3B20H

Before execution PC 3 C 2 0
Memory space

3B4F3C22H

After execution

PCB 4 F

Next instruction4F3B20H

PC 3 B 2 0 PCB 4 F

204F3C21H

624F3C20H JMB 3B20H

A.2Detailed Addressing Format Specifications

197

Direct Branch Addressing (addr24)

Branch destination addresses are designated directly by displacement. The displacement data length is
24 bits, and the displacement is used to designate a physical address at the branch destination. This
method is used for unconditional branching, subroutine call and software interrupt instructions.

Operating Example

JMPP 333B20H (Instruction to perform unconditional branching, with 24-bit direct address designation.)

Fig. A.2u Example of Direct Branch Addressing with 24-Bit Branch Designation

Accumulator Indirect Branch Addressing (@A)

The 16-bit contents of the accumulator AL function as a branch destination address. This data desig-
nates the branch destination within bank space, and addresses bits 16 to 23 are designated by the PCB
register. However if JCTX is used, the value is determined by the DTB register. This method is used
with unconditional branching instructions.

Operating Example

JMP @A (Instruction to perform unconditional branching with accumulator indirect addressing.)

Fig. A.2v Example of Accumulator Indirect Branch Addressing

Before execution PC 3 C 2 0
Memory space

334F3C23H

After execution

PCB 4 F

Next instruction4F3B20H

PC 3 B 2 0 PCB 3 3

3B4F3C22H

204F3C21H

JMPP 333B20H624F3C20H

Before execution PC 3 C 2 0
Memory space

614F3C20H

After execution

PCB 4 F

Next instruction4F3B20H

PC 3 B 2 0 PCB 4 F

JMP @A
A 6 6 7 7 3 B 2 0

A 6 6 7 7 3 B 2 0

A.2Detailed Addressing Format Specifications

198 F2MC-16F Addressing Specifications

Vector Addressing (#vct)

In this method the branch destination address is the contents of the specified vector. Vector number data
length may be either 4 bits or 8 bits. This method is used for subroutine call instructions, and software
interrupt instructions.

See the "F2MC-16F MB90200 Series Programming Manual" for information on of the CALLV #vct4
instruction and INT #vct8 instruction.

Indirect Designation Branch Addressing (@ear)

In this method the branch destination address is the word data at the address designated by the ear
parameter.

Operating Example

JMP @RW0 (Instruction to perform unconditional branching with register indirect addressing.)

Fig. A.2w Example of Register Indirect Branch Addressing

Before execution PC 3 C 2 0
Memory space

004F3C20H

After execution

PCB 4 F

Next instruction4F3B20H

PC 3 B 2 0 PCB 4 F

JMP @RW0

RW0 3 B 2 0

RW0 3 B 2 0

734F3C20H

A.2Detailed Addressing Format Specifications

199

Indirect Designation Branch Addressing (@eam)

In this method the branch destination address is the word data at the address designated by the eam
parameter.

Operating Example

JMP @@RW0 (Instructions to perform unconditional branching with the register indirect addressing.)

Fig. A.2x Example of Register Indirect Branch Addressing

Before execution PC 3 C 2 0
Memory space

084F3C20H

After execution

PCB 4 F

Next instruction4F3B20H

PC 3 B 2 0 PCB 4 F

JMP @@RW0
RW0 7 F 4 8

RW0 7 F 4 8

734F3C20H
DTB 2 1

DTB 2 1
3B217F47H

20217F48H

A.2Detailed Addressing Format Specifications

200 F2MC-16F Instruction Lists

APPENDIX B:
F2MC-16F Instruction Lists

This appendix explains a set of instructions used for an assembler.

B.1 Instruction List Heading Descriptions

B.2 Instruction List Symbols

B.3 Effective Address Fields

B.4 Calculation of Execution Cycle Counts

B.5 Transfer Instructions

B.6 Numerical Calculation Instructions

B.7 Logical Calculation Instructions

B.8 Shift Instructions

B.9 Branching Instructions

B.10 Other Instructions

B.11 Execution Cycle Counts for Special Operations

B.1Instruction List Heading Descriptions

201

B.1 Instruction List Heading Descriptions

Appendix B.1 presents descriptions of instruction list headings.

Table B.1 Instruction List Heading Descriptions

Heading Description

Mnemonic Alphabetic capitals, symbols: shown as they appear in source program.
Alphabetic lower case: rewritten in source program notation.
Numerals following alphabetic lower case: indicates bit length in instructions.

Indicates byte count.

~ Indicates cycle count.
For alphabetic characters in headings, see table B.4a.

B Indicates complement value for calculation of actual cycle count for instruction
execution.
The actual cycle count is the sum of the values in the '~' column and the B column.

Operation Describes how the instruction operates.

LH Indicates special operations with respect to accumulator bits 15 to 08.
Z: Transfer zero
X: Transfer signed extension
-: no transfer

AH Indicates special operations with respect to the upper 16 bits of the accumulator.
*: Transfer from AL to AH
-: No transfer
Z: Transfer 00H to AH
X: According to AL signed extension, transfer 00H or FFH to AH.

I Indicates status of flags: I (interrupt enable), S (stack), T (sticky bit), N (negative),
Z (zero), V (overflow), C (carry)

*: Changed as a result of instruction execution
-: No change
S: Becomes '1' as a result of instruction execution
R: Becomes '0' as a result of instruction execution

S

T

N

Z

V

C

RMW Indicates a read-modify-write instruction (one instruction used to read data from
memory, etc. and write the results back to memory).

*: Read-modify-write instruction
-: Not a read-modify-write instruction

Note: This type of instruction cannot be used with addresses having different
read/write meanings.

B.1Instruction List Heading Descriptions

202 F2MC-16F Instruction Lists

• Precautionary Information for Calculation of Execution Cycles

The number of cycles (execution cycles) required to execute a instruction is determined by the 'cycle
count' value of the instruction, added to the 'compensation value' determined by conditions. However
the actual cycle count for a instruction includes the above cycle count plus a number of cycles required
for program reading.

Normally, program reading is performed automatically during empty cycles on the bus when there is an
opening in the instruction queue. However, in cases where reading cannot be completed during empty
bus cycles, instruction execution will be interrupted and the actual cycle number will be increased to
allow program reading.

For calculation of actual cycles, see Appendix B.4 "Calculation of Execution Cycle Counts."

B.2Instruction List Symbols

203

B.2 Instruction List Symbols

Appendix B.2 lists symbols used in instruction lists and their meanings.

Table B.2 Instruction List Symbols

Symbol Meaning

A 32-bit accumulator
Bit length varies according to instruction.
Byte: lower 8 bits of AL
Word: 16 bits of AL
Long word: 32 bits of AL or AH

AH
AL

Upper 16 bits of A
Lower 16 bits of A

SP Stack pointer (USP or SSP)

PC Program counter

SPCU
SPCL

Stack pointer upper limit register
Stack pointer lower limit register

PCB Program bank register

DTB Data bank register

ADB Additional bank register

SSB System stack bank register

USB User stack bank register

SPB Current stack bank register (SSB or USB)

DPR Direct page register

brg1 DTB, ADB, SSB, USB, DPR, PCB, SPB

brg2 DTB, ADB, SSB, USB, DPR, SPB

Ri R0, R1, R2, R3, R4, R5, R6, R7

RWi RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7

RWj RW0, RW1, RW2, RW3

RLi RL0, RL1, RL2, RL3

dir
addr16
addr24
ad24 0-15
ad24 16-23

Condensed direct addressing
Direct addressing
Physical direct addressing
ad24 bit0-15
ad24 bit16-23

io I/O area (000000H to 0000FFH)

B.2Instruction List Symbols

204 F2MC-16F Instruction Lists

#imm4
#imm8
#imm16
#imm32
ext(imm8)

4-bit immediate data
8-bit immediate data
16-bit immediate data
32-bit immediate data
8-bit immediate data with 16-bit data sign extension

disp8
disp16

8-bit displacement
16-bit displacement

bp Bit offset value

vct4
vct8
()b

Vector number (0 to 15)
Vector number (0 to 255)
Bit address

rel
ear
eam

PC relative branch addressing
Effective address designation (code 00 to 07)
Effective address designation (code 08 to 1F)

rlst Register list

Table B.2 Instruction List Symbols (Continued)

Symbol Meaning

B.3Effective Address Fields

205

B.3 Effective Address Fields

Table B.3 lists the address formats for designating effective address fields.

Note: The number of bytes in an address extension corresponds to the '+' indication in the # 'byte count)
column in the instruction list.

Table B.3 Effective Address Fields

Code Notation Address format

Address
extender

byte count
(Note)

00
01
02
03
04
05
06
07

R0
R1
R2
R3
R4
R5
R6
R7

RW0
RW1
RW2
RW3
RW4
RW5
RW6
RW7

RL0
(RL0)
RL1

(RL1)
RL2

(RL2)
RL3

(RL3)

Register direct
ea corresponds to

 byte,
 word,
 long-word

formats in order from left.

-

08
09
0A
0B

@RW0
@RW1
@RW2
@RW3

Register indirect

0

0C
0D
0E
0F

@RW0+
@RW1+
@RW2+
@RW3+

Register indirect with post increments

0

10
11
12
13
14
15
16
17

@RW0+disp8
@RW1+disp8
@RW2+disp8
@RW3+disp8
@RW4+disp8
@RW5+disp8
@RW6+disp8
@RW7+disp8

Register indirect with 8-bit displacement

1

18
19
1A
1B

@RW0+disp16
@RW1+disp16
@RW2+disp16
@RW3+disp16

Register indirect with 16-bit displacement

2

1C
1D
1E
1F

@RW0+RW7
@RW1+RW7
@PC+disp16

addr16

Register indirect with index
Register indirect with index
PC indirect with 16-bit displacement
Direct address

0
0
2
2

B.4Calculation of Execution Cycle Counts

206 F2MC-16F Instruction Lists

B.4 Calculation of Execution Cycle Counts

Appendix B.4a lists cycle counts for each method of addressing, and Appendix B.4b lists compensation
values for calculating actual cycle counts.

In the instruction lists, some instructions require calculations that refer to these tables.

Note: (a) is used on the - 'cycle count' column and the B (compensation value) column on the Instruction
List.

Note: (b), (c) and (d) are used on the ˜ 'cycle count' column and the B (compensation value) column on the
Instruction List.

Table B.4a Execution Cycle Counts for Methods Used to Designate Effective Addresses

Code Operand
(a)

Execution cycle count for
addressing method

00
|

07
Ri\RWi\RLi Given on Instruction List

08
|

0B
@Wj 1

0C
|

0F
@RWj+ 4

10
|

17
@RWi+disp8 1

18
|

1B
@RWj+disp16 1

1C
1D
1E
1F

@RW0+RW7
@RW1+RW7
@PC+disp16
addr16

2
2
2
1

Table B.4b Compensation Values for Calculation of Execution Cycle Count

Operand
(b) (c) (d)

byte word long

Internal register +0 +0 +0

Internal RAM, even address
Internal RAM, odd address

+0
+0

+0
+1

+0
+2

Even address, other than internal RAM
Odd address, other than internal RAM

+1
+1

+1
+3

+2
+6

External data bus 8 bits +1 +3 +6

B.5Transfer Instructions

207

B.5 Transfer Instructions

Table B.5a Transfer Instructions (Byte): 50 Instructions

The notation (a) in the ˜ 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOV A,dir
MOV A,addr16
MOV A,Ri
MOV A,ear
MOV A,eam
MOV A,io
MOV A,#imm8
MOV A,@A
MOV A,@RLi+disp8
MOV A,@SP+disp8
MOVP A,addr24
MOVP A,@A
MOVN A,#imm4

MOVX A,dir
MOVX A,addr16
MOVX A,Ri
MOVX A,ear
MOVX A,eam
MOVX A,io
MOVX A,#imm8
MOVX A,@A
MOVX A,@RWi+disp8
MOVX A,@RLi+disp8
MOVX A,@SP+disp8
MOVPX A,addr24
MOVPX A,@A

MOV dir,A
MOV addr16,A
MOV Ri,A
MOV ear,A
MOV eam,A
MOV io,A
MOV @RLi+disp8,A
MOV @SP+disp8,A
MOVP addr24,A

2
3
1
2

2+
2
2
2
3
3
5
2
1

2
3
2
2

2+
2
2
2
2
3
3
5
2

2
3
1
2

2+
2
3
3
5

2
2
1
1

2+(a)
2
2
2
6
3
3
2
1

2
2
1
1

2+(a)
2
2
2
3
6
3
3
2

2
2
1
2

2+(a)
2
6
3
3

(b)
(b)
0
0

(b)
(b)
0

(b)
(b)
(b)
(b)
(b)
0

(b)
(b)
0
0

(b)
(b)
0

(b)
(b)
(b)
(b)
(b)
(b)

(b)
(b)
0
0

(b)
(b)
(b)
(b)
(b)

byte (A) ← (dir)
byte (A) ← (addr16)
byte (A) ← (Ri)
byte (A) ← (ear)
byte (A) ← (eam)
byte (A) ← (io)
byte (A) ← (imm8)
byte (A) ← ((A))
byte (A) ← ((RLi)+disp8)
byte (A) ← ((SP)+disp8)
byte (A) ← (addr24)
byte (A) ← ((A))
byte (A) ← imm4

byte (A) ← (dir)
byte (A) ← (addr16)
byte (A) ← (Ri)
byte (A) ← (ear)
byte (A) ← (eam)
byte (A) ← (io)
byte (A) ← (imm8)
byte (A) ← ((A))
byte (A) ← ((RWi)+disp8)
byte (A) ← ((RLi)+disp8)
byte (A) ← ((SP)+disp8)
byte (A) ← (addr24)
byte (A) ← ((A))

byte (dir) ← (A)
byte (addr16) ← (A)
byte (Ri) ← (A)
byte (ear) ← (A)
byte (eam) ← (A)
byte (io) ← (A)
byte ((RLi)+disp8) ← (A)
byte ((SP)+disp8) ← (A)
byte (addr24) ← (A)

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

X
X
X
X
X
X
X
X
X
X
X
X
X

-
-
-
-
-
-
-
-
-

*
*
*
*
*
*
*
-
*
*
*
-
*

*
*
*
*
*
*
*
-
*
*
*
*
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

*
*
*
*
*
*
*
*
*
*
*
*
R

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

B.5Transfer Instructions

208 F2MC-16F Instruction Lists

Table B.5a Transfer Instructions (Byte): 50 Instructions (continued)

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOV Ri,ear
MOV Ri,eam
MOVP @A,Ri
MOV ear,Ri
MOV eam,Ri
MOV Ri,#imm8
MOV io,#imm8
MOV dir,#imm8
MOV ear,#imm8
MOV eam,#imm8

MOV @AL,AH / MOV @A,T

XCH A,ear
XCH A,eam
XCH Ri,ear
XCH Ri,eam

2
2+
2
2

2+
2
3
3
3

3+

2

2
2+
2

2+

2
3+(a)

3
3

3+(a)
2
3
3
2

2+(a)

2

3
3+(a)

4
5+(a)

0
(b)
(b)
0

(b)
0

(b)
(b)
0

(b)

(b)

0
2x(b)

0
2x(b)

byte (Ri) ← (ear)
byte (Ri) ← (eam)
byte ((A)) ← (Ri)
byte (ear) ← (Ri)
byte (eam) ← (Ri)
byte (Ri) ← imm8
byte (io) ← imm8
byte (dir) ← imm8
byte (ear) ← imm8
byte (eam) ← imm8

byte ((A)) ← (AH)

byte (A) ←→ (ear)
byte (A) ←→ (eam)
byte (Ri) ←→ (ear)
byte (Ri) ←→ (eam)

-
-
-
-
-
-
-
-
-
-

-

Z
Z
-
-

-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

*
*
*
*
*
*
-
-
*
-

*

-
-
-
-

*
*
*
*
*
*
-
-
*
-

*

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

B.5Transfer Instructions

209

Table B.5b Transfer Instructions (Word): 40 Instructions

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOVW A,dir
MOVW A,addr16
MOVW A,SP
MOVW A,RWi
MOVW A,ear
MOVW A,eam
MOVW A,io
MOVW A,@A
MOVW A,#imm16
MOVW A,@RWi+disp8
MOVW A,@RLi+disp8
MOVW A,@SP+disp8
MOVPW A,addr24
MOVPW A,@A

MOVW dir,A
MOVW addr16,A
MOVW SP,#imm16
MOVW SP,A
MOVW RWi,A
MOVW ear,A
MOVW eam,A
MOVW io,A
MOVW @RWi+disp8,A
MOVW @RLi+disp8,A
MOVW @SP+disp8,A
MOVPW addr24,A
MOVPW @A,RWi
MOVW RWi,ear
MOVW RWi,eam
MOVW ear,RWi
MOVW eam,RWi
MOVW RWi,#imm16
MOVW io,#imm16
MOVW ear,#imm16
MOVW eam,#imm16

MOVW @AL,AH / MOVW @A,T

XCHW A,ear
XCHW A,eam
XCHW RWi,ear
XCHW RWi,eam

2
3
1
1
2
2+
2
2
3
2
3
3
5
2

2
3
4
1
1
2
2+
2
2
3
3
5
2
2
2+
2
2+
3
4
4
4+

2

2
2+
2
2+

2
2
2
1
1
2+(a)
2
2
2
3
6
3
3
2

2
2
2
2
1
2
2+(a)
2
3
6
3
3
3
2
3+(a)
3
3+(a)
2
3
2
2+(a)

2

3
3+(a)
4
5+(a)

(c)
(c)
0
0
0
(c)
(c)
(c)
0
(c)
(c)
(c)
(c)
(c)

(c)
(c)
0
0
0
0
(c)
(c)
(c)
(c)
(c)
(c)
(c)
0
(c)
0
(c)
0
(c)
0
(c)

(c)

0
2x(c)
0
2x(c)

word (A) ← (dir)
word (A) ← (addr16)
word (A) ← (SP)
word (A) ← (RWi)
word (A) ← (ear)
word (A) ← (eam)
word (A) ← (io)
word (A) ← ((A))
word (A) ← imm16
word (A) ← ((RWi)+disp8)
word (A) ← ((RLi)+disp8)
word (A) ← ((SP)+disp8)
word (A) ← (addr24)
word (A) ← ((A))

word (dir) ← (A)
word (addr16) ← (A)
word (SP) ← imm16
word (SP) ← (A)
word (RWi) ← (A)
word (ear) ← (A)
word (eam) ← (A)
word (io) ← (A)
word ((RWi)+disp8) ← (A)
word ((RLi)+disp8) ← (A)
word ((SP)+disp8) ← (A)
word (addr24) ← (A)
word ((A)) ← (RWi)
word (RWi) ← (ear)
word (RWi) ← (eam)
word (ear) ← (RWi)
word (eam) ← (RWi)
word (RWi) ← imm16
word (io) ← imm16
word (ear) ← imm16
word (eam) ← imm16

word (A) ← (AH)

word (A) ←→ (ear)
word (A) ←→ (eam)
word (RWi) ←→ (ear)
word (RWi) ←→ (eam)

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

*
*
*
*
*
*
*
-
*
*
*
*
*
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-
*
-

*

-
-
-
-

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-
*
-

*

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-
-
-
-

B.5Transfer Instructions

210 F2MC-16F Instruction Lists

Table B.5c Transfer Instructions (Long-Word): 11 Instructions

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOVL A,ear
MOVL A,eam
MOVL A,#imm32
MOVL A,@SP+disp8
MOVPL A,addr24
MOVPL A,@A

MOVPL @A,RLi

MOVL @SP+disp8,A
MOVPL addr24,A
MOVL ear,A
MOVL eam,A

2
2+
5
3
5
2

2

3
5
2
2+

2
3+(a)
3
4
4
3

5

4
4
2
3+(a)

0
(d)
0
(d)
(d)
(d)

(d)

(d)
(d)
0
(d)

long (A) ← (ear)
long (A) ← (eam)
long (A) ← imm32
long (A) ← ((SP)+disp8)
long (A) ← (addr24)
long (A) ← ((A))

long ((A)) ← (RLi)

long ((SP)) ← (A)
long (addr24) ← (A)
byte (ear1) ← (A)
long (eam1) ← (A)

-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-

-

-
-
-
-

*
*
*
*
*
*

*

*
*
*
*

*
*
*
*
*
*

*

*
*
*
*

-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-

-

-
-
-
-

-
-
-
-
-
-

-

-
-
-
-

B.6Numerical Calculation Instructions

211

B.6 Numerical Calculation Instructions

Table B.6a Add/Deduct Instructions (Byte, Word, Long-Word): 42 Instructions (continued)

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

ADD A,#imm8
ADD A,dir
ADD A,ear
ADD A,eam
ADD ear,A
ADD eam,A
ADDC A
ADDC A,ear
ADDC A,eam
ADDDC A

SUB A,#imm8
SUB A,dir
SUB A,ear
SUB A,eam
SUB ear,A
SUB eam,A
SUBC A
SUBC A,ear
SUBC A,eam
SUBDC A

2
2
2
2+
2
2+
1
2
2+
1

2
2
2
2+
2
2+
1
2
2+
1

2
3
2
3+(a)
2
3+(a)
2
2
3+(a)
3

2
3
2
3+(a)
2
3+(a)
2
2
3+(a)
3

0
(b)
0
(b)
0
2x(b)
0
0
(b)
0

0
(b)
0
(b)
0
2x(b)
0
0
(b)
0

byte (A) ← (A) + imm8
byte (A) ← (A) + (dir)
byte (A) ← (A) + (ear)
byte (A) ← (A) + (eam)
byte (ear) ← (ear) + (A)
byte (eam) ← (eam) + (A)
byte (A) ← (AH) + (AL) + (C)
byte (A) ← (A) + (ear) + (C)
byte (A) ← (A) + (eam) + (C)
byte (A) ← (AH) + (AL) + (C)
(hexadecimal)
byte (A) ← (A) - imm8
byte (A) ← (A) - (dir)
byte (A) ← (A) - (ear)
byte (A) ← (A) - (eam)
byte (ear) ← (ear) - (A)
byte (eam) ← (eam) - (A)
byte (A) ← (AH) - (AL) - (C)
byte (A) ← (A) - (ear) - (C)
byte (A) ← (A) - (eam) - (C)
byte (A) ← (AH) - (AL) - (C)
 (hexadecimal)

Z
Z
Z
Z
-
Z
Z
Z
Z
Z

Z
Z
Z
Z
-
-
Z
Z
Z
Z

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

-
-
-
-
*
*
-
-
-
-

-
-
-
-
*
*
-
-
-
-

ADDW A
ADDW A,ear
ADDW A,eam
ADDW A,#imm16
ADDW ear,A
ADDW eam,A
ADDCW A,ear
ADDCW A,eam
SUBW A
SUBW A,ear
SUBW A,eam
SUBW A,#imm16
SUBW ear,A
SUBW eam,A
SUBCW A,ear
SUBCW A,eam

1
2
2+
3
2
2+
2
2+
1
2
2+
3
2
2+
2
2+

2
2
3+(a)
2
2
3+(a)
2
3+(a)
2
2
3+(a)
2
2
3+(a)
2
3+(a)

0
0
(c)
0
0
2x(c)
0
(c)
0
0
(c)
0
0
2x(c)
0
(c)

word (A) ← (AH) + (AL)
word (A) ← (A) + (ear)
word (A) ← (A) + (eam)
word (A) ← (A) + imm16
word (ear) ← (ear) + (A)
word (eam) ← (eam) + (A)
word (A) ← (A) + (ear) + (C)
word (A) ← (A) + (eam) + (C)
word (A) ← (AH) - (AL)
word (A) ← (A) - (ear)
word (A) ← (A) - (eam)
word (A) ← (A) - imm16
word (ear) ← (ear) - (A)
word (eam) ← (eam) - (A)
word (A) ← (A) - (ear) - (C)
word (A) ← (A) - (eam) - (C)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

-
-
-
-
*
*
-
-
-
-
-
-
*
*
-
-

B.6Numerical Calculation Instructions

212 F2MC-16F Instruction Lists

Table B.6a Add/Deduct Instructions (Byte, Word, Long-Word): 42 Instructions (continued)

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

ADDL A,ear
ADDL A,eam
ADDL A,#imm32
SUBL A,ear
SUBL A,eam
SUBL A,#imm32

2
2+
5
2
2+
5

5
6+(a)
4
5
6+(a)
4

0
(d)
0
0
(d)
0

long (A) ← (A) + (ear)
long (A) ← (A) + (eam)
long (A) ← (A) + imm32
long (A) ← (A) - (ear)
long (A) ← (A) - (eam)
long (A) ← (A) - imm32

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

-
-
-
-
-
-

B.6Numerical Calculation Instructions

213

Table B.6b Increase/Decrease Instructions (Byte, Word, Long-Word): 12 Instructions

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Table B.6c Figure B.6c. Comparison Instructions (Byte, Word, Long-Word): 11 Instructions

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

INC ear
INC eam

DEC ear
DEC eam

2
2+

2
2+

2
3+(a)

2
3+(a)

0
2x(b)

0
2x(b)

byte (ear) ← (ear) + 1
byte (eam) ← (eam) + 1

byte (ear) ← (ear) - 1
byte (eam) ← (eam) - 1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

*
*

*
*

*
*

*
*

*
*

*
*

-
-

-
-

*
*

*
*

INCW ear
INCW eam

DECW ear
DECW eam

2
2+

2
2+

2
3+(a)

2
3+(a)

0
2x(b)

0
2x(b)

word (ear) ← (ear) + 1
word (eam) ← (eam) + 1

word (ear) ← (ear) - 1
word (eam) ← (eam) - 1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

*
*

*
*

*
*

*
*

*
*

*
*

-
-

-
-

*
*

*
*

INCL ear
INCL eam

DECL ear
DECL eam

2
2+

2
2+

4
5+(a)

4
5+(a)

0
2x(d)

0
2x(d)

long (ear) ← (ear) + 1
long (eam) ← (eam) + 1

long (ear) ← (ear) - 1
long (eam) ← (eam) - 1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

*
*

*
*

*
*

*
*

*
*

*
*

-
-

-
-

*
*

*
*

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

CMP A
CMP A,ear
CMP A,eam
CMP A,#imm8

1
2
2+
2

2
2
2+(a)
2

0
0
(b)
0

byte (AH) - (AL)
byte (A) - (ear)
byte (A) - (eam)
byte (A) - imm8

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

-
-
-
-

CMPW A
CMPW A,ear
CMPW A,eam
CMPW A,#imm16

1
2
2+
3

2
2
2+(a)
2

0
0
(c)
0

word (AH) - (AL)
word (A) - (ear)
word (A) - (eam)
word (A) - imm16

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

-
-
-
-

CMPL A,ear
CMPL A,eam
CMPL A,#imm32

2
2+
5

3
4+(a)
3

0
(d)
0

long (A) - (ear)
long (A) - (eam)
long (A) - imm32

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

*
*
*

*
*
*

*
*
*

*
*
*

-
-
-

B.6Numerical Calculation Instructions

214 F2MC-16F Instruction Lists

Table B.6d Unsigned Multiply/Divide Instructions (Word, Long-Word): 11 Instructions

*1: 3 in case of zero division, 6 in case of overflow, normally 14.

*2: 3 in case of zero division, 5 in case of overflow, normally 13.

*3: 5 + (a) in case of zero division, 7 + (a) in case of overflow, normally 17 + (a).

*4: 3 in case of zero division, 5 in case of overflow, normally 21.

*5: 4 + (a) in case of zero division, 7 + (a) in case of overflow, normally 25 + (a).

*6: (b) in case of zero division or overflow, normally 2 × (b).

*7: (c) in case of zero division or overflow, normally 2 × (c).

*8: 3 when byte (AH) is zero, 7 otherwise.

*9: 3 when byte (ear) is zero, 7 otherwise.

*10: 4 + (a) when byte (eam) is zero, 8 + (a) otherwise

*11: 3 when word (AH) is zero, 11 otherwise.

*12: 3 when word (ear) is zero, 11 otherwise

*13: 4 + (a) when word (eam) is zero, 12 + (a) otherwise

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

DIVU A

DIVU A,ear

DIVU A,eam

DIVUW A,ear

DIVUW A,eam

MULU A
MULU A,ear
MULU A,eam
MULUW A
MULUW A,ear
MULUW A,eam

1

2

2+

2

2+

1
2
2+
1
2
2+

*1

*2

*3

*4

*5

*8
*9
*10
*11
*12
*13

0

0

*6

0

*7

0
0
(b)
0
0
(b)

word (AH) / byte (AL)
Quotient → byte (AL) Remainder →
byte (AH)

word (A) / byte (ear)
Quotient → byte (A) Remainder →
byte (ear)

word (A) / byte (eam)
Quotient → byte (A) Remainder →
byte (ear)

long (A) / word (ear)
Quotient → word (A) Remainder →
word (ear)

long (A) / word (eam)
Quotient → word (A) Remainder →
word (eam)

byte (AH) * byte (AL) → word (A)
byte (A) * byte (ear) → word (A)
byte (A) * byte (eam) → word (A)
word (AH) * word (AL) → Long (A)
word (A) * word (ear) → Long (A)
word (A) * word (eam) → Long (A)

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

*

*

*

*

*

-
-
-
-
-
-

*

*

*

*

*

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

B.6Numerical Calculation Instructions

215

Table B.6e Signed Multiply/Divide Instructions (Word, Long-Word): 11 Instructions

*1: 3 in case of zero division, 8 or 18 in case of overflow, normally 18.

*2: 3 in case of zero division, 10 or 21 in case of overflow, normally 22.

*3: 4 + (a) in case of zero division, 11 + (a) or 22 + (a) in case of overflow, normally 23 + (a).

*4: For positive dividends: 4 in case of zero division, 10 or 29 in case of overflow, normally 30.
For negative dividends: 4 in case of zero division, 11 or 30 in case of overflow, normally 31.

*5: For positive dividends: 4 + (a) in case of zero division, 11 + (a) or 30 + (a) in case of overflow, nor-
mally 31 + (a).
For negative dividends: 4 + (a) in case of zero division, 12 + (a) or 31 + (a) in case of overflow, nor-
mally 32 + (a).

*6: (b) in case of zero division or overflow, normally 2 × (b).

*7: (c) in case of zero division or overflow, normally 2 × (c).

*8: 3 when byte (AH) is zero, 12 when result is positive, 13 when result is negative.

*9: 3 when byte (ear) is zero, 12 when result is positive, 13 when result is negative.

*10: 4 + (a) when byte (eam) is zero, 13 + (a) when result is positive, 14 + (a) when result is negative.

*11: 3 when word (AH) is zero, 12 when result is positive, 13 when result is negative.

*12: 3 when word (ear) is zero, 16 when result is positive, 19 when result is negative.

*13: 4 + (a) when word (eam) is zero, 17 + (a) when result is positive, 20 + (a) when result is negative.

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Note: Two different actual cycle counts are given for DIV instruction and DIVW instructions ending in
overflow, representing detection before or after calculation.

