
Computer Algebra
and

Algebraic Programming

Computer Algebra
and

Algebraic Programming

Robert Smith

Quad’s Printing — St. Paul

Copyright ©2011 by Robert Smith. All rights reserved.
This is a work-in-progress. This copy was generated on February 23, 2011. If you

happen to find an error, please send an email with relevant details and corrections to

the author at quad@symbo1ics.com.

No part of this book may be reproduced or transferred in any form or by any means,
graphic, electronic, or mechanical, including photocopying, recording, taping, or by
any information storage retrieval system, without either the written permission of
Robert Smith (“the Author”), or this copyright notice fully in-tact. Reproduction
or transfer for profit or for any commercial purpose is strictly prohibited.

Information provided in this book are provided “AS IS” and “WITH ALL FAULTS”
without any warranty, express or implied. The Author makes reasonable effort to
include accurate and up-to-date information; the Author does not, however, make
any representations as to its accuracy or completeness. The use of this book is at
one’s own risk.

The Author does not warrant or guarantee

1. the accuracy, adequacy, quality, currentness, validity, completeness, or
suitability of any information for any purpose; or

2. that defects in this book will be corrected.

mailto:quad@symbo1ics.com

Contents

Contents v

I The Algebraic Paradigm 1

1 The Symbolic and Algebraic Paradigm 3
1.1 Introduction . 3

2 Structure of Algebraic Programs 7
2.1 Symbols, Variables, and Values 7
2.2 Expressions . 7
2.3 Mappings and Constructions 8
2.4 Substitution Semantics . 8

3 Values and Types 11
3.1 A Discourse on Types . 11

II Computer Algebra Fundamentals 15

4 Relations, Identities, Forms 17
4.1 Relationships Between Values 17
4.2 Equality in Computer Algebra 18
4.3 Canonical Forms . 19
4.4 Normal Forms . 20

5 Arbitrary Precision Arithmetic 23
5.1 Introduction . 23
5.2 Computer Representation . 24
5.3 High-Precision Evaluation of Hypergeometric Series 25

IIIAbstract Algebra 29

6 Basic Structures and Divisibility 31

vi Contents

6.1 Algebraic Structures . 31
6.2 Divisibility and Factorization 32

7 Polynomial, Rational, and Series Structures 37
7.1 Univariate Polynomial Domains 37

8 Field Extensions 39
8.1 Algebraic and Transcendental Extensions 40

IVPolynomials 43

9 Polynomial Algorithms 45
9.1 Sylvester Matrices and Resultants 45
9.2 Polynomial Roots and Algebraic Numbers 47

10 Algebra In the Reals 49
10.1 Introduction . 49
10.2 Real Closed Fields . 49

V Series 51

11 Hypergeometric Series 53
11.1 Hypergeometric Series and Functions 53
11.2 Series as Hypergeometric Functions 55
11.3 Discrete Operators and The Summation Problem 55
11.4 Gosper’s Algorithm for Indefinite Summation 57
11.5 Zeilberger’s Algorithm for Definite Summation 60

VIIntegration 63

12 Risch Integration 65
12.1 Preliminaries . 65
12.2 Risch Algorithm: Input . 66

Appendix 71

A Function Tables 71
A.1 Elementary Functions . 71
A.2 Gamma and Friends . 73
A.3 Hypergeometric Identities . 75
A.4 Miscellaneous . 75

B Miscellaneous 77

Contents vii

B.1 The Gudermannian Function 77
B.2 The Γ-Function . 79
B.3 The Lambert W -Function . 82

Bibliography 83

Index 85

Part I

The Algebraic Paradigm

Chapter 1

The Symbolic and Algebraic

Paradigm

1.1 Introduction

The Symbolic Paradigm in Languages

The term “symbolic” is thrown around quite often in the programming world.
For example, in the very meaning of the name BASIC, “Beginners All-purpose
Symbolic Instruction Code”. What does “symbolic” mean here anyway? BA-
SIC allowed symbolic names of variables, and they could be referred to by their
symbolic name, instead of, say, an address in memory. BASIC code is indeed
“instruction code”, but it isn’t a native code a computer can immediately un-
derstand. Essentially every mainstream programming language is “symbolic”
by the definition put forth by BASIC.

Another language brought another definition of the word “symbolic”—Lisp.
Lisp introduced symbols as essentially first-class citizens. As such, they could
be used as arguments, manipulated, generated, returned, etc. With symbols
as first-class citizens and the uniform syntactic and semantic structure of pro-
grams, it was attractive to those doing symbolic mathematics, as opposed to
numerical mathematics.

The contrast between symbolic and numerical mathematics illustrate what
is meant by “symbolic”. Consider computing the derivative of a function
f : R → R at x = x0. There are essentially two ways of doing this.

Numerical We can take the definition of the derivative

f ′(x) = lim
δ→0

f(x + δ) − f(x)

δ

and make approximations with very small values of δ. The following C
program illustrates how one might do it.

1 float diff(float (*f)(float), float x0 , float dx)

2 {

4 1.1. Introduction

3 float df;

4 df = f(x0 + dx) - f(x0);

5 return df/dx;

6 }

With this function, we can compute the derivative of f at x0 with finite
precision. With more sophistication, we could use a multiple-precision
arithmetic library to get even more precision, possibly only limited by
the amount of available memory.

Symbolic Instead of using the definition of the derivative in a straightforward
way, we can instead view the derivative as a function defined algebraically.
For brevity, we could define the derivative as a function Dx with the
following properties:

• Dx(k) = 0

• Dx[f(x) + g(x)] = Dx[f(x)] + Dx[g(x)]

• Dx(x) = 1

• Dx[f(x)g(x)] = Dx[f(x)]g(x) + f(x)Dx[g(x)]

Since Lisp has first-class symbols, this could be quite simply done using
only the basic language features.

1 (defun diff (E X)

2 ;; Given an expression f(X) = E, compute f ′.

3 (cond ((numberp E) 0) ; k′ = 0
4 ((symbolp E) (if (eqp E X) 1 0)) ; x′ = 1
5 ((eqp ’PLUS (car E)) ; (f + g)′ = f ′ + g′

6 (list ’PLUS (diff (cadr E) X)

7 (diff (caddr E) X)))

8 ((eqp ’TIMES (car E)) ; (fg)′ = f ′g + fg′

9 (list ’PLUS (list ’TIMES

10 (diff (cadr E) X)

11 (caddr E))

12 (list ’TIMES

13 (diff (caddr E) X)

14 (cadr E))))

15 (t (list ’diff E X))))

Here one can provide a symbolic expression, for example x2 − x, which
written in code is (PLUS (TIMES X X) (TIMES -1 X)), and pass it to
DIFF with respect to X to obtain an S-expression equivalent to (1 · x +
x · 1) + (0 · x + (−1) · 1). After simplification, this leads to 2x − 1,
the correct result. Furthermore, one can subsitutute a value in for X to
get the derivative at that value exactly, as opposed to a finite-precision
approximation.

In summary, numerical computation deals with numbers and approxima-
tion of (typically) real-valued functions, while symbolic computation works by
rewriting structures (lists in the case of Lisp) in a mathematically defined way.

Chapter 1. The Symbolic and Algebraic Paradigm 5

Of course, in the Lisp symbolic differentiation example, it is easy to see why it
is not the most ideal abstraction.

Pattern-Matching to Make Programs Simpler

In reality, the Lisp differentiation program is an ad hoc form of pattern match-
ing. Pattern matching made a more dominating appearance in the ML family
of languages. Typically, one has a function defined by a set of patterns and
their respective form of reduction. There are a few caveats, however. First,
patterns must usually be unconditional. This means that the pattern must be
able to match an expression without any form of conditional checking. Usually
this is “remedied” by introducing a conditional check in the reduced expression.
For example

1 (* returns a complex number represented by (re , im) *)

2 fun geomean 0 y = (0, 0)

3 | geomean x 0 = (0, 0)

4 | geomean x y = if x >0 and y>0

5 then (sqrt x*y, 0)

6 else if (x<0 and y >0) or (x >0 and y <0)

7 then (0, sqrt (abs x)*(abs y))

8 else (sqrt x*y, 0)

The conditions on x and y make even a C program easier to analyze and follow
and sort of ruins the point and flow of pattern-matching. Ideally, some sort of
conditions could be imposed in the pattern itself, as in the ad hoc Lisp example
(checking if the argument is a number or symbol, etc.).

The second caveat is the lack of ability to clearly express non-linear patterns.
A non-linear pattern, simply, is a pattern with two or more variables that are
the same. In the last example, if we had geomean x x to denote “match the
arguments of geomean iff they are equal”, then the pattern would be non-
linear. This is not possible to do in most pattern-matching languages. The
work-around is imposing a condition such as in the following code.

1 (* non - linear pattern via conditions *)

2 fun add x y = if x = y

3 then 2*x

4 else x + y

Term Rewriting and Reduction

An algebraic program consists of a set of rules defined by the programmer,
with which the core computation engine, or kernel, can use to transform ex-
pressions. This notion of transformation of expressions is known as term
rewriting.

Term rewriting done by a human is quite trivial. We have the ability to
make decisions either concretely or based on intuition on what rules to apply to
an expression and when. For a machine, however, it is a little more complicated.

The principle problems with term rewriting are (1) when to apply rules,
(2) when to stop applying rules, and (3) which rules to apply.

6 1.1. Introduction

Types and Domains

Obviously algebraic and symbolic computation correlate strongly to concepts
in mathematics, especially abstract algebra. And mathematics is generally
built upon the notion of sets, and operations are defined as mappings between
the sets, even from a set to itself. It therefore makes sense for an algebraic
language to have the ability to declare the domain in which a variable is and
over which computations can take place.

Haskell, though not an algebraic language, covers this area well. It em-
ploys Milner type inference, and since the language is “purely functional”, all
operations are type safe and bound statically (typically at compile time).

Mathematica, which does indeed have algebraic capabilities, covers this
area inadequately. Patterns in the language can include certain type restric-
tions. For example, x_Integer is a pattern that will only match integral
quantities. This is dynamically checked, and no advantages can be taken
from it from the perspective of computational time or memory. Moreover,
this style of declaration is “shallow” and slightly inaccurate in fact. Using
the variable x_Rational will not match an integral quantity. Mathemat-

ica, however, does allow assumptions to be made on variables. For example,
Assume[Element[x,Integers]] will internally declare that x is or must be
an integer. However, it is not known whether this is any different from the
aforementioned dynamic checking.

Other computer algebra systems have included types or domains. Most
notably, the Axiom computer algebra system is based entirely on types and
domains. Like Haskell, every computation in Axiom is type safe and well
defined. Axiom code is also compiled to efficient machine code, much of which
is due to the ability to check types statically. Less notably, MuPAD has
included domains and categories as first-class values. However, the language is
interpreted and therefore one would assume little optimization could be gained
from such declarations (however, type soundness and other advantages come
with the ability to declare types).

A major drawback in having type systems in mathematical or algebraic lan-
guages is that types can become unwieldy. For example, it is not immediately
clear without extra computations what the type of 5+2 might be. It could be
seen as an integer, rational, real, polynomial, element of an additive ring, etc.
Therefore, much care must be taken into the design of a type system when
dealing with, especially, mathematics and symbolic quantities. There must be
a balance between programmability and type consciousness.

Chapter 2

Structure of Algebraic Programs

2.1 Symbols, Variables, and Values

We begin by defining some terms. A domain is a mathematical set, usually
consisting of related objects. Elements of a domain are called values. Domains
correspond closely to the notion of a mathematical domain of a mathematical
function.

A symbol is an identifier, possibly identifying itself, in which case the
symbol is nullary. Essentially any kind of identifier is a symbol. For example,
‘x’, ‘+’, ‘385’, and ‘∆x’ are all symbols. A symbol that represents an unknown
value of a particular domain is a variable. A symbol that represents a single,
particular value in a domain is a constant. The term ‘variable’ is a sort of
misnomer; a variable does not change what it represents. As such, variables are
sometimes used to universally quantify a relationship—that is, declare truth
for a statement for every value in a domain.