When DIV instructions or DIVW instructions result in overflow, the contents of the AL are
destroyed.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

DIV A

DIV A,ear

DIV A,eam

DIVW A,ear

DIVW A,eam

2

2

2+

2

2+

*1

*2

*3

*4

*5

0

0

*6

0

*7

word (AH) / byte (AL)
Quotient → byte (AL) Remainder →
byte (AH)

word (A) / byte (ear)
Quotient → byte (A) Remainder →
byte (ear)

word (A) / byte (eam)
Quotient → byte (A) Remainder →
byte (ear)

long (A) / word (ear)
Quotient → word (A) Remainder →
word (ear)

long (A) / word (eam)
Quotient → word (A) Remainder →
word (eam)

Z

Z

Z

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

*

*

*

*

*

*

*

*

*

*

-

-

-

-

-

MUL A
MUL A,ear
MUL A,eam
MULW A
MULW A,ear
MULW A,eam

2
2
2+
2
2
2+

*8
*9
*10
*11
*12
*13

0
0
(b)
0
0
(b)

byte (AH) * byte (AL) → word (A)
byte (A) * byte (ear) → word (A)
byte (A) * byte (eam) → word (A)
word (AH) * word (AL) → Long (A)
word (A) * word (ear) → Long (A)
word (A) * word (eam)→ Long (A)

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

B.7Logical Calculation Instructions

216 F2MC-16F Instruction Lists

B.7 Logical Calculation Instructions

Table B.7a Logical Instructions (Byte, Word): 39 Instructions

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

AND A,#imm8
AND A,ear
AND A,eam
AND ear,A
AND eam,A

OR A,#imm8
OR A,ear
OR A,eam
OR ear,A
OR eam,A

XOR A,#imm8
XOR A,ear
XOR A,eam
XOR ear,A
XOR eam,A
NOT A
NOT ear
NOT eam

2
2
2+
2
2+

2
2
2+
2
2+

2
2
2+
2
2+
1
2
2+

2
2
3+(a)
3
3+(a)

2
2
3+(a)
3
3+(a)

2
2
3+(a)
3
3+(a)
2
2
3+(a)

0
0
(b)
0
2x(b)

0
0
(b)
0
2x(b)

0
0
(b)
0
2x(b)
0
0
2x(b)

byte (A) ← (A) and imm8
byte (A) ← (A) and (ear)
byte (A) ← (A) and (eam)
byte (ear) ← (ear) and (A)
byte (eam) ← (eam) and (A)

byte (A) ← (A) or imm8
byte (A) ← (A) or (ear)
byte (A) ← (A) or (eam)
byte (ear) ← (ear) or (A)
byte (eam) ← (eam) or (A)

byte (A) ← (A) xor imm8
byte (A) ← (A) xor (ear)
byte (A) ← (A) xor (eam)
byte (ear) ← (ear) xor (A)
byte (eam) ← (eam) xor (A)
byte (A) ← not (A)
byte (ear) ← not (ear)
byte (eam) ← not (eam)

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R
R
R
R

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
*
*

-
-
-
*
*

-
-
-
*
*
-
*
*

ANDW A
ANDW A,#imm16
ANDW A,ear
ANDW A,eam
ANDW ear,A
ANDW eam,A

ORW A
ORW A,#imm16
ORW A,ear
ORW A,eam
ORW ear,A
ORW eam,A

XORW A
XORW A,#imm16
XORW A,ear
XORW A,eam
XORW ear,A
XORW eam,A
NOTW A
NOTW ear
NOTW eam

1
3
2
2+
2
2+

1
3
2
2+
2
2+

1
3
2
2+
2
2+
1
2
2+

2
2
2
3+(a)
3
3+(a)

2
2
2
3+(a)
3
3+(a)

2
2
2
3+(a)
3
3+(a)
2
2
3+(a)

0
0
0
(c)
0
2x(c)

0
0
0
(c)
0
2x(c)

0
0
0
(c)
0
2x(c)
0
0
2x(c)

word (A) ← (AH) and (A)
word (A) ← (A) and imm16
word (A) ← (A) and (ear)
word (A) ← (A) and (eam)
word (ear) ← (ear) and (A)
word (eam) ← (eam) and (A)

word (A) ← (AH) or (A)
word (A) ← (A) or imm16
word (A) ← (A) or (ear)
word (A) ← (A) or (eam)
word (ear) ← (ear) or (A)
word (eam) ← (eam) or (A)

word (A) ← (AH) xor (A)
word (A) ← (A) xor imm16
word (A) ← (A) xor (ear)
word (A) ← (A) xor (eam)
word (ear) ← (ear) xor (A)
word (eam) ← (eam) xor (A)
word (A) ← not (A)
word (ear) ← not (ear)
word (eam) ← not (eam)

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

R
R
R
R
R
R

R
R
R
R
R
R

R
R
R
R
R
R
R
R
R

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
*
*

-
-
-
-
*
*

-
-
-
-
*
*
-
*
*

B.7Logical Calculation Instructions

217

Table B.7b Logical Instructions (Long-Word): 9 Instructions

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Table B.7c Sign Inversion Instructions (Long-Word): 9 Instructions

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Table B.7d Absolute Value Instructions (Byte, Word, Long-Word): 3 Instructions

Table B.7e Normalize Instruction (Long-Word): 1 Instruction

*1: 5 when all accumulator are '0,' otherwise 5 + (R0).

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

ANDL A,ear
ANDL A,eam

ORL A,ear
ORL A,eam

XORL ¨A,ear
XORL A,eam

2
2+

2
2+

2
2+

5
6+(a)

5
6+(a)

5
6+(a)

0
(d)

0
(d)

0
(d)

long (A) ← (A) and (ear)
long (A) ← (A) and (eam)

long (A) ← (A) or (ear)
long (A) ← (A) or (eam)

long (A) ← (A) xor (ear)
long (A) ← (A) xor (eam)

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

*
*

*
*

*
*

*
*

*
*

*
*

R
R

R
R

R
R

-
-

-
-

-
-

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

NEG A

NEG ear
NEG eam

1

2
2+

2

2
3+(a)

0

0
2x(b)

byte (A) ← 0 - (A)

byte (ear) ← 0 - (ear)
byte (eam) ← 0 - (eam)

X

-
-

-

-
-

-

-
-

-

-
-

-

-
-

*

*
*

*

*
*

*

*
*

*

*
*

-

*
*

NEGW A

NEGW ear
NEGW eam

1

2
2+

2

2
3+(a)

0

0
2x(c)

word (A) ← 0 - (A)

word (ear) ← 0 - (ear)
word (eam) ← 0 - (eam)

-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

*

*
*

*

*
*

*

*
*

*

*
*

-

*
*

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

ABS A
ABSW A
ABSL A

2
2
2

2
2
4

0
0
0

byte (A) ← Absolute value (A)
word (A) ← Absolute value (A)
long (A) ← Absolute value (A)

Z
-
-

-
-
-

-
-
-

-
-
-

-
-
-

*
*
*

*
*
*

*
*
*

-
-
-

-
-
-

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

NRML A,R0 2 *1 0 long (A) ← Shift to the position where
1 was formerly placed
byte (R0) ← Number of shifts at that
time

- - - - - - * - - -

B.8Shift Instructions

218 F2MC-16F Instruction Lists

B.8 Shift Instructions

Table B.8a Shift Instructions (Byte, Word, Long-Word): 27 Instructions

*1: 3 when R0 is zero, otherwise 3 + (R0)

*2: 3 when R0 is zero, otherwise 4 + (R0)

*3: 3 when imm8 is zero, otherwise 3 + imm8

*4: 3 when imm8 is zero, otherwise 4 + imm8

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

RORC A
ROLC A

RORC ear
RORC eam
ROLC ear
ROLC eam

ASR A,RO
LSR A,RO
LSL A,RO

ASR A,#imm8
LSR A,#imm8
LSL A,#imm8

2
2

2
2+
2
2+

2
2
2

3
3
3

2
2

2
3+(a)
2
3+(a)

*1
*1
*1

*3
*3
*3

0
0

0
2x(b)
0
2x(b)

0
0
0

0
0
0

byte (A) ← Right rotate with carry
byte (A) ← Left rotate with carry

byte (ear) ← Right rotate with carry
byte (eam) ← Right rotate with carry
byte (ear) ← Left rotate with carry
byte (eam) ← Left rotate with carry

byte (A) ← Arithmetic right barrel shift (A,RO)
byte (A) ← Logical right barrel shift (A,RO)
byte (A) ← Logical left barrel shift (A,RO)

byte (A) ← Arithmetic right barrel shift (A,#imm8)
byte (A) ← Logical right barrel shift (A,#imm8)
byte (A) ← Logical left barrel shift (A,#imm8)

-
-

-
-
-
-

-
-
-

-
-
-

-
-

-
-
-
-

-
-
-

-
-
-

-
-

-
-
-
-

-
-
-

-
-
-

-
-

-
-
-
-

-
-
-

-
-
-

-
-

-
-
-
-

*
*
-

*
*
-

*
*

*
*
*
*

*
*
*

*
*
*

*
*

*
*
*
*

*
*
*

*
*
*

-
-

-
-
-
-

-
-
-

-
-
-

*
*

*
*
*
*

*
*
*

*
*
*

-
-

*
*
*
*

-
-
-

-
-
-

ASRW A
LSRW A / SHRW A
LSLW A / SHLW A

ASRW A,R0
LSRW A,R0
LSLW A,R0

ASRW A,#imm8
LSRW A,#imm8
LSLW A,#imm8

1
1
1

2
2
2

3
3
3

2
2
2

*1
*1
*1

*3
*3
*3

0
0
0

0
0
0

0
0
0

word (A) ← Arithmetic right shift (A,1 bit)
word (A) ← Logical right shift (A,1 bit)
word (A) ← Logical left shift (A,1 bit)

word (A) ← Arithmetic right barrel shift (A,RO)
word (A) ← Logical right barrel shift (A,RO)
word (A) ← Logical left barrel shift (A,RO)

word (A) ← Arithmetic right barrel shift
(A,#imm8)
word (A) ← Logical right barrel shift (A,#imm8)
word (A) ← Logical left barrel shift (A,#imm8)

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

*
*
-

*
*
-

*
*
-

*
R
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

-
-
-

-
-
-

-
-
-

*
*
*

*
*
*

*
*
*

-
-
-

-
-
-

-
-
-

ASRL A,RO
LSRL A,RO
LSLL A,RO

ASRL A,#imm8
LSRL A,#imm8
LSLL A,#imm8

2
2
2

3
3
3

*2
*2
*2

*4
*4
*4

0
0
0

0
0
0

long (A) ← Arithmetic right barrel shift (A,RO)
long (A) ← Logical right barrel shift (A,RO)
long (A) ← Logical left barrel shift (A,RO)

long (A) ← Arithmetic right barrel shift (A,#imm8)
long (A) ← Logical right barrel shift (A,#imm8)
long (A) ← Logical left barrel shift (A,#imm8)

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

*
*
-

*
*
-

*
*
*

*
*
*

*
*
*

*
*
*

-
-
-

-
-
-

*
*
*

*
*
*

-
-
-

-
-
-

B.9Branching Instructions

219

B.9 Branching Instructions

Table B.9a Branching Instructions (I): 31 Instructions

*1: 3 when branching occurs, otherwise 2.

*2: 3 x (c) ÷ (b)

*3: Read branch destination address (word)

*4: Write: Save to stack (word), Read: read branch destination address (word)

*5: Save to stack (word)

*6: Write: Save into stack (long-word), Read: read branch destination address (long-word)

*7: Save to stack (long-word)

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

BZ / BEQ rel
BNZ / BNE rel
BC / BLO rel
BNC / BHS rel
BN rel
BP rel
BV rel
BNV rel
BT rel
BNT rel
BLT rel
BGE rel
BLE rel
BGT rel
BLS rel
BHI rel
BRA rel

JMP @A
JMP @addr16
JMP @ear
JMP @eam
JMPP @ear *3
JMPP @eam *3
JMPP addr24

CALL @ear *4
CALL @eam *4
CALL addr16 *5
CALLV #vct4 *5
CALLP @ear *6
CALLP @eam *6
CALLP addr24 *7

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

1
3
2
2+
2
2+
4

2
2+
3
1
2
2+
4

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

2
2
3
4+(a)
3
4+(a)
3

4
5+(a)
5
5
7
8+(a)
7

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
(c)
0
(d)
0

(c)
2x(c)
(c)
2x(c)
2x(c)
*2
2x(c)

Branch when (Z) = 1
Branch when (Z) = 0
Branch when (C) = 1
Branch when (C) = 0
Branch when (N) = 1
Branch when (N) = 0
Branch when (V) = 1
Branch when (V) = 0
Branch when (T) = 1
Branch when (T) = 0
Branch when (V) xor (N) = 1
Branch when (V) xor (N) = 0
Branch when ((V) xor (N)) or (Z) = 1
Branch when ((V) xor (N)) or (Z) = 0
Branch when (C) or (Z) = 1
Branch when (C) or (Z) = 0
Unconditional branching

word (PC) ← (A)
word (PC) ← addr16
word (PC) ← (ear)
word (PC) ← (eam)
word (PC) ← (ear). (PCB) ← (ear+2)
word (PC) ← (eam). (PCB) ← (eam+2)
word (PC) ← ad24 0-15. (PCB) ← ad24 16-23

word (PC) ← (ear)
word (PC) ← (eam)
word (PC) ← addr16
Vector call instruction
word (PC) ← (ear) 0-15. (PCB) ← (ear)16-23
word (PC) ← (eam) 0-15. (PCB) ← (eam)16-23
word (PC) ← addr0-15. (PCB) ← addr16-23

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B.9Branching Instructions

220 F2MC-16F Instruction Lists

Table B.9b Branching Instructions (II): 20 Instructions

*1: 4 when branching occurs, otherwise 3.

*2: 5 when branching occurs, otherwise 4.

*3: 5 + (a) when branching occurs, otherwise 4 + (a).

*4: 6 + (a) when branching occurs, otherwise 5 + (a).

*5: 3 x (b) + 2 x (c) when an interrupt request occurs, 6 × (c) for recovery.

*6: High speed interrupt recovery instruction. If an interrupt request occurs and an interrupt is generated
while this instruction is executing, operation will branch to the interrupt vector without a stack oper-
ation.

*7: Recover from stack (word).

*8: Recover from stack (long-word).

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

CBNE A,#imm8,rel
CWBNE A,#imm16,rel

CBNE ear,#imm8,rel
CBNE eam,#imm8,rel
CWBNE ear,#imm16,rel
CWBNE eam,#imm16,rel

DBNZ ear,rel
DBNZ eam,rel

DWBNZ ear,rel
DWBNZ eam,rel

INT #vct8
INT addr16
INTP addr24
INT9
RETI
RETIQ *6

LINK #imm8

UNLINK

RET *7
RETP *8

3
4

4
4+
5
5+

3
3+

3
3+

2
3
4
1
1
2

2

1

1
1

*1
*1

*1
*3
*1
*3

*2
*4

*2
*4

14
12
13
14
9
11

6

5

4
5

0
0

0
(b)
0
(c)

0
2x(b)

0
2x(c)

8x(c)
6x(c)
6x(c)
8x(c)
6x(c)
*5

(c)

(c)

(c)
(d)

Branch when byte (A) ≠ imm8
Branch when word (A)≠ imm16

Branch when byte (ear)≠ imm8
Branch when byte (eam)≠ imm8
Branch when word (ear)≠ imm16
Branch when word (eam)≠ imm16

Branch when byte (ear)=(ear)-1. (ear)≠ 0
Branch when byte (eam)=(eam)-1. (eam)≠ 0

Branch when word (ear)=(ear)-1. (ear)≠ 0
Branch when word (eam)=(eam)-1. (eam)≠ 0

Software interrupt
Software interrupt
Software interrupt
Software interrupt
Recovery from interrupt
Recovery from interrupt

At the entrance of function, save old frame
pointers into a stack, set up new frame point-
ers, reserve area for local pointers.
At the exit of function, recover the old frame
pointers from the stack.

Recover from the subroutine.
Recover from the subroutine.

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-

-

-

-
-

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-

-

-

-
-

-
-

-
-
-
-

-
-

-
-

R
R
R
R
*
*

-

-

-
-

-
-

-
-
-
-

-
-

-
-

S
S
S
S
*
*

-

-

-
-

-
-

-
-
-
-

-
-

-
-

-
-
-
-
*
*

-

-

-
-

*
*

*
*
*
*

*
*

*
*

-
-
-
-
*
*

-

-

-
-

*
*

*
*
*
*

*
*

*
*

-
-
-
-
*
*

-

-

-
-

*
*

*
*
*
*

*
*

*
*

-
-
-
-
*
*

-

-

-
-

*
*

*
*
*
*

-
-

-
-

-
-
-
-
*
*

-

-

-
-

-
-

-
-
-
-

*
*

*
*

-
-
-
-
-
-

-

-

-
-

B.10Other Instructions

221

B.10 Other Instructions

Table B.10a Other Instructions (Byte, Word, Long-Word): 36 Instructions

*1: PCB, ADB, SSB, USB, SPB ... 1
DTB ... 2
DPR ... 3

2: 3+4(POP cycle count)

3: 3+4(PUSH cycle count)

*4: (POP cycle) × (c), or (PUSH cycle) × (c)

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

PUSHW A
PUSHW AH
PUSHW PS
PUSHW rlst

POPW A
POPW AH
POPW PS
POPW rlst

JCTX @a

AND CCR,#imm8
OR CCR,#imm8

MOV RP,#imm8
MOV ILM,#imm8

MOVEA RWi,ear
MOVEA RWi,eam
MOVEA A,ear
MOVEA A,eam

ADDSP #imm8
ADDSP #imm16

MOV A,brgl
MOV brg2,A
MOV brg2,#imm8

NOP
ADB
DTB
PCB
SPB
NCC
CMR

1
1
1
2

1
1
1
2

1

2
2

2
2

2
2+
2
2+

2
3

2
2
3

1
1
1
1
1
1
1

3
3
3
*3

3
3
3
*2

9

3
3

2
2

3
2+(a)
2
1+(a)

3
3

*1
1
2

1
1
1
1
1
1
1

(c)
(c)
(c)
*4

(c)
(c)
(c)
*4

6x(c)

0
0

0
0

0
0
0
0

0
0

0
0
0

0
0
0
0
0
0
0

word (SP) ← (SP) -2, ((SP)) ← (A)
word (SP) ← (SP) -2, ((SP)) ← (AH)
word (SP) ← (SP) -2, ((SP)) ← (PS)
(SP) ← (SP) - 2n, ((SP)) ← (rlst)

word (A) ← ((SP)), (SP) ← (SP) + 2
word (AH) ← ((SP)), (SP) ← (SP) + 2
word (PS) ← ((SP)), (SP) ← (SP) + 2
(rlst) ← ((SP)), (SP) ← (SP)

Context switching instruction

byte (CCR) ← (CCR) and imm8
byte (CCR) ← (CCR) or imm8

byte (RP) ← imm8
byte (ILM) ← imm8

word (RWi) ← ear
word (RWi) ← eam
word (A) ← ear
word (A) ← eam

word (SP) ← ext(imm8)
word (SP) ← imm16

byte (A) ← (brg1)
byte (brg2) ← (A)
byte (brg2) ← imm8

No operation
Prefix code for AD space access
Prefix code for DT space access
Prefix code for PC space access
Prefix code for SP space access
Prefix code for flag unchange setting
Prefix for common register banks

-
-
-
-

-
-
-
-

-

-
-

-
-

-
-
-
-

-
-

Z
-
-

-
-
-
-
-
-
-

-
-
-
-

*
-
-
-

-

-
-

-
-

-
-
*
*

-
-

*
-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
*
-

*

*
*

-
-

-
-
-
-

-
-

-
-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
*
-

*

*
*

-
-

-
-
-
-

-
-

-
-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
*
-

*

*
*

-
-

-
-
-
-

-
-

-
-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
*
-

*

*
*

-
-

-
-
-
-

-
-

*
*
*

-
-
-
-
-
-
-

-
-
-
-

-
-
*
-

*

*
*

-
-

-
-
-
-

-
-

*
*
*

-
-
-
-
-
-
-

-
-
-
-

-
-
*
-

*

*
*

-
-

-
-
-
-

-
-

-
-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
*
-

*

*
*

-
-

-
-
-
-

-
-

-
-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
-
-

-

-
-

-
-

-
-
-
-

-
-

-
-
-

-
-
-
-
-
-
-

B.10Other Instructions

222 F2MC-16F Instruction Lists

Table B.10a Other Instructions (Byte, Word, Long-Word): 36 Instructions (continued)

*1: 3 when AL is zero, 5 otherwise

*2: 4 when AL is zero, 6 otherwise

*3: 5 when AL is zero, 7 otherwise

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOVW SPCU,#imm16
MOVW SPCL,#imm16
SETSPC
CLRSPC

BTSCN A
BTSCNS A
BTSCND A

4
4
2
2

2
2
2

2
2
2
2

*1
*2
*3

0
0
0
0

0
0
0

word (SPCU) ← (imm16)
word (SPCL) ← (imm16)
Stack check operation enabled
Stack check operation disabled

byte (A) ← word (A) 1's bit position
byte (A) ← word (A) 1's bit position x 2
byte (A) ← word (A) 1's bit position x 4

-
-
-
-

Z
Z
Z

-
-
-
-

-
-
-

-
-
-
-

-
-
-

-
-
-
-

-
-
-

-
-
-
-

-
-
-

-
-
-
-

-
-
-

-
-
-
-

*
*
*

-
-
-
-

-
-
-

-
-
-
-

-
-
-

-
-
-
-

-
-
-

B.10Other Instructions

223

Table B.10b Bit Operation Instructions: 21 Instructions

*1: 5 when branching occurs, otherwise 4

*2: 7 when conditions are met, 6 otherwise

*3: Undefined cycle count

*4: Until conditions are met

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOVB A,dir:bp
MOVB A,addr16:bp
MOVB A,io:bp

MOVB dir:bp,A
MOVB addr16:bp,A
MOVB io:bp,A

SETB dir:bp
SETB addr16:bp
SETB io:bp

CLRB dir:bp
CLRB addr16:bp
CLRB io:bp

BBC dir:bp,rel
BBC addr16:bp,rel
BBC io:bp,rel

BBS dir:bp,rel
BBS addr16:bp,rel
BBS io:bp,rel

SBBS addr16:bp,rel

WBTS io:bp

WBTC io:bp

3
4
3

3
4
3

3
4
3

3
4
3

4
5
4

4
5
4

5

3

3

3
3
3

4
4
4

4
4
4

4
4
4

*1
*1
*1

*1
*1
*1

*2

*3

*3

(b)
(b)
(b)

2x(b)
2x(b)
2x(b)

2x(b)
2x(b)
2x(b)

2x(b)
2x(b)
2x(b)

(b)
(b)
(b)

(b)
(b)
(b)

2x(b)

*4

*4

byte (A) ← (dir:bp)b
byte (A) ← (addr16:bp)b
byte (A) ← (io:bp)b

bit (dir:bp)b ← (A)
bit (addr16:bp)b ← (A)
bit (io:bp)b ← (A)

bit (dir:bp)b ← 1
bit (addr16:bp)b ← 1
bit (io:bp)b ← 1

bit (dir:bp)b ← 0
bit (addr16:bp)b ← 0
bit (io:bp)b ← 0

Branch when (dir:bp)b = 0
Branch when (addr16:bp)b = 0
Branch when (io:bp)b = 0

Branch when (dir:bp)b = 1
Branch when (addr16:bp)b = 1
Branch when (io:bp)b = 1

Branch when (addr16:bp) b = 1, bit = 1

Wait until (io:bp) b = 1

Wait until (io:bp) b = 0

Z
Z
Z

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

*
*
*

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

*
*
*

*
*
*

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

*
*
*

*
*
*

-
-
-

-
-
-

*
*
*

*
*
*

*

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

*
*
*

*
*
*

*
*
*

-
-
-

-
-
-

*

-

-

B.10Other Instructions

224 F2MC-16F Instruction Lists

Table B.10c Accumulator Operation Instructions (Byte, Word): 6 Instructions

Table B.10d String Instructions: 10 Instructions

*1: 3 when RW0 is zero, 2+6 × (RW0) for count-out, 6n + 4 for match

*2: 4 when RW0 is zero, otherwise 2 + 6 × (RW0)

*3: (b) × (RW0)

*4: (b) × n

*5: (b) × (RW0)

*6: (c) × (RW0)

*7: (c) × n

*8: (c) × (RW0)

The notation 'm' in the - 'cycle count' column is the RW0 (counter) value, and 'n' is the number of loop
cycles.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

SWAP
SWAPW / XCHW A,T
EXT
EXTW
ZEXT
ZEXTW

1
1
1
1
1
1

3
2
1
2
1
2

0
0
0
0
0
0

byte (A)0-7 ←→ (A)8-15
word (AH) ←→ (AL)
byte signed extension
word signed extension
byte zero extension
word zero extension

-
-
X
-
Z
-

-
*
-
X
-
Z

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
*
*
R
R

-
-
*
*
*
*

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOVS / MOVSI
MOVSD

SCEQ / SCEQI
SCEQD

FILS / FILSI

2
2

2
2

2

*2
*2

*1
*1

5m+3

*3
*3

*4
*4

*5

byte transfer @AH+ ← @AL+, counter = RW0
byte transfer @AH- ← @AL-, counter = RW0

byte search @AH+ ← AL, counter = RW0
byte search @AH- ← AL, counter = RW0

byte fill @AH+ ← AL, counter = RW0

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

*
*

*

-
-

*
*

*

-
-

*
*

-

-
-

*
*

-

-
-

-
-

-

MOVSW / MOVSWI
MOVSWD

SCWEQ / SCWEQI
SCWEQD

FILSW / FILSWI

2
2

2
2

2

*2
*2

*1
*1

5m+3

*6
*6

*7
*7

*8

word transfer @AH+ ← @AL+, counter =
RW0
word transfer @AH- ← @AL-, counter = RW0

word search @AH+ ← AL, counter = RW0
word search @AH- ← AL, counter = RW0

word fill @AH+ ← AL, counter = RW0

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

*
*

*

-
-

*
*

*

-
-

*
*

-

-
-

*
*

-

-
-

-
-

-

B.10Other Instructions

225

Table B.10e Multiple Data Transfer Instructions: 18 Instructions

*1: 5 + imm8 × 5, 256 cycles when imm8 is zero.

*2: 5 + imm8 × 5 + (a), 256 cycles when imm8 is zero.

*3: No. of transfers x (b) × 2

*4: No. of transfer x (c) × 2

*5: The bank register indicated by bnk is the same as for the MOVS instruction.

The notation (a) in the - 'cycle count' column indicates a reference to Appendix B.4a.

The notation '+' in the # 'byte count' column indicates a reference to Appendix B.3.

The notations (b), (c) and (d) in the B (compensation value) column indicate a reference to Appendix B.4b.

Mnemonic # ~ B Operation LH AH I S T N Z V C RMW

MOVM @A,@RLi,#imm8
MOVM @A,eam,#imm8
MOVM addr16,@RLi,#imm8
MOVM addr16,eam,#imm8
MOVMW @A,@RLi,#imm8
MOVMW @A,eam,#imm8
MOVMW addr16,@RLi,#imm8
MOVMW addr16,eam,#imm8
MOVM @RLi,@A,#imm8
MOVM eam,@A,#imm8
MOVM @RLi,addr16,#imm8
MOVM eam,addr16,#imm8
MOVMW @RLi,@A,#imm8
MOVMW eam,@A,#imm8
MOVMW @RLi,addr16,#imm8
MOVMW eam,addr16,#imm8
MOVM bnk:addr16, *5

bnk:addr16,#imm8
MOVMW bnk:addr16, *5

bnk:addr16,#imm8

3
3+
5
5+
3
3+
5
5+
3
3+
5
5+
3
3+
5
5+
7

7

*1
*2
*1
*2
*1
*2
*1
*2
*1
*2
*1
*2
*1
*2
*1
*2
*1

*1

*3
*3
*3
*3
*4
*4
*4
*4
*3
*3
*3
*3
*4
*4
*4
*4
*3

*4

Multiple data transfer byte ((A)) ← ((RLi))
Multiple data transfer byte ((A)) ← (eam)
Multiple data transfer byte (addr16) ← ((RLi))
Multiple data transfer byte (addr16) ← (eam)
Multiple data transfer word ((A)) ← ((RLi))
Multiple data transfer word ((A)) ← ((eam))
Multiple data transfer word (addr16) ← ((RLi))
Multiple data transfer word (addr16) ← ((eam))
Multiple data transfer byte ((RLi)) ← ((A))
Multiple data transfer byte (eam) ← ((A))
Multiple data transfer byte ((RLi)) ← (addr16)
Multiple data transfer byte (eam) ← (addr16)
Multiple data transfer word ((RLi)) ← ((A))
Multiple data transfer word (eam) ← ((A))
Multiple data transfer word ((RLi)) ← (addr16)
Multiple data transfer word (eam) ← (addr16)
Multiple data transfer
 byte (bnk:addr16) ← (bnk:addr16)
Multiple data transfer
 word (bnk:addr16) ← (bnk:addr16)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B.11Execution Cycle Counts for Special Operations

226 F2MC-16F Instruction Lists

B.11 Execution Cycle Counts for Special Operations

This section describes execution time up to start of interrupt processing, and execution cycle counts for
extended intelligent I/O service, and exception handling processing for occurrence of stack area errors and
for execution of undefined instructions.

Execution Time up to Start of Interrupt Processing

(1) Wait time up to transition to CPU interrupt sequence
 (Do not transition to interrupt sequence during instruction execution.)

(2) Execution time of interrupt sequence

Cycle count: 16

Compensation value: 3 × (b) + 7 × (c)

Bus operation:
Internal register access: byte access 2 cycles

Interrupt vector read: word access 1 cycle, byte access 1 cycle

Stack write: word access 6 cycles

*For compensation values (b) and (c) see Appendix B.4b.

Accordingly, the execution time up to start of interrupt processing is represented by (1) plus (2).

Extended Intelligent I/O Service Execution Time (1 cycle of transfer time)

(1) When data transfer occurs normally

Table B.11a Extended Intelligent I/O Service Execution Time (when ISCS SE bit is '0')

*For compensation values (b) and (c) see Appendix B.4b.

Compensation values for transfer operations should be taken into account.

Buffer address pointer Fixed Updated Updated

I/O address pointer Fixed Fixed Updated

Cycle count
BAP ⇒ IOA
IOA ⇒ BAP

25
26

25
26

28
29

Compensation value 5×(b)+6×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

5×(b)+6×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

5×(b)+7×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

Bus operation
Internal register access

ISD access

Transfer operation

Word access: 1 cycle, byte
access: 3 cycles
Word access: 5 cycles,
byte access: 2 cycles
Read: 1 cycle, write: 1
cycle

Word access: 1 cycle, byte
access: 3 cycles
Word access: 5 cycles,
byte access: 2 cycles
Read: 1 cycle, write: 1
cycle

Word access: 1 cycle, byte
access: 3 cycles
Word access: 6 cycles,
byte access: 2 cycles
Read: 1 cycle, write: 1
cycle

B.11Execution Cycle Counts for Special Operations

227

Table B.11b Extended Intelligent I/O Service Execution Time (when ISCS SE bit is '1')

*For supplemental values (b) and (c) see Appendix B.4b.

Supplemental values for transfer operations should be taken into account.

(2) When halt occurs due to request from peripheral resources

Execute stack operations, and then branch to interrupt processing program

 Cycle count: 28

 Supplemental value: 8 × (b) + 9 × (c)

Bus operation:
Internal register access: word address 1 cycle, byte access 5 cycles

 ISD access: word access 1 cycle, byte access 2 cycles

 Interrupt vector read: word access 1 cycle, byte access 1 cycle

 Stack write: word access 6 cycles

*For compensation values (b) and (c) see Appendix B.4b.

Buffer address pointer Fixed Updated Updated

I/O address pointer Fixed Fixed Updated

Cycle count
BAP ⇒ IOA
IOA ⇒ BAP

26
27

26
27

29
30

Supplemental value 5x(b)+6×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

5x(b)+6×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

5x(b)+7×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

Bus operation
Internal register access

ISD access

Transfer operation

Word access: 1 cycle, byte
access: 3 cycles
Word access: 5 cycles,
byte access: 2 cycles
Read: 1 cycle, write: 1
cycle

Word access: 1 cycle, byte
access: 3 cycles
Word access: 5 cycles,
byte access: 2 cycles
Read: 1 cycle, write: 1
cycle

Word access: 1 cycle, byte
access: 3 cycles
Word access: 6 cycles,
byte access: 2 cycles
Read: 1 cycle, write: 1
cycle

B.11Execution Cycle Counts for Special Operations

228 F2MC-16F Instruction Lists

(3) At end of count

After transfer operation, execute stack operation and branch to interrupt processing program.

Table B.11c Extended Intelligent I/O Service Execution Time at End of Count (when ISCS SE bit is '0')

*For compensation values (b) and (c) see Appendix B.4b.

Compensation values for transfer operations should be taken into account.

Table B.11d Extended Intelligent I/O Service Execution Time at End of Count (when ISCS SE bit is '1')

*For compensation values (b) and (c) see Appendix B.4b.

Compensation values for transfer operations should be taken into account.

Buffer address pointer Fixed Updated Updated

I/O address pointer Fixed Fixed Updated

Cycle count
BAP ⇒ IOA
IOA ⇒ BAP

39
40

39
40

42
43

Compensation value 7x(b)+13×(c)
+ transfer operation (read: 1
cycle, write: 1 cycle)

7×(b)+13×(c)
+ transfer operation (read: 1
cycle, write: 1 cycle)

7×(b)+14×(c)
+ transfer operation (read: 1
cycle, write: 1 cycle)

Bus operation
Internal register access

ISD access

Transfer operation
Interrupt vector

Stack write

Word access: 1 cycle, byte
access: 4 cycles
Word access: 5 cycles, byte
access: 2 cycles
Read: 1 cycle, write: 1 cycle
Word address: 1 cycle, byte
access: 1 cycle
Word access: 6 cycles

Word access: 1 cycle, byte
access: 4 cycles
Word access: 5 cycles, byte
access: 2 cycles
Read: 1 cycle, write: 1 cycle
Word address: 1 cycle, byte
access: 1 cycle
Word access: 6 cycles

Word access: 1 cycle, byte
access: 4 cycles
Word access: 6 cycles, byte
access: 2 cycles
Read: 1 cycle, write: 1 cycle
Word address: 1 cycle, byte
access: 1 cycle
Word access: 6 cycles

Buffer address pointer Fixed Updated Updated

I/O address pointer Fixed Fixed Updated

Cycle count
BAP ⇒ IOA
IOA ⇒ BAP

40
41

40
41

43
44

Compensation value 7×(b)+13×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

7×(b)+13×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

7×(b)+14×(c)
+ transfer operation (read:
1 cycle, write: 1 cycle)

Bus operation
Internal register access

ISD access

Transfer operation

Interrupt vector

Stack write

Word access: 1 cycle, byte
access: 4 cycles
Word access: 5 cycles, byte
access: 2 cycles
Read: 1 cycle, write: 1
cycle
Word address: 1 cycle,
byte access: 1 cycle
Word access: 6 cycles

Word access: 1 cycle, byte
access: 4 cycles
Word access: 5 cycles, byte
access: 2 cycles
Read: 1 cycle, write: 1
cycle
Word address: 1 cycle,
byte access: 1 cycle
Word access: 6 cycles

Word access: 1 cycle, byte
access: 4 cycles
Word access: 6 cycles, byte
access: 2 cycles
Read: 1 cycle, write: 1
cycle
Word address: 1 cycle,
byte access: 1 cycle
Word access: 6 cycles

B.11Execution Cycle Counts for Special Operations

229

Exception Handling for Occurrence of Stack Area Error

 Cycle count: 16

 Supplemental value: (b) + 7 × (c)

 Bus operation: Read interrupt vector: word access 1 cycle, byte access 1 cycle

Save to register: word access 6 cycles

*For supplemental values (b) and (c) see Appendix B.4b.

Exception Handling for Execution of Undefined Instructions Cycle count: 16

Cycle count: 15

Compensation value: (b) + 7 × (c)

Bus operation: Read interrupt vector: word access 1 cycle, byte access 1 cycle

Write to stack: word access 6 cycles

*For compensation values (b) and (c) see Appendix B.4b.

B.11Execution Cycle Counts for Special Operations

230 F2MC-16F Instruction Map

APPENDIX C:
F2MC-16F Instruction Map

C.1 Basic Map Structure

C.2 Basic Page Maps

C.3 Bit Operation Instruction Maps

C.4 MOVM Instruction Maps

C.5 Character String Operation Maps

C.6 2-Byte Instruction Maps

C.7 ea Instructions

C.8 MOVEA RWi, ea

C.9 MOV Ri, ea

C.10 MOVW RWi, ea

C.11 MOV ea, Ri

C.12 MOVW ea, RWi

C.13 XCH Ri, ea

C.14 XCHW RWi, ea

C.1Basic Map Structure

231

C.1 Basic Map Structure

F2MC-16F instruction codes are composed of 1 or 2 bytes, and accordingly the instruction maps are con-
structed of several pages in 1- or 2-byte format.

Instruction Map Structure

Figure C.1a shows the structure of the instruction maps.

Fig. C.1a F2MC-16F Instruction Map Structure

For instructions with 1-byte instruction codes (NOP, etc.), the instruction code is described on the basic
page map.

For instructions with 2-byte instruction codes (MOVS, etc.), refer to the basic page map, and find the
name of the map on which the 2nd byte of the instruction code is described.

Figure C.1b shows the relation between the actual instruction codes and instruction maps.

Basic Page Map 1st byte

Bit Operation Instructions MOVM Instructions
Character String Operation

2-Byte Instructions ea Instructions × 9 Register, ea Instructions × 7

2nd byte

Instructions

C.1Basic Map Structure

232 F2MC-16F Instruction Map

*: The extended page map is the collective term used for bit operation commands, character
string operation commands, 2-byte instructions and ea instructions. Actually several pages
are provided to list instructions in each group.

Fig. C.1b Actual Instruction and Corresponding Map

Instruction code 1st byte 2nd byte operand operand

Not present in some instructions

Length varies with instruction

[Basic Page Map]

[Extended Page Maps] *

• • •

XY

UV

+W

+Z

C
.2 B

asic P
age M

ap

233

C.2 Basic Page Map

Table C.2 Basic Page

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7

+ 8

+ 9

+ A

+ B

+ C

+ D

+ E

+ F

NOP

INT9

ADDDC

NEG

PCB

DTB

ADB

SPB

LINK

UNLINK

MOV

NEGW

LSLW

ASRW

LSRW

imm#8

CMR

NCC

SUBDC

JCTX

EXT

ZEXT

SWAP

ADDSP

ADDL

SUBL

MOV

CMPL

EXTW

ZEXTW

SWAPW

ADDSP
A

 ILM, #8

#16

ADD

SUB

ADDC

CMP

AND

OR

DIVU

MULU

ADDW

SUBW

CBNE A,

CMPW

ANDW

ORW

XORW

MULUW

 A, dir

 A, dir

A

A

 CCR, #8

 CCR, #8

A

A

A

A

 #8, rel

A

A

A

A

A

ADD

SUB

SUBC

CMP

AND

OR

XOR

NOT

ADDW

SUBW

CWBNE

CMPW

ANDW

ORW

XORW

NOTW

 A, #8

 A, #8

A

 A, #8

 A, #8

 A, #8

 A, #8

A

 A, #16

 A, #16

 A, #16, rel

 A, #16

 A, #16

 A, #16

 A, #16

A

MOV
 A, dir

MOV
 dir, A
MOV

 A, #8
MOVX

 A, #8
MOV

 dir, #8
MOVX

 A, dir
MOVW

 A, SP
MOVW

 SP, A
MOVW

 A, dir
MOVW

 dir, A
MOVW

 A, #16
MOVL

 A, #32
PUSHW

A
PUSHW

 AH
PUSHW

 PS
PUSHW

 rlst

MOV
 A, io

MOV
 io, A
MOV
 A, addr16
MOV
 addr 16, A
MOV

 io, #8
MOVX

 A, io
MOVW

 io, #16
MOVX
 A, addr16
MOVW

 A, io
MOVW
 io, A
MOVW
 A, addr16
MOVW
 addr16, A
POPW

 A
POPW

 AH
POPW

 PS
POPW

 rlst

BRA
 rel

JMP
 @A

JMP
 addr16

JMPP
 addr24

CALL
 addr16

CALLP
 addr24

RETP

RET

INT
 #vct8

INT
 addr16

INTP
 addr24

RETI

 Bit

MOVM

 String

Two-byte

 operation
 instructions

instructions

 operation
 instructions

ea
instructions
ea

ea

ea

ea

ea

ea

ea

ea

MOVEA
 RWi, ea

MOV
 Ri, ea

MOVW
 RWi, ea

MOV
 ea, Ri

MOVW
 ea, RWi

XCH
 Ri, ea

XCRW
 RWi, ea

instructions

instructions

instructions

instructions

instructions

instructions

instructions

instructions

MOV
 A, Ri

MOV
 Ri, A

MOV
 Ri, #8

MOVX
 A, Ri

MOVX
 A,@RWi+d8

MOVN
 A, #4

CALLV
 #4

BZ /BEQ
rel

BNZ/BNE
rel

BC /BLO
rel

BNC/BHS
rel

BN
rel

BP
rel

BV
rel

BNV
rel

BT
rel

BNT
rel

BLT
rel

BGE
rel

BLE
rel

BGT
rel

BLS
rel

BHI
rel

MOVW
 A, RWi

MOVW
 RWi, A

MOVW
 RWi, #16

MOVW
@RWi+dB

MOVW
 Wi+dB, A

 A

 A

 RP, #8

 A

 @A

 #8

 A, #32

 A, #32

 A

 A

 A

 A, #32

Note: a The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• #4: #imm4 (4-bit immediate data)

• #8: #imm8 (8-bit immediate data)

• #16: #imm16 (16-bit immediate data)

• #32: #imm32 (32-bit immediate data)

• d8: disp8 (8-bit displacement)

b The following instructions perform identical functions.

• LSLW: SHLW

• LSRW: SHRW

• SWAPW: XCHW A, T

 instructions

: Instructions with 2-byte instruction codes (continued on extended maps)

C
.3 B

it O
peration Instruction M

ap

234
 F

2M
C

-16F
 Instruction M

ap

C.3 Bit Operation Instruction Map

Table C.3 Bit Operation Instruction

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7

+ 8

+ 9

+ A

+ B

+C

+D

+ E

+ F

MOVB
 A, io:bp

MOVB
 io:bp, A

CLRB
 io:bp

SETB
 io:bp

BBS
 io:bp, rel

BBC
 io:bp, rel

WBTS
 io:bp

WBTC
 io:bp

MOVB
 A, dir:bp

 MOVB
 A, ad16:bp

MOVB
 dir: bp,A

 MOVB
 ad16: bp, A

CLRB
 dir:bp

CLRB
 ad16:bp

SETB
 dir:bp

SETB
 ad16:bp

BBC
 dir:bp,rel

BBC
 ad16:bp, rel

BBS
ad16:bp, rel

BBS
 dir:bp, rel

SBBS
ad16:bp, rel

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• ad16: addr16 (direct address specification)

C
.4 M

O
V

M
 Instruction M

ap

235

C.4 MOVM Instruction Map

Table C.4 MOVM Instruction Map

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOVM @A

.@RL0, #8
MOVM @A

.@RL0, #8
MOVM @A

.@RL1, #8
MOVM @A

.@RL1, #8
MOVM @A

.@RL2, #8
MOVM @A

.@RL2, #8
MOVM @A

.@RL3, #8
MOVM @A

.@RL3, #8
MOVM @A

.@RW0, #8
MOVM @A

.@RW1, #8
MOVM @A

.@RW2, #8
MOVM @A

.@RW3, #8
MOVM @A

.@RW0, #8
MOVM @A

.@RW1, #8
MOVM @A

.@RW2, #8
MOVM @A

.@RW3, #8

MOVM

 +d8, #8
MOVM

 +d8, #8
MOVM

 +d8, #8
MOVM

 +d8, #8
MOVM

 +d8, #8
MOVM

 +d8. #8
MOVM

 +d8, #8
MOVM

 +d8, #8
MOVM

 +d16, #8
MOVM

 +d16, #8
MOVM

 +d16, #8
MOVM

 +d16, #8
MOVM

 +RW7, #8
MOVM

 +RW7, #8
MOVM

 +d16, #8
MOVM

 ddr16, #8

MOVM

,@A, #8
MOVM

,@A, #8
MOVM

 A, RL1
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8

MOVM
addr16
,@RL0, #8
MOVM
addr16
,@RL0, #8
MOVM

,@RL1, #8
MOVM

,@RL1, #8
MOVM

,@RL2, #8
MOVM
addr16
,@RL2, #8
MOVM

,@RL3, #8
MOVM

,@RL3, #8

,@RL03, #8
MOVM

,@RL1, #8
MOVM

,@RL2, #8
MOVM

,@RL3, #8
MOVM

,@RL0, #8
MOVM

,@RL1, #8
MOVM

,@RL2, #8
MOVM

,@RL3, #8

MOVM a

W0+d8, #8
MOVM a

W1+d8, #8
MOVM a

W2+d8, #8
MOVM a

W3+d8, #8
MOVM a

W4+d8, #8
MOVM a

W5+d8, #8
MOVM a

W6+d8, #8
MOVM a

MOVM ad

0+d16, #8
MOVM ad

1+d16, #8
MOVM ad

2+d16, #8
MOVM ad

3+d16, #8
MOVM ad

0+RW7, #8
MOVM ad

1+RW7, #8
MOVM a

C+d16, #8
MOVM a

addr16, #8

MOVMW @A
,@RL0, #8

MOVMW @A
,@RL0, #8

MOVMW @A
,@RL1, #8

MOVMW @A
,@RL1, #8

MOVMW @A
,@RL2, #8

MOVMW @A
,@RL2, #8

MOVMW @A
,@RL3, #8

MOVMW @A
,@RL3, #8

MOVMW @A
,@RL0, #8

MOVMW @A
,@RL1, #8

MOVMW @A
,@RL2, #8

MOVMW @A
,@RL3, #8

MOVMW
@A, @RW1
+RW7, #8
MOVMW
@A, @PC
+16, #8
MOVMW
@A,
ddr16, #8

MOVMW
@A, @RW0
+8, #8
MOVMW
@A, @RW1
+8, #8
MOVMW
@A, @RW2
+8, #8
MOVMW
@A, @RW3
+8, #8
MOVMW
@A, @RW4
+8, #8
MOVMW
@A, @RW5
+8, #8
MOVMW
@A, @RW6
+8, #8
MOVMW
@A, @RW7
+8, #8
MOVMW
@A, @RW0
+16, #8
MOVMW
@A, @RW1
+16, #8
MOVMW
@A, @RW2
+16, #8
MOVMW
@A, @RW3
+16, #8
MOVMW
@A, @RW0
+RW7, #8

MOVMW a

W0+d8, #8
MOVMW a

W1+d8, #8
MOVMW a

W2+d8, #8
MOVMW a

W3+d8, #8
MOVMW a

W4+d8, #8
MOVMW a

W5+d8, #8
MOVMW a

W6+d8, #8
MOVMW a

W7+d8, #8
MOVMW ad

0+d16, #8
MOVMW ad

1+d16, #8
MOVMW ad

2+d16, #8
MOVMW ad

3+d16, #8
MOVMW ad

0+RW7, #8
MOVMW ad

1+RW7, #8
MOVMW a

C+d16, #8
MOVMW

ddr16, #8

MOVMW

,@RL0, #8
MOVMW

,@RL0, #8
MOVMW

,@RL1, #8
MOVMW

,@RL1, #8
MOVMW

,@RL2, #8
MOVMW

,@RL2, #8
MOVMW

,@RL3, #8
MOVMW

,@RL3, #8
MOVMW

,@RW0, #8
MOVMW

,@RW1, #8
MOVMW

,@RW2, #8
MOVMW

,@RW3, #8
MOVMW

,@RW0, #8
MOVMW

,@RW1, #8
MOVMW

,@RW2, #8
MOVMW

,@RW3, #8

MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8

MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8
MOVM @

ddr16, #8

MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8

MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

ddr16, #8
MOVM

 A, @RW1
MOVM

 A, @RW2
MOVM

 A, @RW3
MOVM

 A, @RW0+
MOVM

 A, @RW1+
MOVM

 A, @RW2+
MOVM

 A, @RW3+

MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVMW

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8
MOVM

,@A, #8

MOVMW
@RL0, a
ddr16, #8
MOVMW
@RL0, a
ddr16, #8
MOVMW
@RL1, a
ddr16, #8
MOVMW
@RL1, a
ddr16, #8
MOVMW
@RL2, a
ddr16, #8
MOVMW
@RL2, a
ddr16, #8
MOVMW
@RL3, a
ddr16, #8
MOVMW
@RL3, a
ddr16, #8
MOVMW
@RW0, a
ddr16, #8
MOVMW
@RW1, a
ddr16, #8
MOVMW
@RW2, a
ddr16, #8
MOVMW
@RW3, a
ddr16, #8

MOVMW @
W1+RW7, a
ddr16, #8
MOVMW @
PC+d16, a
ddr16, #8
MOVMW @
addr16, a
ddr16, #8

MOVMW @
RW0+d8, a
ddr16, #8
MOVMW @
RW1+d8, a
ddr16, #8
MOVMW @
RW2+d8, a
ddr16, #8

MOVMW @
RW4+d8, a
ddr16, #8

MOVMW @
RW6+d8, a
ddr16, #8
MOVMW @
RW7+d8, a
ddr16, #8
MOVMW @
W0+d16, a
ddr16, #8
MOVMW @
W1+d16, a
ddr16, #8
MOVMW @
W2+d16, a
ddr16, #8
MOVMW @
W3+d16, a
ddr16, #8
MOVMW @
W0+RW7, a
ddr16, #8

MOVMW @
RW3+d8, a
ddr16, #8

MOVMW @
RW5+d8, a
ddr16, #8

MOVM

W7+d8, #8

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

d8 : disp8 (8-bit displacement)

d16: disp16 (16-bit displacement)

#8 : #imm8 (8-bit immediate data)

#16: #imm16 (16-bit immediate data)

@A, @RW0

@A, @RW1

@A, @RW2

@A, @RW3

@A, @RW4

@A, @RW5

@A, @RW6

@A, @RW7

@A, @RW0

@A, @RW1

@A, @RW2

@A, @RW3

@A, @RW0

@A, @RW1

@A, @PC

@A, a

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

ddr16,@R

ddr16,@R

ddr16,@R

ddr16,@R

ddr16,@R

ddr16,@R

ddr16,@R

ddr16,@R

ddr16,@RW

ddr16,@RW

ddr16,@RW

ddr16,@RW

ddr16,@RW

ddr16,@RW

ddr16,@P

ddr16, a

MOVMW @A

MOVMW @A

MOVMW @A

MOVMW @A

,@RL0, #8

,@RL1, #8

,@RL2, #8

,@RL3, #8

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

addr16

ddr16, @R

ddr16, @R

ddr16, @R

ddr16, @R

ddr16, @R

ddr16, @R

ddr16, @R

ddr16, @R

dr16, @RW

dr16, @RW

dr16, @RW

dr16, @RW

dr16, @RW

dr16, @RW

ddr16, @P

addr16, a

@RL0

@RL0

@RL1

@RL1

@RL2

@RL2

@RL3

@RL3

@RW0

@RW1

@RW2

@RW3

@RW0+

@RW1+

@RW2+

@RW3+

@RW0+d8

@RW1+d8

@RW2+d8

@RW3+d8

@RW4+d8

@RW5+d8

@RW6+d8

@RW7+d8

@RW0+d16

@RW1+d16

@RW2+d16

@RW3+d16

@RW0+RW7

@RW1+RW7

@PC+d16

addr16

@RL0, a

@RL0, a

@RL1, a

@RL1, a

@RL2, a

@RL2, a

@RL3, a

@RL3, a

@RW0, a

@RW1, a

@RW2, a

@RW3, a

@RW0+, a

@RW1+, a

@RW2+, a

@RW3+, a

RW0+d8, a

RW1+d8, a

RW2+d8, a

RW3+d8, a

RW4+d8, a

RW5+d8, a

RW6+d8, a

RW7+d8, a

W0+d16, a

W1+d16, a

W2+d16, a

W3+d16, a

W0+RW7, a

W1+RW7, a

PC+d16, a

addr16, a

@RL0

@RL0

@RL1

@RL1

@RL2

@RL2

@RL3

@RL3

@RW0

@RW1

@RW2

@RW3

@RW0+

@RW1+

@RW2+

@RW3+

RW0+d8

RW1+d8

RW2+d8

RW3+d8

RW4+d8

RW5+d8

RW6+d8

RW7+d8

RW0+d16

RW1+d16

RW2+d16

RW3+d16

RW0+RW7

RW1+RW7

@PC+d16

addr16

MOVMW

MOVMW

MOVMW

MOVMW

@RW0+, a

@RW1+, a

@RW2+, a

@RW3+, a

ddr16, #8

ddr16, #8

ddr16, #8

ddr16, #8

C
.5 S

tring O
peration Instruction M

ap

236
 F

2M
C

-16F
 Instruction M

ap

C.5 String Operation Instruction Map

Table C.5 String Operation Instruction

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOVSI MOVSD MOVSWI MOVSWD
PCB, PCB

PCB, DTB

PCB, ADB

PCB, SPB

DTB, PCB

DTB, DTB

DTB, ADB

DTB, SPB

ADB, PCB

ADB, DTB

ADB, ADB

ADB, SPB

SPB, PCB

SPB, DTB

SPB, ADB

SPB, SPB

SCEQI SCEQD SCWEQI SCWEQD FILSI FILSWI
PCB

DTB

ADB

SPB

PCB

DTB

ADB

SPB

PCB

DTB

ADB

SPB

PCB

DTB

ADB

SPB

PCB

DTB

ADB

SPB

PCB

DTB

ADB

SPB

*1: Assembler format:MOVM destination bank:addr16,source bank:addr16,#imm8
*2: Assembler format:MOVMW destination bank:addr16,source bank:addr16,#imm8
Note: The following instructions perform identical functions.

MOVSI: MOVS

MOVSWI: MOVSW

SCEQI: SCEQ

SCWEQI: SCWEQ

FILSI: FILS

FILSWI: FILSW

MOVM#1 MOVMW#2

C
.6 2-B

yte Instruction M
ap

237

C.6 2-Byte Instruction Map

Table C.6 2-Byte Instruction

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOV

 A, DTB

MOV

 A, ADB

MOV

 A, SSB

MOV

 A, USB

MOV

 A. DPR
MOV

 A. @A

MOV

 A, PCB

ROLC

 A

LSLW
 A, R0
MOVW

 A, @A
ASRW

 A, R0
LSRW

 A, R0

MOV

 DTB, A

MOV

 ADB, A

MOV

 SSB, A

MOV

 USB, A

MOV

 DPR. A
MOV

 @AL. AH

MOVX

 A, @A

RORC

 A

LSLL
 A, R0
MOVW

 @AL, AH
ASRL

 A, R0
LSRL

 A, R0

MOVX

A, @RL0 +d8

MOVX

A, @RL1+d8

MOVX

A, @RL2+d8

MOVX

A, @RL3+d8

LSL
 A, R0
NRML

 A, R0
ASR

 A, R0
LSR

 A, R0

MOV

@RL0+d8, A

MOV

@RL1+d8, A

MOV

@RL2+d8, A

MOV

@RL3+d8, A

MOV

A, @RL0+d8

MOV

A, @RL1+d8

MOV

 A, @RL2+d8

MOV
 A, @RL3+d8

MOVW
@RL0+d8, A

MOVW
@RL1+d8, A

MOVW
@RL2+d8, A

MOVW
@RL3+d8, A

MOVW
A, @RL0+d8

MOVW
A, @RL1+d8

MOVW
A, @RL2+d8

MOVW
A, @RL3+d8

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8: disp8 (8-bit displacement)

LSLW

 A, #imm8

LSLL

A, #imm8
MOV
 A, SP8

MOV
 SPB, A

ASRW

 A, #imm8

ASRL

 A, #imm8

LSRW
 A, #imm8

LSRL
 A, #imm8

MOVX

A, @RL0 +d8

MOV

@RL0+d8, A

MOV

A, @RL0+d8

MOVX

A, @RL1+d8

MOV

@RL1+d8, A

MOV

A, @RL1+d8

MOVX

A, @RL2+d8

MOV

@RL2+d8, A

MOV

A, @RL2+d8

MOVX

A, @RL3+d8

MOV

@RL3+d8, A

MOV

A, @RL3+d8

LSL

A, #imm8

MOVW
@RL0+d8, A

MOVW
A, @RL0+d8

MOVW
@RL1+d8, A

MOVW
A, @RL1+d8

MOVW
@RL2+d8, A

MOVW
A, @RL2+d8

MOVW
@RL3+d8, A

MOVW
A, @RL3+d8

ASR

 A, #imm8

LSR
 A, #imm8

RETIQ

MOV DTB

, #imm8

MOV ADB

, #imm8
MOV SSB

, #imm8
MOV USB

, #imm8

MOV DPR

, #imm8
MOV SPB

, #imm8

MOV SPC

U, #imm16
MOV SPC

L, #imm16
MOVP

 A, @A
MOVPX

 A, @A

MOVPW

 A, @A
MOVPL

 A, @A

BTSCN

 A
SETPC

BTSCNS

 A
BTSCND

 A

MOV

A, @SP+d8
MOVX

A, @SP+d8

MOVW

A, @SP+d8
MOVL

A, @SP+d8

MOV

@SP+d8, A

MOVW SP

, #imm16
MOVW

@SP+d8, A

MOVL

@SP+d8, A
MOVP

 A, addr24

MOVPX

 A, addr24

MOVPW

 A, addr24
MOVPL

 A, addr24

MOVP

 addr24, A

CLRSPC

MOVPW

 addr24, A
MOVPL

 addr24, A

MOVPL

 @A, RL0

MOVPL

 @A, RL0
MOVPL

 @A, RL1

MOVPL

 @A, RL1
MOVPL

 @A, RL2

MOVPL

 @A, RL2
MOVPL

 @A, RL3
MOVPL

 @A, RL3
MUL A

MULW A

DIV A

ABS A

ABSL A

MOVP

 @A, R0
MOVP

 @A, R1

MOVP

 @A, R2
MOVP

 @A, R3
MOVP

 @A, R4
MOVP

 @A, R5

MOVP

 @A, R6
MOVP

 @A, R7
MOVPW

 @A, RW0
MOVPW

 @A, RW1

MOVPW

 @A, RW2
MOVPW

 @A, RW3

MOVPW

 @A, RW4
MOVPW

 @A, RW5
MOVPW

 @A, RW6
MOVPW

 @A, RW7

C
.7 ea Instructions

238
 F

2M
C

-16F
 Instruction M

ap

C.7 ea Instructions

Table C.7a ea Instructions [1st byte = 70 H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

ADDL

 A, RL0
ADDL

 A, RL0
ADDL

 A, RL1
ADDL

 A, RL1
ADDL

 A, RL2
ADDL

 A, RL2
ADDL

 A, RL3
ADDL

 A, RL3
ADDL

 A, @RW0
ADDL

 A, @RW1
ADDL

 A, @RW2
ADDL

 A, @RW3
ADDL

 A, @RW0+
ADDL

 A, @RW1+
ADDL

 A, @RW2+
ADDL

 A, @RW3+

ADDL A,

 @RW0+d8
ADDL A,

 @RW1+d8
ADDL A,

 @RW2+d8
ADDL A,

 @RW3+d8
ADDL A,

 @RW4+d8
ADDL A,

 @RW5+d8
ADDL A,

 @RW6+d8
ADDL A,

 @RW7+d8
ADDL A,

 @RW0+d16
ADDL A,

 @RW1+d16
ADDL A,

 @RW2+d16
ADDL A,

 @RW3+d16
ADDL A,

@RW0+RW7
ADDL A,

@RW1+RW7
ADDL A,

 @PC+d16
ADDL A,

 addr16

ANDL

 A, RL0
ANDL

 A, RL0
ANDL

 A, RL1
ANDL

 A, RL1
ANDL

 A, RL2
ANDL

 A, RL2
ANDL

 A, RL3
ANDL

 A, RL3
ANDL

 A, @RW0
ANDL

 A, @RW1
ANDL

 A, @RW2
ANDL

 A, @RW3
ANDL

 A, @RW0+
ANDL

 A, @RW1+
ANDL

 A, @RW2+
ANDL

 A, @RW3+

SUBL

 A, RL0
SUBL

 A, RL0
SUBL

 A, RL1
SUBL

 A, RL1
SUBL

 A, RL2
SUBL

 A, RL2
SUBL

 A,RL3
SUBL

 A, RL3

 A, @RW0
SUBL

 A, @RW1
SUBL

 A, @RW2
SUBL

 A, @RW3
SUBL

 A, @RW0+
SUBL

 A, @RW1+
SUBL

 A, @RW2+
SUBL

 A, @RW3+

SUBL A,

 @RW0+d8
SUBL A,

 @RW1+d8
SUBL A,

 @RW2+d8
SUBL A,

 @RW3+d8
SUBL A,

 @RW4+d8
SUBL A,

 @RW5+d8
SUBL A,

 @RW6+d8
SUBL A,

SUBL A,

 @RW0+d16
SUBL A,

 @RW1+d16
SUBL A,

 @RW2+d16
SUBL A,

 @RW3+d16
SUBL A,

 @RW0+RW7
SUBL A,

@RW1+RW7
SUBL A,

 @PC+d16
SUBL A,

 addr16

CWBNE
 RW0,
 #16, rel
CWBNE
 RW1,
 #16, rel
CWBNE
 RW2,
 #16, rel
CWBNE
 RW3,
 #16, rel
CWBNE
 RW4,
 #16, rel
CWBNE
 RW5,
 #16, rel
CWBNE
 RW6,
 #16, rel
CWBNE
 RW7,
 #16, rel
CWBNE
 @ RW0,
 #16, rel
CWBNE
 @ RW1,
 #16, rel
CWBNE
 @ RW2,
 #16, rel
CWBNE
 @ RW3,
 #16, rel

CWBNE
@RW1+RW7,
 #16, rel
CWBNE
 @PC+d16,
 #16, rel
CWBNE
 addr16,
 #16, rel

CWBNE
 @RW0+d8,
 #16, rel
CWBNE
 @RW1+d8,
 #16, rel
CWBNE
 @RW2+d8,
 #16, rel
CWBNE
 @RW3+d8,
 #16, rel
CWBNE
 @RW4+d8,
 #16, rel
CWBNE
 @RW5+d8,
 #16, rel
CWBNE
 @RW6+d8,
 #16, rel
CWBNE
 @RW7+d8,
 #16, rel
CWBNE
 @RW0+d16,
 #16, rel
CWBNE
 @RW1, d16,
 #16, rel
CWBNE
 @RW2+d16,
 #16, rel
CWBNE
 @RW3+d16,
 #16, rel
CWBNE
@RW0+RW7,
 #16, rel