2.2 Expressions

Symbols are the words of an algebraic language, and expressions are the sen-
tences. There is only a single way to construct expressions: to list them. LISP
terms these as symbolic expressions or S-expressions. Actually, LISP specifies
how such expressions are constructed—via cons pairs.

An algebraic language purposefully omits the necessity that a list must be
recursively built up by nested pairs. Instead, expressions are constructed via
two parts, the stem and the leaves. The leaves collectively is a sequence of
expressions all of which are related by the stem, which specifies how the leaves
are related to each other.

Although the leaves are often best represented with a list, they are not lists
in the traditional sense. Suppose we denote a sequence of leaves a, b, and c with
a stem f via f〈a, b, c〉. Although syntactically the stem is written in a serial
fashion, there is no implication that a is any way “before” b. The relationship
between the leaves is purely established by the stem.

8 2.3. Mappings and Constructions

A sequence of leaves which is empty is called a null sequence and is repre-
sented simply by 〈〉.

Example 2.1 Suppose we have the expression +〈3, 9, 5〉 which represents the sum
of 3, 9, and 5. There is no ordering on the elements and we can obtain a perfectly
equivalent expression by transposing any of the leaves.

Now consider the expression tuple〈4, 9, 3〉. If this represents a triple of integers
4, 9, and 3, then clearly transposing any two leaves would not give an equivalent
expression.

Remark. In general, we will assume that the leaves are ordered and any other
expression is not equal to it, unless otherwise stated or implied.

2.3 Mappings and Constructions

Mathematically, a function is an object which assigns an output for a set of
defined inputs. We can also think of a function not as an object that allows
one to travel from a given object to another, but as an object that transforms

or projects an object into another realm entirely. Suppose we have a function ℓ
which takes a number between 1 and 26, and outputs the corresponding letter
in the English alphabet. So for example, ℓ(6) = f. Then we can think of ℓ as
a way to transform a given number into a letter. The inverse ℓ−1 reverses this
operation, so we can give a letter and receive a number, as with ℓ−1(f) = 6.

An expression which acts as a transformation or function application is
called a mapping, and the stem of that expression is called the map. We
will intentionally defer the explanation of how precisely maps are defined until
later.

A closely related concept to mappings are constructions. Constructions are
essentially equivalent to mappings from a purely mathematical view, but from
a programmatic standpoint, constructions are used to construct, not to trans-
form. More specifically, constructions allow for the creation of new objects
with special properties. The head of an expression which is a construction is a
constructor.

Example 2.2 Let Cplx be a constructor on two leaves such that Cplx〈a, b〉 repre-
sents the complex number a + bi. Then Cplx〈2, 3〉 is a literal construction of the
complex number and is an object itself.

Let List be a constructor on any number of leaves constructing an ordered list
of expressions. We can represent the empty list nil as nil = List〈〉.

2.4 Substitution Semantics

One of the general ideas of an algebraic language is the notion of substitution.
First, let us re-think of the way we view expressions.

Chapter 2. Structure of Algebraic Programs 9

It should be obvious that the structure of an algebraic program is a tree.
For example, we could represent the expression List〈x, f〈x, y〉, 2〉 as the tree in
figure 2.1.

List

x f

x y

2

Figure 2.1

Notation 2.1 A substitution of x by y in the expression E is denoted (x 7→
y) E.

Substitution is certainly nothing new; the lambda calculus is essentially
based upon the idea of simple substitutions. Aside from a few technicalities
(such as variable capture), we can restate a lambda abstraction (λx.E) y as
(x 7→ y) E.

List

x f

x y

2

List

3 f

3 y

2

(x 7→ 3)

Figure 2.2

Chapter 3

Values and Types

3.1 A Discourse on Types

Informally, a type denotes a class of values that perhaps obey certain properties.
In programming, there are many kinds of type systems. The C programming
language, for example, uses statically bound types but is unsafe—there can
be many implicit type casts which allow undeclared properties to be true at
runtime. On the other hand, the language Haskell has a rich type system,
that is statically determined and completely safe; no unspecified operations
can occur at runtime. In the sequel, we will describe a type system that favors
static binding and expressiveness.

Type Assertion and Base Types

Types are essentially equivalent to a domain. A slight distinction is made,
however. A type can be thought of as the name of a set, and the domain is the
description of the set. With such a distinction, one says, for example, “x is of

type Integer,” and “x is in the domain Z.” Symbolically, one writes x : Integer

and x ∈ Z respectively. As such, we adopt the following base1 definition for a
type.

Definition 3.1 The set of all types is denoted T . There exist a set of base
types T0 ⊂ T , and is defined as a finite set of symbols for each of which there
exists a corresponding domain.

This definition suggests there exist a set of “predetermined” types for a type
system. So, for example, in C, one might say that T0 = {int, float, char, . . .}.

The entirety of T can now be defined inductively, which we will do in steps.

1N.B., this definition is not a complete definition!

12 3.1. A Discourse on Types

Product Types

Product types enable one to form well-typed tuple-like data structures. For ex-
ample, we can define n-tuples as the product of n types equipped with “accessor
functions” to retrieve the value of any one of the n elements.

Definition 3.2 Given τ1 and τ2 ∈ T , the product type is the type τ1×τ2 ∈ T
whose domain is the Cartesian product of the domains of τ1 and τ2. The type
product operator ‘×’ is associative.

Functions

The nomenclature of the term “functional paradigm” is exactly a result of
the existence of function types. As one might expect, a function that maps
values from one type to another (possibly the same). One important aspect of
a function is that (1) functions always have one argument and (2) functions
always have one result. This seems contrary to most programming paradigms
and perhaps even mathematics itself. But it is in fact not. Consider the
following C function.

1 float expt (float x, int n)

2 {

3 int i;

4 float res = x;

5 for (i = 1; i < n; i++)

6 res *= x;

7 return res ;

8 }

It seems as if expt takes two arguments, and that is indeed fair to say in the
context of C programming. However, one can also see it as taking a single

argument whose type is float × int. In other words, expt is a function that
takes a tuple as an argument, and returns the float. We say the type of expt

is float × int → float.
Formalizing this, we have the following definition.

Definition 3.3 Given τ1 and τ2 ∈ T , the type τ1 × τ2 is a function type,
written τ1 → τ2 ∈ T , if for some value f : τ1 → τ2 and value x : τ1, there
exists a function apply such that apply(f, x) is of type τ2. The type function
operator ‘→’ associates to the right—that is x → y → z ≡ x → (y → z).

Tuples

Definition 3.4 An n-tuple is a product of n types τ1, τ2, . . . , τn with n
corresponding accessor functions f1, . . . , fn such that given an n-tuple X =
(x1, . . . , xn), fk(X) = xk for 1 ≤ k ≤ n.

Sum Types

Often it is desirable to construct a new type that is a union of already known
types. This gives one the ability to allow functions to accept several specific

Chapter 3. Values and Types 13

types. This “or”-like type operation creates a sum type. However, this is in-
sufficient. Consider a function toNumber : σ → Integer where σ is the union of
Real and String, and is defined such that if the argument is a string, then it
returns the value of the function stringToInt, and if the argument is a real
number, then it returns the floor of that argument. Clearly in the implementa-
tion of such a function, it must be necessary to dispatch to the right operations
depending on the type. Therefore, it is necessary to declare type tags, which
allow access to either of the data in the type summands. In other words, the
union of types must be paired with identifiers to allow their query. In Standard
ML, one writes:

1 datatype realstring = RealVal of real

2 | StrVal of string

As such, if 5.4 is of type real, then RealVal 5.4 is of type realstring. This
allows the definition of toNumber to be defined like so (in Standard ML):

1 fun toNumber x =

2 case x

3 of RealVal r = floor r

4 | StrVal s = stringToInt s

We can now concretely define a sum type.

Definition 3.5 Given types τ1 and τ2 ∈ T , a sum type is the union τ1 +
τ2 ∈ T such that there exist unique bijective functions s1 : τ1 → τ1 + τ2 and
s2 : τ2 → τ1 + τ2.

Type Classes and Type Functions

Definition 3.6 A type constructor is a type function φ : T → T such that
for τ ∈ T , φ(τ) is a new type.

Type constructors are especially useful for containers for data. Probably the
most often used container in programming is the list. A list is defined by

∀α ∈ T , List(α) = Nil + Cons(α × List(α)).

This expresses the notion of a recursive type, as well as declaring a nullary
as a constructor for a type.

Subtypes

We can equip the type algebra with the notion of subtypes.

Definition 3.7 Consider σ and τ ∈ T with associated domains S and T re-
spectively. Then τ is a subtype of σ iff T ⊂ S and for all f : σ → α, there
exists f ′ : τ → α such that for every x : τ , f(x) = f ′(x). One writes τ :< σ to
denote τ is a subtype of σ, or equivalently σ :> τ to denote σ is a super type
or suptype of τ .

14 3.1. A Discourse on Types

Parametric Types

Naturally, some objects need to be categorized in a more specific fashion than
a simple word or symbol. For example, a “matrix” is not at all specific enough
to define matrix addition or multiplication. There are certain constraints that
must be imposed. For addition of matrices A and B, the dimensions of A and
B must be equal. For multiplication, if A has dimensions pa × qa and B has
dimensions pb × qb, then they can be multiplied only if qa = pb. This suggests
that types should be able to encode certain static properties of an object. Such
types are parametric, and take a value as an argument producing a new type.

Definition 3.8 A parametric type2 is the result of applying a type function
φ : X → T where X is some domain to some value x ∈ X , giving φ(x) ∈ T .

Example 3.1 Let Matrix(p, q) be a matrix of real values of dimension p × q. The
matrix (1 2 3

4 5 6) would have type Matrix(2, 3). For natural numbers a, b, and c, we
define the types of addition and multiplication in the following way:

+ : Matrix(a, b) × Matrix(a, b) → Matrix(a, b)

· : Matrix(a, b) × Matrix(b, c) → Matrix(a, c).

Note that the repeated use of variables implies equality in each line—a matrix can
only be multiplied of the number of columns, b, are equal in each matrix.

N1. Details on type
equivalency, referential
transparency, types at

runtime, and type classes.

2These are sometimes called dependent types because the type of a value depends on
the value of another.

Part II

Computer Algebra Fundamentals

Chapter 4

Relations, Identities, Forms

4.1 Relationships Between Values

Arguably, mathematics is all about relationships between different classes of
items, especially the equivalence of items. Consider a smooth, egg-shaped
stone, a rubber paddle ball, and a cube of billiard chalk. Pardoning physical
imperfections, are any of these shapes equivalent? Of course, it depends on
how we define equivalent. To a. . .

• . . . topologist, all of these shapes are the same, or more precisely, they
are homeomorphic; if the shapes were made of modelling clay, any of the
shapes can be molded into any other without tearing or puncturing the
clay.

• . . . differential topologist, the stone and ball are equivalent to each other,
but not to the cube of chalk. The stone and the ball are diffeomorphic

— we can mold an egg-like shape into a sphere and back using “smooth”
manipulations, but we can’t get a sharp edge such as on the billiard chalk
using smooth movements. Getting a sharp edge would require cutting or
creasing.

• . . . geometer, all of these shapes are different. None of the shapes are either
similar — equivalent up to rotation, translation, dilation, and reflection
— or congruent — equivalent up to translation, rotation, and reflection.

Of course, there are many more fields of mathematics, and each has its
peculiar versions of equality.

Equality is just one kind of relation. Simply, a relation between two objects
is either true or false. Hence, ‘≥’ is a relation over integers — for all integers
x and y, x ≥ y is either true, or it’s not.

Definition 4.1 A binary relation ρ over a set S is defined by a set R ⊆ S×S
such that for each x, y ∈ S, either (x, y) ∈ R or (x, y) 6∈ R. Then x ρ y is true1

1The statement “x ρ y is true” is really a tautology, and hence one usually simply says
“x ρ y” alone (e.g., one says “2 6= 3”, not “2 6= 3 is true”).