CMPL A,

 @RW0+d8
CMPL A,

 @RW1+d8
CMPL A,

 @RW2+d8
CMPL A,

 @RW3+d8
CMPL A,

 @RW4+d8
CMPL A,

 @RW5+d8
CMPL A,

 @RW6+d8
CMPL A,

 @RW7+d8
CMPL A,

 @RW0+d16
CMPL A,

 @RW1+d16
CMPL A,

 @RW2+d16
CMPL A,

 @RW3+d16
CMPL A,

 @RW0+RW7
CMPL A,

 @RW1+RW7
CMPL A,

 @PC+d16
CMPL A,

 addr16

CMPL

 A, RL0
CMPL

 A, RL0
CMPL

 A, RL1
CMPL

 A, RL1
CMPL

 A, RL2
CMPL

 A, RL2
CMPL

 A, RL3
CMPL

 A, RL3
CMPL

 A, @RW0
CMPL

 A, @RW1
CMPL

 A, @RW2
CMPL

 A, @RW3
CMPL

 A, @RW0+
CMPL

 A, @RW1+
CMPL

 A, @RW2+
CMPL

 A, @RW3+

ANDL A,

 @RW0+d8
ANDL A,

 @RW1+d8
ANDL A,

 @RW2+d8
ANDL A,

 @RW3+d8
ANDL A,

 @RW4+d8
ANDL A,

 @RW5+d8
ANDL A,

 @RW6+d8
ANDL A,

 @RW7+d8
ANDL A,

 @RW0+d16
ANDL A,

 @RW1+d16
ANDL A,

 @RW2+d16
ANDL A,

 @RW3+d16
ANDL A,

@RW0+RW7
ANDL A,

@RW1+RW7
ANDL A,

 @PC+d16
ANDL A,

 addr16

ORL A,

 @RW0+d8
ORL A,

 @RW1+d8
ORL A,

 @RW2+d8
ORL A,

 @RW3+d8
ORL A,

 @RW4+d8
ORL A,

 @RW5+d8
ORL A,

 @RW6+d8
ORL A,

 @RW7+d8
ORL A,

 @RW0+d16
ORL A,

 @RW1+d16
ORL A,

 @RW2+d16
ORL A,

 @RW3+d16
ORL A,

@RW0+RW7
ORL A,

 @RW1+RW7
ORL A,

 @PC+d16
ORL A,

 addr16

XORL A,

 @RW0+d8
XORL A,

 @RW1+d8
XORL A,

 @RW2+d8
XORL A,

 @RW3+d8
XORL A,

 @RW4+d8
XORL A,

 @RW5+d8
XORL A,

 @RW6+d8
XORL A,

 @RW7+d8
XORL A,

 @RW0+d16
XORL A,

@RW1+d16
XORL A,

 @RW2+d16
XORL A,

 @RW3+d16
XORL A,

@RW0+RW7
XORL A,

@RW1+RW7
XORL A,

 @PC+d16
XORL A,

 addr16

ORL

 A, RL0
ORL

 A, RL0
ORL

 A, RL1
ORL

 A, RL1
ORL

 A, RL2
ORL

 A, RL2
ORL

 A, RL3
ORL

 A, RL3
ORL

 A, @RW0
ORL

 A, @RW1
ORL

 A, @RW2
ORL

 A, @RW3
ORL

 A, @RW0+
ORL

 A, @RW1+
ORL

 A, @RW2+
ORL

 A, @RW3+

XORL

 A, RL0
XORL

 A, RL0
XORL

 A, RL1
XORL

 A, RL1
XORL

 A, RL2
XORL

 A, RL2
XORL

 A, RL3
XORL

 A, RL3
XORL

 A, @RW0
XORL

 A, @RW1
XORL

 A, @RW2
XORL

 A, @RW3
XORL

 A, @RW0+
XORL

 A, @RW1+
XORL

 A, @RW2+
XORL

 A, @RW3+

CBNE
 R0,
 #8, rel
CBNE
 R1,
 #8, rel
CBNE
 R2,
 #8, rel
CBNE
 R3,
 #8, rel
CBNE
 R4,
 #8, rel
CBNE
 R5,
 #8, rel
CBNE
 R6,
 #8, rel
CBNE
 R7,
 #8, rel
CBNE
 @RW0,
 #8, rel
CBNE
 @RW1,
 #8, rel
CBNE
 @RW2,
 #8, rel
CBNE
 @RW3,
 #8, rel

CBNE
@RW1+RW7
 #8, rel
CBNE
@PC+d16,
 #8, rel
CBNE
 addr16,
 #8, rel

CBNE
 @RW0+d8,
 #8, rel
CBNE
 @RW1+d8,
 #8, rel
CBNE
 @RW2+d8,
 #8, rel

CBNE
 @RW4+d8,
 #8, rel

CBNE
 @RW6+d8,
 #8, rel
CBNE
 @RW7+d8,
 #8, rel
CBNE
 @RW0+d16,
 #8, rel
CBNE
 @RW1+d16,
 #8, rel
CBNE
 @RW2+d16,
 #8, rel
CBNE
 @RW3+d16,
 #8, rel
CBNE
@RW0+RW7
 , #8, rel

CBNE
 @RW3+d8,
 #8, rel

CBNE
 @RW5+d8,
 #8, rel

 SUBL

 @RW7+d8

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

#8 : #imm8 (8-bit immediate data)

#16: #imm16 (16-bit immediate data)

d8 : disp8 (8-bit displacement)

d16: disp16 (16-bit displacement)

CBNE
 @RW0+,
 #8, rel
CBNE
 @RW1+,
 #8, rel
CBNE
 @RW2+,
 #8, rel
CBNE
 @RW3+,
 #8, rel

CWBNE
 @ RW0+,
 #16, rel
CWBNE
 @ RW1+,
 #16, rel
CWBNE
 @ RW2+,
 #16, rel
CWBNE
 @ RW3+,
 #16, rel

C
.7 ea Instructions

239

Table C.7b ea Instructions [1st byte = 71 H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

JMPP
 @RL0

JMPP
 @RL0

JMPP
 @RL1

JMPP
 @RL1

JMPP
 @RL2

JMPP
 @RL2

JMPP
 @RL3

JMPP
 @RL3

JMPP
 @@RW0

JMPP
 @@RW1

JMPP
 @@RW2

JMPP
 @@RW3

JMPP
 @@RW0+

JMPP
 @@RW1+

JMPP
 @@RW2+

JMPP
 @@RW3+

JMPP
 @@RW0+d8

JMPP
 @@RW1+d8

JMPP
 @@RW2+d8

JMPP
 @@RW3+d8

JMPP
 @@RW4+d8

JMPP
 @@RW5+d8

JMPP
 @@RW6+d8

JMPP
 @@RW7+d8

JMPP @
 @RW0+d16

JMPP @
 @RW1+d16

JMPP @
 @RW2+d16

JMPP @
 @RW3+d16

JMPP @
 @RW0+RW7

JMPP @
 @RW1+RW7

JMPP
 @@PC+d16

JMPP
 @addr16

CALLP
 @RL0

CALLP
 @RL0

CALLP
 @RL1

CALLP
 @RL1

CALLP
 @RL2

CALLP
 @RL2

CALLP
 @RL3

CALLP
 @RL3

CALLP
 @RW0

CALLP
 @@RW1

CALLP
 @@RW2

CALLP
 @@RW3

CALLP
 @@RW0+

CALLP
 @@RW1+

CALLP
 @@RW2+

CALLP
 @@RW3+

INCL
 RL0

INCL
 RL0

INCL
 RL1

INCL
 RL1

INCL
 RL2

INCL
 RL2

INCL
 RL3

INCL
 RL3

INCL
 @RW0

INCL
 @RW1

INCL
 @RW2

INCL
 @RW3

INCL
 @RW0+

INCL
 @RW1+

INCL
 @RW2+

INCL
 @RW3+

DECL
 RL0

DECL
 RL0

DECL
 RL1

DECL
 RL1

DECL
 RL2

DECL
 RL2

DECL
 RL3

DECL
 RL3

DECL
 @RW0

DECL
 @RW1

DECL
 @RW2

DECL
 @RW3

DECL
 @RW0+

DECL
 @RW1+

DECL
 @RW2+

DECL
 @RW3+

MOVL
 A, RL0

MOVL
 A, RL0

MOVL
 A, RL1

MOVL
 A, RL1

MOVL
 A, RL2

MOVL
 A, RL2

MOVL
 A, RL3

MOVL
 A, RL3

MOVL
 A, @RW0

MOVL
 A, @RW1

MOVL
 A, @RW2

MOVL
 A,@ RW3

MOVL
 A, @RW0+

MOVL
 A, @RW1+

MOVL
 A, @RW2+

MOVL
 A, @RW3+

MOVL
 RL0, A

MOVL
 RL0, A

MOVL
 RL1, A

MOVL
 RL1, A

MOVL
 RL2, A

MOVL
 RL2, A

MOVL
 RL3, A

MOVL
 RL3, A

MOVL
 @RW0, A

MOVL
 @RW1, A

MOVL
 @RW2, A

MOVL
 @RW3, A

MOVL
 @RW0+, A

MOVL
 @RW1+, A

MOVL
 @RW2+, A

MOVL
 @RW3+, A

MOV
 R0, #8

MOV
 R1, #8

MOV
 R2, #8

MOV
 R3, #8

MOV
 R4, #8

MOV
 R5, #8

MOV
 R6, #8

MOV
 R7, #8

MOV
 @RW0, #8

MOV
 @RW1, #8

MOV
 @RW2, #8

MOV
 @RW3, #8

MOV
 @RW0+, #8

MOV
 @RW1+, #8

MOV
 @RW2+, #8

MOV
 @RW3+, #8

MOVEA
 A, RW0

MOVEA
 A, RW1

MOVEA
 A, RW2

MOVEA
 A, RW3

MOVEA
 A, RW4

MOVEA
 A, RW5

MOVEA
 A, RW6

MOVEA
 A, RW7

MOVEA
 A, @RW0

MOVEA
 A, @RW1

MOVEA
 A, @RW2

MOVEA
 A, @RW3

MOVEA
 A, @RW0+

MOVEA
 A, @RW1+

MOVEA
 A, @RW2+

MOVEA
 A, @RW3+

CALLP
 @@RW0+d8

CALLP
 @@RW1+d8

CALLP
 @@RW2+d8

CALLP
 @@RW3+d8

CALLP
 @@RW4+d8

CALLP
 @@RW5+d8

CALLP
 @@RW6+d8

CALLP
 @@RW7+d8

CALLP @
 @RW0+d16

CALLP @
 @RW1+d16

CALLP @
 @RW2+d16

CALLP @
 @RW3+d16

CALLP @
 @RW0+RW7

CALLP @
 @RW1+RW7

CALLP
 @@PC+d16

CALLP
 @addr16

INCL
 @RW0+d8

INCL
 @RW1+d8

INCL
 @RW2+d8

INCL
 @RW3+d8

INCL
 @RW4+d8

INCL
 @RW5+d8

INCL
 @RW6+d8

INCL
 @RW7+d8

INCL
 @RW0+d16

INCL
 @RW1+d16

INCL
 @RW2+d16

INCL
 @RW3+d16

INCL
 @RW0+RW7

INCL
 @RW1+RW7

INCL
 @PC+d16

INCL
 addr16

DECL
 @RW0+d8

DECL
 @RW1+d8

DECL
 @RW2+d8

DECL
 @RW3+d8

DECL
 @RW4+d8

DECL
 @RW5+d8

DECL
 @RW6+d8

DECL
 @RW7+d8

DECL
 @RW0+d16

DECL
 @RW1+d16

DECL
 @RW2+d16

DECL
 @RW3+d16

DECL
@RW0+RW7

DECL
@RW1+RW7

DECL
 @PC+d16

DECL
 addr16

MOVL A,
 @RW0+d8

MOVL A,
 @RW1+d8

MOVL A,
 @RW2+d8

MOVL A,
 @RW3+d8

MOVL A,
 @RW4+d8

MOVL A,
 @RW5+d8

MOVL A,
 @RW6+d8

MOVL A,
 @RW7+d8

MOVL A,
 @RW0+d16

MOVL A,
 @RW1+d16

MOVL A,
 @RW2+d16

MOVL A,
 @RW3+d16

MOVL A,
@RW0+RW7

MOVL A,
@RW1+RW7

MOVL A,
 @PC+d16

MOVL A,
 addr16

MOVL @R
 W0+d8, A

MOVL @R
 W1+d8, A

MOVL @R
 W2+d8, A

MOVL @R
 W3+d8, A

MOVL @R
 W4+d8, A

MOVL @R
 W5+d8, A

MOVL @R
 W6+d8, A

MOVL @R
 W7+d8, A

MOVL @R
 W0+d16, A

MOVL @R
 W1+d16, A

MOVL @R
 W2+d16, A

MOVL @R
 W3+d16, A

MOVL @R
 W0+RW7, A

MOVL @R
 W1+RW7, A

MOVL @P
 C+d16, A

MOVL
 addr16, A

MOV @R
 W0+d8, #8

MOV @R
 W1+d8, #8

MOV @R
 W2+d8, #8

MOV @R
 W3+d8, #8

MOV @R
 W4+d8, #8

MOV @R
 W5+d8, #8

MOV @R
 W6+d8, #8

MOV @R
 W7+d8, #8

MOV @R
 W0+d16, #8

MOV @R
W1+d16, #8

MOV @R
W2+d16, #8

MOV @R
W3+d16, #8

MOV @R
W0+RW7, #8

MOV @R
W1+RW7, #8

MOV @P
 C+d16, #8

MOV
 addr16, #8

MOVEA A,
 @RW0+d8

MOVEA A,
 @RW1+d8

MOVEA A,
 @RW2+d8

MOVEA A,
 @RW3+d8

MOVEA A,
 @RW4+d8

MOVEA A,
 @RW5+d8

MOVEA A,
 @RW6+d8

MOVEA A,
 @RW7+d8

MOVEA A,
 @RW0+d16

MOVEA A,
 @RW1+d16

MOVEA A,
 @RW2+d16

MOVEA A,
 @RW3+d16

MOVEA A,
@RW0+RW7

MOVEA A,
@RW1+RW7

MOVEA A,
 @PC+d16

MOVEA A,
 addr16

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

#8 : #imm8 (8-bit immediate data)

d8 : disp8 (8-bit displacement)

d16: disp16 (16-bit displacement)

C.7 ea Instructions

240 F2MC-16F Instruction Map

T
ab

le
 C

.7
c

 e
a

In
st

ru
ct

io
ns

 [
1s

t b
yt

e
=

72
H
]

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

A
 0

B
 0

C
 0

D
 0

E
 0

F
 0

R
O

LC

R

0

R
O

LC

R

1

R
O

LC

R

2

R
O

LC

R

3

R
O

LC

R

4

R
O

LC

R

5

R
O

LC

R

6

R
O

LC

R

7

R
O

LC

 @
R

W
0

R
O

LC

@
R

W
1

R
O

LC

@
R

W
2

R
O

LC

@
R

W
3

R
O

LC
 @

R
W

0+

R
O

LC
 @

R
W

1+

R
O

LC
 @

R
W

2+

R
O

LC
 @

R
W

3+

R
O

LC

@
R

W
0+

d8

R
O

LC

@
R

W
1+

d8

R
O

LC

@
R

W
2+

d8

R
O

LC

@
R

W
3+

d8

R
O

LC

@
R

W
4+

d8

R
O

LC

@
R

W
5+

d8

R
O

LC

@
R

W
6+

d8

R
O

LC

@
R

W
7+

d8

R
O

LC
 @

R
W

0+
d1

6

R
O

LC
 @

R
W

1+
d1

6

R
O

LC
 @

R
W

2+
d1

6

R
O

LC
 @

R
W

3+
d1

6

R
O

LC
 @

R
W

0+
R

W
7

R
O

LC
 @

R
W

1+
R

W
7

R
O

LC
 @

P
C

+
d1

6

R
O

LC

 a
dd

r1
6

R
O

R
C

R
0

R
O

R
C

R
1

R
O

R
C

R
2

R
O

R
C

R
3

R
O

R
C

R
4

R
O

R
C

R
5

R
O

R
C

R
6

R
O

R
C

R
7

R
O

R
C

 @

R
W

0

R
O

R
C

@

R
W

1

R
O

R
C

@

R
W

2

R
O

R
C

@

R
W

3

R
O

R
C

 @
R

W
0+

R
O

R
C

 @
R

W
1+

R
O

R
C

 @
R

W
2+

R
O

R
C

 @
R

W
3+

IN
C

R
0

IN
C

R
1

IN
C

R
2

IN
C

R
3

IN
C

R
4

IN
C

R
5

IN
C

R
6

IN
C

R
7

IN
C

 @

R
W

0

IN
C

@

R
W

1

IN
C

@

R
W

2

IN
C

@

R
W

3

IN
C

 @
R

W
0+

IN
C

 @
R

W
1+

IN
C

 @
R

W
2+

IN
C

 @
R

W
3+

D
E

C

R

0

D
E

C

R

1

D
E

C

R

2

D
E

C

R

3

D
E

C

R

4

D
E

C

R

5

D
E

C

R

6

D
E

C

R

7

D
E

C

 @
R

W
0

D
E

C

@
R

W
1

D
E

C

@
R

W
2

D
E

C

@
R

W
3

D
E

C
 @

R
W

0+

D
E

C
 @

R
W

1+

D
E

C
 @

R
W

2+

D
E

C
 @

R
W

3+

M
O

V

A

, R
0

M
O

V

A

, R
1

M
O

V

A

, R
2

M
O

V

A

, R
3

M
O

V

A

, R
4

M
O

V

A

, R
5

M
O

V

A

, R
6

M
O

V

A

, R
7

M
O

V

 A
, @

R
W

0

M
O

V

A
, @

R
W

1

M
O

V

A
, @

R
W

2

M
O

V

A
, @

R
W

3

M
O

V
 A

, @
R

W
0+

M
O

V
 A

, @
R

W
1+

M
O

V
 A

, @
R

W
2+

M
O

V
 A

, @
R

W
3+

M
O

V

R

0,
 A

M
O

V

R

1,
 A

M
O

V

R

2,
 A

M
O

V

R

3,
 A

M
O

V

R

4,
 A

M
O

V

R

5,
 A

M
O

V

R

6,
 A

M
O

V

R

7,
 A

M
O

V

 @
R

W
0,

 A

M
O

V

@
R

W
1,

 A

M
O

V

@
R

W
2,

 A

M
O

V

@
R

W
3,

 A

M
O

V
 @

R
W

0+
, A

M
O

V
 @

R
W

1+
, A

M
O

V
 @

R
W

2+
, A

M
O

V
 @

R
W

3+
, A

M
O

V
X

A
, R

0

M
O

V
X

A
, R

1

M
O

V
X

A
, R

2

M
O

V
X

A
, R

3

M
O

V
X

A
, R

4

M
O

V
X

A
, R

5

M
O

V
X

A
, R

6

M
O

V
X

A
, R

7

M
O

V
X

 A

, @
R

W
0

M
O

V
X

A

, @
R

W
1

M
O

V
X

A

, @
R

W
2

M
O

V
X

A

, @
R

W
3

M
O

V
X

 A
, @

R
W

0+

M
O

V
X

 A
, @

R
W

1+

M
O

V
X

 A
, @

R
W

2+

M
O

V
X

 A
, @

R
W

3+

X
C

H

A

, R
0

X
C

H

A

, R
1

X
C

H

A

, R
2

X
C

H

A

, R
3

X
C

H

A

, R
4

X
C

H

A

, R
5

X
C

H

A

, R
6

X
C

H

A

, R
7

X
C

H

 A
, @

R
W

0

X
C

H

A
, @

R
W

1

X
C

H

A
, @

R
W

2

X
C

H

A
, @

R
W

3

X
C

H
 A

, @
R

W
0+

X
C

H
 A

, @
R

W
1+

X
C

H
 A

, @
R

W
2+

X
C

H
 A

, @
R

W
3+

R
O

R
C

@

R
W

0+
d8

R
O

R
C

@

R
W

1+
d8

R
O

R
C

@

R
W

2+
d8

R
O

R
C

@

R
W

3+
d8

R
O

R
C

@

R
W

4+
d8

R
O

R
C

@

R
W

5+
d8

R
O

R
C

@

R
W

6+
d8

R
O

R
C

@

R
W

7+
d8

R
O

R
C

 @
R

W
0+

d1
6

R
O

R
C

 @
R

W
1+

d1
6

R
O

R
C

 @
R

W
2+

d1
6

R
O

R
C

 @
R

W
3+

d1
6

R
O

R
C

 @
R

W
0+

R
W

7

R
O

R
C

 @
R

W
1+

R
W

7

R
O

R
C

 @
P

C
+

d1
6

R
O

R
C

 a

dd
r1

6

IN
C

@

R
W

0+
d8

IN
C

@

R
W

1+
d8

IN
C

@

R
W

2+
d8

IN
C

@

R
W

3+
d8

IN
C

@

R
W

4+
d8

IN
C

@

R
W

5+
d8

IN
C

@

R
W

6+
d8

IN
C

@

R
W

7+
d8

IN
C

 @
R

W
0+

d1
6

IN
C

 @
R

W
1+

d1
6

IN
C

 @
R

W
2+

d1
6

IN
C

 @
R

W
3+

d1
6

IN
C

 @
R

W
0+

R
W

7

IN
C

 @
R

W
1+

R
W

7

IN
C

 @
P

C
+

d1
6

IN
C

 a
dd

r1
6

D
E

C

@
R

W
0+

d8

D
E

C

@
R

W
1+

d8

D
E

C

@
R

W
2+

d8

D
E

C

@
R

W
3+

d8

D
E

C

@
R

W
4+

d8

D
E

C

@
R

W
5+

d8

D
E

C

@
R

W
6+

d8

D
E

C

@
R

W
7+

d8

D
E

C
 @

R
W

0+
d1

6

D
E

C
 @

R
W

1+
d1

6

D
E

C
 @

R
W

2+
d1

6

D
E

C
 @

R
W

3+
d1

6

D
E

C
 @

R
W

0+
R

W
7

D
E

C
 @

R
W

1+
R

W
7

D
E

C
 @

P
C

+
d1

6

D
E

C
 a

dd
r1

6

M
O

V

A
,

@

R
W

0+
d8

M
O

V

A
,

@

R
W

1+
d8

M
O

V

A
,

@

R
W

2+
d8

M
O

V

A
,

@

R
W

3+
d8

M
O

V

A
,

@

R
W

4+
d8

M
O

V

A
,

@

R
W

5+
d8

M
O

V

A
,

@

R
W

6+
d8

M
O

V

A
,

@

R
W

7+
d8

M
O

V

A
,

 @
R

W
0+

d1
6

M
O

V

A
,

 @
R

W
1+

d1
6

M
O

V

A
,

 @
R

W
2+

d1
6

M
O

V

A
,

 @
R

W
3+

d1
6

M
O

V

A
,

 @
R

W
0+

R
W

7

M
O

V

A
,

 @
R

W
1+

R
W

7

M
O

V

A
,

 @

P
C

+
d1

6

M
O

V

A
,

 a

dd
r1

6

M
O

V
 @

R

W
0+

d8
, A

M
O

V
 @

R

W
1+

d8
, A

M
O

V
 @

R

W
2+

d8
, A

M
O

V
 @

R

W
3+

d8
, A

M
O

V
 @

R

W
4+

d8
, A

M
O

V
 @

R

W
5+

d8
, A

M
O

V
 @

R

W
6+

d8
, A

M
O

V
 @

R

W
7+

d8
, A

M
O

V
 @

R
 W

0+
d1

6,
 A

M
O

V
 @

R
 W

1+
d1

6,
 A

M
O

V
 @

R
 W

2+
d1

6,
 A

M
O

V
 @

R
 W

3+
d1

6,
 A

M
O

V
 @

R
 W

0+
R

W
7,

 A

M
O

V
 @

R
 W

1+
R

W
7,

 A

M
O

V
 @

P
 C

+
d1

6,
 A

M
O

V
 a

dd
r1

6,
 A

M
O

V
X

 A
,

@

R
W

0+
d8

M
O

V
X

 A
,

@

R
W

1+
d8

M
O

V
X

 A
,

@

R
W

2+
d8

M
O

V
X

 A
,

@

R
W

3+
d8

M
O

V
X

 A
,

@

R
W

4+
d8

M
O

V
X

 A
,

@

R
W

5+
d8

M
O

V
X

 A
,

@

R
W

6+
d8

M
O

V
X

 A
,

@

R
W

7+
d8

M
O

V
X

 A
,

 @
R

W
0+

d1
6

M
O

V
X

 A
,

 @
R

W
1+

d1
6

M
O

V
X

 A
,

 @
R

W
2+

d1
6

M
O

V
X

 A
,

 @
R

W
3+

d1
6

M
O

V
X

 A
,

 @
R

W
0+

R
W

7

M
O

V
X

 A
,

 @
R

W
1+

R
W

7

M
O

V
X

 A
,

 @
P

C
+

d1
6

M
O

V
X

A

,
 a

dd
r1

6

X
C

H
 A

,

@
R

W
0+

d8

X
C

H
 A

,

@
R

W
1+

d8

X
C

H
 A

,

@
R

W
2+

d8

X
C

H
 A

,

@
R

W
3+

d8

X
C

H
 A

,

@
R

W
4+

d8

X
C

H
 A

,

@
R

W
5+

d8

X
C

H
 A

,

@
R

W
6+

d8

X
C

H
 A

,

@
R

W
7+

d8

X
C

H
 A

,
 @

R
W

0+
d1

6

X
C

H
 A

,
 @

R
W

1+
d1

6

X
C

H
 A

,
 @

R
W

2+
d1

6

X
C

H
 A

,
 @

R
W

3+
d1

6

X
C

H
 A

,
 @

R
W

0+
R

W
7

X
C

H
 A

,
 @

R
W

1+
R

W
7

X
C

H
 A

,
 @

P
C

+
d1

6

X
C

H
 A

,

 a
dd

r1
6

N
o

te
:

T
he

 fo
llo

w
in

g
lis

ts
 th

e
co

rr
e

sp
o

nd
en

ce
 b

e
tw

ee
n

th
e

sy
m

bo
ls

 in
 t

he
 a

bo
ve

 t
ab

le
 a

nd
 t

he
 s

ym
b

ol
s

in
 th

e
in

st
ru

ct
io

n
se

t t
ab

le
s.

d8
 :

 d
is

p8
 (

8-
bi

t d
is

pl
ac

e
m

en
t)

d1
6:

di

sp
16

 (
16

-b
it

di
sp

la
ce

m
en

t)

C
.7 ea Instructions

241

Table C.7d ea Instructions [1st byte = 73 H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

JMP
 @RW0

JMP
 @RW1

JMP
 @RW2

JMP
 @RW3

JMP
 @RW4

JMP
 @RW5

JMP
 @RW6

JMP
 @RW7

JMP
 @@RW0

JMP
 @@RW1

JMP
 @@RW2

JMP
 @@RW3

JMP
 @@RW0+

JMP
 @@RW1+

JMP
 @@RW2+

JMP
 @@RW3+

JMP
 @@RW0+d8

JMP
 @@RW1+d8

JMP
 @@RW2+d8

JMP
 @@RW3+d8

JMP
 @@RW4+d8

JMP
 @@RW5+d8

JMP
 @@RW6+d8

JMP
 @@RW7+d8

JMP
@@RW0+d16

JMP
@@RW1+d16

JMP
@@RW2+d16

JMP
@@RW3+d16

JMP
@@RW0+RW7

JMP
@@RW1+RW7

JMP
@@PC+d16

JMP
 @addr16

CALL
 @RW0

CALL
 @RW1

CALL
 @RW2

CALL
 @RW3

CALL
 @RW4

CALL
 @RW5

CALL
 @RW6

CALL
 @RW7

CALL
 @@RW0

CALL
 @@RW1

CALL
 @@RW2

CALL
 @@RW3

CALL
 @@RW0+

CALL
 @@RW1+

CALL
 @@RW2+

CALL
 @@RW3+

INCW
 RW0

INCW
 RW1

INCW
 RW2

INCW
 RW3

INCW
 RW4

INCW
 RW5

INCW
 RW6

INCW
 RW7

INCW
 @RW0

INCW
 @RW1

INCW
 @RW2

INCW
 @RW3

INCW
 @RW0+

INCW
 @RW1+

INCW
 @RW2+

INCW
 @RW3+

DECW
 RW0

DECW
 RW1

DECW
 RW2

DECW
 RW3

DECW
 RW4

DECW
 RW5

DECW
 RW6

DECW
 RW7

DECW
 @RW0

DECW
 @RW1

DECW
 @RW2

DECW
 @RW3

DECW
 @RW0+

DECW
 @RW1+

DECW
 @RW2+

DECW
 @RW3+

MOVW
 A, RW0

MOVW
 A, RW1

MOVW
 A, RW2

MOVW
 A, RW3

MOVW
 A, RW4

MOVW
 A, RW5

MOVW
 A, RW6

MOVW
 A, RW7

MOVW
 A, @RW0

MOVW
 A, @RW1

MOVW
 A, @RW2

MOVW
 A, @RW3

MOVW
 A, @RW0+

MOVW
 A, @RW1+

MOVW
 A, @RW2+

MOVW
 A, @RW3+

MOVW
 RW0, A

MOVW
 RW1, A

MOVW
 RW2, A

MOVW
 RW3, A

MOVW
 RW4, A

MOVW
 RW5, A

MOVW
 RW6, A

MOVW
 RW7, A

MOVW
 @RW0, A

MOVW
 @RW1. A

MOVW
 @RW2, A

MOVW
 @RW3, A

MOVW
 @RW0+, A

MOVW
 @RW1+, A

MOVW
 @RW2+, A

MOVW
 @RW3+, A

MOVW
 RW0, #16

MOVW
 RW1, #16

MOVW
 RW2, #16

MOVW
 RW3, #16

MOVW
 RW4, #16

MOVW
 RW5, #16

MOVW
 RW6, #16

MOVW
 RW7, #16

MOVW
 @RW0, #16

MOVW
 @RW1, #16

MOVW
 @RW2, #16

MOVW
 @RW3, #16

MOVW @R
 RW0+, #16

MOVW @R
 RW1+, #16

MOVW
 RW2+, #16

MOVW
 RW3+, #16

XCHW
 A, RW0

XCHW
 A, RW1

XCHW
 A, RW2

XCHW
 A, RW3

XCHW
 A, RW4

XCHW
 A, RW5

XCHW
 A, RW6

XCHW
 A, RW7

XCHW
 A, @RW0

XCHW
 A, @RW1

XCHW
 A, @RW2

XCHW
 A, @RW3

XCHW
 A, @RW0+

XCHW
 A, @RW1+

XCHW
 A, @RW2+

XCHW
 A, @RW3+

CALL
@@RW0+d8

CALL
@@RW1+d8

CALL
@@RW2+d8

CALL
@@RW3+d8

CALL
@@RW4+d8

CALL
@@RW5+d8

CALL
@@RW6+d8

CALL
@@RW7+d8

CALL
@@RW0+d16

CALL
@@RW1+d16

CALL
@@RW2+d16

CALL
@@RW3+d16

CALL @
@RW0+RW7

CALL @
 @RW1+RW7

CALL

CALL
 @addr16

INCW
 @RW0+d8

INCW
 @RW1+d8

INCW
 @RW2+d8

INCW
 @RW3+d8

INCW
 @RW4+d8

INCW
 @RW5+d8

INCW
 @RW6+d8

INCW
 @RW7+d8

INCW
 @RW0+d16

INCW
 @RW1+d16

INCW
 @RW2+d16

INCW
 @RW3+d16

INCW
@RW0+RW7

INCW
@RW1+RW7

INCW
 @PC+d16

INCW
 addr16

DECW
 @RW0+d8

DECW
 @RW1+d8

DECW
 @RW2+d8

DECW
 @RW3+d8

DECW
 @RW4+d8

DECW
 @RW5+d8

DECW
 @RW6+d8

DECW
 @RW7+d8

DECW
 @RW0+d16

DECW
 @RW1+d16

DECW
 @RW2+d16

DECW
 @RW3+d16

DECW
@RW0+RW7

DECW
@RW1+RW7

DECW
 @PC+d16

DEC
 addr16

MOVW A,
 @RW0+d8

MOVW A,
 @RW1+d8

MOVW A,
 @RW2+d8

MOVW A,
 @RW3+d8

MOVW A,
 @RW4+d8

MOVW A,
 @RW5+d8

MOVW A,
 @RW6+d8

MOVW A,
 @RW7+d8

MOVW A,
 @RW0+d16

MOVW A,
 @RW1+d16

MOVW A,
 @RW2+d16

MOVW A,
 @RW3+d16

MOVW A,
 @RW0+RW7

MOVW A,
 @RW1+RW7

MOVW A,
 @PC+d16

MOVW A,
 addr16

MOVW @R
W0+d8, A

MOVW @R
 W1+d8, A

MOVW @R
 W2+d8, A

MOVW @R
 W3+d8, A

MOVW @R
W4+d8, A

MOVW @R
W5+d8, A

MOVW @R
W6+d8, A

MOVW @R
W7+d8, A

MOVW @R
W0+d16, A

MOVW @R
W1+d16, A

MOVW @R
W2+d16, A

MOVW @R
W3+d16, A

MOVW @R
W0+RW7, A

MOVW @R
W1+RW7, A

MOVW @R
C+d16, A

MOVW
 addr16, A

MOVW @RW
0+d8, #16

MOVW @RW
1+d8, #16

MOVW @RW
2+d8, #16

MOVW @RW
3+d8, #16

MOVW @RW
4+d8, #16

MOVW @RW
5+d8, #16

MOVW @RW
6+d8, #16

MOVW @RW
7+d8, #16

MOVW@RW0
+d16, #16

MOVW@RW1
+d16, #16

MOVW@ RW2
+d16, #16

MOVW @RW3
+d16, #16

MOVW@RW0
+RW7, #16

MOVW @RW1
+RW7, #16

MOVW @PC
+d16, #16

MOVW ad
dr16, #16

XCHW A,
 @RW0+d8

XCHW A,
 @RW1+d8

XCHW A,
 @RW2+d8

XCHW A,
 @RW3+d8

XCHW A,
 @RW4+d8

XCHW A,
 @RW5+d8

XCHW A,
 @RW6+d8

XCHW A,
 @RW7+d8

XCHW A,
@RW0+d16

XCHW A,
@RW1+d16

XCHW A,
@RW2+d16

XCHW A,
@RW3+d16

XCHW A,
@RW0+RW7

XCHW A,
@RW1+RW7

XCHW A,
 @PC+d16

XCHW A,
 addr16

 @@PC+d16

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• #16: #imm16 (16-bit immediate data)