18 4.2. Equality in Computer Algebra

iff (x, y) ∈ R.

The notion of equality is clearly a relation. Provided we have some specific
way to define equality, two objects are either equal, or they are not. We can
define what it means for a relation to be categorized as a form of equality by
adding a few simple requirements.

Definition 4.2 A binary relation ∼ over a set S is an equivalence relation
if for all a, b, c ∈ S, we have the following properties:

Reflexivity a ∼ a,

Symmetry a ∼ b implies b ∼ a, and

Transitivity a ∼ b and b ∼ c imply a ∼ c.

The set {x ∈ S | x ∼ a} is called the equivalence class of a, and is denoted
[a].

Definition 4.3 Given a predicate p : X → B and elements a, b ∈ X , we say
a ≡p b if p(a) ∧ p(b).

Theorem 4.1 Given a predicate p : X → B, ≡p is an equivalence relation.

Proof. Since p maps each element of X to one of two values, p partitions X
into two subsets X1 = {x ∈ X | p(x)} and X2 = X \X1, we can pair the values
which are equivalent into a set E = X1 ×X1 = {(a, b) | p(a) ∧ p(b)}. Therefore,
≡p is a binary relation.

The fact that it is an equivalence relation follows simply from the definition
of the Cartesian product. �

4.2 Equality in Computer Algebra

In computer algebra and programming, we typically need to pay attention to
three kinds of equality which derive from three different views of quantities:
objects can be seen by their mathematical properties, their form, or their (com-
puter) data[GCL92, p. 80].

Definition 4.4 The three principle equalities are

1. object-level equality (or mathematical equality) where elements of
a domain D are considered distinct objects equal to only themselves,

2. form-level equality where objects are equal only if they are syntacti-
cally and structurally equal, and

3. data-level equality where objects are equal only if they admit the same
objects in computer memory2.

2This form of equality is less important in mathematics, and more important in concrete
computer algorithms and data structures.

Chapter 4. Relations, Identities, Forms 19

We will also refer to these kinds of equalities by level-0, level-1, and level-2
equality respectively.

Notation 4.5 We write object-level equality of a and b via the standard equal-
ity sign: a = b. We write form-level equality via a ≏ b (one bump for level-1).
We write data-level equality as a ≎ b (two bumps for level-2).

Example 4.1 Consider A := x2 + 2x + 1 and B := (x + 1)2. At the object level,
A = B, because they represent the same object in the domain Z[x]. However, at
the form level, they are syntactically and structurally different, so a 6≏ b. However,
if we had a procedure expand which expands powers of polynomials and orders the
monomials by decreasing degree, then A ≏ expand(B).

Example 4.2 In Lisp, the code (eq a b) is essentially equivalent to a ≎ b, since it
(usually) does pointer-level equality[X3J94, pp. 5-46–47].

4.3 Canonical Forms

Often mathematical objects take several, sometimes infinitely many, different
but equivalent forms. Most of us are familiar with this notion in grade school
mathematics through fractions. The fractions 15/25, 6/10, and 3/5 are equiv-
alent, and perhaps to make it easier for teachers to grade, we are told to put
it in a form that is either exactly the same as the teacher’s answer or not. For
each equivalence class of fractions, we are taught a way to choose the “correct”
fraction (i.e., one that the teacher can compare with simply by inspection);
we are told to put the fraction “in lowest terms” so that for a/b, we write an
equivalent form a′/b′ where a′ and b′ are relatively prime.

The idea that we can pick a certain representative element from each equiv-
alence class in order to allow us to easily check equivalence of two elements is
the essence of canonical forms.

Definition 4.6 Let S be a set under the equivalence relation ∼. The canon-
ical form of an element x ∈ S, denoted κ(x), is an element of [x] such that
for all y ∈ [x], κ(y) = κ(x).

Remark. The definition of a canonical form implies that for each equivalence
class, there’s an element x in the equivalence class such that x = κ(x). More-
over, we can conclude that a ∼ b iff κ(a) = κ(b).

Example 4.3 The rational numbers are defined as the set of integer ordered pairs

20 4.4. Normal Forms

(a, b) such that b 6= 0 obeying a few properties. We can define the canonical form of
a rational number as the pair whose parts are coprime. We can define κ as a function
removing common factors:

κ

(

a

b

)

:=
sgn(ab)|a| ÷ gcd(a, b)

|b| ÷ gcd(a, b)
.

In the most ideal situation, the canonical form of an object can be derived
algorithmically in the same way as all other objects of some set, such as with
rational numbers. That is, given a set of objects S under a binary relation ∼,
if we view κ as a function from S to itself, κ should be the same function for
each equivalence class. Such a function is called the S-canonizing function.

Example 4.4 The complex numbers are closed under the respective field operations
and have a canonical form of a+bi for a, b ∈ R. The C-canonizing function is defined
as follows. Let w, z ∈ C.

κ(w + z) = (Re w + Re z) + (Im w + Im z)i

κ(−z) = (− Re z) + (− Im z)i

κ(wz) = (Re w Re z − Im w Im z) + (Re w Im z + Im w Re z)i

κ(z−1) =

[

Re z

(Re z)2 + (Im z)2

]

+

[

− Im z

(Re z)2 + (Im z)2

]

i

Note that this canonization function is actually recursive in nature, for to com-
pute Re z and Im z, one must compute its canonical form.

The importance of canonical forms is vast in the field of computer algebra. If
a elements of an algebraic structure have a canonical form, then elements of this
structure can be represented uniquely and hence equivalences, or identities,
can be verified or proved. Quite simply, we have the following fact.

Canonical forms admit structural equality.

This is a central theme of computer algebra and this book. Often a problem
reduces to finding a canonical form for a certain collection of elements.

4.4 Normal Forms

Canonical forms are restricted to sets equipped with some equivalence relation.
However, many interesting or useful relations are not equivalence relations, like
‘≥’. We can make an analogous notion to equivalence classes for such relations.

Suppose we want to compute first if a/b = c/d. By way of example exam-
ple 4.3, we can do this easily—bring each fraction into lowest terms and check
that a/b ≏ c/d. That is, check κ(a/b) ≏ κ(c/d).

However, suppose we want to compute if a/b ≥ c/d. Putting each fraction
into canonical form is useless as ‘≥’ is not an equivalence relation. If we were

Chapter 4. Relations, Identities, Forms 21

to implement ‘≥’ in a programming language where we have only arithmetic
operations, equality, and the sign function, we might do so by “normalizing”
the items being compared and testing their sign. Specifically, a ≥ b iff b−a ≥ 0.
But sgn x = 1 iff x ≥ 0 (x is non-negative). So all in all, we can compute x ≥ y
via computing g(x, y) = 1 for g(x, y) := sgn(x − y). Here, we say g is the
normalizing function.

Definition 4.7 Given a relation ρ : X2 → B, a function η : X2 → Y is called
the ρ-normalizing function if given ∀x ∈ X, η(x, x) and a, b ∈ X ,

η(a, b) = η0 ⇐⇒ a ρ b.

The value of η(a, b) is called then ρ-normal form of a and b.

Remark. The symbol η is derived from the term equalizer, which refers to the
equalizer of two functions Eq(f, g) := {x ∈ X | f(x) = g(x)}. The equalizer is
used to construct the difference kernel ker(f − g).

Example 4.5 Even for equivalence relations, sometimes a normal form can be more
useful than a canonical form. For example, to determine if a = b given two expres-
sions a and b, we might develop a canonizing function κ and show κ(a) ≏ κ(b). If
this is too difficult or costly, we can use η(x, y) = x − y so η0 = 0, and this is our
=-normalizing function. As such, a = b reduces to determining if a − b is zero, which
is known as the zero-equivalence problem. N2. Perhaps reference a later

section

22 4.4. Normal Forms

Exercises

1. [⋆] Show another possible C-canonizing function, different from example 4.4.

2. [⋆] Prove that for a, b ∈ Z,

κ
(a

b

)

:=
a ÷ gcd(a, b)

b ÷ gcd(a, b)

is indeed a Q-canonizing function.

Chapter 5

Arbitrary Precision Arithmetic

5.1 Introduction

When one writes programs, one is typically restricted to using numerical values
in a fixed range, usually related to the width of the CPU’s registers. Computers
whose processor works with 32-bits typically can only work with integers in
[0, 232 − 1], or if a bit1 is used to denote the sign, [−231, 231 − 1].

Floating-point numbers, or floats, allow for higher precision. Instead of
representing a number directly by its base-2 representation (perhaps with a
sign bit), one instead represents a number by the sign, a set of significant digits
called the mantissa or significand, and then a set of digits representing the
exponent. Suppose we let the sign be s, mantissa be m, and the exponent
be e. Then a number represented by these would be sm2e. Still, we can only
represent a finite amount of numbers in a finite amount of bits. Figure 5.1
shows the floating-point representation mandated by the IEEE 754 floating-
point standard [IEE85]. With this representation, we have a minimum2 value
of −1.2 × 10−38 and a maximum of 3.4 × 1038.

02331

si
g
n

exponent mantissa

Figure 5.1. Bit-fields of an IEEE 754 floating-point number.

There is an obvious drawback: these numbers don’t represent any more
information than integers within the finite range do. At the cost of removing
precision, we allow a wider range of numerical values. This is perfectly suitable

1Or one’s complement or two’s complement or some other scheme.
2This is slightly false, for we can have so-called subnormalized numbers which divide the

gap between the smallest representable normal number and zero. However, these numbers
do not allow minimizing the exponent (e.g., right shift the mantissa by 1 and decrease the
exponent by 1), a property by which normal numbers have to abide.

24 5.2. Computer Representation

for applications that either need approximate results (such as sketching a plot of
a function), or very quick results (such as in modern graphics where rendering
speed is more important than rendering accuracy).

Some applications require more precision, however, that is outside of the
range of “native” CPU arithmetic. There are principally two solutions for this:
(a) write new routines to handle the use of two or more integers which combined
really represent a single large integer or, more commonly, floating-point number
(double or quadruple precision which can have double or quadruple the precision
of a given float), or (b) use arbitrary precision arithmetic.

Arbitrary precision arithmetic, also called multiple precision arith-
metic or bignum (“big number”) arithmetic, uses a computer’s memory and/or
disk to store integers or floats at any precision. Of course, there is still a limi-
tation; the size of the number is limited by the space available. However, this
usually isn’t an issue, for a single gigabyte of memory is sufficient to store an
integer with billions of decimal digits.

Arbitrary precision arithmetic is especially important in computer algebra,
where precision is of utmost importance, and where numbers can become large
very easily. A common example of so called “numerical blowup” is in compu-
tations with rational numbers. Suppose we want to compute

3555

15131
+

3835

3444319

precisely. Then by obtaining common denominators, we have

3555 · 3444319 + 3835 · 15131

15131 · 3444319
=

12302581430

5209890789
,

with the numerator and denominator already coprime. Such a result typically
cannot be stored in an implementation of rational numbers whose numerators
and denominators are stored in machine integers. More deceivingly, suppose
we wish to compute

5

151
+

35

449
+

45209

203397
.

After like denominators, we receive

4596704401

13790113203

which simplifies to 1/3. Often times, we never see the intermediate computa-
tions, and so a simple output does not imply simple intermediate computations
as shown. As such, the lack of arbitrary precision arithmetic can severly limit
the ability to do even simple fraction arithmetic.

5.2 Computer Representation

There are many ways to represent bignums. By far the most common way is by
radix form. Radix form stores a positive integer x as a sequence of integers

Chapter 5. Arbitrary Precision Arithmetic 25

X = (Xi)
n−1
i=0 , called the limbs, such that 0 ≤ Xi < B for some radix or base

B ∈ Z. In this representation,

x =

n−1
∑

i=0

XiB
i.

The radix is usually chosen as large as possible, so long as a processor
can manipulate the limbs atomically. It is possible to have a radix as large
as the maximum representable integer, but this is usually not desirable, for
multiplying two limbs which are as large as

√
B or larger will cause numerical

overflow if done atomically3.
It is also beneficial to consider whether or not the radix should be a power of

2 or a power of 10. If it is a power of 2, arithmetic is often faster, since processors
often contain specialized instructions for bit manipulations. However, when the
radix is a power of 10, it is in immediate form for printing; simply printing all
Xi in reverse order is sufficient to show x in its entirety in decimal.

If it is not necessary to print numbers often or have them in a “palatable
form”, then a power-of-two form is more advantageous. If one needs to print,
then converting into decimal is necessary.

First, consider converting from a base-B representation where B > 10. This
means each limb can represent up to log10 B digits in decimal.

Algorithm 5.1: ToSmallerBase(X, B′)

Input : sequence X = (Xi)
n−1
i=0 in base B

a target base B′

Output : sequence Y = (Yi)i=0 in base B′, congruent to X
Require
:

B > B′

Y := X
i := 0
while i < n ∨ Xi ≥ B′ do

Yi+1 := Yi+1 + ⌊Yi/B′⌋
Yi := Yi % B′

i := i + 1

return Y

5.3 High-Precision Evaluation of Hypergeometric Series

The Chudnovsky brothers describe in [CC93] a method for computing hyper-
geometric series quickly, giving initial attributions to Gosper. Refer to defini-
tion 11.2 for the definition of the hypergeometric series.

3It is possible to multiply naïvely, but the but the number of atomic operations necessary
is far more.

26 5.3. High-Precision Evaluation of Hypergeometric Series

The idea is to use an lower-triangular matrix recurrence suggested by Gosper,

(

an 0
bn cn

)

=

(

an−1 0
bn−1 cn−1

)(

A(n) 0
B(n) C(n)

)

, (5.1)

which can be recurred to
(

an 0
bn cn

)

=

(

A(0) 0
B(0) C(0)

)(

A(1) 0
B(1) C(1)

)

· · ·
(

A(n − 1) 0
B(n − 1) C(n − 1)

)

,

(5.2)
where cn is numerator of the nth coefficient of the a series, bn is the numerator
of the nth partial sum, and an is the denominator of the nth partial sum. The
entries A(k), B(k), and C(k) are polynomials in Z[k]. We present them below.

If we wish to compute the nth partial sum of

∑

k≥0

(pk)↑k

(qk)↑k

zk

k!
, (5.3)

we compute the matrix product in (5.2) with

A(0) = q0 A(k) = kqk

B(0) = 1 B(k) = zk

C(0) = p0 C(k) = pk.

This will give us a matrix (a 0
b c) and the nth partial sum will be b/a. Using

the fact that (ab)↑k = a↑kb↑k, we may transform into a general hypergeometric
series as in definition 11.2.

However, it is inefficient to compute the matrix products in a serial manner;
it is better to use a divide-and-conquer method and evaluate the products in
pairs, splitting off groups of factors recursively. By doing this, the factors of
the multiplications are kept around the same size, which is much more efficient
than otherwise. This method of computing rational series is known as binary
splitting, and is presented in algorithm 5.2.

Chapter 5. Arbitrary Precision Arithmetic 27

Algorithm 5.2: BinarySplitHypergeometric(P, Q, z, N)

Input : an integer polynomial function P (k)
an integer polynomial function Q(k)
a value z ∈ C
number of terms N

Output : a matrix (a 0
b c) such that b/a =

N−1
∑

k=0

[P (k)]↑k

[Q(k)]↑k

zk

k!

Require
:

N > 1

M0 :=
(

1 0
1 P (0)

)

for k := 1 to N − 1 do

Mk :=
(

kQ(k−1) 0

zk P (k)

)

repeat
for k := 0 to ⌊N/2⌋ − 1 do

Mk := M2k · M2k+1

if N is odd then M(N−1)/2 := MN−1

N := ⌈N/2⌉
until N ≤ 1
return M1

Part III

Abstract Algebra

Chapter 6

Basic Structures and Divisibility

6.1 Algebraic Structures

Definition 6.1 A group (G; ⊕) is a set G 6= ∅ closed under the a binary
operation ⊕ satisfying the following axioms.

A1. (Associativity) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c for all a, b, c ∈ G.

A2. (Identity) There is an element, called the identity element, ι ∈ G
such that ι ⊕ a = a ⊕ ι = a for all a ∈ G.

A3. (Inverses) For all a ∈ G, there is an element a−1 ∈ G such that a⊕a−1 =
a−1 ⊕ a = ι, and is called the inverse of a.

An abelian or commutative group is one that satisfies an additional
axiom.

A4. (Commutativity) a ⊕ b = b ⊕ a for all a, b ∈ G.

Definition 6.2 A ring (R; ⊕, ⊗) is a set R 6= ∅ closed under two binary oper-
ations ⊕ and ⊗ such that (R; ⊕) is an abelian group (A1–A4), ⊗ is associative
and has an identity (A1 and A2), and which satisfies the following axiom:

A5. (Distributivity) a⊗(b⊕c) = (a⊗b)⊕(a⊗c) and (a⊕b)⊗c = (a⊗c)⊕(b⊗c)
for all a, b, c ∈ R.

A commutative ring is a ring in which ⊗ is commutative (A4 holds for
⊗). An integral domain is a commutative ring which satisfies the axiom:

A6. (Cancellation) a ⊗ b = a ⊗ c =⇒ b = c for all a, b, c ∈ R and a 6= 0.

Axiom A6 can be reformulated into an equaivalent, though meaningful, one.

A6’. (No Zero Divisors) a ⊗ b = 0 =⇒ a = 0 ∨ b = 0 for all a, b ∈ R.

Rings usually denote the identity element with respect to + as 0, the identity
element of · as 1, and the inverse of a with respect to + as −a.

32 6.2. Divisibility and Factorization

Definition 6.3 A field (F ; ⊕, ⊗) is a set F having two binary operations ⊕
and ⊗ such that (F ; ⊕) is an abelian group, (F \ {0}; ⊗) is an abelian group,
and ⊗ is distributive over ⊕.

Remark. We can equivalently say a field is a commutative ring in which every
non-zero element has a multiplicative inverse.

Theorem 6.1 Every finite integral domain is a field.

Proof. Let D be a finite integral domain and let a ∈ D be non-zero. Define
f : D → D by f(x) = ax.

Suppose f(x) = f(y) for some x, y ∈ D. Then ax = ay =⇒ a(x − y) = 0.
But since a 6= 0 and the cancellation property, x − y = 0. Therefore, x = y
proving f is injective. And since D is finite, by the pidgeonhole principle, f
must also be surjective. As such, there exists a b ∈ D such that f(b) = 1, so
ab = 1 and therefore a has an inverse and so D is a field. �

Structure Notation
Axioms

⊕ ⊗ ⊗ over ⊕
Group (G; ⊕) 1–3

Abelian Group (G; ⊕) 1–4
Ring (R; ⊕, ⊗) 1–4 1, 2 5

Commutative Ring (R; ⊕, ⊗) 1–4 1, 2, 4 5
Integral Domain (D; ⊕, ⊗) 1–4 1, 2, 4 5, 6

Field (F ; ⊕, ⊗) 1–4 1–4 5, 6

Table 6.1. Summary of algebraic structures.

6.2 Divisibility and Factorization

Division is of course possible in a field. In general, division is not possible in an
integral domain, but the concept of factorizing into primes familiar to us with
Z can be generalized to other integral domains. In this section, let (D; +, ·) be
an integral domain, and let ab ≡ a · b as in standard mathematical notation.

Divisibility

Definition 6.4 For a, b ∈ D, a is called a divisor of b iff b = ax for some
x ∈ D, and we say a divides b, usually denoted a | b. Equivalently, we say b
is a multiple of a.

Definition 6.5 For a, b ∈ D, an element c ∈ D is called a greatest common
divisor or GCD of a and b if c | a and c | b and c is a multiple of every
other element that divides both a and b. On the other hand, c is called a least
common multiple or LCM if a | c and b | c.

Chapter 6. Basic Structures and Divisibility 33

We say “a GCD” and not “the GCD” because when the GCD of a, b ∈ D
exists, it is not (but almost) unique. A familiar application of GCDs is to
reduce rational numbers to “lowest terms”.

Definition 6.6 Two elements a, b ∈ D are associates if a | b and b | a.

Definition 6.7 An element u ∈ D is called a unit (or invertible) if u has a
multiplicative inverse u−1 ∈ D.

Example 6.1 In the integral domain Z, (a) the units are 1 and −1, (b) 6 is a GCD
of 18 and 30, (c) −6 is also a GCD of 18 and 31, and (d) 6 and −6 are associates.

Theorem 6.2 For any integral domain, two elements a and b are associates
iff au = b for some unit u.

Proof. First, au = b implies a | b. If u is a unit, then u−1 exists. By the
cancellation axiom, auu−1 = bu−1 =⇒ a = bu−1, therefore b | a. It follows
from definition 6.6 that a and b are associates. �

Theorem 6.3 For any integral domain, if c is a GCD of a and b, then so is
any associate d = cu. Conversely, if c and d are GCDs of a and b, then d must
be an associate of c.

Proof. If c is a GCD of a and b, then it divides every multiple of numbers which
also divide a and b. If we let c = du−1, then clearly du−1 divides a and b as
well, and as such, d divides a and b and d is also a multiple of c.

For the converse, assume d must not be an associate of c. Then either c ∤ d
or d ∤ c. But if this is true, then either c or d is not a GCD because one is not
a multiple of all other common divisors of a and b, which is contrary to the
definition. �

It is customary to impose restrictions to make the GCD a unique number.
Since associates are related by an equivalence relation, integral domains can be
decomposed into associate classes. For example, the associate classes of Z
are {0}, {−1, 1}, {−2, 2}, and so on. For a particular integral domain, we can
choose a single element from each associate class to represent it canonically, and
define it to be unit normal1. For Z, we define the non-negative elements to
be unit normal elements. In any field F , every nonzero element is an associate
of every other nonzero element (and also, every nonzero element is a unit). In
this case, we define 0 and 1 to be unit normal.

Definition 6.8 In any integral domain D for which unit normal elements are
defined, an element c ∈ D is called the unit normal GCD of a, b ∈ D, denoted
c = gcd(a, b), if c is a GCD of a and b and c is unit normal.

1Confusingly, a “unit normal” is not always a “unit”. The term comes from the fact that
we “normalize” the GCD by choice of a unit.

34 6.2. Divisibility and Factorization

The unit normal GCD of two elements a, b ∈ D is unique. If unit normals
are appropriately defined, the following properties can hold:

1. 0 is unit normal.

2. 1 is the unit normal element for the associate class of unit normals.

3. If a, b ∈ D are unit normal, then their product ab is also unit normal in
D.

Henceforth, we will mean “the unit normal GCD” when we mention “the GCD”.

Definition 6.9 Let D be an integral domain in which unit normals have been
defined. The normal part of a ∈ D, denoted ν(a), is defined to be the unit
normal representative of the associate class containing a. The unit part of
a ∈ D \ {0}, denoted υ(a), is the unique unit in D such that a = υ(a)ν(a). We
define for convenience υ(0) = 1, since clearly, ν(0) = 0.

Example 6.2 In the integral domain Z, ν(a) = |a| and υ(a) = sgn(a), where the
sign of an integer is defined by

sgn(a) =

{

−1 if a < 0

1 if a ≥ 0.
(6.1)

The LCM of two elements a, b ∈ D, when it exists, can be made unique simi-
larly.

Theorem 6.4 The LCM of a, b ∈ D exists iff gcd(a, b) exists, and equals
ab/ gcd(a, b).