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C.7 ea Instructions

242 F2MC-16F Instruction Map

T
ab

le
 C

.7
e

 e
a

In
st

ru
ct

io
ns

 [1
st

 b
yt

e
=

74
H
]

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

A
 0

B
 0

C
 0

D
 0

E
 0

F
 0

A
D

D

A

, R
0

A
D

D

A

, R
1

A
D

D

A

, R
2

A
D

D

A

, R
3

A
D

D

A

, R
4

A
D

D

A

, R
5

A
D

D

A

, R
6

A
D

D

A

, R
7

A
D

D

 A
, @

R
W

0

A
D

D

A
, @

R
W

1

A
D

D

A
, @

R
W

2

A
D

D

A
, @

R
W

3

A
D

D
 A

, @
R

W
0+

A
D

D
 A

, @
R

W
1+

A
D

D
 A

, @
R

W
2+

A
D

D
 A

, @
R

W
3+

A
D

D

 A
,

@

R
W

0+
d8

A
D

D

 A
,

@

R
W

1+
d8

A
D

D

 A
,

@

R
W

2+
d8

A
D

D

 A
,

@

R
W

3+
d8

A
D

D

 A
,

@

R
W

4+
d8

A
D

D

 A
,

@

R
W

5+
d8

A
D

D

 A
,

@

R
W

6+
d8

A
D

D

 A
,

@

R
W

7+
d8

A
D

D

 A
,

 @
R

W
0+

d1
6

A
D

D

 A
,

 @
R

W
1+

d1
6

A
D

D

 A
,

 @
R

W
2+

d1
6

A
D

D

 A
,

 @
R

W
3+

d1
6

A
D

D

 A
,

@
R

W
0+

R
W

7

A
D

D

 A
,

@
R

W
1+

R
W

7

A
D

D

 A
,

 @
P

C
+d

16

A
D

D

 A
,

ad
dr

16

S
U

B

A

, R
0

S
U

B

A

, R
1

S
U

B

A

, R
2

S
U

B

A

, R
3

S
U

B

A

, R
4

S
U

B

A

, R
5

S
U

B

A

, R
6

S
U

B

A

, R
7

S
U

B

A
, @

R
W

0

S
U

B

A
, @

R
W

1

S
U

B

A
, @

R
W

2

S
U

B

A
, @

R
W

3

S
U

B
 A

, @
R

W
0+

S
U

B
 A

, @
R

W
1+

S
U

B
 A

, @
R

W
2+

S
U

B
 A

, @
R

W
3+

A
D

D
C

A
, R

0

A
D

D
C

A
, R

1

A
D

D
C

A
, R

2

A
D

D
C

A
, R

3

A
D

D
C

A
, R

4

A
D

D
C

A
, R

5

A
D

D
C

A
, R

6

A
D

D
C

 A

. R
7

A
D

D
C

 A
, @

R
W

0

A
D

D
C

 A
, @

R
W

1

A
D

D
C

 A
, @

R
W

2

A
D

D
C

 A
, @

R
W

3

A
D

D
C

A
, @

R
W

0+

A
D

D
C

A
, @

R
W

1+

A
D

D
C

A
, @

R
W

2+

A
D

D
C

A
, @

R
W

3+

C
M

P

A
, R

0

C
M

P

A

, R
1

C
M

P

A

, R
2

C
M

P

A

, R
3

C
M

P

A

, R
4

C
M

P

A

, R
5

C
M

P

A

, R
6

C
M

P

A

, R
7

C
M

P

A
, @

R
W

0

C
M

P

A
, @

R
W

1

C
M

P
 A

, @
R

W
2

C
M

P
 A

, @
R

W
3

C
M

P
 A

, @
R

W
0+

C
M

P
 A

, @
R

W
1+

C
M

P
 A

, @
R

W
2+

C
M

P
 A

, @
R

W
3+

A
N

D

A

, R
0

A
N

D

A

, R
1

A
N

D

A

, R
2

A
N

D

A

, R
3

A
N

D

A

, R
4

A
N

D

A

, R
5

A
N

D

A

, R
6

A
N

D

A

, R
7

A
N

D

 A
, @

R
W

0

A
N

D

A
, @

R
W

1

A
N

D

A
, @

R
W

2

A
N

D

A
, @

R
W

3

A
N

D
 A

, @
R

W
0+

A
N

D
 A

, @
R

W
1+

A
N

D
 A

, @
R

W
2+

A
N

D
 A

, @
R

W
3+

O
R

A
, R

0

O
R

A
, R

1

O
R

A
, R

2

O
R

A
, R

3

O
R

A
, R

4

O
R

A
, R

5

O
R

A
, R

6

O
R

A
, R

7

O
R

 A

, @
R

W
0

O
R

A

, @
R

W
1

O
R

A

, @
R

W
2

O
R

A

, @
R

W
3

O
R

 A
, @

R
W

0+

O
R

 A
, @

R
W

1+

O
R

 A
, @

R
W

2+

O
R

 A
, @

R
W

3+

X
O

R

A

, R
0

X
O

R

A

, R
1

X
O

R

A

, R
2

X
O

R

A

, R
3

X
O

R

A

, R
4

X
O

R

A

, R
5

X
O

R

A

, R
6

X
O

R

A

, R
7

X
O

R

 A
, @

R
W

0

X
O

R

A
, @

R
W

1

X
O

R

A
, @

R
W

2

X
O

R

A
, @

R
W

3

X
O

R
 A

, @
R

W
0+

X
O

R
 A

, @
R

W
1+

X
O

R
 A

, @
R

W
2+

X
O

R
 A

, @
R

W
3+

D
B

N
Z

 R

0,
 r

D
B

N
Z

 R

1,
 r

D
B

N
Z

 R

2,
 r

D
B

N
Z

 R

3,
 r

D
B

N
Z

 R

4,
 r

D
B

N
Z

 R

5,
 r

D
B

N
Z

 R

6,
 r

D
B

N
Z

 R

7,
 r

D
B

N
Z

@

R
W

0,
 r

D
B

N
Z

@

R
W

1,
 r

D
B

N
Z

@

R
W

2,
 r

D
B

N
Z

@

R
W

3,
 r

D
B

N
Z

 @
R

W
0+

, r

D
B

N
Z

 @
R

W
1+

, r

D
B

N
Z

 @
R

W
2+

, r

D
B

N
Z

 @
R

W
3+

, r

S
U

B

 A
,

@

R
W

0+
d8

S
U

B

 A
,

@

R
W

1+
d8

S
U

B

 A
,

@

R
W

2+
d8

S
U

B

 A
,

@

R
W

3+
d8

S
U

B

 A
,

@

R
W

4+
d8

S
U

B

 A
,

@

R
W

5+
d8

S
U

B

 A
,

@

R
W

6+
d8

S
U

B

 A
,

@

R
W

7+
d8

S
U

B

 A
,

 @
R

W
0+

d1
6

S
U

B

 A
,

 @
R

W
1+

d1
6

S
U

B

 A
,

 @
R

W
2+

d1
6

S
U

B

 A
,

 @
R

W
3+

d1
6

S
U

B

 A
,

@
R

W
0+

R
W

7

S
U

B

 A
,

@
R

W
1+

R
W

7

S
U

B

 A
,

 S
U

B

 A
,

 a
dd

r1
6

A
D

D
C

 A
,

@

R
W

0+
d8

A
D

D
C

 A
,

@

R
W

1+
d8

A
D

D
C

 A
,

@

R
W

2+
d8

A
D

D
C

 A
,

@

R
W

3+
d8

A
D

D
C

 A
,

@

R
W

4+
d8

A
D

D
C

 A
,

@

R
W

5+
d8

A
D

D
C

 A
,

@

R
W

6+
d8

A
D

D
C

 A
,

@

R
W

7+
d8

A
D

D
C

 A
,

 @
R

W
0+

d1
6

A
D

D
C

 A
,

 @
R

W
1+

d1
6

A
D

D
C

 A
,

 @
R

W
2+

d1
6

A
D

D
C

 A
,

 @
R

W
3+

d1
6

A
D

D
C

 A
,

@
R

W
0+

R
W

7

A
D

D
C

 A
,

@
R

W
1+

R
W

7

A
D

D
C

 A
,

 @
P

C
+d

16

A
D

D
C

 A
,

 a
dd

r1
6

C
M

P

 A

,

@
R

W
0+

d8

C
M

P

 A

,

@
R

W
1+

d8

C
M

P

 A

,

@
R

W
2+

d8

C
M

P

 A

,

@
R

W
3+

d8

C
M

P

 A

,

@
R

W
4+

d8

C
M

P

 A

,

@
R

W
5+

d8

C
M

P

 A

,

@
R

W
6+

d8

C
M

P

 A

,

@
R

W
7+

d8

C
M

P

 A

,
 @

R
W

0+
d1

6

C
M

P

 A

,
 @

R
W

1+
d1

6

C
M

P

 A

,
 @

R
W

2+
d1

6

C
M

P

 A

,
 @

R
W

3+
d1

6

C
M

P

 A

,
 @

R
W

0+
R

W
7

C
M

P

 A

,
 @

R
W

1+
R

W
7

C
M

P

 A

,
 @

P
C

+d
16

C
M

P

 A

,
 a

dd
r1

6

A
N

D

A
,

@

R
W

0+
d8

A
N

D

A
,

@

R
W

1+
d8

A
N

D

A
,

@

R
W

2+
d8

A
N

D

A
,

@

R
W

3+
d8

A
N

D

A
,

@

R
W

4+
d8

A
N

D

A
,

@

R
W

5+
d8

A
N

D

A
,

@

R
W

6+
d8

A
N

D

A
,

@

R
W

7+
d8

A
N

D

A
,

 @
R

W
0+

d1
6

A
N

D

A
,

 @
R

W
1+

d1
6

A
N

D

A
,

 @
R

W
2+

d1
6

A
N

D

A
,

 @
R

W
3+

d1
6

A
N

D

A
,

@
R

W
0+

R
W

7

A
N

D

A
,

@
R

W
1+

R
W

7

A
N

D

A
,

 @

P
C

+
d1

6

A
N

D

A
,

 a

dd
r1

6

O
R

 A

,

@
R

W
0+

d8

O
R

 A

,

@
R

W
1+

d8

O
R

 A

,

@
R

W
2+

d8

O
R

 A

,

@
R

W
3+

d8

O
R

 A

,

@
R

W
4+

d8

O
R

 A

,

@
R

W
5+

d8

O
R

 A

,

@
R

W
6+

d8

O
R

 A

,

@
R

W
7+

d8

O
R

 A

,
 @

R
W

0+
d1

6

O
R

 A

,
 @

R
W

1+
d1

6

O
R

 A

,
 @

R
W

2+
d1

6

O
R

 A

,
 @

R
W

3+
d1

6

O
R

 A

,
@

R
W

0+
R

W
7

O
R

 A

,
@

R
W

1+
R

W
7

O
R

 A

,
 @

 P
C

+d
16

O
R

 A

,
 a

dd
r1

6

X
O

R

 A

,

@
R

W
0+

d8

X
O

R

 A

,

@
R

W
1+

d8

X
O

R

 A

,

@
R

W
2+

d8

X
O

R

 A

,

@
R

W
3+

d8

X
O

R

 A

,

@
R

W
4+

d8

X
O

R

 A

,

@
R

W
5+

d8

X
O

R

 A

,

@
R

W
6+

d8

X
O

R

 A

,

@
R

W
7+

d8

X
O

R

 A

,
 @

R
W

0+
d1

6

X
O

R

 A

,
 @

R
W

1+
d1

6

X
O

R

 A

,
 @

R
W

2+
d1

6

X
O

R

 A

,
 @

R
W

3+
d1

6

X
O

R

 A

,
@

R
W

0+
R

W
7

X
O

R

 A

,
@

R
W

1+
R

W
7

X
O

R

 A

,
 @

P
C

+d
16

X
O

R

A
,

 a
dd

r1
6

D
B

N
Z

@
 R

W
0+

d8
, r

D
B

N
Z

@
 R

W
1+

d8
, r

D
B

N
Z

@
 R

W
2+

d8
, r

D
B

N
Z

@
 R

W
3+

d8
, r

D
B

N
Z

@
 R

W
4+

d8
, r

D
B

N
Z

@
 R

W
5+

d8
, r

D
B

N
Z

@
 R

W
6+

d8
, r

D
B

N
Z

@
 R

W
7+

d8
, r

D
B

N
Z

 R
W

0+
d1

6,
 r

D
B

N
Z

R
W

1+
d1

6,
 r

D
B

N
Z

R
W

2+
d1

6,
 r

D
B

N
Z

R
W

3+
d1

6,
 r

D
B

N
Z

R
W

0+
R

W
7,

 r

D
B

N
Z

R
W

1+
R

W
7,

 r

D
B

N
Z

@
 P

C
+

d1
6,

 r

D
B

N
Z

@
 a

dd
r1

6,
 r

 @
P

C
+

d1
6

N
o

te
:

T
he

 fo
llo

w
in

g
lis

ts
 th

e
co

rr
e

sp
o

nd
en

ce
 b

e
tw

ee
n

th
e

sy
m

bo
ls

 in
 t

he
 a

bo
ve

 t
ab

le
 a

nd
 t

he
 s

ym
b

ol
s

in
 th

e
in

st
ru

ct
io

n
se

t t
ab

le
s.

•
d8

 :
 d

is
p8

 (
8-

bi
t d

is
pl

ac
em

en
t)

•
d1

6
:

di
sp

1
6

(1
6-

bi
t d

is
pl

a
ce

m
en

t)

C
.7 ea Instructions

243

Table C.7f ea Instructions [1st byte = 75 H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

ADD
 R0, A

ADD
 R1, A

ADD
 R2, A

ADD
 R3, A

ADD
 R4, A

ADD
 R5, A

ADD
 R6, A

ADD
 R7, A

ADD
 @RW0, A

ADD
 @RW1, A

ADD
 @RW2, A

ADD
 @RW3, A

ADD
 @RW0+, A

ADD
 @RW1+, A

ADD
 @RW2+, A

ADD
 @RW3+, A

 W0+d8, A

 W1+d8, A

 W2+d8, A

 W3+d8, A

 W4+d8, A

 W5+d8, A

 W6+d8, A

 W7+d8, A

 W0+d16, A

 W1+d16, A

 RW2+d16, A

 RW3+d16, A

ADD @R
 W0+RW7, A

ADD @R
 W1+RW7, A

 C+d16, A

ADD
 addr16, A

SUB
 R0, A

SUB
 R1, A

SUB
 R2, A

SUB
 R3, A

SUB
 R4, A

SUB
 R5, A

SUB
 R6, A

SUB
 R7, A

SUB
 @RW0, A

SUB
 @RW1, A

SUB
 @RW2, A

SUB
 @RW3, A

SUB
 @RW0+, A

SUB
 @RW1+, A

SUB
 @RW2+, A

SUB
 @RW3+, A

SUBC
 A, R0

SUBC
 A, R1

SUBC
 A, R2

SUBC
 A, R3

SUBC
 A, R4

SUBC
 A, R5

SUBC
 A, R6

SUBC
 A, R7

SUBC
 A, @RW0

SUBC
 A, @RW1

SUBC
 A, @RW2

SUBC
 A, @RW3

SUBC
 A, @RW0+

SUBC
 A, @RW1+

SUBC
 A, @RW2+

SUBC
 A, @RW3+

NEG
 R0

NEG
 R1

NEG
 R2

NEG
 R3

NEG
 R4

NEG
 R5

NEG
 R6

NEG
 R7

NEG
 @RW0

NEG
 @RW1

NEG
 @RW2

NEG
 @RW3

NEG
 @RW0+

NEG
 @RW1+

NEG
 @RW2+

NEG
 @RW3+

AND
 R0, A

AND
 R1, A

AND
 R2, A

AND
 R3, A

AND
 R4, A

AND
 R5, A

AND
 R6, A

AND
 R7, A

AND
 @RW0, A

AND
 @RW1, A

AND
 @RW2, A

AND
 @RW3, A

AND
@RW0+, A

AND
@RW1+, A

AND
@RW2+, A

AND
@RW3+, A

OR
 R0, A

OR
 R1, A

OR
 R2, A

OR
 R3, A

OR
 R4, A

OR
 R5, A

OR
 R6, A

OR
 R7, A

OR
 @RW0, A

OR
 @RW1. A

OR
 @RW2, A

OR
 @RW3, A

OR
 @RW0+, A

OR
 @RW1+, A

OR
 @RW2+, A

OR
 @RW3+, A

XOR
 R0, A

XOR
 R1, A

XOR
 R2, A

XOR
 R3, A

XOR
 R4, A

XOR
 R5, A

XOR
 R6, A

XOR
 R7, A

XOR
 @RW0, A

XOR
 @RW1, A

XOR
 @RW2, A

XOR
 @RW3, A

XOR
 @RW0+, A

XOR
 @RW1+, A

XOR
 @RW2+, A

XOR
 @RW3+, A

NOT
 R0

NOT
 R1

NOT
 R2

NOT
 R3

NOT
 R4

NOT
 R5

NOT
 R6

NOT
 R7

NOT
 @RW0

NOT
 @RW1

NOT
 @RW2

NOT
 @RW3

NOT
 @RW0+

NOT
 @RW1+

NOT
 @RW2+

NOT
 @RW3+

SUB @R
 W0+d8, A

SUB @R
 W1+d8, A

SUB @R
 W2+d8, A

SUB @R
 W3+d8, A

SUB @R
 W4+d8, A

SUB @R
 W5+d8, A

SUB @R
 W6+d8, A

SUB @R
 W7+d8, A

SUB @R
 W0+d16, A

SUB @R
 W1+d16, A

SUB @R
 W2+d16, A

SUB @R
 W3+d16, A

SUB @R
W0+RW7, A

SUB @R
 W1+RW7, A

SUB @P

SUB
 addr16, A

SUBC A,
 @RW0+d8

SUBC A,
 @RW1+d8

SUBC A,
 @RW2+d8

SUBC A,
 @RW3+d8

SUBC A,
 @RW4+d8

SUBC A,
 @RW5+d8

SUBC A,
 @RW6+d8

SUBC A,
 @RW7+d8

SUBC A,
 @RW0+d16

SUBC A,
 @RW1+d16

SUBC A,
 @RW2+d16

SUBC A,
@RW3+d16

SUBC A,
@RW0+RW7

SUBC A,
@RW1+RW7

SUBC A,
 @PC+d16

SUBC A,
 addr16

NEG
 @RW0+d8

NEG
 @RW1+d8

NEG
 @RW2+d8

NEG
 @RW3+d8

NEG
 @RW4+d8

NEG
 @RW5+d8

NEG
 @RW6+d8

NEG
 @RW7+d8

NEG
 @RW0+d16

NEG
 @RW1+d16

NEG
 @RW2+d16

NEG
 @RW3+d16

NEG
 @RW0+RW7

NEG
 @RW1+RW7

NEG
 @PC+d16

NEG
 addr16

AND @R
 W0+d8, A

AND @R
 W1+d8, A

AND @R
 W2+d8, A

AND @R
 W3+d8, A

AND @R
 W4+d8, A

AND @R
 W5+d8, A

AND @R
 W6+d8, A

AND @R
 W7+d8, A

AND @R
 W0+d16, A

AND @R
 W1+d16, A

AND @R
 W2+d16, A

AND @R
 W3+d16, A

AND @R
 W0+RW7, A

AND @R
 W1+RW7, A

AND @P
 C+d16, A

AND
 addr16, A

OR
@RW0+d8, A

OR
@RW1+d8, A

OR
@RW2+d8, A

OR
@RW3+d8, A

OR
@RW4+d8, A

OR
@RW5+d8, A

OR
@RW6+d8, A

OR
@RW7+d8, A

OR
@RW0+d16, A

OR
@RW1+d16, A

OR
@RW2+d16, A

OR
@RW3+d16, A

OR @R
W0+RW7, A

OR @R
W1+RW7, A

OR
 @PC+d16, A

OR
 addr16, A

 W0+d8, A

 W1+d8, A

 W2+d8, A

 W3+d8, A

 W4+d8, A

 W5+d8, A

 W6+d8, A

 W7+d8, A

 W0+d16, A

 W1+d16, A

 W2+d16, A

 W3+d16, A

XOR @R
 W0+RW7, A

XOR @R
 W1+RW7, A

XOR
 C+d16, A

XOR
 addr16, A

NOT
 @RW0+d8

NOT
 @RW1+d8

NOT
 @RW2+d8

NOT
 @RW3+d8

NOT
 @RW4+d8

NOT
 @RW5+d8

NOT
 @RW6+d8

NOT
 @RW7+d8

NOT
 @RW0+d16

NOT
 @RW1+d16

NOT
 @RW2+d16

NOT
 @RW3+d16

NOT
 @RW0+RW7

NOT
 @RW1+RW7

NOT
 @PC+d16

NOT
 addr16

 C+d16, A

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @R

ADD @P

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

XOR @R

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C.7 ea Instructions

244 F2MC-16F Instruction Map

T
ab

le
 C

.7
g

 e
a

In
st

ru
ct

io
ns

 [1
st

 b
yt

e
=

76
H
]

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

A
 0

B
 0

C
 0

D
 0

E
 0

F
 0

A
D

D
W

A
, R

W
0

A
D

D
W

A
, R

W
1

A
D

D
W

A
, R

W
2

A
D

D
W

A
, R

W
3

A
D

D
W

A
, R

W
4

A
D

D
W

A
, R

W
5

A
D

D
W

A
, R

W
6

A
D

D
W

A
, R

W
7

A
D

D
W

 A

, @
R

W
0

A
D

D
W

A

, @
R

W
1

A
D

D
W

A

, @
R

W
2

A
D

D
W

A

, @
R

W
3

A
D

D
W

 A
, @

R
W

0+

A
D

D
W

 A
, @

R
W

1+

A
D

D
W

 A
, @

R
W

2+

A
D

D
W

 A
, @

R
W

3+

A
D

D
W

 A
,

@

R
W

0+
d8

A
D

D
W

 A
,

@

R
W

1+
d8

A
D

D
W

 A
,

@

R
W

2+
d8

A
D

D
W

 A
,

@

R
W

3+
d8

A
D

D
W

 A
,

@

R
W

4+
d8

A
D

D
W

 A
,

@

R
W

5+
d8

A
D

D
W

 A
,

@

R
W

6+
d8

A
D

D
W

 A
,

@

R
W

7+
d8

A
D

D
W

 A
,

 @
R

W
0+

d1
6

A
D

D
W

 A
,

 @
R

W
1+

d1
6

A
D

D
W

 A
,

 @
R

W
2+

d1
6

A
D

D
W

 A
,

 @
R

W
3+

d1
6

A
D

D
W

 A
,

@
R

W
0+

R
W

7

A
D

D
W

 A
,

@
R

W
1+

R
W

7

A
D

D
W

 A
,

 @
P

C
+d

16

A
D

D
W

 A
,

ad
dr

16

S
U

B
W

A
, R

W
0

S
U

B
W

A
, R

W
1

S
U

B
W

A
, R

W
2

S
U

B
W

A
, R

W
3

S
U

B
W

A
, R

W
4

S
U

B
W

A
, R

W
5

S
U

B
W

A
, R

W
6

S
U

B
W

A
, R

W
7

S
U

B
W

 A

, @
R

W
0

S
U

B
W

A

, @
R

W
1

S
U

B
W

A

, @
R

W
2

S
U

B
W

A

, @
R

W
3

S
U

B
W

 A
, @

R
W

0+

S
U

B
W

 A
, @

R
W

1+

S
U

B
W

 A
, @

R
W

2+

S
U

B
W

 A
, @

R
W

3+

A
D

D
C

W

A

, R
W

0

A
D

D
C

W

A

, R
W

1

A
D

D
C

W

A

, R
W

2

A
D

D
C

W

A

, R
W

3

A
D

D
C

W

A

, R
W

4

A
D

D
C

W

A

, R
W

5

A
D

D
C

W

A

, R
W

6

A
D

D
C

W

 A
,

R
W

7

A
D

D
C

W

 A
, @

R
W

0

A
D

D
C

W

A
, @

R
W

1

A
D

D
C

W

A
, @

R
W

2

A
D

D
C

W

A
, @

R
W

3

A
D

D
C

W
 A

, @
R

W
0+

A
D

D
C

W
 A

, @
R

W
1+

A
D

D
C

W
 A

, @
R

W
2+

A
D

D
C

W
 A

, @
R

W
3+

C
M

P
W

A

, R
W

0

C
M

P
W

A
, R

W
1

C
M

P
W

A
, R

W
2

C
M

P
W

A
, R

W
3

C
M

P
W

A
, R

W
4

C
M

P
W

A
, R

W
5

C
M

P
W

A
, R

W
6

C
M

P
W

A
, R

W
7

C
M

P
W

 A

, @
R

W
0

C
M

P
W

A

, @
R

W
1

C
M

P
W

A

, @
R

W
2

C
M

P
W

A

, @
R

W
3

C
M

P
W

 A
, @

R
W

0+

C
M

P
W

 A
, @

R
W

1+

C
M

P
W

 A
, @

R
W

2+

C
M

P
W

 A
, @

R
W

3+

A
N

D
W

A
, R

W
0

A
N

D
W

A
, R

W
1

A
N

D
W

A
, R

W
2

A
N

D
W

A
, R

W
3

A
N

D
W

A
, R

W
4

A
N

D
W

A
, R

W
5

A
N

D
W

A
, R

W
6

A
N

D
W

A
, R

W
7

A
N

D
W

 A

, @
R

W
0

A
N

D
W

A

, @
R

W
1

A
N

D
W

A

, @
R

W
2

A
N

D
W

A

, @
R

W
3

A
N

D
W

 A
, @

R
W

0+

A
N

D
W

 A
, @

R
W

1+

A
N

D
W

 A
, @

R
W

2+

A
N

D
W

 A
, @

R
W

3+

O
R

W

A

, R
W

0

O
R

W

A

, R
W

1

O
R

W

A

, R
W

2

O
R

W

A

, R
W

3

O
R

W

A

, R
W

4

O
R

W

A

, R
W

5

O
R

W

A

, R
W

6

O
R

W

A

, R
W

7

O
R

W

 A
, @

R
W

0

O
R

W

A
, @

R
W

1

O
R

W

A
, @

R
W

2

O
R

W

A
, @

R
W

3

O
R

W
 A

, @
R

W
0+

O
R

W
 A

, @
R

W
1+

O
R

W
 A

, @
R

W
2+

O
R

W
 A

, @
R

W
3+

X
O

R
W

A
, R

W
0

X
O

R
W

A
, R

W
1

X
O

R
W

A
, R

W
2

X
O

R
W

A
, R

W
3

X
O

R
W

A
, R

W
4

X
O

R
W

A
, R

W
5

X
O

R
W

A
, R

W
6

X
O

R
W

A
, R

W
7

X
O

R
W

 A

, @
R

W
0

X
O

R
W

A

, @
R

W
1

X
O

R
W

A

, @
R

W
2

X
O

R
W

A

, @
R

W
3

X
O

R
W

 A
, @

R
W

0+

X
O

R
W

 A
, @

R
W

1+

X
O

R
W

 A
, @

R
W

2+

X
O

R
W

 A
, @

R
W

3+

D
W

B
N

Z

R
W

0,
 r

D
W

B
N

Z

R
W

1,
 r

D
W

B
N

Z

R
W

2,
 r

D
W

B
N

Z

R
W

3,
 r

D
W

B
N

Z

R
W

4,
 r

D
W

B
N

Z

R
W

5,
 r

D
W

B
N

Z

R
W

6,
 r

D
W

B
N

Z

R
W

7,
 r

D
W

B
N

Z

 @
R

W
0,

 r

D
W

B
N

Z

@
R

W
1,

 r

D
W

B
N

Z

@
R

W
2,

 r

D
W

B
N

Z

@
R

W
3,

 r

D
W

B
N

Z

@
R

W
0+

, r

D
W

B
N

Z

@
R

W
1+

, r

D
W

B
N

Z

@
R

W
2+

, r

D
W

B
N

Z

@
R

W
3+

, r

S
U

B
W

 A
,

@

R
W

0+
d8

S
U

B
W

 A
,

@

R
W

1+
d8

S
U

B
W

 A
,

@

R
W

2+
d8

S
U

B
W

 A
,

@

R
W

3+
d8

S
U

B
W

 A
,

@

R
W

4+
d8

S
U

B
W

 A
,

@

R
W

5+
d8

S
U

B
W

 A
,

@

R
W

6+
d8

S
U

B
W

 A
,

@

R
W

7+
d8

S
U

B
W

 A
,

 @
R

W
0+

d1
6

S
U

B
W

 A
,

 @
R

W
1+

d1
6

S
U

B
W

 A
,

 @
R

W
2+

d1
6

S
U

B
W

 A
,

 @
R

W
3+

d1
6

S
U

B
W

 A
,

 @
R

W
0+

R
W

7

S
U

B
W

 A
,

 @
R

W
1+

R
W

7

S
U

B
W

 A
,

 S
U

B
W

 A
,

 a
dd

r1
6

A
D

D
C

W

 A
,

@

R
W

0+
d8

A
D

D
C

W

 A
,

@

R
W

1+
d8

A
D

D
C

W

 A
,

@

R
W

2+
d8

A
D

D
C

W

 A
,

@

R
W

3+
d8

A
D

D
C

W

 A
,

@

R
W

4+
d8

A
D

D
C

W

 A
,

@

R
W

5+
d8

A
D

D
C

W

 A
,

@

R
W

6+
d8

A
D

D
C

W

 A
,

@

R
W

7+
d8

A
D

D
C

W

 A
,

 @
R

W
0+

d1
6

A
D

D
C

W

 A
,

 @
R

W
1+

d1
6

A
D

D
C

W

 A
,

 @
R

W
2+

d1
6

A
D

D
C

W

 A
,

 @
R

W
3+

d1
6

A
D

D
C

W

 A
,

 @
R

W
0+

R
W

7

A
D

D
C

W

 A
,

 @
R

W
1+

R
W

7

A
D

D
C

W

 A
,

 @
P

C
+d

16

A
D

D
C

W

 A
,

 a
dd

r1
6

C
M

P
W

A
,

@

R
W

0+
d8

C
M

P
W

A
,

@

R
W

1+
d8

C
M

P
W

A
,

@

R
W

2+
d8

C
M

P
W

A
,

@

R
W

3+
d8

C
M

P
W

A
,

@

R
W

4+
d8

C
M

P
W

A
,

@

R
W

5+
d8

C
M

P
W

A
,

@

R
W

6+
d8

C
M

P
W

A
,

@

R
W

7+
d8

C
M

P
W

A
,

 @
R

W
0+

d1
6

C
M

P
W

A
,

 @
R

W
1+

d1
6

C
M

P
W

A
,

 @
R

W
2+

d1
6

C
M

P
W

A
,

 @
R

W
3+

d1
6

C
M

P
W

A
,

 @
R

W
0+

R
W

7

C
M

P
W

A
,

 @
R

W
1+

R
W

7

C
M

P
W

A
,

 @
P

C
+

d1
6

C
M

P
W

A
,

 a
dd

r1
6

A
N

D
W

 A
,

@

R
W

0+
d8

A
N

D
W

 A
,

@

R
W

1+
d8

A
N

D
W

 A
,

@

R
W

2+
d8

A
N

D
W

 A
,

@

R
W

3+
d8

A
N

D
W

 A
,

@

R
W

4+
d8

A
N

D
W

 A
,

@

R
W

5+
d8

A
N

D
W

 A
,

@

R
W

6+
d8

A
N

D
W

 A
,

@

R
W

7+
d8

A
N

D
W

 A
,

 @
R

W
0+

d1
6

A
N

D
W

 A
,

 @
R

W
1+

d1
6

A
N

D
W

 A
,

 @
R

W
2+

d1
6

A
N

D
W

 A
,

 @
R

W
3+

d1
6

A
N

D
W

 A
,

 @
R

W
0+

R
W

7

A
N

D
W

 A
,

 @
R

W
1+

R
W

7

A
N

D
W

 A
,

 @

P
C

+
d1

6

A
N

D
W

 A
,

 a

dd
r1

6

O
R

W

 A
,

@

R
W

0+
d8

O
R

W

 A
,

@

R
W

1+
d8

O
R

W

 A
,

@

R
W

2+
d8

O
R

W

 A
,

@

R
W

3+
d8

O
R

W

 A
,

@

R
W

4+
d8

O
R

W

 A
,

@

R
W

5+
d8

O
R

W

 A
,

@

R
W

6+
d8

O
R

W

 A
,

@

R
W

7+
d8

O
R

W

 A
,

 @
R

W
0+

d1
6

O
R

W

 A
,

 @
R

W
1+

d1
6

O
R

W

 A
,

 @
R

W
2+

d1
6

O
R

W

 A
,

 @
R

W
3+

d1
6

O
R

W

 A
,

 @
R

W
0+

R
W

7

O
R

W

 A
,

 @
R

W
1+

R
W

7

O
R

W

 A
,

 @
 P

C
+

d1
6

O
R

W

 A
,

 a
dd

r1
6

X
O

R
W

 A
,

@

R
W

0+
d8

X
O

R
W

 A
,

@

R
W

1+
d8

X
O

R
W

 A
,

@

R
W

2+
d8

X
O

R
W

 A
,

@

R
W

3+
d8

X
O

R
W

 A
,

@

R
W

4+
d8

X
O

R
W

 A
,

@

R
W

5+
d8

X
O

R
W

 A
,

@

R
W

6+
d8

X
O

R
W

 A
,

@

R
W

7+
d8

X
O

R
W

 A
,

 @
R

W
0+

d1
6

X
O

R
W

 A
,

 @
R

W
1+

d1
6

X
O

R
W

 A
,

 @
R

W
2+

d1
6

X
O

R
W

 A
,

 @
R

W
3+

d1
6

X
O

R
W

 A
,

@
R

W
0+

R
W

7

X
O

R
W

 A
,

@
R

W
1+

R
W

7

X
O

R
W

 A
,

 @
P

C
+

d1
6

X
O

R
W

 A
,

 a
dd

r1
6

D
W

B
N

Z

 @
 R

W
0+

d8
, r

D
W

B
N

Z

 @
 R

W
1+

d8
, r

D
W

B
N

Z

 @
 R

W
2+

d8
, r

D
W

B
N

Z

 @
 R

W
3+

d8
, r

D
W

B
N

Z

 @
 R

W
4+

d8
, r

D
W

B
N

Z

 @
 R

W
5+

d8
, r

D
W

B
N

Z

 @
 R

W
6+

d8
, r

D
W

B
N

Z

 @
 R

W
7+

d8
, r

D
W

B
N

Z
 @

R
 W

0+
d1

6,
 r

D
W

B
N

Z
 @

R
W

1+
d1

6,
 r

D
W

B
N

Z
 @

R
W

2+
d1

6,
 r

D
W

B
N

Z
 @

R
W

3+
d1

6,
 r

D
W

B
N

Z
 @

R
W

0+
R

W
7,

 r

D
W

B
N

Z
 @

R
W

1+
R

W
7,

 r

D
W

B
N

Z

@
P

C
+

d1
6,

 r

D
W

B
N

Z

 a
dd

r1
6,

 r

 @
P

C
+

d1
6

N
ot

e
:

T
h

e
fo

llo
w

in
g

lis
ts

 t
he

 c
or

re
sp

on
de

nc
e

be
tw

e
en

 th
e

 s
ym

bo
ls

 in
 th

e
ab

o
ve

 ta
bl

e
an

d
th

e
sy

m
bo

ls
 in

 t
he

 in
st

ru
ct

io
n

se
t t

ab
le

s.

•
d8

 :
 d

is
p8

 (
8-

bi
t d

is
pl

ac
e

m
en

t)

•
d1

6
:

di
sp

16
 (

1
6-

b
it

di
sp

la
ce

m
e

nt
)

C
.7 ea Instructions

245

Table C.7h ea Instructions 1st byte = 77 H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

ADDW
 RW0, A

ADDW
 RW1, A

ADDW
 RW2, A

ADDW
 RW3, A

ADDW
 RW4, A

ADDW
 RW5, A

ADDW
 RW6, A

ADDW
 RW7, A

ADDW
 @RW0, A

ADDW
 @RW1, A

ADDW
 @RW2, A

ADDW
 @RW3, A

ADDW
 @RW0+, A

ADDW
 @RW1+, A

ADDW
 @RW2+, A

ADDW
 @RW3+, A

 ADDW @R
 W0+d8, A

ADDW @R
 W1+d8, A

 ADDW @R
 W2+d8, A

 ADDW @R
 W3+d8, A

 ADDW @R
 W4+d8, A

 ADDW @R
 W5+d8, A

 ADDW @R
 W6+d8, A

 ADDW @R
 W7+d8, A

 ADDW @R
 W0+d16, A

 ADDW @R
 W1+d16, A

 ADDW @R
 W2+d16, A

 ADDW @R
 W3+d16, A

 ADDW @R
 W0+RW7

 ADDW @R
 W1+RW7

 ADDW @P
 C+d16, A

 ADDW
 addr16, A

SUBW
 RW0, A

SUBW
 RW1, A

SUBW
 RW2, A

SUBW
 RW3, A

SUBW
 RW4, A

SUBW
 RW5, A

SUBW
 RW6, A

SUBW
 RW7, A

SUBW
 @RW0, A

SUBW
 @RW1, A

SUBW
 @RW2, A

SUBW
 @RW3, A

SUBW
 @RW0+, A

SUBW
 @RW1+, A

SUBW
 @RW2+, A

SUBW
 @RW3+, A

SUBCW
 A, RW0

SUBCW
 A, RW1

SUBCW
 A, RW2

SUBCW
 A, RW3

SUBCW
 A, RW4

SUBCW
 A, RW5

SUBCW
 A, RW6

SUBCW
 A,RW7

SUBCW
 A, @RW0

SUBCW
 A, @RW1

SUBCW
 A, @RW2

SUBCW
 A, @RW3

SUBCW
 A, @RW0+

SUBCW
 A, @RW1+

SUBCW
 A, @RW2+

SUBCW
 A, @RW3+

NEGW
 RW0

NEGW
 RW1

NEGW
 RW2

NEGW
 RW3

NEGW
 RW4

NEGW
 RW5

NEGW
 RW6

NEGW
 RW7

NEGW
 @RW0

NEGW
 @RW1

NEGW
 @RW2

NEGW
 @RW3

NEGW
 @RW0+

NEGW
 @RW1+

NEGW
 @RW2+

NEGW
 @RW3+

ANDW
 RW0, A

ANDW
 RW1, A

ANDW
 RW2, A

ANDW
 RW3, A

ANDW
 RW4, A

ANDW
 RW5, A

ANDW
 RW6, A

ANDW
 RW7, A

ANDW
 @RW0, A

ANDW
 @RW1, A

ANDW
 @RW2, A

ANDW
 @RW3, A

ANDW
 @RW0+, A

ANDW
 @RW1+, A

ANDW
 @RW2+, A

ANDW
 @RW3+, A

ORW
 RW0, A

ORW
 RW1, A

OWR
 RW2, A

ORW
 RW3, A

ORW
 RW4, A

ORW
 RW5, A

ORW
 RW6, A

ORW
 RW7, A

ORW
 @RW0, A

ORW
 @RW1, A

ORW
 @RW2, A

ORW
 @RW3, A

ORW
 @RW0+, A

ORW
 @RW1+, A

ORW
 @RW2+, A

ORW
 @RW3+, A

XORW
 RW0, A

XORW
 RW1, A

XORW
 RW2, A

XORW
 RW3, A

XORW
 RW4, A

XORW
 RW5, A

XORW
 RW6, A

XORW
 RW7, A

XORW
 @RW0, A

XORW
 @RW1, A

XORW
 @RW2, A

XORW
 @RW3, A

XORW
 @RW0+, A

XORW
 @RW1+, A

XORW
 @RW2+, A

XORW
 @RW3+, A

NOTW
 RW0

NOTW
 RW1

NOTW
 RW2

NOTW
 RW3

NOTW
 RW4

NOTW
 RW5

NOTW
 RW6

NOTW
 RW7

NOTW
 @RW0

NOTW
 @RW1

NOTW
 @RW2

NOTW
 @RW3

NOTW
 @RW0+

NOTW
 @RW1+

NOTW
 @RW2+

NOTW
 @RW3+

SUBW @R
 W0+d8, A

SUBW @R
 W1+d8, A

SUBW @R
 W2+d8, A

SUBW @R
 W3+d8, A

SUBW @R
 W4+d8, A

SUBW @R
 W5+d8, A

SUBW @R
 W6+d8, A

SUBW @R
 W7+d8, A

SUBW @R
 W0+d16, A

SUBW @R
 W1+d16, A

SUBW @R
 W2+d16, A

SUBW @R
 W3+d16, A

SUBW @R
 W0+RW7, A

SUBW @R
 W1+RW7, A

SUBW @P

SUBW
 addr16, A

SUBCW A,
 @RW0+d8

SUBCW A,
 @RW1+d8

SUBCW A,
 @RW2+d8

SUBCW A,
 @RW3+d8

SUBCW A,
 @RW4+d8

SUBCW A,
 @RW5+d8

SUBCW A,
 @RW6+d8

SUBCW A,
 @RW7+d8

SUBCW A,
 @RW0+d16

SUBCW A,
 @RW1+d16

SUBCW A,
 @RW2+d16

SUBCW A,
 @RW3+d16

SUBCW A,
 @RW0+RW7

SUBCW A,
 @RW1+RW7

SUBCW A,
 @PC+d16

SUBCW A,
 addr16

NEGW
 @RW0+d8

NEGW
 @RW1+d8

NEGW
 @RW2+d8

NEGW
 @RW3+d8

NEGW
 @RW4+d8

NEGW
 @RW5+d8

NEGW
 @RW6+d8

NEGW
 @RW7+d8

NEGW
 @RW0+d16

NEGW
 @RW1+d16

NEGW
 @RW2+d16

NEGW
 @RW3+d16

NEGW
 @RW0+RW7

NEGW
 @RW1+RW7

NEGW
 @PC+d16

NEGW
 addr16

ANDW @R
 W0+d8, A

ANDW @R
 W1+d8, A

ANDW @R
 W2+d8, A

ANDW @R
 W3+d8, A

ANDW @R
 W4+d8, A

ANDW @R
 W5+d8, A

ANDW @R
 W6+d8, A

ANDW @R
 W7+d8, A

ANDW @R
 W0+d16, A

ANDW @R
 W1+d16, A

ANDW @R
 W2+d16, A

ANDW @R
 W3+d16, A

ANDW @R
 W0+RW7, A

ANDW @R
 W1+RW7, A

ANDW @P
 C+d16, A

ANDW
 addr16, A

ORW @R
 W0+d8, A

ORW @R
 W1+d8, A

ORW @R
 W2+d8, A

ORW @R
 W3+d8, A

ORW @R
 W4+d8, A

ORW @R
 W5+d8, A

ORW @R
 W6+d8, A

ORW @R
 W7+d8, A

ORW @R
 W0+d16, A

ORW @R
 W1+d16, A

ORW @R
 W2+d16, A

ORW @R
 W3+d16, A

ORW @R
 W0+RW7, A

ORW @R
 W1+RW7, A

 C+d16, A

ORW
 addr16, A

XORW @R
 W0+d8, A

XORW @R
 W1+d8, A

XORW @R
 W2+d8, A

XORW @R
 W3+d8, A

XORW @R
 W4+d8, A

XORW @R
 W5+d8, A

XORW @R
 W6+d8, A

XORW @R
 W7+d8, A

XORW @R
 W0+d16, A

XORW @R
 W1+d16, A

XORW @R
 W2+d16, A

XORW @R
 W3+d16, A

XORW @R
 W0+RW7, A

XORW @R
 W1+RW7, A

XORW @P
 C+d16, A

XORW
 addr16, A

NOTW
 @RW0+d8

NOTW
 @RW1+d8

NOTW
 @RW2+d8

NOTW
 @RW3+d8

NOTW
 @RW4+d8

NOTW
 @RW5+d8

NOTW
 @RW6+d8

NOTW
 @RW7+d8

NOTW
 @RW0+d16

NOTW
@RW1+d16

NOTW
@RW2+d16

NOTW
@RW3+d16

NOTW
@RW0+RW7

NOTW
@RW1+RW7

NOTW
 @PC+d16

NOTW
 addr16

 @PC+d16, A

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

ORW @P

C.7 ea Instructions

246 F2MC-16F Instruction Map

T
ab

le
 C

.7
i

ea
 In

st
ru

ct
io

ns
 [1

st
 b

yt
e

=
78

H
]

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

+
8

+
9

+
A

+
B

+
C

+
D

+
E

+
F

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

A
 0

B
 0

C
 0

D
 0

E
 0

F
 0

M
U

LU

A

, R
0

M
U

LU

A

, R
1

M
U

LU

A

, R
2

M
U

LU

A

, R
3

M
U

LU

A

, R
4

M
U

LU

A

, R
5

M
U

LU

A

, R
6

M
U

LU

A

, R
7

M
U

LU

 A
, @

R
W

0

M
U

LU

A
, @

R
W

1

M
U

LU

A
, @

R
W

2

M
U

LU

A
, @

R
W

3

M
U

LU
 A

, @
R

W
0+

M
U

LU
 A

, @
R

W
1+

M
U

LU
 A

, @
R

W
2+

M
U

LU
 A

, @
R

W
3+

M
U

LU

 A

,

@
R

W
0+

d8

M
U

LU

 A

,

@
R

W
1+

d8

M
U

LU

 A

,

@
R

W
2+

d8

M
U

LU

 A

,

@
R

W
3+

d8

M
U

LU

 A

,

@
R

W
4+

d8

M
U

LU

 A

,

@
R

W
5+

d8

M
U

LU

 A

,

@
R

W
6+

d8

M
U

LU

 A

,

@
R

W
7+

d8

M
U

LU

 A

,
 @

R
W

0+
d1

6

M
U

LU

 A

,
 @

R
W

1+
d1

6

M
U

LU

 A

,
 @

R
W

2+
d1

6

M
U

LU

 A

,
 @

R
W

3+
d1

6

M
U

LU

 A

,
@

R
W

0+
R

W
7

M
U

LU

 A

,
@

R
W

1+
R

W
7

M
U

LU

 A

,
 @

P
C

+d
16

M
U

LU

 A

,

ad

dr
16

M
U

LU
W

A
, R

W
0

M
U

LU
W

A
, R

W
1

M
U

LU
W

A
, R

W
2

M
U

LU
W

A
, R

W
3

M
U

LU
W

A
, R

W
4

M
U

LU
W

A
, R

W
5

M
U

LU
W

A
, R

W
6

M
U

LU
W

A
, R

W
7

M
U

LU
W

 A

, @
R

W
0

M
U

LU
W

A

, @
R

W
1

M
U

LU
W

A

, @
R

W
2

M
U

LU
W

A

, @
R

W
3

M
U

LU
W

 A
, @

R
W

0+

M
U

LU
W

 A
, @

R
W

1+

M
U

LU
W

 A
, @

R
W

2+

M
U

LU
W

 A
, @

R
W

3+

D
IV

U

A

, R
0

D
IV

U

A

, R
1

D
IV

U

A

, R
2

D
IV

U

A

, R
3

D
IV

U

A

, R
4

D
IV

U

A

, R
5

D
IV

U

A

, R
6

D
IV

U

A

, R
7

D
IV

U

 A
, @

R
W

0

D
IV

U

A
, @

R
W

1

D
IV

U

A
, @

R
W

2

D
IV

U

A
, @

R
W

3

D
IV

U
 A

, @
R

W
0+

D
IV

U
 A

, @
R

W
1+

D
IV

U
 A

, @
R

W
2+

D
IV

U
 A

, @
R

W
3+

D
IV

U
W

A
, R

W
0

D
IV

U
W

A
, R

W
1

D
IV

U
W

A
, R

W
2

D
IV

U
W

A
, R

W
3

D
IV

U
W

A
, R

W
4

D
IV

U
W

A
, R

W
5

D
IV

U
W

A
, R

W
6

D
IV

U
W

A
, R

W
7

D
IV

U
W

 A

, @
R

W
0

D
IV

U
W

A

, @
R

W
1

D
IV

U
W

A

, @
R

W
2

D
IV

U
W

A

, @
R

W
3

D
IV

U
W

 A
, @

R
W

0+

D
IV

U
W

 A
, @

R
W

1+

D
IV

U
W

 A
, @

R
W

2+

D
IV

U
W

 A
, @

R
W

3+

M
U

LU
W

 A

,

@
R

W
0+

d8

M
U

LU
W

 A

,

@
R

W
1+

d8

M
U

LU
W

 A

,

@
R

W
2+

d8

M
U

LU
W

 A

,

@
R

W
3+

d8

M
U

LU
W

 A

,

@
R

W
4+

d8

M
U

LU
W

 A

,

@
R

W
5+

d8

M
U

LU
W

 A

,

@
R

W
6+

d8

M
U

LU
W

 A

,

@
R

W
7+

d8

M
U

LU
W

 A

,
 @

R
W

0+
d1

6

M
U

LU
W

 A

,
 @

R
W

1+
d1

6

M
U

LU
W

 A

,
 @

R
W

2+
d1

6

M
U

LU
W

 A

,
 @

R
W

3+
d1

6

M
U

LU
W

 A

,
@

R
W

0+
R

W
7

M
U

LU
W

 A

,
 @

R
W

1+
R

W
7

M
U

LU
W

 A

,
 M

U
LU

W

 A
,

 a
dd

r1
6

D
IV

U

A
,

@

R
W

0+
d8

D
IV

U

A
,

@

R
W

1+
d8

D
IV

U

A
,

@

R
W

2+
d8

D
IV

U

A
,

@

R
W

3+
d8

D
IV

U

A
,

@

R
W

4+
d8

D
IV

U

A
,

@

R
W

5+
d8

D
IV

U

A
,

@

R
W

6+
d8

D
IV

U

A
,

@

R
W

7+
d8

D
IV

U

A
,

 @
R

W
0+

d1
6

D
IV

U

A
,

 @
R

W
1+

d1
6

D
IV

U

A
,

 @
R

W
2+

d1
6

D
IV

U

A
,

 @
R

W
3+

d1
6

D
IV

U

A
,

 @
R

W
0+

R
W

7

D
IV

U

A
,

 @
R

W
1+

R
W

7

D
IV

U

A
,

 @

P
C

+
d1

6

D
IV

U

A
,

 a

dd
r1

6

D
IV

U
W

A
,

@

R
W

0+
d8

D
IV

U
W

A
,

@

R
W

1+
d8

D
IV

U
W

A
,

@

R
W

2+
d8

D
IV

U
W

A
,

@

R
W

3+
d8

D
IV

U
W

A
,

@

R
W

4+
d8

D
IV

U
W

A
,

@

R
W

5+
d8

D
IV

U
W

A
,

@

R
W

6+
d8

D
IV

U
W

A
,

@

R
W

7+
d8

D
IV

U
W

A
,

 @
R

W
0+

d1
6

D
IV

U
W

A
,

 @
R

W
1+

d1
6

D
IV

U
W

A
,

 @
R

W
2+

d1
6

D
IV

U
W

A
,

 @
R

W
3+

d1
6

D
IV

U
W

A
,

 @
R

W
0+

R
W

7

D
IV

U
W

A
,

 @
R

W
1+

R
W

7

D
IV

U
W

A
,

 @
 P

C
+d

16

D
IV

U
W

A
,

 a
dd

r1
6

 @
P

C
+

d1
6

N
o

te
:

T
he

 fo
llo

w
in

g
lis

ts
 th

e
co

rr
e

sp
o

nd
en

ce
 b

e
tw

ee
n

th
e

sy
m

bo
ls

 in
 t

he
 a

bo
ve

 t
ab

le
 a

nd
 t

he
 s

ym
b

ol
s

in
 th

e
in

st
ru

ct
io

n
se

t t
ab

le
s.

•
d8

 :
 d

is
p8

 (
8-

bi
t d

is
pl

ac
em

en
t)

•
d1

6
:

di
sp

1
6

(1
6-

bi
t d

is
pl

a
ce

m
en

t)

M
U

L

A

, R
0

M
U

L

A

, R
1

M
U

L

A

, R
2

M
U

L

A

, R
3

M
U

L

A

, R
4

M
U

LU

A

, R
5

M
U

L

A

, R
6

M
U

L

A

, R
7

M
U

L

 A
, @

R
W

0

M
U

L

A
, @

R
W

1

M
U

L

A
, @

R
W

2

M
U

L

A
, @

R
W

3

M
U

L
 A

, @
R

W
0+

M
U

L
 A

, @
R

W
1+

M
U

L
 A

, @
R

W
2+

M
U

L
 A

, @
R

W
3+

M
U

L

A
,

@

R
W

0+
d8

M
U

L

A
,

@

R
W

1+
d8

M
U

L

A
,

@

R
W

2+
d8

M
U

L

A
,

@

R
W

3+
d8

M
U

L

A
,

@

R
W

4+
d8

M
U

L

A
,

@

R
W

5+
d8

M
U

L

A
,

@

R
W

6+
d8

M
U

L

A
,

@

R
W

7+
d8

M
U

L

A
,

 @
R

W
0+

d1
6

M
U

L

A
,

 @
R

W
1+

d1
6

M
U

L

A
,

 @
R

W
2+

d1
6

M
U

L

A
,

 @
R

W
3+

d1
6

M
U

L

 A

,
@

R
W

0+
R

W
7

M
U

L

A
,

@
R

W
1+

R
W

7

M
U

L

A
,

 @
P

C
+

d1
6

M
U

L

A
,

ad
dr

16

M
U

LW

A

, R
W

0

M
U

LW

A

, R
W

1

M
U

LW

A

, R
W

2

M
U

LW

A

, R
W

3

M
U

LW

A

, R
W

4

M
U

LW

A

, R
W

5

M
U

LW

A

, R
W

6

M
U

LW

A

, R
W

7

M
U

LW

 A
, @

R
W

0

M
U

LW

A
, @

R
W

1

M
U

LW

A
, @

R
W

2

M
U

LW

A
, @

R
W

3

M
U

LW
 A

, @
R

W
0+

M
U

LU
W

 A
, @

R
W

1+

M
U

LW
 A

, @
R

W
2+

M
U

LW
 A

, @
R

W
3+

M
U

LW

 A

,

@
R

W
0+

d8

M
U

LW

 A

,

@
R

W
1+

d8

M
U

LW

 A

,

@
R

W
2+

d8

M
U

LW

 A

,

@
R

W
3+

d8

M
U

LW

 A

,

@
R

W
4+

d8

M
U

LW

 A

,

@
R

W
5+

d8

M
U

LW

 A

,

@
R

W
6+

d8

M
U

LW

 A

,

@
R

W
7+

d8

M
U

LW

 A

,
 @

R
W

0+
d1

6

M
U

LW

 A

,
 @

R
W

1+
d1

6

M
U

LW

 A

,
 @

R
W

2+
d1

6

M
U

LW

 A

,
 @

R
W

3+
d1

6

M
U

LW

 A

,
@

R
W

0+
R

W
7

M
U

LW

 A

,
 @

R
W

1+
R

W
7

M
U

LW

 A

,
 M

U
LW

 A
,

 a
dd

r1
6

 @
P

C
+

d1
6

D
IV

A
, R

0

D
IV

A
, R

1

D
IV

A
, R

2

D
IV

A
, R

3

D
IV

A
, R

4

D
IV

A
, R

5

D
IV

A
, R

6

D
IV

A
, R

7

D
IV

 A

, @
R

W
0

D
IV

A

, @
R

W
1

D
IV

A

, @
R

W
2

D
IV

A

, @
R

W
3

D
IV

 A
, @

R
W

0+

D
IV

 A
, @

R
W

1+

D
IV

 A
, @

R
W

2+

D
IV

 A
, @

R
W

3+

D
IV

W

A

, R
W

0

D
IV

W

A

, R
W

1

D
IV

W

A

, R
W

2

D
IV

W

A

, R
W

3

D
IV

W

A

, R
W

4

D
IV

W

A

, R
W

5

D
IV

W

A

, R
W

6

D
IV

W

A

, R
W

7

D
IV

W

 A
, @

R
W

0

D
IV

W

A
, @

R
W

1

D
IV

W

A
, @

R
W

2

D
IV

W

A
, @

R
W

3

D
IV

W
 A

, @
R

W
0+

D
IV

W
 A

, @
R

W
1+

D
IV

W
 A

, @
R

W
2+

D
IV

W
 A

, @
R

W
3+

D
IV

 A

,

@
R

W
0+

d8

D
IV

 A

,

@
R

W
1+

d8

D
IV

 A

,

@
R

W
2+

d8

D
IV

 A

,

@
R

W
3+

d8

D
IV

 A

,

@
R

W
4+

d8

D
IV

 A

,

@
R

W
5+

d8

D
IV

 A

,

@
R

W
6+

d8

D
IV

 A

,

@
R

W
7+

d8

D
IV

 A

,
 @

R
W

0+
d1

6

D
IV

 A

,
 @

R
W

1+
d1

6

D
IV

 A

,
 @

R
W

2+
d1

6

D
IV

 A

,
 @

R
W

3+
d1

6

D
IV

 A

,
 @

R
W

0+
R

W
7

D
IV

 A

,
 @

R
W

1+
R

W
7

D
IV

 A

,

 @
P

C
+

d1
6

D
IV

 A

,

 a
dd

r1
6

D
IV

W

 A

,

@
R

W
0+

d8

D
IV

W

 A

,

@
R

W
1+

d8

D
IV

W

 A

,

@
R

W
2+

d8

D
IV

W

 A

,

@
R

W
3+

d8

D
IV

W

 A

,

@
R

W
4+

d8

D
IV

W

 A

,

@
R

W
5+

d8

D
IV

W

 A

,

@
R

W
6+

d8

D
IV

W

 A

,

@
R

W
7+

d8

D
IV

W

 A

,
 @

R
W

0+
d1

6

D
IV

W

 A

,
 @

R
W

1+
d1

6

D
IV

W

 A

,
 @

R
W

2+
d1

6

D
IV

W

 A

,
 @

R
W

3+
d1

6

D
IV

W

 A

,
 @

R
W

0+
R

W
7

D
IV

W

 A

,
 @

R
W

1+
R

W
7

D
IV

W

 A

,
 @

 P
C

+
d1

6

D
IV

W

 A

,
 a

dd
r1

6

C
.8 M

O
V

E
A

 R
W

i, ea

247

C.8 MOVEA RWi, ea

Table C.8 MOVEA RWi, ea [Frist byte = 79 H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOVEA
 RW0, RW0