Proof. First, the GCD and LCM of (0, 0) is 0 by definition. Since gcd(a, b) | a
and gcd(a, b) | b, clearly gcd(a, b) | ab as well. Moreover, ab is a multiple of
a and b. This can be reduced by removing common factors of a and b which
gives the least number divisible by both a and b. Removing the factors is done
by dividing by the GCD, giving the LCM ab/ gcd(a, b) for non-zero a and b.�

We define the unique unit normal LCM of a, b ∈ D denoted lcm(a, b) by

lcm(a, b) =
ν(ab)

gcd(a, b)
. (6.2)

As with the GCD, we will henceforth refer to the “unit normal LCM” as simply
“the LCM”.

Chapter 6. Basic Structures and Divisibility 35

Unique Factorization Domains

Definition 6.10 An element p ∈ D \ {0} is called prime or irreducible if
(a) p is not a unit, and (b) whenever p = ab, either a or b is a unit.

Definition 6.11 Two elements a, b ∈ D are called relatively prime if gcd(a, b) =
1.

Definition 6.12 An integral domain D is called a unique factorization do-
main or UFD if for all a ∈ D \ {0}, either a is a unit, or a can be expressed as
a finite product of primes, but not both, such that this factorization is unique
up to associates and reordering.

Corollary If a = p1 · · · pn and a = q1 · · · qm are two prime factorizations of a,
then n = m and there exists a reordering of the qj values such that pi is an
associate of qi for 1 ≤ i ≤ n.

Definition 6.13 Let D be a UFD in which unit normal elements have been
defined. Then for a ∈ D, then a prime factorization of the form

a = υ(a)pe1

1 pe2

1 · · · pen

n (6.3)

is called a unit normal factorization if pi are unit normal primes, ei > 0,
and pi 6= pj whenever i = j for 0 ≤ i ≤ n and 0 ≤ j ≤ n.

These definitions admit the property that if p | ab, then p | a or p | b. In
other words, if p divides ab, then p or an associate thereof must appear in the
factorization of a or b.

Henceforth, assume unit normal elements satisfy the three properties 6.2.

Theorem 6.5 If D is a UFD and if x, y ∈ D are not both zero, then gcd(x, y)
exists and is unique.

Proof. The uniqueness has been established already. In order to show existence,
first suppose that x, y 6= 0 and let their unique unit normal factorization be
x = υ(x)pa1

1 · · · pan

n and y = υ(y)qb1

1 · · · qbm

m . Let {r1, . . . , rℓ} = {p1, . . . , pn} ∪
{q1, . . . , qm}. Then the factorizations of x and y may be written

x = υ(x)

ℓ
∏

i=1

rαi

i and y = υ(y)

ℓ
∏

i=1

rβi

i (6.4)

probably with αi, βi = 0 for “some” i. Obviously,

d =

ℓ
∏

i=1

r
min{αi,βi}
i (6.5)

36 6.2. Divisibility and Factorization

is gcd(x, y). If x or y is zero but not both, assume without loss of generality that
x 6= 0 and y = 0. If x has a unique unit normal factorization υ(x)pa1

1 · · · pan

n ,
then

d =

n
∏

i=1

pai

i (6.6)

is gcd(x, y). �

Euclidean Domains

Definition 6.14 A Euclidean domain is an integral domain D equipped
with a valuation v : D \ {0} → N such that

Property 1. for all a, b ∈ D \ {0D}, v(ab) ≥ v(a) and

Property 2. for all a, b ∈ D with b 6= 0D, there exist q, r ∈ D such that
a = bq + r where r = 0D or v(r) < v(b).

Property 2 is known as the division property, q is known as the quotient,
and r the remainder.

Remark. Every Euclidean domain is a UFD.

The set of integers is a Euclidean domain. However, quotients and remain-
ders are not always unique.

Theorem 6.6 Let D be a Euclidean domain and a, b ∈ D\0D. If g = gcd(a, b),
then there exist elements s and t such that g = sa + tb.

Chapter 7

Polynomial, Rational, and Series

Structures

7.1 Univariate Polynomial Domains

Chapter 8

Field Extensions

Often times it is advantageous to extend a field with new elements. One reason
it is done is to make a field closed under some operation. For example, if we
consider the real numbers together with the square root operation, the field of
reals is not closed with respect to square root. However, we can append an
element to the reals in order to make this field closed, namely i :=

√
−1.

Definition 8.1 Let F and E be fields such that F ⊂ E. F is said to be a
sub-field of E, or equivalently E is an extension field of F , and E : F is a
field extension. Given E : F and some S ⊂ E, the smallest sub-field of E
that contains F and S is denoted as F (S), and one says F (S) is generated by
the adjunction of S to F . If A is an extension field of E but is a sub-field of
E, then A is an intermediate field of the field extension E : F .

Intuitively, this means that F (S) is a field F extended with the elements S
forming a new field. Often times, one will extend a field F by a single element
s, called a primitive element, is denoted by F (s) as opposed to F ({s}). For
example, the field of rational numbers extended with the quadratic irrational√

2 is denoted Q(
√

2).

Field extensions can be seen from a linear algebra point-of-view. Let E : F
be a field extension. Then E can be seen as a vector space over F . For example,
C : R is a field extension, and can be seen as the set of pairs (x, y) representing
x + yi. In other words, a vector space whose scalars are the real numbers
generates the complex numbers. We can say then that C has a basis of {1, i}
because all elements are a linear combination of reals and elements of the basis.
This motivates the definition of the “size” of an extension.

Definition 8.2 Given a field extension E : F , the degree of E : F , denoted
|E : F |, is the dimension of E when seen as a vector space over F .

From this definition, one sees that |C : R| = 2 and this extension can be
written as an adjuction of i to R, hence C = R(i). Furthermore, |R : Q| = 2ℵ0

because there is no finite extension to the rationals that generates the reals.

40 8.1. Algebraic and Transcendental Extensions

Lastly, the field extension Q(
√

3,
√

5) has a degree of 4 because {1,
√

3,
√

5,
√

15}
is the basis of the vector space. In other words, |Q(

√
3,

√
5) : Q| = 4.

Theorem 8.1 If we have the field extension E : F and an intermediate field
A, then |E : F | = |E : A| · |A : F |.

We may use this theorem1 to find the size of intermediate fields. By this
theorem and that |Q(

√
3,

√
5) : Q| = 4, we may conclude that |Q(

√
3,

√
5) :

Q(
√

5)| = 2. As another example, we can conclude that there are no (non-
trivial) intermediate fields of C : R because, supposing there was a field F ,
|C : F | · |F : R| = 2 and the only integral solutions are |C : F | = 1 and
|F : R| = 2 or |C : F | = 2 and |F : R| = 1.

8.1 Algebraic and Transcendental Extensions

Algebraic numbers must owe their definition to geometry. Suppose we have
a right triangle with legs of length 2 and 3. We know from the Pythagorean
theorem that 22 + 32 = c2 for a hypotenuse of length c. If we only have
knowledge of integers, all we know is that c2 = 13. We might suppose that c
is some ratio of two integers, but we can prove this isn’t the case using basic
number theory. Since c must not be integer or rational, we might put it into a
new class of numbers, the algebraic numbers.

Rewrite r2 = s as r2 − s = 0. We define r =
√

s as the positive solution
to r2 − s = 0 for s ∈ Z, or root or zero of r2 − s. This generalization of
c2 = 13 (or c2 − 13 = 0) allows a whole new class of numbers, most of which
are non-integral. We can generalize one step by allowing any power of r, not
just 2. But we can do better.

We can widen the breadth of this new class of numbers by allowing the
left-hand side of r2 − s = 0 to be any integer polynomial2. As such, we define
the real algebraic numbers as the set of all roots to all integer polynomials.
Note that for an integer k, the polynomial x − k shows us that all integers are
real-algebraic, and for integers a and nonzero b, the polynomial ax − b shows
that all rationals are real-algebraic.

From this definition of real algebraics, we make one more generalization in
the spirit of abstract algebra. Since we are constructing numbers simply as the
roots to a polynomial, we could generalize the domain of the coefficients to an
arbitrary field.

1This theorem can be seen as an analogy to Lagrange’s theorem stating that the order
of every subgroup H of a group G divides the order of G itself. More descriptively, if |G : H|
is the number of left-cosets of H in G, then |G| = |G : H| · |H|.

2Integer polynomials are sufficient to cover rational polynomials. Suppose we have a ratio-
nal polynomial whose coefficients ci for 0 ≤ i < n are ci = ai/bi. Let g = gcd(b0, b1, . . . , bn).
Then given

∑

n

i=0
ci = s, we have g

∑

n

i=0
ci = gs. With c′

i
:− gci, where c′

i
is obviously

integral, we have an integer polynomial whose coefficients are c′
i

equated to a rational (or
more specifically, integer if s is integral).

Chapter 8. Field Extensions 41

Definition 8.3 Let E : F be a field extension and let a ∈ E. Then a is
algebraic over F if there is a polynomial function f over F such that f(a) = 0.
If there is no f such that f(a) = 0, then a is called transcendental over F .
If all a in E are transcendental, then E is a transcendental extension. If
all are algebraic, then it is an algebraic extension.

Part IV

Polynomials

Chapter 9

Polynomial Algorithms

9.1 Sylvester Matrices and Resultants

Definition 9.1 Let A(x), B(x) ∈ F [x] be non-zero polynomials in some field
F with A(x) =

∑m
k=0 akxk and B(x) =

∑n
k=0 bkxk. The Sylvester matrix

of A and B, denoted S(A, B) is an (m + n) × (m + n) matrix defined in the
following way:

• the first row has the coefficients of A(x) in descending order, with the last
n − 1 entries as 0;

• the second row is equivalent to the first row, but the entries are shifted
one column to the right, with the last 0 “wrapping” to the first entry;

• the next n − 2 rows are done in the same way;

• the (n + 1)th row has the coefficients of B(x) in descending order, with
the last m − 1 entries as 0;

• repeat the shifting process for the last m − 1 rows.

Example 9.1 Consider the polynomials p(x) = 5x2 −3x+1 and q(x) = 9x3 +2x+7.
The Sylvester matrix of p and q is

S(p, q) =











5 −3 1 0 0
0 5 −3 1 0
0 0 5 −3 1
9 0 2 7 0
0 9 0 2 7











.

Definition 9.2 The resultant of two polynomials p(x), q(x) ∈ F [x] is the
deteminant of the Sylvester matrix of p and q and is written resx(p(x), q(x)),
or res(p(x), q(x)) when the variable is unambiguous. Also, res(0, q(x)) := 0 and
res(a, b) := 1 for a, b ∈ F .

46 9.1. Sylvester Matrices and Resultants

We prove an important criterion as a corollary to the following lemma.

Lemma 9.1 Let A(x), B(x) ∈ F [x] be polynomials of positive degrees m and
n respectively. Then there exist polynomials U(x), V (x) ∈ F [x] with deg U < n
and deg V < m such that

A(x)U(x) + B(x)V (x) = res(A(x), B(x)). (9.1)

Proof. For A(x) and B(x) with coefficients (ai)0≤i≤m and (bi)0≤i≤n, we con-
struct m + n simultaneous equations

amxm+n−1 + am−1xm+n−2 + · · · + a0xn−1 = xn−1A(x)

amxm+n−2 + · · · + a1xn−1 + a0xn−2 = xn−2A(x)

... =
...

amxm + am−1xm−1 + · · · + a0 = A(x)

bnxm+n−1 + bn−1xm+n−2 + · · · + b0xm−1 = xm−1B(x)

bnxm+n−2 + · · · + b1xm−1 + b0xm−2 = xm−2B(x)

... =
...

bnxn + bn−1xn−1 + · · · + b0 = B(x)

which can be written as a matrix equation as

M















xm+n−1

xm+n−2

...
x
1















=















xn−1A(x)
xn−2A(x)

...
xB(x)
B(x)















.

Using Cramer’s rule to solve for the last entry, 1, gives

det[S(A, B) | R] = det M , with R =





















xn−1A(x)
...

A(x)
xm−1B(x)

...
B(x)





















, (9.2)

where S(A, B) is the Sylvester matrix of A and B and X | Y is matrix X
augmented by Y . Expanding the left-hand side of (9.2) by minors about the
column R proves the lemma. �

Corollary (Sylvester’s criterion) The polynomials A(x) and B(x) ∈ F [x]
have a non-trivial (i.e., non-constant) common factor iff res(A, B) = 0.

Chapter 9. Polynomial Algorithms 47

Proof. If res(A, B) 6= 0 then lemma 9.1 implies that any factor that divides
both A and B must also divide the resultant of A and B. Since the resultant
is constant, the only divisors of A and B must be polynomials of degree 0, and
therefore there are no non-trivial divisors.

Conversely, assume res(A, B) = 0. Then (9.1) becomes

A(x)U(x) = −B(x)V (x).

If there are no non-trivial factors dividing both A and B, then B(x) | U(x).
However, this is not possible since deg U < deg B by lemma 9.1. �

9.2 Polynomial Roots and Algebraic Numbers

As described in §8.1, real algebraic numbers are defined as the set of roots to
all integer polynomials. By the fundamental theorem of algebra, we can factor
p(x) ∈ Z[x] into binomials x − ri where i = deg p(x), and some constant factor
C ∈ Z. Therefore, every algebraic number can be encoded by the coefficients
of their representative polynomial, along with an integer i. However, such
a representation is not unique. Consider

√
2. Ordering roots from least to

greatest, we could represent
√

2 with (x2 −2, 1) or (x4 +6x3 +7x2 −12x−18, 4).
In general, given p ∈ Z[x] and any q ∈ Z[x], and supposing (p, n) represents
some algebraic number, then (pq, n′) will also represent the same number for
some n′ ≤ deg pq. This motivates the definition of a minimal polynomial.

Definition 9.3 A minimal polynomial of a real algebraic α is a polynomial
p(x) ∈ Z[x] of the smallest degree such that p(α) = 0. More generally, given a
field extension E : F with α ∈ E and p(x) ∈ F [x], the minimal polynomial of
α is the monic polynomial of least degree such that p(α) = 0.

Remark. Note that it is no problem to define a minimal polynomial as being
monic. If the leading term of a polynomial is not 1, then we can divide through
to get a polynomial in a rational field which is monic.

This also motivates a theorem.

Theorem 9.2 If p(x) ∈ F [x] is a minimal polynomial of α, then p(x) is irre-
ducible over F [x], and if a polynomial q 6= p has the property that q(α) = 0,
then p(x) | q(x).

Chapter 10

Algebra In the Reals

10.1 Introduction

Topics include

• real closed fields and Sturm theory,

• algebraic numbers,

• Tarski sentences,

• semialgebraic geometry.

10.2 Real Closed Fields

Definition 10.1 An ordered field F is a commutative field with a subset of
positive elements P such that

1. 0 6∈ P ,

2. if a ∈ F then a ∈ P , −a ∈ P , or a = 0,

3. P is closed under addition and multiplication.

If the field F in question has an ordering >, then we can say an element
a is positive if a > 0, and if −a > 0, then a is negative. Clearly this allows
us to construct P = {a ∈ F | a > 0}, but also a set of negative elements
N = {a ∈ F | −a > 0}. As such, F = P ∪ N ∪ {0}.

If a field F along with P is defined, we can construct an ordering by defining
x > y if x−y ∈ P . This is a strict linear ordering, an ordering which satisfies
the following properties:

• a > b implies ∀x ∈ F , a + x > b + x,

• a > b implies ∀x ∈ P , ax > bx,

• and a > b for a, b ∈ P implies b−1 > a−1.

50 10.2. Real Closed Fields

N3. write on intervals

Definition 10.2 Given an ordered field F , the absolute value of x ∈ F is
defined as

|x| :=

{

x if x ≥ 0,

−x if x < 0.

Definition 10.3 Given an ordered field F , the sign of x ∈ F is defined as

sgn x :=











1 if x > 0,

−1 if x < 0,

0 if x = 0.

Easily we see that given an ordered field F and x ∈ F , we have

• x = sgn(x)|x| and |x| = sgn(x)x, and

• sgn(ab) = sgn(a) sgn(b).

Part V

Series

Chapter 11

Hypergeometric Series

11.1 Hypergeometric Series and Functions

Hypergeometric series are motivated understandably by geometric series. Re-
call that a geometric series is a power series

∑

k≥0 Ckxk where Ck+1/Ck is
constant. This motivates a generalization by loosening the restriction to be
constant. In particular, we define the following.

Definition 11.1 The sequence (Ck)k≥0 is hypergeometric if ρ = Ck+1/Ck

for some ρ ∈ Q(k).

From this, we define the hypergeometric series in the same way as the
geometric series.

Definition 11.2 The generalized hypergeometric series is a power series
∑

k≥0 Ckzk such that (Ck)k≥0 is hypergeometric and C0 = 1.

Since ρ is a ratio of two polynomials P and Q, by the fundamental theorem
of algebra, we can express ρ as a product of binomials. Therefore,

ρ(k) =
(k + a1) · · · (k + ap)

(k + b1) · · · (k + bq)(k + 1)
(11.1)

for a1, . . . , ap, b1, . . . , bq ∈ C. The k + 1 factor in the denominator is present
due to Gauss [Gau23] and generally tradition1, and presents no problem, for if
Q does not have a factor k + 1, then let P ′ = P (k)(k + 1) so that ρ = P/Q =
P ′/[Q(k + 1)].

Definition 11.2 and (11.1) suggest that a hypergeometric series is completely
determined by parameters (ai)1≤i≤p and (bj)1≤j≤q . This is true, and we can
moreover express the series more explicitly. First though, we define an operator
that will prove useful.

1According to [PWZ96, p. 35] and [Wei10].

54 11.1. Hypergeometric Series and Functions

Definition 11.3 The rising product2 is defined by a↑n := a(a + 1) · · · (a +
n − 1) for n ∈ Z.

Because C0 = 1 and Ck+1/Ck = ρ(k), we have C1/C0 = C1 = ρ(0). There-
fore, by (11.1),

C1 =
a1 · · · ap

b1 · · · bq
. (11.2)

Repeating this, we receive

C2 =
a1(a1 + 1) · · · ap(ap + 1)

b1(b1 + 1) · · · bq(bq + 1)
· 1

2
(11.3)

C3 =
a1(a1 + 1)(a1 + 2) · · · ap(ap + 1)(ap + 2)

b1(b1 + 1)(b1 + 2) · · · bq(bq + 1)(bq + 2)
· 1

2 · 3
(11.4)

and by induction,

Cn =
a↑n

1 · · · a↑n
p

b↑n
1 · · · b↑n

q

· 1

n!

=

∏p
i=1(ai)

↑n

∏q
j=1(bj)↑n

· 1

n!
. (11.5)

Putting Cn into sum in definition 11.2, we have

∑

k≥0

∏p
i=1(ai)

↑k

∏q
j=1(bj)↑k

· xk

k!
. (11.6)

Parameterizing ai and bj motivates the definition of the hypergeometric func-
tion.

Definition 11.4 The generalized hypergeometric function Fp
q : C → C

is defined by the hypergeometric series

Fp
q

[

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

z

]

:=
∞
∑

k=0

∏p
i=1(ai)

↑k

∏q
j=1(bj)↑k

· zk

k!
(11.7)

for the ai, bj, z ∈ C. The function with arguments is also written Fp
q(a1, . . . , ap; b1, . . . , bq; z).

Convergence Conditions

Until now, the convergence of the hypergeometric series has been neglected.
Refer to definition 11.4. If ai is a non-positive integer for some i = i0, then for
all k ≥ 0, (ai0

)↑k = 0 and therefore the numerator is 0 for all i ≥ i0 and the
sum is finite (and therefore converges). Similarly, if any bi is a non-positive
integer, then the series is undefined because the denominator would be 0.

Using the ratio test, we can determine the radius of convergence for other
cases. There are essentially three cases.

2Sometimes called the rising factorial, or Pochhammer symbol if written (a)n.

Chapter 11. Hypergeometric Series 55

Case I. If p = q+1, then ρ(k) → 1 which implies the radius of convergence
is 1 (Fp

q converges absolutely for |z| < 1 and diverges for |z| > 1.
See below about |z| = 1.)

Case II. If p < q + 1, then ρ(k) → 0 which implies that the radius of
convergence is ∞ (Fp

q converges absolutely for all z).

Case III. If p > q + 1, then ρ(k) → ∞ which implies the radius of conver-
gence is 0 and Fp

q diverges for z 6= 0.

Detemining convergence of Fp
q when p = q + 1 is difficult when z is on the

unit circle. Note the following criterion.

Theorem 11.1 Let a = (a1, . . . , an) and b = (b1, . . . , bn−1) be positive se-
quences. Then Fn

n−1(a; b; z) converges absolutely at z = 1 if

n−1
∑

i=1

Re bi >

n
∑

i=1

Re ai. (11.8)

11.2 Series as Hypergeometric Functions

Many series can be converted into hypergeometric functions. This is done by
writing the summand of the series in an equivalent way with rising products.

Lemma 11.2 Every binomial in k can be represented as a function of rising
products in k. Specifically,

ak + b =
b(1 + b/a)↑k

(b/a)↑k
. (11.9)

Proof. By inspection, one can see that (x + 1)↑k = x↑k+1/x and x↑m/x↑n =
(x + n)↑m−n (for m > n). So

b(1 + b/a)↑k

(b/a)↑k
=

b(b/a)↑k+1

(b/a)(b/a)↑k

= a(k + b/a)↑k+1−k

= a(k + b/a)

= ak + b. �

11.3 Discrete Operators and The Summation Problem

Given a function g, define the forward difference as ∆g(x) := g(x + 1) −
g(x). In the case that g depends on several variables, define the forward
partial difference as ∆xg(x, y) := g(x+1, y)−g(x, y). The forward difference

56 11.3. Discrete Operators and The Summation Problem

is a discrete operator, namely because it works in a non-dense3 domain
of integers. Moreover, the forward difference is a “discrete analog” to the
continuous derivative, as shown in figure 11.1.

dc = 0 ∆c = 0

d(af + bg) = adf + bdg ∆(af + bg) = a∆f + b∆g

d(fg) = gdf + fdg ∆(fg) = g∆f + f∆g + ∆f∆g

d

(

f

g

)

=
gdf − fdg

g2
∆

(

f

g

)

=
g∆f − f∆g

(g + ∆g)g

Figure 11.1. Relationship between the continuous and discrete
derivative.

Since the forward difference is a discrete analog to the derivative, it moti-
vates questioning the existence of a discrete analog to the antiderivative, i.e.,
integral. In other words, given a function f , does there exist a function g such
that f = ∆g, and if so, what is it?

We begin to “solve” for g by telescoping, which is adding consecutive
terms so that cancellation occurs. So, by telescoping ∆g, we have

∆g(n) + ∆g(n − 1) + · · · + ∆g(1)

= [g(n) − g(n − 1)] + [g(n − 1) − g(n − 2)] + · · · + [g(1) − g(0)]

= g(n) − g(0).

Quite simply, we have solved for g(n) upto the additional constant term. After
writing this as an indefinite sum, we get4

n
∑

k=1

∆g(k) = g(n) − g(0), (11.10)

or equivalently
n
∑

k=1

f(k) = g(n) − g(0). (11.11)

This is indefinite summation and finding g is called the indefinite sum-
mation problem, and finding g is equivalent to computing the left-hand side

3A set S with an ordering relation < is dense if for every a, b ∈ S and a < b, then there
exists a c ∈ S such that a < c < b.

4Note that this is the discrete analog to the fundamental theorem of calculus:
∫

x

0
d
dt

f(t) dt = f(x) − f(0).

Chapter 11. Hypergeometric Series 57

of (11.11) in “closed form”. Indefinite summation is sometimes called the an-
tidifference ∆−1, specifically defined by

∆−1f(n) :=

n
∑

k=1

f(k). (11.12)

Obviously, (∆−1 ◦ ∆)f(n) = f(n) + c, for a constant5 c, and (∆ ◦ ∆−1)f(n) =
f(n). As such, it is apparent the difference and antidifference are inverses (up
to a constant), and the antidifference is the discrete analog of antidifferentiation
or indefinite integration.