MOVEA
 RW0, RW1

MOVEA
 RW0, RW2

MOVEA
 RW0, RW3

MOVEA
 RW0, RW4

MOVEA
 RW0, RW5

MOVEA
 RW0, RW6

MOVEA
 RW0, RW7

MOVEA
RW0, @RW0

MOVEA
RW0, @RW1

MOVEA
RW0, @RW2

MOVEA
RW0, @RW3

MOVEA R
 W0, @RW0+

MOVEA R
W0, @RW1+

MOVEA R
W0, @RW2+

MOVEA R
W0, @RW3+

MOVEA RW0,
 @RW0+d8

MOVEA RW0,
 @RW1+d8

MOVEA RW0,
 @RW2+d8

MOVEA RW0,
 @RW3+d8

MOVEA RW0,
 @RW4+d8

MOVEA RW0,
 @RW5+d8

MOVEA RW0,
 @RW6+d8

MOVEA RW0,
 @RW7+d8

MOVEA RW0,
 @RW0+d16

MOVEA RW0,
 @RW1+d16

MOVEA RW0,
 @RW2+d16

MOVEA RW0,
 @RW3+d16

MOVEA RW0,
 @RW0+RW7

MOVEA RW0,
 @RW1+RW7

MOVEA RW0,
 @PC+d16

MOVEA RW0,
 addr16

MOVEA
 RW1, RW0

MOVEA
 RW1, RW1

MOVEA
 RW1, RW2

MOVEA
 RW1, RW3

MOVEA
 RW1, RW4

MOVEA
 RW1, RW5

MOVEA
 RW1, RW6

MOVEA
 RW1, RW7

MOVEA
RW1, @RW0

MOVEA
RW1, @RW1

MOVEA
RW1, @RW2

MOVEA
RW1, @RW3

MOVEA R
W1, @RW0+

MOVEA R
W1, @RW1+

MOVEA R
W1, @RW2+

MOVEA R
W1, @RW3+

MOVEA
 RW2, RW0

MOVEA
 RW2, RW1

MOVEA
 RW2, RW2

MOVEA
 RW2, RW3

MOVEA
 RW2, RW4

MOVEA
 RW2, RW5

MOVEA
 RW2, RW6

MOVEA
 RW2, RW7

MOVEA
RW2, @RW0

MOVEA
RW2, @RW1

MOVEA
RW2, @RW2

MOVEA
RW2, @RW3

MOVEA R
W2, @RW0+

MOVEA R
W2, @RW1+

MOVEA R
W2, @RW2+

MOVEA R
W2, @RW3+

MOVEA
 RW3, RW0

MOVEA
 RW3, RW1

MOVEA
 RW3, RW2

MOVEA
 RW3, RW3

MOVEA
 RW3, RW4

MOVEA
 RW3, RW5

MOVEA
 RW3, RW6

MOVEA
 RW3, RW7

MOVEA
RW3, @RW0

MOVEA
RW3, @RW1

MOVEA
RW3, @RW2

MOVEA
RW3, @RW3

MOVEA R
W3, @RW0+

MOVEA R
W3, @RW1+

MOVEA R
W3, @RW2+

MOVEA R
W3, @RW3+

MOVEA
 RW4, RW0

MOVEA
 RW4, RW1

MOVEA
 RW4, RW2

MOVEA
 RW4, RW3

MOVEA
 RW4, RW4

MOVEA
 RW4, RW5

MOVEA
 RW4, RW6

MOVEA
 RW4, RW7

MOVEA
RW4, @RW0

MOVEA
RW4, @RW1

MOVEA
RW4, @RW2

MOVEA
RW4, @RW3

MOVEA R
W4, @RW0+

MOVEA R
W4, @RW1+

MOVEA R
W4, @RW2+

MOVEA R
W4, @RW3+

MOVEA
 RW5, RW0

MOVEA
 RW5, RW1

MOVEA
 RW5, RW2

MOVEA
 RW5, RW3

MOVEA
 RW5, RW4

MOVEA
 RW5, RW5

MOVEA
 RW5, RW6

MOVEA
 RW5, RW7

MOVEA
RW5, @RW0

MOVEA
RW5, @RW1

MOVEA
RW5, @RW2

MOVEA
RW5, @RW3

MOVEA R
W5, @RW0+

MOVEA R
W5, @RW1+

MOVEA R
W5, @RW2+

MOVEA R
W5, @RW3+

MOVEA
 RW6, RW0

MOVEA
 RW6, RW1

MOVEA
 RW6, RW2

MOVEA
 RW6, RW3

MOVEA
 RW6, RW4

MOVEA
 RW6, RW5

MOVEA
 RW6, RW6

MOVEA
 RW6, RW7

MOVEA
RW6, @RW0

MOVEA
RW6, @RW1

MOVEA
RW6, @RW2

MOVEA
RW6, @RW3

MOVEA R
W6, @RW0+

MOVEA R
W6, @RW1+

MOVEA R
W6, @RW2+

MOVEA
W6, @RW3+

MOVEA
 RW7, RW0

MOVEA
 RW7, RW1

MOVEA
 RW7, RW2

MOVEA
 RW7, RW3

MOVEA
 RW7, RW4

MOVEA
 RW7, RW5

MOVEA
 RW7, RW6

MOVEA
 RW7, RW7

MOVEA
RW7, @RW0

MOVEA
RW7, @RW1

MOVEA
RW7, @RW2

MOVEA
RW7, @RW3

MOVEA R
W7, @RW0+

MOVEA R
W7, @RW1+

MOVEA R
W7, @RW2+

MOVEA R
W7, @RW3+

MOVEA RW1,
 @RW0+d8

MOVEA RW1,
 @RW1+d8

MOVEA RW1,
 @RW2+d8

MOVEA RW1,
 @RW3+d8

MOVEA RW1,
 @RW4+d8

MOVEA RW1,
 @RW5+d8

MOVEA RW1,
 @RW6+d8

MOVEA RW1,
 @RW7+d8

MOVEA RW1,
 @RW0+d16

MOVEA RW1,
 @RW1+d16

MOVEA RW1,
 @RW2+d16

MOVEA RW1,
 @RW3+d16

MOVEA RW1,
@RW0+RW7

MOVEA RW1,
 @RW1+RW7

MOVEA RW1,

MOVEA RW1,
 addr16

MOVEA RW2,
 @RW0+d8

MOVEA RW2,
 @RW1+d8

MOVEA RW2,
 @RW2+d8

MOVEA RW2,
 @RW3+d8

MOVEA RW2,
 @RW4+d8

MOVEA RW2,
 @RW5+d8

MOVEA RW2,
 @RW6+d8

MOVEA RW2,
 @RW7+d8

MOVEA RW2,
 @RW0+d16

MOVEA RW2,
 @RW1+d16

MOVEA RW2,
 @RW2+d16

MOVEA RW2,
 @RW3+d16

MOVEA RW2,
 @RW0+RW7

MOVEA RW2,
 @RW1+RW7

MOVEA RW2,
 @PC+d16

MOVEA RW2,
 addr16

MOVEA RW3,
 @RW0+d8

MOVEA RW3,
 @RW1+d8

MOVEA RW3,
 @RW2+d8

MOVEA RW3,
 @RW3+d8

MOVEA RW3,
 @RW4+d8

MOVEA RW3,
 @RW5+d8

MOVEA RW3,
 @RW6+d8

MOVEA RW3,
 @RW7+d8

MOVEA RW3,
 @RW0+d16

MOVEA RW3,
 @RW1+d16

MOVEA RW3,
 @RW2+d16

MOVEA RW3,
 @RW3+d16

MOVEA RW3,
 @RW0+RW7

MOVEA RW3,
 @RW1+RW7

MOVEA RW3,
 @PC+d16

MOVEA RW3,
 addr16

MOVEA RW4,
 @RW0+d8

MOVEA RW4,
 @RW1+d8

MOVEA RW4,
 @RW2+d8

MOVEA RW4,
 @RW3+d8

MOVEA RW4,
 @RW4+d8

MOVEA RW4,
 @RW5+d8

MOVEA RW4,
 @RW6+d8

MOVEA RW4,
 @RW7+d8

MOVEA RW4,
 @RW0+d16

MOVEA RW4,
 @RW1+d16

MOVEA RW4,
 @RW2+d16

MOVEA RW4,
 @RW3+d16

MOVEA RW4,
 @RW0+RW7

MOVEA RW4,
 @RW1+RW7

MOVEA RW4,
 @PC+d16

MOVEA RW4,
 addr16

MOVEA RW5,
 @RW0+d8

MOVEA RW5,
 @RW1+d8

MOVEA RW5,
 @RW2+d8

MOVEA RW5,
 @RW3+d8

MOVEA RW5,
 @RW4+d8

MOVEA RW5,
 @RW5+d8

MOVEA RW5,
 @RW6+d8

MOVEA RW5,
 @RW7+d8

MOVEA RW5,
@RW0+d16

MOVEA RW5,
@RW1+d16

MOVEA RW5,
@RW2+d16

MOVEA RW5,
@RW3+d16

MOVEA RW5,
@RW0+RW7

MOVEA RW5,
@RW1+RW7

MOVEA RW5,
 @PC+d16

MOVEA RW5,
 addr16

MOVEA RW6,
 @RW0+d8

MOVEA RW6,
 @RW1+d8

MOVEA RW6,
 @RW2+d8

MOVEA RW6,
 @RW3+d8

MOVEA RW6,
 @RW4+d8

MOVEA RW6,
 @RW5+d8

MOVEA RW6,
 @RW6+d8

MOVEA RW6,
 @RW7+d8

MOVEA RW6,
 @RW0+d16

MOVEA RW6,
 @RW1+d16

MOVEA RW6,
 @RW2+d16

MOVEA RW6,
 @RW3+d16

MOVEA RW6,
 @RW0+RW7

MOVEA RW6,
 @RW1+RW7

MOVEA RW6,
 @PC+d16

MOVEA RW6,
 addr16

MOVEA RW7,
 @RW0+d8

MOVEA RW7,
 @RW1+d8

MOVEA RW7,
 @RW2+d8

MOVEA RW7,
 @RW3+d8

MOVEA RW7,
 @RW4+d8

MOVEA RW7,
 @RW5+d8

MOVEA RW7,
 @RW6+d8

MOVEA RW7,
 @RW7+d8

MOVEA RW7,
 @RW0+d16

MOVEA RW7,
 @RW1+d16

MOVEA RW7,
 @RW2+d16

MOVEA RW7,
 @RW3+d16

MOVEA RW7,
 @RW0+RW7

MOVEA RW7,
 @RW1+RW7

MOVEA RW7,
 @PC+d16

MOVEA RW7,
 addr16

 @PC+d16

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C
.9 M

O
V

 R
i, ea

248
 F

2M
C

-16F
 Instruction M

ap

C.9 MOV Ri, ea

Table C.9 MOV Ri, ea [First byte = 7A H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOV
 R0, R0

MOV
 R0, R1

MOV
 R0, R2

MOV
 R0, R3

MOV
 R0, R4

MOV
 R0, R5

MOV
 R0, R6

MOV
 R0, R7

MOV
 R0, @RW0

MOV
 R0, @RW1

MOV
 R0, @RW2

MOV
 R0, @RW3

MOV
 R0, @RW0+

MOV
 R0, @RW1+

MOV
 R0, @RW2+

MOV
 R0, @RW3+

MOV R0,
 @RW0+d8

MOV R0,
 @RW1+d8

MOV R0,
 @RW2+d8

MOV R0,
 @RW3+d8

MOV R0,
 @RW4+d8

MOV R0,
 @RW5+d8

MOV R0,
 @RW6+d8

MOV R0,
 @RW7+d8

MOV R0,
 @RW0+d16

MOV R0,
 @RW1+d16

MOV R0,
 @RW2+d16

MOV R0,
 @RW3+d16

MOV R0,
@RW0+RW7

MOV R0,
@RW1+RW7

MOV R0,
 @PC+d16

MOV R0,
 @addr16

MOV
 R1, R0

MOV
 R1, R1

MOV
 R1, R2

MOV
 R1, R3

MOV
 R1, R4

MOV
 R1, R5

MOV
 R1, R6

MOV
 R1, R7

MOV
 R1, @RW0

MOV
 R1, @RW1

MOV
 R1, @RW2

MOV
 R1, @RW3

MOV R1,
 R1, @RW0+

MOV R1,
 R1, @RW1+

MOV R1,
 R1, @RW2+

MOV R1,
 R1, @RW3+

MOV
 R2, R0

MOV
 R2, R1

MOV
 R2, R2

MOV
 R2, R3

MOV
 R2, R4

MOV
 R2, R5

MOV
 R2, R6

MOV
 R2, R7

MOV
R2, @RW0

MOV
R2, @RW1

MOV
 R2, @RW2

MOV
 R2, @RW3

MOV
 R2, @RW0+

MOV
 R2, @RW1+

MOV
 R2, @RW2+

MOV
 R2, @RW3+

MOV
 R3, R0

MOV
 R3, R1

MOV
 R3, R2

MOV
 R3, R3

MOV
 R3, R4

MOV
 R3, R5

MOV
 R3, R6

MOV
 R3, R7

MOV
 R3, @RW0

MOV
 R3, @RW1

MOV
 R3, @RW2

MOV
 R3, @RW3

MOV
 R3, @RW0+

MOV
 R3, @RW1+

MOV
 R3, @RW2+

MOV
 R3, @RW3+

MOV
 R4, R0

MOV
 R4, R1

MOV
 R4, R2

MOV
 R4, R3

MOV
 R4, R4

MOV
 R4, R5

MOV
 R4, R6

MOV
 R4, R7

MOV
R4, @RW0

MOV
R4, @RW1

MOV
R4, @RW2

MOV
R4, @RW3

MOV
R4, @RW0+

MOV
R4, @RW1+

MOV
 R4, @RW2+

MOV
 R4, @RW3+

MOV
 R5, R0

MOV
 R5, R1

MOV
 R5, R2

MOV
 R5, R3

MOV
 R5, R4

MOV
 R5, R5

MOV
 R5, R6

MOV
 R5, R7

MOV
 R5, @RW0

MOV
R5, @RW1

MOV
R5, @RW2

MOV
R5, @RW3

MOV
R5, @RW0+

MOV
R5, @RW1+

MOV
R5, @RW2+

MOV
R5, @RW3+

MOV
 R6, R0

MOV
 R6, R1

MOV
 R6, R2

MOV
 R6, R3

MOV
 R6, R4

MOV
 R6, R5

MOV
 R6, R6

MOV
 R6, R7

MOV
R6, @RW0

MOV
R6, @RW1

MOV
R6, @RW2

MOV
R6, @RW3

MOV R6,
 @RW0+

MOV R6,
 @RW1+

MOV R6,
 @RW2+

MOV R6,
 @RW3+

MOV
 R7, R0

MOV
 R7, R1

MOV
 R7, R2

MOV
 R7, R3

MOV
 R7, R4

MOV
 R7, R5

MOV
 R7, R6

MOV
 R7, R7

MOV
 R7, @RW0

MOV
 R7, @RW1

MOV
 R7, @RW2

MOV
 R7, @RW3

MOV R7,
 @RW0+

MOV R7,
 @RW1+

MOV R7,
 @RW2+

MOV R7,
 @RW3+

MOV R1,
 @RW0+d8

MOV R1,
 @RW1+d8

MOV R1,
 @RW2+d8

MOV R1,
 @RW3+d8

MOV R1,
 @RW4+d8

MOV R1,
 @RW5+d8

MOV R1,
 @RW6+d8

MOV R1,
 @RW7+d8

MOV R1,
 @RW0+d16

MOV R1,
 @RW1+d16

MOV R1,
 @RW2+d16

MOV R1,
 @RW3+d16

MOV R1,
@RW0+RW7

MOV R1,
 @RW1+RW7

MOV R1,

MOV R1,
 addr16

MOV R2,
 @RW0+d8

MOV R2,
 @RW1+d8

MOV R2,
 @RW2+d8

MOV R2,
 @RW3+d8

MOV R2,
 @RW4+d8

MOV R2,
 @RW5+d8

MOV R2,
 @RW6+d8

MOV R2,
 @RW7+d8

MOV R2,
 @RW0+d16

MOV R2,
 @RW1+d16

MOV R2,
 @RW2+d16

MOV R2,
 @RW3+d16

MOV R2,
 @RW0+RW7

MOV R2,
 @RW1+RW7

MOV R2,
 @PC+d16

MOV R2,
 addr16

MOV R3,
 @RW0+d8

MOV R3,
 @RW1+d8

MOV R3,
 @RW2+d8

MOV R3,
 @RW3+d8

MOV R3,
 @RW4+d8

MOV R3,
 @RW5+d8

MOV R3,
 @RW6+d8

MOV R3,
 @RW7+d8

MOV R3,
 @RW0+d16

MOV R3,
 @RW1+d16

MOV R3,
 @RW2+d16

MOV R3,
 @RW3+d16

MOV R3,
@RW0+RW7

MOV R3,
@RW1+RW7

MOV R3,
 @PC+d16

MOV R3,
 addr16

MOV R4,
 @RW0+d8

MOV R4,
 @RW1+d8

MOV R4,
 @RW2+d8

MOV R4,
 @RW3+d8

MOV R4,
 @RW4+d8

MOV R4,
 @RW5+d8

MOV R4,
 @RW6+d8

MOV R4,
 @RW7+d8

MOV R4,
 @RW0+d16

MOV R4,
 @RW1+d16

MOV R4,
 @RW2+d16

MOV R4,
 @RW3+d16

MOV R4,
@RW0+RW7

MOV R4,
@RW1+RW7

MOV R4,
 @PC+d16

MOV R4,
 addr16

MOV R5,
 @RW0+d8

MOV R5,
 @RW1+d8

MOV R5,
 @RW2+d8

MOV R5,
 @RW3+d8

MOV R5,
 @RW4+d8

MOV R5,
 @RW5+d8

MOV R5,
 @RW6+d8

MOV R5,
 @RW7+d8

MOV R5,
@RW0+d16

MOV R5,
@RW1+d16

MOV R5,
@RW2+d16

MOV R5,
@RW3+d16

MOV R5,
@RW0+RW7

MOV R5,
@RW1+RW7

MOV R5,
 @PC+d16

MOV R5,
 addr16

MOV R6,
 @RW0+d8

MOV R6,
 @RW1+d8

MOV R6,
 @RW2+d8

MOV R6,
 @RW3+d8

MOV R6,
 @RW4+d8

MOV R6,
 @RW5+d8

MOV R6,
 @RW6+d8

MOV R6,
 @RW7+d8

MOV R6,
 @RW0+d16

MOV R6,
 @RW1+d16

MOV R6,
 @RW2+d16

MOV R6,
 @RW3+d16

MOV R6,
 @RW0+RW7

MOV R6,
 @RW1+RW7

MOV R6,
 @PC+d16

MOV R6,
 addr16

MOV R7,
 @RW0+d8

MOV R7,
 @RW1+d8

MOV R7,
 @RW2+d8

MOV R7,
 @RW3+d8

MOV R7,
 @RW4+d8

MOV R7,
 @RW5+d8

MOV R7,
 @RW6+d8

MOV R7,
 @RW7+d8

MOV R7,
 @RW0+d16

MOV R7,
 @RW1+d16

MOV R7,
 @RW2+d16

MOV R7,
 @RW3+d16

MOV R7,
 @RW0+RW7

MOV R7,
 @RW1+RW7

MOV R7,
 @PC+d16

MOV R7,
 addr16

 @PC+d16

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C
.10 M

O
V

W
 R

W
i, ea

249

C.10 MOVW RWi, ea

Table C.10 MOVW RWi, ea [First byte = 7B H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOVW
 RW0, RW0

MOVW
 RW0, RW1

MOVW
 RW0, RW2

MOVW
 RW0, RW3

MOVW
 RW0, RW4

MOVW
 RW0, RW5

MOVW
 RW0, RW6

MOVW
 RW0, RW7

MOVW
RW0, @RW0

MOVW
RW0, @RW1

MOVW
RW0, @RW2

MOVW
RW0, @RW3

MOVW R
W0, @RW0+

MOVW R
W0, @RW1+

MOVW R
W0, @RW2+

MOVW R
W0, @RW3+

MOVW RW0,
 @RW0+d8

MOVW RW0,
 @RW1+d8

MOVW RW0,
 @RW2+d8

MOVW RW0,
 @RW3+d8

MOVW RW0,
 @RW4+d8

MOVW RW0,
 @RW5+d8

MOVW RW0,
 @RW6+d8

MOVW RW0,
 @RW7+d8

MOVW RW0,
 @RW0+d16

MOVW RW0,
 @RW1+d16

MOVW RW0,
 @RW2+d16

MOVW RW0,
 @RW3+d16

MOVW RW0,
 @RW0+RW7

MOVW RW0,
 @RW1+RW7

MOVW RW0,
 @PC+d16

MOVW RW0,
 addr16

MOVW
 RW1, RW0

MOVW
 RW1, RW1

MOVW
 RW1, RW2

MOVW
 RW1, RW3

MOVW
 RW1, RW4

MOVW
 RW1, RW5

MOVW
 RW1, RW6

MOVW
 RW1, RW7

MOVW
RW1, @RW0

MOVW
RW1, @RW1

MOVW
RW1, @RW2

MOVW
RW1, @RW3

MOVW R
W1, @RW0+

MOVW R
W1, @RW1+

MOVW R
W1, @RW2+

MOVW R
W1, @RW3+

MOVW
 RW2, RW0

MOVW
 RW2, RW1

MOVW
 RW2, RW2

MOVW
 RW2, RW3

MOVW
 RW2, RW4

MOVW
 RW2, RW5

MOVW
 RW2, RW6

MOVW
 RW2, RW7

MOVW
RW2, @RW0

MOVW
RW2, @RW1

MOVW
RW2, @RW2

MOVW
RW2, @RW3

MOVW R
W2, @RW0+

MOVW R
W2, @RW1+

MOVW R
W2, @RW2+

MOVW R
W2, @RW3+

MOVW
 RW3, RW0

MOVW
 RW3, RW1

MOVW
 RW3, RW2

MOVW
 RW3, RW3

MOVW
 RW3, RW4

MOVW
 RW3, RW5

MOVW
 RW3, RW6

MOVW
 RW3, RW7

MOVW
RW3, @RW0

MOVW
RW3, @RW1

MOVW
RW3, @RW2

MOVW
RW3, @RW3

MOVW R
W3, @RW0+

MOVW R
W3, @RW1+

MOVW R
W3, @RW2+

MOVW R
W3, @RW3+

MOVW
 RW4, RW0

MOVW
 RW4, RW1

MOVW
 RW4, RW2

MOVW
 RW4, RW3

MOVW
 RW4, RW4

MOVW
 RW4, RW5

MOVW
 RW4, RW6

MOVW
 RW4, RW7

MOVW
RW4, @RW0

MOVW
RW4, @RW1

MOVW
RW4, @RW2

MOVW
RW4, @RW3

MOVW R
W4, @RW0+

MOVW R
W4, @RW1+

MOVW R
W4, @RW2+

MOVW R
W4, @RW3+

MOVW
 RW5, RW0

MOVW
 RW5, RW1

MOVW
 RW5, RW2

MOVW
 RW5, RW3

MOVW
 RW5, RW4

MOVW
 RW5, RW5

MOVW
 RW5, RW6

MOVW
 RW5, RW7

MOVW
 RW5, @RW0

MOVW
RW5, @RW1

MOVW
RW5, @RW2

MOVW
RW5, @RW3

MOVW R
W5, @RW0+

MOVW R
W5, @RW1+

MOVW R
W5, @RW2+

MOVW R
W5, @RW3+

MOVW
 RW6, RW0

MOVW
 RW6, RW1

MOVW
 RW6, RW2

MOVW
 RW6, RW3

MOVW
 RW6, RW4

MOVW
 RW6, RW5

MOVW
 RW6, RW6

MOVW
 RW6, RW7

MOVW
RW6, @RW0

MOVW
RW6, @RW1

MOVW
RW6, @RW2

MOVW
RW6, @RW3

MOVW R
W6, @RW0+

MOVW R
W6, @RW1+

MOVW R
W6, @RW2+

MOVW R
W6, @RW3+

MOVW
 RW7, RW0

MOVW
 RW7, RW1

MOVW
 RW7, RW2

MOVW
 RW7, RW3

MOVW
 RW7, RW4

MOVW
 RW7, RW5

MOVW
 RW7, RW6

MOVW
 RW7, RW7

MOVW
RW7, @RW0

MOVW
RW7, @RW1

MOVW
RW7, @RW2

MOVW
 RW7, @RW3

MOVW R
W7, @RW0+

MOVW R
W7, @RW1+

MOVW R
W7, @RW2+

MOVW R
W7, @RW3+

MOVW RW1,
 @RW0+d8

MOVW RW1,
 @RW1+d8

MOVW RW1,
 @RW2+d8

MOVW RW1,
 @RW3+d8

MOVW RW1,
 @RW4+d8

MOVW RW1,
 @RW5+d8

MOVW RW1,
 @RW6+d8

MOVW RW1,
 @RW7+d8

MOVW RW1,
 @RW0+d16

MOVW RW1,
 @RW1+d16

MOVW RW1,
 @RW2+d16

MOVW RW1,
 @RW3+d16

MOVW RW1,
@RW0+RW7

MOVW RW1,
 @RW1+RW7

MOVW RW1,

MOVW RW1,
 addr16

MOVW RW2,
 @RW0+d8

MOVW RW2,
 @RW1+d8

MOVW RW2,
 @RW2+d8

MOVW RW2,
 @RW3+d8

MOVW RW2,
 @RW4+d8

MOVW RW2,
 @RW5+d8

MOVW RW2,
 @RW6+d8

MOVW RW2,
 @RW7+d8

MOVW RW2,
 @RW0+d16

MOVW RW2,
 @RW1+d16

MOVW RW2,
 @RW2+d16

MOVW RW2,
 @RW3+d16

MOVW RW2,
 @RW0+RW7

MOVW RW2,
 @RW1+RW7

MOVW RW2,
 @PC+d16

MOVW RW2,
 addr16

MOVW RW3,
 @RW0+d8

MOVW RW3,
 @RW1+d8

MOVW RW3,
 @RW2+d8

MOVW RW3,
 @RW3+d8

MOVW RW3,
 @RW4+d8

MOVW RW3,
 @RW5+d8

MOVW RW3,
 @RW6+d8

MOVW RW3,
 @RW7+d8

MOVW RW3,
 @RW0+d16

MOVW RW3,
 @RW1+d16

MOVW RW3,
 @RW2+d16

MOVW RW3,
 @RW3+d16

MOVW RW3,
 @RW0+RW7

MOVW RW3,
 @RW1+RW7

MOVW RW3,
 @PC+d16

MOVW RW3,
 addr16

MOVW RW4,
 @RW0+d8

MOVW RW4,
 @RW1+d8

MOVW RW4,
 @RW2+d8

MOVW RW4,
 @RW3+d8

MOVW RW4,
 @RW4+d8

MOVW RW4,
 @RW5+d8

MOVW RW4,
 @RW6+d8

MOVW RW4,
 @RW7+d8

MOVW RW4,
 @RW0+d16

MOVW RW4,
 @RW1+d16

MOVW RW4,
 @RW2+d16

MOVW RW4,
 @RW3+d16

MOVW RW4,
 @RW0+RW7

MOVW RW4,
 @RW1+RW7

MOVW RW4,
 @PC+d16

MOVW RW4,
 addr16

MOVW RW5,
 @RW0+d8

MOVW RW5,
 @RW1+d8

MOVW RW5,
 @RW2+d8

MOVW RW5,
 @RW3+d8

MOVW RW5,
 @RW4+d8

MOVW RW5,
 @RW5+d8

MOVW RW5,
 @RW6+d8

MOVW RW5,
 @RW7+d8

MOVW RW5,
@RW0+d16

MOVW RW5,
@RW1+d16

MOVW RW5,
@RW2+d16

MOVW RW5,
@RW3+d16

MOVW RW5,
@RW0+RW7

MOVW RW5,
@RW1+RW7

MOVW RW5,
 @PC+d16

MOVW RW5,
 addr16

MOVW RW6,
 @RW0+d8

MOVW RW6,
 @RW1+d8

MOVW RW6,
 @RW2+d8

MOVW RW6,
 @RW3+d8

MOVW RW6,
 @RW4+d8

MOVW RW6,
 @RW5+d8

MOVW RW6,
 @RW6+d8

MOVW RW6,
 @RW7+d8

MOVW RW6,
 @RW0+d16

MOVW RW6,
 @RW1+d16

MOVW RW6,
 @RW2+d16

MOVW RW6,
 @RW3+d16

MOVW RW6,
 @RW0+RW7

MOVW RW6,
 @RW1+RW7

MOVW RW6,
 @PC+d16

MOVW RW6,
 addr16

MOVW RW7,
 @RW0+d8

MOVW RW7,
 @RW1+d8

MOVW RW7,
 @RW2+d8

MOVW RW7,
 @RW3+d8

MOVW RW7,
 @RW4+d8

MOVW RW7,
 @RW5+d8

MOVW RW7,
 @RW6+d8

MOVW RW7,
 @RW7+d8

MOVW RW7,
 @RW0+d16

MOVW RW7,
 @RW1+d16

MOVW RW7,
 @RW2+d16

MOVW RW7,
 @RW3+d16

MOVW RW7,
@RW0+RW7

MOVW RW7,
@RW1+RW7

MOVW RW7,
 @PC+d16

MOVW RW7,
 addr16

 @PC+d16

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C
.11 M

O
V

 ea, R
i

250
 F

2M
C

-16F
 Instruction M

ap

C.11 MOV ea, Ri

Table C.11 MOV ea, Ri [First byte = 7C H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOV
 R0, R0

MOV
 R1, R0

MOV
 R2, R0

MOV
 R3, R0

MOV
 R4, R0

MOV
 R5, R0

MOV
 R6, R0

MOV
 R7, R0

MOV
 @RW0, R0

MOV
 @RW1, R0

MOV
 @RW2, R0

MOV
 @RW3, R0

MOV
 @RW0+, R0

MOV
 @RW1+, R0

MOV
 @RW2+, R0

MOV
 @RW3+, R0

MOV @R
 W0+d8, R0

MOV @R
 W1+d8, R0

MOV @R
 W2+d8, R0

MOV @R
 W3+d8, R0

MOV @R
 W4+d8, R0

MOV @R
 W5+d8, R0

MOV @R
 W6+d8, R0

MOV @R
 W7+d8, R0

MOV @RW
 W0+d16, R0

MOV @RW
W1+d16, R0

MOV @RW
W2+d16, R0

MOV @RW
W3+d16, R0

MOV @RW
W0+RW7, R0

MOV @RW
W1+RW7, R0

MOV
PC+d16, R0

MOV a
 addr16, R0

MOV
 R0, R1

MOV
 R1, R1

MOV
 R2, R1

MOV
 R3, R1

MOV
 R4, R1

MOV
 R5, R1

MOV
 R6, R1

MOV
 R7, R1

MOV
@RW0, R1

MOV
@RW1, R1

MOV
@RW2, R1

MOV
@RW3, R1

MOV
@RW0+, R1

MOV
@RW1+, R1

MOV
@RW2+, R1

MOV
@RW3+, R1

MOV
 R0, R2

MOV
 R1, R2

MOV
 R2, R2

MOV
 R3, R2

MOV
 R4, R2

MOV
 R5, R2

MOV
 R6, R2

MOV
 R7, R2

MOV
@RW0, R2

MOV
@RW1, R2

MOV
@RW2, R2

MOV
@RW3, R2

MOV
@RW0+, R2

MOV
@RW1+, R2

MOV
@RW2+, R2

MOV
@RW3+, R2

MOV
 R0, R3

MOV
 R1, R3

MOV
 R2, R3

MOV
 R3, R3

MOV
 R4, R3

MOV
 R5, R3

MOV
 R6, R3

MOV
 R7, R3

MOV
 @RW0, R3

MOV
 @RW1, R3

MOV
 @RW2, R3

MOV
 @RW3, R3

MOV
 @RW0+, R3

MOV
 @RW1+, R3

MOV
 @RW2+, R3

MOV
 @RW3+, R3

MOV
 R0, R4

MOV
 R1, R4

MOV
 R2, R4

MOV
 R3, R4

MOV
 R4, R4

MOV
 R5, R4

MOV
 R6, R4

MOV
 R7, R4

MOV
@RW0, R4

MOV
@RW1, R4

MOV
@RW2, R4

MOV
@RW3, R4

MOV
@RW0+, R4

MOV
@RW1+, R4

MOV
@RW2+, R4

MOV
@RW3+, R4

MOV
 R0, R5

MOV
 R1, R5

MOV
 R2, R5

MOV
 R3, R5

MOV
 R4, R5

MOV
 R5, R5

MOV
 R6, R5

MOV
 R7, R5

MOV
 @RW0, R5

MOV
@RW1, R5

MOV
@RW2, R5

MOV
@RW3, R5

MOV
@RW0+, R5

MOV
@RW1+, R5

MOV
@RW2+, R5

MOV
@RW3+, R5

MOV
 R0, R6

MOV
 R1, R6

MOV
 R2, R6

MOV
 R3, R6

MOV
 R4, R6

MOV
 R5, R6

MOV
 R6, R6

MOV
 R7, R6

MOV
@RW0, R6

MOV
@RW1, R6

MOV
@RW2, R6

MOV
@RW3, R6

MOV
@RW0+, R6

MOV
@RW1+, R6

MOV
@RW2+, R6

MOV
@RW3+, R6

MOV
 R0, R7

MOV
 R1, R7

MOV
 R2, R7

MOV
 R3, R7

MOV
 R4, R7

MOV
 R5, R7

MOV
 R6, R7

MOV
 R7, R7

MOV
 @RW0, R7

MOV
 @RW1, R7

MOV
 @RW2, R7

MOV
 @RW3, R7

MOV
@RW0+, R7

MOV
@RW1+, R7

MOV
@RW2+, R7

MOV
@RW3+, R7

MOV @R
 W0+d8, R1

MOV @R
 W1+d8, R1

MOV @R
 W2+d8, R1

MOV @R
 W3+d8, R1

MOV @R
 W4+d8, R1

MOV @R
 W5+d8, R1

MOV @R
 W6+d8, R1

MOV @R
 W7+d8, R1

MOV @RW
 0+d16, R1

MOV @RW
 1+d16, R1

MOV @RW
 2+d16, R1

MOV @RW
 3+d16, R1

MOV @RW
 0+RW7, R1

MOV @RW
 1+RW7, R1

MOV

MOV a
 addr16, R1

MOV @R,
W0+d8, R2

MOV @R
W1+d8, R2

MOV @R
W2+d8, R2

MOV @R
W3+d8, R2

MOV @R
W4+d8, R2

MOV @R
W5+d8, R2

MOV @R
W6+d8, R2

MOV @R
W7+d8, R2

MOV @RW
0+d16, R2

MOV @RW
1+d16, R2

MOV @RW
2+d16, R2

MOV @RW
3+d16, R2

MOV @RW
0+RW7, R2

MOV @RW
1+RW7, R2

MOV
PC+d16, R2

MOV a
 addr16, R2

MOV @R
 W0+d8, R3

MOV @R
 W1+d8, R3

MOV @R
 W2+d8, R3

MOV @R
 W3+d8, R3

MOV @R
 W4+d8, R3

MOV @R
 W5+d8, R3

MOV @R
 W6+d8, R3

MOV @R
 W7+d8, R3

MOV @RW
 0+d16, R3

MOV @RW
 1+d16, R3

MOV @RW
 2+d16, R3

MOV @RW
 3+d16, R3

MOV @RW
 0+RW7, R3

MOV @RW
1+RW7, R3

MOV
PC+d16, R3

MOV a
 addr16, R3

MOV @R
 W0+d8, R4

MOV @R
 W1+d8, R4

MOV @R,
 W2+d8, R4

MOV @R,
 W3+d8, R4

MOV @R
 W4+d8, R4

MOV @R
 W5+d8, R4

MOV @R
 W6+d8, R4

MOV @R
 W7+d8, R4

MOV @RW
 0+d16, R4

MOV @RW
 1+d16, R4

MOV @RW
 2+d16, R4

MOV @RW
 3+d16, R4

MOV @RW
 0+RW7, R4

MOV @RW
 1+RW7, R4

MOV
PC+d16, R4

MOV a
 addr16, R4

MOV @R
 W0+d8, R5

MOV @R
 W1+d8, R5

MOV @R
 W2+d8, R5

MOV @R
 W3+d8, R5

MOV @R
 W4+d8, R5

MOV @R
 W5+d8, R5

MOV @R
 W6+d8, R5

MOV @R
 W7+d8, R5

MOV @RW
0+d16, R5

MOV @RW
1+d16, R5

MOV @RW
2+d16, R5

MOV @RW
3+d16, R5

MOV @RW
0+RW7, R5

MOV @RW
1+RW7, R5

MOV
PC+d16, R5

MOV a
 addr16, R5

MOV @R
 W0+d8, R6

MOV @R
 W1+d8, R6

MOV @R
 W2+d8, R6

MOV @R
 W3+d8, R6

MOV @R
 W4+d8, R6

MOV @R
 W5+d8, R6

MOV @R
 W6+d8, R6

MOV @R
 W7+d8, R6

MOV @RW
 0+d16, R6

MOV @RW
 1+d16, R6

MOV @RW
 2+d16, R6

MOV @RW
 3+d16, R6

MOV @RW
 0+RW7, R6

MOV @RW
 1+RW7,R6

MOV
PC+d16, R6

MOV a
 addr16, R6

MOV @R
 W0+d8, R7

MOV @R
 W1+d8, R7

MOV @R
 W2+d8, R7

MOV @R
 W3+d8, R7

MOV @R
 W4+d8, R7

MOV @R
 W5+d8, R7

MOV @R
 W6+d8, R7

MOV @R
 W7+d8, R7

MOV @RW
 0+d16, R7

MOV @RW
 1+d16, R7

MOV @RW
 2+d16, R7

MOV @RW
 3+d16, R7

MOV @RW
 0+RW7, R7

MOV @RW
 1+RW7, R7

MOV
PC+d16, R7

MOV a
 addr16, R7

PC+d16, R1

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C
.12 M

O
V

W
 ea, R

W
i

251

C.12 MOVW ea, RWi

Table C.12 MOVW ea, RWi [First byte = 7D H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