11.4 Gosper’s Algorithm for Indefinite Summation

In 1978, Bill Gosper made his celebrated algorithm now called Gosper’s al-
gorithm for solving the problem of indefinite summation for a certain class of
functions, viz. those sums whose summand is hypergeometric. If a hypergeo-
metric solution exists, Gosper’s algorithm will return it. Otherwise, the sum
will have been proven impossible to evaluate in closed form.

Let
a(k) :− ∆Sk−1 = Sk − Sk−1 (11.13)

where Sk is hypergeometric. Given a(k), we wish to find Sk, or equivalently,
evaluating the left-hand side of

n
∑

k=1

a(k) = Sn − S0. (11.14)

Since Sk/Sk−1 is a rational function in k, then

a(k)

a(k − 1)
=

Sk − Sk−1

Sk−1 − Sk−2
=

Sk

Sk−1

− 1

1 − Sk−2

Sk−1

(11.15)

must also be rational in k, except when a(k) = 0. Express this as

a(k)

a(k − 1)
=

P (k)

P (k − 1)
· Q(k)

R(k)
(11.16)

with polynomials P , Q, and R in k under the condition

gcd[Q(k), R(k + i)] = 1 (11.17)

for all integers i ≥ 0.

Lemma 11.3 It is always possible to put a rational function in the form of
(11.16) under the condition (11.17).

5It will be advantageous to see c in the same way one views the constant of integration,
since such a perspective allows one to generalize the notion of the forward difference to more
arbitrary differences, such as ∆kf(n) = f(n + k) − f(n).

58 11.4. Gosper’s Algorithm for Indefinite Summation

Proof. Suppose that gcd[Q(k), R(k + i)] = φ(k). We can eliminate this by
computing

Q′(k) :− Q(k)

φ(k)

R′(k) :− R(k)

φ(k − i)

P ′(k) :− P (k)

i−1
∏

j=0

φ(k − j), (11.18)

which of course does not affect the term ratio a(k)/a(k − 1). The values of i
for which such common factors exist can be computed via the resultant of p
and q (see §9.1). �

Now, we write

Sk =
Q(k + 1)

P (k)
f(k)a(k) (11.19)

where f(k) shall be found. By (11.13),

f(k) =
P (k)

Q(k + 1)
· Sk

Sk − Sk−1

=
P (k)

Q(k + 1)
· 1

1 − Sk−1

Sk

. (11.20)

Therefore, f(k) is rational iff S(k)/S(k − 1) is. Putting (11.19) into (11.13),
one has

a(k) =
Q(k + 1)

P (k)
f(k)a(k) − Q(k)

P (k − 1)
f(k − 1)a(k − 1). (11.21)

Multiplying this by P (k)/a(k) gives

P (k) = Q(k + 1)f(k) − Q(k)
P (k)

P (k − 1)
f(k − 1)

a(k − 1)

a(k)
. (11.22)

And by using (11.16), we get a function equation in f :

P (k) = Q(k + 1)f(k) − R(k)f(k − 1). (11.23)

Now we prove an important result.

Theorem 11.4 If Sk/Sk−1 ∈ Q(k), then f(k) ∈ Z[k].

Proof. We know already that f(k) is rational when S(k)/S(k − 1) is rational,
so write

f(k) =
α(k)

β(k)
(11.24)

Chapter 11. Hypergeometric Series 59

where β(k) is a polynomial whose degree is positive and

gcd[α(k), β(k)] = gcd[α(k − 1), β(k − 1)] = 1. (11.25)

Then (11.23) can be rewritten as

β(k)β(k − 1)P (k) = α(k)β(k − 1)Q(k + 1) − α(k − 1)β(k)R(k). (11.26)

Now, let i be defined by

i :− max
x∈Z

{

gcd[β(k), β(k + x)] = φ(k) 6= 1
}

. (11.27)

Of course, i exists and i is non-negative. Since i is the maximum of such values
and φ(k) | β(k + i),

gcd[β(k − 1), β(k + i)] = gcd[β(k − 1), φ(k)] = 1. (11.28)

Applying the shift operator6 E−i−1 to both sides of (11.27), we have

gcd[β(k − i − 1), β(k)] = φ(k − i − 1) 6= 1. (11.29)

Similarly applying the shift operator E−j to the left-hand side of (11.28) gives

gcd[β(k − i − 1), β(k)] = gcd[φ(k − i − 1), β(k)] = 1, (11.30)

noting that φ(k − i − 1) | β(k − i − 1).
Now, suppose we divide (11.26) by φ(k) and φ(k−i−1). By (11.27), we know

φ(k) | β(k). Moreover, by (11.28) and (11.25), we know φ(k) ∤ β(k − 1) and
φ(k) ∤ α(k). As such, in (11.26), φ(k) | Q(k + 1) which implies φ(k − 1) | Q(k).

In a similar fashion, by (11.29), φ(k − i − 1) | β(k − 1). But then in that
case, by (11.30) and (11.25), φ(k − i − 1) ∤ β(k) and φ(k − i − 1) ∤ α(k − 1). As
such, in (11.26), φ(k − i − 1) | R(k) and therefore φ(k − 1) | R(k + i).

Thus, we can conclude i is a non-negative integer such that gcd[Q(k), R(k+
i)] = φ(k − 1), contradicting (11.17), and therefore β(k) is constant. �

All that is left to do is find an f(k) as a solution to (11.23) given P (k),
Q(k), and R(k). We can do this by establishing an upper bound δ on degk f(k).

First, rewrite (11.23) as

P (k) = 1
2 [Q(k +1)−R(k)][f(k)+f(k −1)]+ 1

2 [Q(k +1)+R(k)][f(k)−f(k −1)]
(11.31)

to see that degk[f(k) + f(k − 1)] = degk[f(k) − f(k − 1)] + 1 for any non-zero
f ∈ Z[k] provided deg 0 = −1.

Case I. The first possibility is

degk[Q(k + 1) + R(k)] ≤ degk[Q(k + 1) − R(k)] = λ. (11.32)

6Similar to the forward difference, the shift operator En is defined by Enf(k) = f(k+n).

60 11.5. Zeilberger’s Algorithm for Definite Summation

Via (11.31), we can approximate f(n) and f(n − 1) by

α(δ)kδ + O(kδ−1), (11.33)

where O is “big-O” notationN4. Need to write a chapter
on approximation,

asymptotics, and big-O.

. Therefore,

P (k) = Cα(δ)kδ+λ + O(kδ+λ−1) (11.34)

for some constant C 6= 0. Since the degrees of the left- and right-
hand sides must be identical,

δ = degk f(k) = −λ + degk P (n). (11.35)

Case II. The second possibility is

degk[Q(k + 1) − R(k)] < degk[Q(k + 1) + R(k)] = λ. (11.36)

Again estimating, we have

f(k) = α(δ)kδ + α(δ − 1)kδ−1 + O(kδ−2) (11.37)

and putting

f(k − 1) = α(δ)kδ + (αδ−1 − δαδ)kδ−1 + O(kδ−2) (11.38)

into (11.31) gives

P (k) = (C′ + Cδ)αδkδ+λ−1 + O(kδ+λ−2), (11.39)

for constants C and C′. Define δ0 :− −C′/C, the root of the
leading term of the right-hand side. Then the maximal δ such
that αk 6= 0 is

δ =

{

max{δ0, 1 − λ + degk P (k)} if δ0 ∈ Z,

1 − λ + deg P (k) otherwise.
(11.40)

In both cases, if δ < 0, then a hypergeometric Sk certainly does not exist.
Otherwise, we can put f(k) as a δth degree polynomial with δ + 1 unknown
coefficients in (11.23), and equate coefficients, giving us a linear system. If
the system is insoluble, then a hypergeometric Sk does not exist. Otherwise,
solving the system f(k), which can be substituted in (11.19) to obtain Sk.

11.5 Zeilberger’s Algorithm for Definite Summation

Doron Zeilberger extended Gosper’s algorithm in a non-trivial fashion to work
with sums of the form

n
∑

k=1

g(n, k) = A(n),

Chapter 11. Hypergeometric Series 61

Algorithm 11.1: GosperSum(tn)

Input : A hypergeometric term tn

Output : A hypergeometric term zn satisfying zn+1 − zn = tn or FAIL.

r(n) := tn+1/tn

/* Write r(n) = a(n)
b(n)

c(n+1)
c(n)

such that gcd[a(n), b(n + k)] = 1 for all k ≥ 0 */

begin

Let r(n) := K f(n)
g(n) where f(n) and g(n) are monic and relatively

prime, and K is constant.
R(k) := resn(f(n), g(n + k))
Let S = {k1, . . . , kN } be the set of non-negative integer zeros of R(k)
(N ≥ 0 and 0 ≤ k1 < · · · < kN).

p0(n) := f(n); q0(n) := g(n)
for 1 ≤ j ≤ N do

sj(n) := gcd(pj−1(n), qj−1(n + kj)
pj(n) := pj−1(n)/sj(n)
qj(n) := qj−1(n)/sj(n − kj)

a(n) := KpN(n)
b(n) := qN (n)

c(n) :=
∏N

i=1

∏ki

j=1 si(n − j)

/* Find x(n) 6= 0 such that a(n)x(n + 1) − b(n − 1)x(n) = c(n) if one exists,

otherwise return FAIL */

begin
if deg a(n) 6= deg b(n) ∨ lcoeff a(n) 6= lcoeff b(n) then

D := {deg c(n) − max{deg a(n), deg b(n)}}
else

A := [nk−1]a(n)

B := [nk−1]b(n − 1)
D := {1 + deg c(n) − deg a(n), (B − A)/ lcoeff a(n)}

D := D ∩ N
if D = ∅ then

Print "No non-zero polynomial solution."
return FAIL

else
d := max D

Using the method of undetermined coefficients, find a non-zero
polynomial solution x(n) of a(n)x(n + 1) − b(n − 1)x(n) = c(n)
degree d or less.
if no x(n) exists then

Print "No non-zero polynomial solution."
return FAIL

return b(n−1)x(n)
c(n) tn

62 11.5. Zeilberger’s Algorithm for Definite Summation

called an indefinite sum. Dividing both sides of the indefinite sum by A(n)
and letting F (n, k) := g(n, k)/A(n) gives

n
∑

k=1

F (n, k) = 1, (11.41)

which implies that
n
∑

k=1

∆nF (n, k) = 0, (11.42)

In Zeilberger’s algorithm, we try to write F (n+1, k)−F (n, k) as a discrete
difference ∆Sk. Suppose

∆nF (n, k) = ∆kG(n, k). (11.43)

We can find G via Gosper’s algorithm via

N
∑

k=−M

∆nF (n, k) = G(n, M + 1) − G(n, −N). (11.44)

If we assume
lim

k→±∞
G(n, k) = 0, (11.45)

then
∑n

k=1 F (n, k) is constant.
Therefore, to prove an identity of the form (11.42), we find a G that satisfies

(11.43) and (11.45), and then show it holds for a value of n.

Example 11.1 Consider
n
∑

k=0

(−1)k(−n)↑k

k! 2n
.

Obviously,

F (n, k) =
(−1)k(−n)↑k

k! 2n

and one can determine that

G(n, k) =
(−1)k(−n)↑k−1

(k − 1)! 2n+1

satisfies (11.42) and (11.45). Letting n = 0, we have

0
∑

k=0

(−1)k(−0)↑k

k! 20
=

1 · 0↑0

1 · 1

= 1,

verifying the identity.

Part VI

Integration

Chapter 12

Risch Integration

12.1 Preliminaries

Differential Fields

Definition 12.1 A differential field is a field (F ; +, ·) equipped with the
differential operator D : F → F with the following properties:

1. D(f + g) = D f + D g,

2. D(f · g) = (D f) · g + f · D g

Generally we will assume that x ∈ F and D x = 1.