MOVW
 RW0, RW0

MOVW
 RW1, RW0

MOVW
 RW2, RW0

MOVW
 RW3, RW0

MOVW
 RW4, RW0

MOVW
 RW5, RW0

MOVW
 RW6, RW0

MOVW
 RW7, RW0

MOVW
 @RW0, RW0

MOVW
 @RW1, RW0

MOVW
 @RW2, RW0

MOVW
 @RW3, RW0

MOVW
@RW0+, RW0

MOVW
@RW1+, RW0

MOVW
@RW2+, RW0

MOVW
@RW3+, RW0

MOVW @RW
 0+d8, RW0

MOVW @RW
 1+d8, RW0

MOVW @RW
 2+d8, RW0

MOVW @RW
 3+d8, RW0

MOVW @RW
 4+d8, RW0

MOVW @RW
 5+d8, RW0

MOVW @RW
 6+d8, RW0

MOVW @RW
 7+d8, RW0

MOVW@RW0
 +d16, RW0

MOVW@RW1
 +d16, RW0

MOVW@RW2
 +d16, RW0

MOVW@RW3
 +d16, RW0

MOVW@RW0
 +RW7, RW0

MOVW@RW1
 +RW7, RW0

MOVW @PC+
 d16, RW0

MOVW addr
 16, RW0

MOVW
 RW0, RW1

MOVW
 RW1, RW1

MOVW
 RW2, RW1

MOVW
 RW3, RW1

MOVW
 RW4, RW1

MOVW
 RW5, RW1

MOVW
 RW6, RW1

MOVW
 RW7, RW1

MOVW
 @RW0, RW1

MOVW
 @RW1, RW1

MOVW
 @RW2, RW1

MOVW
 @RW3, RW1

MOVW @
 RW0+, RW1

MOVW @
 RW1+, RW1

MOVW @
 RW2+, RW1

MOVW @
 RW3+, RW1

MOVW @RW
 0+d8, RW1

MOVW @R
 1+d8, RW1

MOVW @RW
 2+d8, RW1

MOVW @RW
 3+d8, RW1

MOVW @RW
 4+d8, RW1

MOVW @RW
 5+d8, RW1

MOVW @RW
 6+d8, RW1

MOVW @RW
 7+d8, RW1

MOVW@RW0
 +d16, RW1

MOVW@RW1
 +d16, RW1

MOVW@RW2
 +d16, RW1

MOVW@RW3
 +d16, RW1

MOVW@RW0
+RW7, RW1

MOVW@RW1
+RW7, RW1

MOVW @PC+
 d16, RW1

MOVW addr
 16, RW1

MOVW
 RW0, RW2

MOVW
 RW1, RW2

MOVW
 RW2, RW2

MOVW
 RW3, RW2

MOVW
 RW4, RW2

MOVW
 RW5, RW2

MOVW
 RW6, RW2

MOVW
 RW7, RW2

MOVW
 @RW0, RW2

MOVW
 @RW1, RW2

MOVW
 @RW2, RW2

MOVW
 @RW3, RW2

MOVW @
RW0+, RW2

MOVW @
RW1+, RW2

MOVW @
RW2+, RW2

MOVW @
RW3+, RW2

MOVW @RW
 0+d8, RW2

MOVW @R
 1+d8, RW2

MOVW @RW
 2+d8, RW2

MOVW @RW
 3+d8, RW2

MOVW @RW
 4+d8, RW2

MOVW @RW
 5+d8, RW2

MOVW @RW
 6+d8, RW2

MOVW @RW
 7+d8, RW2

MOVW@RW0
 +d16, RW2

MOVW@RW1
 +d16, RW2

MOVW@RW2
 +d16, RW2

MOVW@RW3
 +d16, RW2

MOVW@RW0
+RW7, RW2

MOVW@RW1
+RW7, RW2

MOVW @PC+
 d16, RW2

MOVW addr
 16, RW2

MOVW
 RW0, RW3

MOVW
 RW1, RW3

MOVW
 RW2, RW3

MOVW
 RW3, RW3

MOVW
 RW4, RW3

MOVW
 RW5, RW3

MOVW
 RW6, RW3

MOVW
 RW7, RW3

MOVW
 @RW0, RW3

MOVW
 @RW1, RW3

MOVW
 @RW2, RW3

MOVW
 @RW3, RW3

MOVW @
RW0+, RW3

MOVW @
RW1+, RW3

MOVW @
RW2+, RW3

MOVW @
RW3+, RW3

MOVW @RW
 0+d8, RW3

MOVW @RW
 1+d8, RW3

MOVW @RW
 2+d8, RW3

MOVW @RW
 3+d8, RW3

MOVW @RW
 4+d8, RW3

MOVW @RW
 5+d8, RW3

MOVW @RW
 6+d8, RW3

MOVW @RW
 7+d8, RW3

MOVW@RW0
 +d16, RW3

MOVW@RW1
 +d16, RW3

MOVW@RW2
 +d16, RW3

MOVW@RW3
 +d16, RW3

MOVW@RW0
+RW7, RW3

MOVW@RW1
+RW7, RW3

MOVW @PC+
 d16, RW3

MOVW addr
 16, RW3

MOVW
 RW0, RW4

MOVW
 RW1, RW4

MOVW
 RW2, RW4

MOVW
 RW3, RW4

MOVW
 RW4, RW4

MOVW
 RW5, RW4

MOVW
 RW6, RW4

MOVW
 RW7, RW4

MOVW
 @RW0, RW4

MOVW
 @RW1, RW4

MOVW
 @RW2, RW4

MOVW
 @RW3, RW4

MOVW @
RW0+, RW4

MOVW @
RW1+, RW4

MOVW @
RW2+, RW4

MOVW @
RW3+, RW4

MOVW @RW
 0+d8, RW4

MOVW @RW
 1+d8, RW4

MOVW @RW
 2+d8, RW4

MOVW @RW
 3+d8, RW4

MOVW @RW
 4+d8, RW4

MOVW @RW
 5+d8, RW4

MOVW @RW
 6+d8, RW4

MOVW @RW
 7+d8, RW4

MOVW@RW0
 +d16, RW4

MOVW@RW1
 +d16, RW4

MOVW@RW2
 +d16, RW4

MOVW@RW3
 +d16, RW4

MOVW@RW0
+RW7, RW4

MOVW@RW1
+RW7, RW4

MOVW @PC+
 d16, RW4

MOVW addr
 16, RW4

MOVW
 RW0, RW5

MOVW
 RW1, RW5

MOVW
 RW2, RW5

MOVW
 RW3, RW5

MOVW
 RW4, RW5

MOVW
 RW5, RW5

MOVW
 RW6, RW5

MOVW
 RW7, RW5

MOVW
 @RW0, RW5

MOVW
 @RW1, RW5

MOVW
 @RW2, RW5

MOVW
 @RW3, RW5

MOVW @
RW0+, RW5

MOVW @
RW1+, RW5

MOVW @
RW2+, RW5

MOVW @
RW3+, RW5

MOVW @RW
 0+d8, RW5

MOVW @RW
 1+d8, RW5

MOVW @RW
 2+d8, RW5

MOVW @RW
 3+d8, RW5

MOVW @RW
 4+d8, RW5

MOVW @RW
 5+d8, RW5

MOVW @RW
 6+d8, RW5

MOVW @RW
 7+d8, RW5

MOVW@RW0
 +d16, RW5

MOVW@RW1
 +d16, RW5

MOVW@RW2
 +d16, RW5

MOVW@RW3
 +d16, RW5

MOVW@RW0
+RW7, RW5

MOVW@RW1
+RW7, RW5

MOVW @PC+
 d16, RW5

MOVW addr
 16, RW5

MOVW
 RW0, RW6

MOVW
 RW1, RW6

MOVW
 RW2, RW6

MOVW
 RW3, RW6

MOVW
 RW4, RW6

MOVW
 RW5, RW6

MOVW
 RW6, RW6

MOVW
 RW7, RW6

MOVW
 @RW0, RW6

MOVW
 @RW1, RW6

MOVW
 @RW2, RW6

MOVW
 @RW3, RW6

MOVW @
RW0+, RW6

MOVW @
RW1+, RW6

MOVW @
RW2+, RW6

MOVW @
RW3+, RW6

MOVW @RW
 0+d8, RW6

MOVW @RW
 1+d8, RW6

MOVW @RW
 2+d8, RW6

MOVW @RW
 3+d8, RW6

MOVW @RW
 4+d8, RW6

MOVW @RW
 5+d8, RW6

MOVW @RW
 6+d8, RW6

MOVW @RW
 7+d8, RW6

MOVW@RW0
 +d16, RW6

MOVW@RW1
 +d16, RW6

MOVW@RW2
 +d16, RW6

MOVW@RW3
 +d16, RW6

MOVW@RW0
+RW7, RW6

MOVW@RW1
+RW7, RW6

MOVW @PC+
 d16, RW6

MOVW addr
 16, RW6

MOVW
 RW0, RW7

MOVW
 RW1, RW7

MOVW
 RW2, RW7

MOVW
 RW3, RW7

MOVW
 RW4, RW7

MOVW
 RW5, RW7

MOVW
 RW6, RW7

MOVW
 RW7, RW7

MOVW
 @RW0, RW7

MOVW
 @RW1, RW7

MOVW
 @RW2, RW7

MOVW
 @RW3, RW7

MOVW @
RW0+, RW7

MOVW @
RW1+, RW7

MOVW @
RW2+, RW7

MOVW @
RW3+, RW7

MOVW @RW
 0+d8, RW7

MOVW @RW
 1+d8, RW7

MOVW @RW
 2+d8, RW7

MOVW @RW
 3+d8, RW7

MOVW @RW
 4+d8, RW7

MOVW @RW
 5+d8, RW7

MOVW @RW
 6+d8, RW7

MOVW @RW
 7+d8, RW7

MOVW@RW0
 +d16, RW7

MOVW@RW1
 +d16, RW7

MOVW@RW2
 +d16, RW7

MOVW@RW3
 +d16, RW7

MOVW@RW0
+RW7, RW7

MOVW@RW1
+RW7, RW7

MOVW @PC+
 d16, RW7

MOVW addr
 16, RW7

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C
.13 X

C
H

 R
i, ea

252
 F

2M
C

-16F
 Instruction M

ap

C.13 XCH Ri, ea

Table C.13 XCH Ri, ea [First byte = 7E H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

XCH
 R0, R0

XCH
 R0, R1

XCH
 R0, R2

XCH
 R0, R3

XCH
 R0, R4

XCH
 R0, R5

XCH
 R0, R6

XCH
 R0, R7

XCH
 R0, @RW0

XCH
 R0, @RW1

XCH
 R0, @RW2

XCH
 R0, @RW3

XCH
R0, @RW0+

XCH
R0, @RW1+

XCH
R0, @RW2+

XCH
R0, @RW3+

XCH R0,
 @RW0+d8

XCH R0,
 @RW1+d8

XCH R0,
 @RW2+d8

XCH R0,
 @RW3+d8

XCH R0,
 @RW4+d8

XCH R0,
 @RW5+d8

XCH R0,
 @RW6+d8

XCH R0,
 @RW7+d8

XCH R0,
 @RW0+d16

XCH R0,
 @RW1+d16

XCH R0,
 @RW2+d16

XCH R0,
 @RW3+d16

XCH R0,
@RW0+RW7

XCH R0,
@RW1+RW7

XCH R0,
 @PC+d16

XCH R0,
 addr16

XCH
 R1, R0

XCH
 R1, R1

XCH
 R1, R2

XCH
 R1, R3

XCH
 R1, R4

XCH
 R1, R5

XCH
 R1, R6

XCH
 R1, R7

XCH
 R1, @RW0

XCH
 R1, @RW1

XCH
 R1, @RW2

XCH
 R1, @RW3

XCH
 R1, @RW0+

XCH
 R1, @RW1+

XCH
 R1, @RW2+

XCH
 R1, @RW3+

XCH
 R2, R0

XCH
 R2, R1

XCH
 R2, R2

XCH
 R2, R3

XCH
 R2, R4

XCH
 R2, R5

XCH
 R2, R6

XCH
 R2, R7

XCH
 R2, @RW0

XCH
 R2, @RW1

XCH
 R2, @RW2

XCH
 R2, @RW3

XCH
 R2, @RW0+

XCH
 R2, @RW1+

XCH
 R2, @RW2+

XCH
 R2, @RW3+

XCH
 R3, R0

XCH
 R3, R1

XCH
 R3, R2

XCH
 R3, R3

XCH
 R3, R4

XCH
 R3, R5

XCH
 R3, R6

XCH
 R3, R7

XCH
 R3, @RW0

XCH
 R3, @RW1

XCH
 R3, @RW2

XCH
 R3, @RW3

XCH
 R3, @RW0+

XCH
 R3, @RW1+

XCH
 R3, @RW2+

XCH
 R3, @RW3+

XCH
 R4, R0

XCH
 R4, R1

XCH
 R4, R2

XCH
 R4, R3

XCH
 R4, R4

XCH
 R4, R5

XCH
 R4, R6

XCH
 R4, R7

XCH
 R4, @RW0

XCH
 R4, @RW1

XCH
 R4, @RW2

XCH
 R4, @RW3

XCH
 R4, @RW0+

XCH
 R4, @RW1+

XCH
 R4, @RW2+

XCH
 R4, @RW3+

XCH
 R5, R0

XCH
 R5, R1

XCH
 R5, R2

XCH
 R5, R3

XCH
 R5, R4

XCH
 R5, R5

XCH
 R5, R6

XCH
 R5, R7

XCH
 R5, @RW0

XCH
 R5, @RW1

XCH
 R5, @RW2

XCH
 R5, @RW3

XCH
 R5, @RW0+

XCH
 R5, @RW1+

XCH
 R5, @RW2+

XCH
 R5, @RW3+

XCH
 R6, R0

XCH
 R6, R1

XCH
 R6, R2

XCH
 R6, R3

XCH
 R6, R4

XCH
 R6, R5

XCH
 R6, R6

XCH
 R6, R7

XCH
 R6, @RW0

XCH
 R6, @RW1

XCH
 R6, @RW2

XCH
 R6, @RW3

XCH
 R6, @RW0+

XCH
 R6, @RW1+

XCH
 R6, @RW2+

XCH
 R6, @RW3+

XCH
 R7, R0

XCH
 R7, R1

XCH
 R7, R2

XCH
 R7, R3

XCH
 R7, R4

XCH
 R7, R5

XCH
 R7, R6

XCH
 R7, R7

XCH
 R7, @RW0

XCH
 R7, @RW1

XCH
 R7, @RW2

XCH
 R7, @RW3

XCH
 R7, @RW0+

XCH
 R7, @RW1+

XCH
 R7, @RW2+

XCH
 R7, @RW3+

XCH R1,
 @RW0+d8

XCH R1,
 @RW1+d8

XCH R1,
 @RW2+d8

XCH R1,
 @RW3+d8

XCH R1,
 @RW4+d8

XCH R1,
 @RW5+d8

XCH R1,
 @RW6+d8

XCH R1,
 @RW7+d8

XCH R1,
 @RW0+d16

XCH R1,
 @RW1+d16

XCH R1,
 @RW2+d16

XCH R1,
 @RW3+d16

XCH R1,
@RW0+RW7

XCH R1,
 @RW1+RW7

XCH R1,

XCH R1,
 addr16

XCH R2,
 @RW0+d8

XCH R2,
 @RW1+d8

XCH R2,
 @RW2+d8

XCH R2,
 @RW3+d8

XCH R2,
 @RW4+d8

XCH R2,
 @RW5+d8

XCH R2,
 @RW6+d8

XCH R2,
 @RW7+d8

XCH R2,
 @RW0+d16

XCH R2,
 @RW1+d16

XCH R2,
 @RW2+d16

XCH R2,
 @RW3+d16

XCH R2,
@RW0+RW7

XCH R2,
@RW1+RW7

XCH R2,
 @PC+d16

XCH R2,
 addr16

XCH R3,
 @RW0+d8

XCH R3,
 @RW1+d8

XCH R3,
 @RW2+d8

XCH R3,
 @RW3+d8

XCH R3,
 @RW4+d8

XCH R3,
 @RW5+d8

XCH R3,
 @RW6+d8

XCH R3,
 @RW7+d8

XCH R3,
 @RW0+d16

XCH R3,
 @RW1+d16

XCH R3,
 @RW2+d16

XCH R3,
 @RW3+d16

XCH R3,
 @RW0+RW7

XCH R3,
 @RW1+RW7

XCH R3,
 @PC+d16

XCH R3,
 addr16

XCH R4,
 @RW0+d8

XCH R4,
 @RW1+d8

XCH R4,
 @RW2+d8

XCH R4,
 @RW3+d8

XCH R4,
 @RW4+d8

XCH R4,
 @RW5+d8

XCH R4,
 @RW6+d8

XCH R4,
 @RW7+d8

XCH R4,
 @RW0+d16

XCH R4,
 @RW1+d16

XCH R4,
 @RW2+d16

XCH R4,
 @RW3+d16

XCH R4,
@RW0+RW7

XCH R4,
@RW1+RW7

XCH R4,
 @PC+d16

XCH R4,
 addr16

XCH R5,
 @RW0+d8

XCH R5,
 @RW1+d8

XCH R5,
 @RW2+d8

XCH R5,
 @RW3+d8

XCH R5,
 @RW4+d8

XCH R5,
 @RW5+d8

XCH R5,
 @RW6+d8

XCH R5,
 @RW7+d8

XCH R5,
@RW0+d16

XCH R5,
@RW1+d16

XCH R5,
@RW2+d16

XCH R5,
@RW3+d16

XCH R5,
@RW0+RW7

XCH R5,
@RW1+RW7

XCH R5,
 @PC+d16

XCH R5,
 addr16

XCH R6,
 @RW0+d8

XCH R6,
 @RW1+d8

XCH R6,
 @RW2+d8

XCH R6,
 @RW3+d8

XCH R6,
 @RW4+d8

XCH R6,
 @RW5+d8

XCH R6,
 @RW6+d8

XCH R6,
 @RW7+d8

XCH R6,
 @RW0+d16

XCH R6,
 @RW1+d16

XCH R6,
 @RW2+d16

XCH R6,
 @RW3+d16

XCH R6,
@RW0+RW7

XCH R6,
@RW1+RW7

XCH R6,
 @PC+d16

XCH R6,
 addr16

XCH R7,
 @RW0+d8

NOTW R7,
 @RW1+d8

XCH R7,
 @RW2+d8

NOTW R7,
 @RW3+d8

NOTW R7,
 @RW4+d8

XCH R7,
 @RW5+d8

XCH R7,
 @RW6+d8

XCH R7,
 @RW7+d8

XCH R7,
 @RW0+d16

XCH R7,
 @RW1+d16

XCH R7,
 @RW2+d16

XCH R7,
 @RW3+d16

XCH R7,
 @RW0+RW7

XCH R7,
@RW1+RW7

XCH R7,
@PC+d16

XCH R7,
 addr16

 @PC+d16

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

C
.14 X

C
H

W
 R

W
i, ea

253

C.14 XCHW RWi, ea

Table C.14 XCHW RWi, ea [First byte = 7F H]

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+A

+B

+C

+D

+E

+F

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 A 0 B 0 C 0 D 0 E 0 F 0

XCHW
 RW0, RW0

XCHW
 RW0, RW1

XCHW
 RW0, RW2

XCHW
 RW0, RW3

XCHW
 RW0, RW4

XCHW
 RW0, RW5

XCHW
 RW0, RW6

XCHW
 RW0, RW7

XCHW
RW0, @RW0

XCHW
RW0, @RW1

XCHW
RW0, @RW2

XCHW
RW0, @RW3

XCHW R
W0, @RW0+

XCHW R
 W0, @RW1+

XCHW R
W0, @RW2+

XCHW R
W0, @RW3+

XCHW RW0,
 @RW0+d8

XCHW RW0,
 @RW1+d8

XCHW RW0,
 @RW2+d8

XCHW RW0,
 @RW3+d8

XCHW RW0,
 @RW4+d8

XCHW RW0,
 @RW5+d8

XCHW RW0,
 @RW6+d8

XCHW RW0,
 @RW7+d8

XCHW RW0,
 @RW0+d16

XCHW RW0,
 @RW1+d16

XCHW RW0,
 @RW2+d16

XCHW RW0,
 @RW3+d16

XCHW RW0,
@RW0+RW7

XCHW RW0,
 @RW1+RW7

XCHW RW0,
 @PC +d16

XCHW RW0,
 addr16

XCHW
 RW1, RW0

XCHW
 RW1, RW1

XCHW
 RW1, RW2

XCHW
 RW1, RW3

XCHW
 RW1, RW4

XCHW
 RW1, RW5

XCHW
 RW1, RW6

XCHW
 RW1, RW7

XCHW
RW1, @RW0

XCHW
RW1, @RW1

XCHW
RW1, @RW2

XCHW
RW1, @RW3

XCHW R
W1, @RW0+

XCHW R
W1, @RW1+

XCHW R
W1, @RW2+

XCHW R
W1, @RW3+

XCHW
 RW2, RW0

XCHW
 RW2, RW1

XCHW
 RW2, RW2

XCHW
 RW2, RW3

XCHW
 RW2, RW4

XCHW
 RW2, RW5

XCHW
 RW2, RW6

XCHW
 RW2, RW7

XCHW
RW2, @RW0

XCHW
RW2, @RW1

XCHW
RW2, @RW2

XCHW
RW2, @RW3

XCHW R
W2, @RW0+

XCHW R
W2, @RW1+

XCHW R
W2, @RW2+

XCHW R
W2, @RW3+

XCHW
 RW3, RW0

XCHW
 RW3, RW1

XCHW
 RW3, RW2

XCHW
 RW3, RW3

XCHW
 RW3, RW4

XCHW
 RW3, RW5

XCHW
 RW3, RW6

XCHW
 RW3, RW7

XCHW
RW3, @RW0

XCHW
RW3, @RW1

XCHW
RW3, @RW2

XCHW
RW3, @RW3

XCHW R
W3, @RW0+

XCHW R
W3, @RW1+

XCHW R
W3, @RW2+

XCHW R
W3, @RW3+

XCHW
 RW4, RW0

XCHW
 RW4, RW1

XCHW
 RW4, RW2

XCHW
 RW4, RW3

XCHW
 RW4, RW4

XCHW
 RW4, RW5

XCHW
 RW4, RW6

XCHW
 RW4, RW7

XCHW
RW4, @RW0

XCHW
RW4, @RW1

XCHW
RW4, @RW2

XCHW
RW4, @RW3

XCHW R
W4, @RW0+

XCHW R
W4, @RW1+

XCHW R
W4, @RW2+

XCHW R
W4, @RW3+

XCHW
 RW5, RW0

XCHW
 RW5, RW1

XCHW
 RW5, RW2

XCHW
 RW5, RW3

XCHW
 RW5, RW4

XCHW
 RW5, RW5

XCHW
 RW5, RW6

XCHW
 RW5, RW7

XCHW
 RW5, @RW0

XCHW
RW5, @RW1

XCHW
RW5, @RW2

XCHW
RW5, @RW3

XCHW R
W5, @RW0+

XCHW R
W5, @RW1+

XCHW R
W5, @RW2+

XCHW R
W5, @RW3+

XCHW
 RW6, RW0

XCHW
 RW6, RW1

XCHW
 RW6, RW2

XCHW
 RW6, RW3

XCHW
 RW6, RW4

XCHW
 RW6, RW5

XCHW
 RW6, RW6

XCHW
 RW6, RW7

XCHW
RW6, @RW0

XCHW
RW6, @RW1

XCHW
RW6, @RW2

XCHW
RW6, @RW3

XCHW R
W6, @RW0+

XCHW R
W6, @RW1+

XCHW R
W6, @RW2+

XCHW R
W6, @RW3+

XCHW
 RW7, RW0

XCHW
 RW7, RW1

XCHW
 RW7, RW2

XCHW
 RW7, RW3

XCHW
 RW7, RW4

XCHW
 RW7, RW5

XCHW
 RW7, RW6

XCHW
 RW7, RW7

XCHW
 RW7, @RW0

XCHW
RW7, @RW1

XCHW
RW7, @RW2

XCHW
RW7, @RW3

XCHW R
W7, @RW0+

XCHW R
W7, @RW1+

XCHW R
W7, @RW2+

XCHW R
W7, @RW3+

XCHW RW1,
 @RW0+d8

XCHW RW1,
 @RW1+d8

XCHW RW1,
 @RW2+d8

XCHW RW1,
 @RW3+d8

XCHW RW1,
 @RW4+d8

XCHW RW1,
 @RW5+d8

XCHW RW1,
 @RW6+d8

XCHW RW1,
 @RW7+d8

XCHW RW1,
 @RW0+d16

XCHW RW1,
 @RW1+d16

XCHW RW1,
 @RW2+d16

XCHW RW1,
 @RW3+d16

XCHW RW1,
@RW0+RW7

XCHW RW1,
 @RW1+RW7

XCHW RW1,

XCHW RW1,
 addr16

XCHW RW2,
 @RW0+d8

XCHW RW2,
 @RW1+d8

XCHW RW2,
 @RW2+d8

XCHW RW2,
 @RW3+d8

XCHW RW2,
 @RW4+d8

XCHW RW2,
 @RW5+d8

XCHW RW2,
 @RW6+d8

XCHW RW2,
 @RW7+d8

XCHW RW2,
 @RW0+d16

XCHW RW2,
 @RW1+d16

XCHW RW2,
 @RW2+d16

XCHW RW2,
 @RW3+d16

XCHW RW2,
 @RW0+RW7

XCHW RW2,
 @RW1+RW7

XCHW RW2,
 @PC+d16

XCHW RW2,
 addr16

XCHW RW3,
 @RW0+d8

XCHW RW3,
 @RW1+d8

XCHW RW3,
 @RW2+d8

XCHW RW3,
 @RW3+d8

XCHW RW3,
 @RW4+d8

XCHW RW3,
 @RW5+d8

XCHW RW3,
 @RW6+d8

XCHW RW3,
 @RW7+d8

XCHW RW3,
 @RW0+d16

XCHW RW3,
 @RW1+d16

XCHW RW3,
 @RW2+d16

XCHW RW3,
 @RW3+d16

XCHW RW3,
 @RW0+RW7

XCHW RW3,
 @RW1+RW7

XCHW RW3,
 @PC+d16

XCHW RW3,
 addr16

XCHW RW4,
 @RW0+d8

XCHW RW4,
 @RW1+d8

XCHW RW4,
 @RW2+d8

XCHW RW4,
 @RW3+d8

XCHW RW4,
 @RW4+d8

XCHW RW4,
 @RW5+d8

XCHW RW4,
 @RW6+d8

XCHW RW4,
 @RW7+d8

XCHW RW4,
 @RW0+d16

XCHW RW4,
 @RW1+d16

XCHW RW4,
 @RW2+d16

XCHW RW4,
 @RW3+d16

XCHW RW4,
 @RW0+RW7

XCHW RW4,
 @RW1+RW7

XCHW RW4,
 @PC+d16

XCHW RW4,
 addr16

XCHW RW5,
 @RW0+d8

XCHW RW5,
 @RW1+d8

XCHW RW5,
 @RW2+d8

XCHW RW5,
 @RW3+d8

XCHW RW5,
 @RW4+d8

XCHW RW5,
 @RW5+d8

XCHW RW5,
 @RW6+d8

XCHW RW5,
 @RW7+d8

XCHW RW5,
@RW0+d16

XCHW RW5,
@RW1+d16

XCHW RW5,
@RW2+d16

XCHW RW5,
@RW3+d16

XCHW RW5,
@RW0+RW7

XCHW RW5,
@RW1+RW7

XCHW RW5,
 @PC+d16

XCHW RW5,
 addr16

XCHW RW6,
 @RW0+d8

XCHW RW6,
 @RW1+d8

XCHW RW6,
 @RW2+d8

XCHW RW6,
 @RW3+d8

XCHW RW6,
 @RW4+d8

XCHW RW6,
 @RW5+d8

XCHW RW6,
 @RW6+d8

XCHW RW6,
 @RW7+d8

XCHW RW6,
 @RW0+d16

XCHW RW6,
 @RW1+d16

XCHW RW6,
 @RW2+d16

XCHW RW6,
 @RW3+d16

XCHW RW6,
 @RW0+RW7

XCHW RW6,
 @RW1+RW7

XCHW RW6,
 @PC+d16

XCHW RW6,
 addr16

XCHW RW7,
 @RW0+d8

XCHW RW7,
 @RW1+d8

XCHW RW7,
 @RW2+d8

XCHW RW7,
 @RW3+d8

XCHW RW7,
 @RW4+d8

XCHW RW7,
 @RW5+d8

XCHW RW7,
 @RW6+d8

XCHW RW7,
 @RW7+d8

XCHW RW7,
 @RW0+d16

XCHW RW7,
 @RW1+d16

XCHW RW7,
 @RW2+d16

XCHW RW7,
 @RW3+d16

XCHW RW7,
@RW0+RW7

XCHW RW7,
@RW1+RW7

XCHW RW7,
 @PC+d16

XCHW RW7,
 addr16

 @PC+d16

Note: The following lists the correspondence between the symbols in the above table and the symbols in the instruction set tables.

• d8 : disp8 (8-bit displacement)

• d16: disp16 (16-bit displacement)