Definition 12.2 A constant field is a differential field K such that D f = 0
for all f ∈ K.

Definition 12.3 Let K be a constant field and F = K(θ1, . . . , θn) be a differ-
entiable field. Furthermore let Fk = K(θ1, . . . , θk). Then F is an elementary
field if D θ1 = 1 and for 2 ≤ k ≤ n, one of the following holds:

1. θk is algebraic over Fk−1,

2. D θk = (D η)/η for some η ∈ Fk−1, or

3. D θk = (D η)θk for some η ∈ Fk−1.

A purely transcendental field is an algebraic field in which θk is tran-
scendental over Fk for 1 ≤ k ≤ n.

Transcendental Functions

Definition 12.4 An elemenetary function is a function x 7→ f(x) such that
f(x) is built up from constants, x, +, −, ·, /, exp, and ln.

The purpose of elementary functions is two-fold: (1) to provide a consistent
way to view a variety of functions as consituent functions and (2) to take

66 12.2. Risch Algorithm: Input

advantage of the property that if f is in an elementary field F , then
∫

f is also
in F possibly extended with constant algebraics or logarithms.

12.2 Risch Algorithm: Input

The Risch algorithm is a procedure to determine if, for some elementary
function f , if there is an elementary function g such that f = D g. This is
known as indefinite integration as from elementary calculus. Since by the
fundamental theorem of calculus1, we may speak of an inverse of differentiation
D−1 making the goal now to find g = D−1 f , more commonly written g =

∫

f .

Decomposing the Input

The first part of the algorithm deals with decomposing the input into the “core”
elementary functions and then determining the field in which the integrand lies.

Example 12.1 Let f = ex + e−x. We start from the inside and move out.

ex + e−x = eθ1 + e−θ1 θ1 := x

= θ2 + e−θ1 θ2 := eθ1

= θ2 + θ3 θ3 := e−θ1

We can relate these quantities by seeing that θ2 = θ−1
3 . So, f = θ2 +θ−1

2 ∈ Q(θ1, θ2).

Analyzing the Transcendence of the Input

Theorem 12.1 (Risch Structure Theorem) Let F = K(θ1, . . . , θn) be a
differential field and let η ∈ F . Let E = {n | θn = eηn} and L = {n |
θn = ln ηn}. Assume that |E| + |L| = n − 1 (because θ1 = x). Then

1. eη is algebraic over F iff there exists a c ∈ K and rationals ri such that

η = c +
∑

i∈E

riηi +
∑

i∈L

riθi, or (12.1)

2. ln η is algebraic over F iff there exists a c ∈ K and rationals ri such that

η = c
∏

i∈E

θri

i ·
∏

i∈L

ηri

i ⇐⇒ D η

η
=
∑

i∈E

ri(D ηi) +
∑

i∈L

ri
D ηi

ηi
. (12.2)

The Risch structure theorem is useful for determining if an extension eη or
ln η is transcendental in F ; (12.1) and (12.2) can be solved simultaneously to
find c and ri or prove they do not exist.

1Recall that it states that derivatives and integrals are essentially opposite functions.

Chapter 12. Risch Integration 67

Normalization and Reduction of Differential Fields

Originally, Risch’s proposition deemed it necessary to solve the Risch dif-
ferential equation y′ + fy = g which requires tedious calculations of de-
gree bounds and solving large systems of simultaneous equations. Davenport
[Dav86] proposed a way to modify the fields in order to avoid this necessity.

Suppose we want to extend the differential field F = K(θ1, . . . , θn) with the
exponential eη. If η depends on some φ and η ∈ K(θ1, . . . , θn, φ), then let the
Laurent series expansion of η with respect to φ be

η = · · · + η−1φ−1 + η0 + η1φ + · · · =
∑

k∈Z

ηkφk (12.3)

for coefficients φk. Then eη is reduced if η1 /∈ Q or φ is not logarithmic. If
this is not true, then η1φ = ρ ln ζ and ζρeη−η1φ should be input instead of eη.

Appendix

Appendix A

Function Tables

A.1 Elementary Functions

Basic Arithmetic Functions

ex =
∞
∑

k=0

xk

k!
ln x =

∫ x

1

dt

t
(A.1)

xy = ey ln x n
√

x = e
1

n
ln x (A.2)

72 A.1. Elementary Functions

Trigonometric Functions

Let k ∈ Z.

sin x =
eix − e−ix

2i
sin−1 y = 2kπ − i ln

(

iy ±
√

1 − y2
)

(A.3)

cos x =
eix + e−ix

2
cos−1 y = 2kπ − i ln

(

y ±
√

y2 − 1
)

(A.4)

tan x =
eix − e−ix

i(eix + e−ix)
tan−1 y = kπ − 1

2
i ln

(

i − y

i + y

)

y 6= ±i

(A.5)

sec x =
2

eix + e−ix
sec−1 y = 2kπ − i ln

(

1 ±
√

1 − y2

y

)

y 6= 0

(A.6)

csc x =
2i

eix − e−ix
csc−1 y = 2kπ − i ln

(

i ±
√

y2 − 1

y

)

y 6= 0

(A.7)

cot x =
i(eix + e−ix)

eix − e−ix
cot−1 y = kπ − 1

2
i ln

(

y + i

y − i

)

y 6= ±i

(A.8)

Appendix A. Function Tables 73

Hyperbolic Functions

Let k ∈ Z.

sinh x =
ex − e−x

2
sinh−1 y = 2kπi + ln

(

y ±
√

y2 + 1
)

(A.9)

cosh x =
ex + e−x

2
cosh−1 y = 2kπi + ln

(

y ±
√

y2 − 1
)

(A.10)

tanh x =
ex − e−x

ex + e−x
tanh−1 y = kπi +

1

2
ln

(

1 + y

1 − y

)

y 6= ±1

(A.11)

sech x =
2

ex + e−x
sech−1 y = 2kπi + ln

(

1 ±
√

1 − y2

y

)

y 6= 0

(A.12)

csch x =
2

ex − e−x
csch−1 y = 2kπi + ln

(

1 ±
√

1 + y2

y

)

y 6= 0

(A.13)

coth x =
ex + e−x

ex − e−x
coth−1 y = kπi +

1

2
ln

(

y + 1

y − 1

)

y 6= ±1

(A.14)

A.2 Gamma and Friends

Rising Power

(x + 1)↑k =
x↑k+1

x
(A.15)

x↑m

x↑n
= (x + n)↑m−n (A.16)

1↑k = k! (A.17)

(−m)↑k = 0 for k > m (A.18)

74 A.2. Gamma and Friends

Factorial, Double Factorial, and Gamma

k! = Γ(k + 1) = kΓ(k) (A.19)

(2k)! = 22k(1/2)↑kk! (A.20)

(z − 1)!! =
z!

z!!
(A.21)

(2z)!! = 2zz! (A.22)

Γ(2z) =
22z−1

√
π

Γ(z)Γ(z + 1/2) (A.23)

Γ(z + k) = Γ(z)z↑k for k ∈ Z (A.24)

Γ(z − k) =
(−1)kΓ(z)

(1 − z)↑k
(A.25)

Γ(z + 1/2) =

√
π

2z
(2z − 1)!! for non-negative z ∈ Z (A.26)

(2z)!

z!2
=

22z

√
π

Γ(z + 1/2)

Γ(z + 1)
(A.27)

Binomial Coefficients and Sums

(

2n

2k

)

=
(1/2 − n)↑k(−n)↑k

(1/2)↑kk!
(A.28)

m
∑

k=0

(−1)k

(

m

k

)

Γ(k + b)

Γ(k + a)
=

Γ(b)Γ(m + a − b)

Γ(m + a)Γ(a − b)
(A.29)

Appendix A. Function Tables 75

A.3 Hypergeometric Identities

F2
1

[

a, b
c

∣

∣

∣

∣

1

]

=
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
(A.30)

F2
1

[

a, b
c

∣

∣

∣

∣

z

]

= (1 − z)c−a−bF2
1

[

c − a, c − b
c

∣

∣

∣

∣

z

]

(A.31)

F2
1

[

a, 1 − a
c

∣

∣

∣

∣

1

2

]

=
Γ[(c + 1)/2]Γ(c/2)

Γ[(1 − a + c)/2]Γ[(a + c)/2]
(A.32)

F2
1

[

a, b
c

∣

∣

∣

∣

z

]

=
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
F2

1

[

a, b
a + b − c + 1

∣

∣

∣

∣

1 − z

]

+ (1 − z)c−a−b Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
F2

1

[

c − a, c − b
c − a − b + 1

∣

∣

∣

∣

1 − z

]

(A.33)

Fp
q

[

a1, . . . , ap−1, 1
b1, . . . , bq−1, n

∣

∣

∣

∣

z

]

=
n − 1

z
·
∏q−1

j=1(bj − 1)
∏p−1

j=1 (aj − 1)

× Fp
1

[

a1 − 1, . . . , ap−1 − 1, 1
b1 − 1, . . . , bq−1 − 1, n − 1

∣

∣

∣

∣

z − 1

]

(A.34)

F2
1

[

a, b
1 + b − a

∣

∣

∣

∣

−1

]

=

√
π

2b

Γ(1 + b − a)

Γ(1 + b/2 − a)Γ[(1 + b)/2]
for 1 + b − a 6∈ Z−

(A.35)

A.4 Miscellaneous

∞
∑

k=n+1

n

k2 − n2
=

2n
∑

k=1

1

2k
(A.36)

Appendix B

Miscellaneous

B.1 The Gudermannian Function

The Gudermannian function is defined as

gd x :=

∫ x

0

dt

cosh t

= sin−1(tanh x)

= tan−1(sinh x)

= 2 tan−1
(

tan
x

2

)

= 2 tan−1 ex − π

2
.

10

1/2

1

3/2

5−10

−1/2

−1

−3/2

−5

gd(x)

x

Figure B.1. Plot of the Gudermannian function gd(x).

78 B.2. The Γ-Function

The inverse Gudermannian function is defined for x ∈ (−π/2, π/2) as

gd−1 x :=

∫ x

0

dt

cos t

= ln

∣

∣

∣

∣

1 + sin x

cos x

∣

∣

∣

∣

=
1

2
ln

∣

∣

∣

∣

1 + sin x

1 − sin x

∣

∣

∣

∣

= ln|tan x + sec x|

= ln
∣

∣

∣tan
(π

4
+

x

2

)∣

∣

∣

= tan−1(sin x)

= sinh−1(tan x).

The Gudermannian function relates the circular trigonometric functions
with the hyperbolic functions without using complex numbers. The following
identities hold for the function:

sin(gd x) = tanh x csc(gd x) = coth x

cos(gd x) = sech x sec(gd x) = cosh x

tan(gd x) = sinh x cot(gd x) = csch x

tan
gd x

2
= tanh

x

2
.

The derivative of the function is

d

dx
gd x = sech x and

d

dx
gd−1 x = sec x,

and the integral

∫

gd x dx = −π

2
x + i[Li2(−iex) − Li2(iex)]

where Li2 x =
∑∞

k=1 xk/k2 is the dilogarithm.

The Gudermannian function is related to its own inverse in a non-trivial
way: gd ix = i gd−1 x. It is related to the exponential function via

ex = sec(gd x) + tan(gd x)

= tan(π
4 + 1

2 gd x)

=
1 + sin(gd x)

cos(gd x)
.

Appendix B. Miscellaneous 79

10

1 2 3 4

5

Γ(x)

−10

−1−2−3−4

−5

x

Figure B.2. Plot of the Γ-function.

B.2 The Γ-Function

Infinite Limit

The first definition, due to Euler, of Γ: C → C is

Γ(z) := lim
n→∞

1 · 2 · · · n

z(z + 1) · · · (z + n)
nz. (B.1)

Substituting z with z + 1 we have

Γ(z + 1) = lim
n→∞

1 · 2 · · · n

(z + 1)(z + 2) · · · (z + n)(z + n + 1)
nz+1

= lim
n→∞

nz

z + n + 1
· 1 · 2 · · · n

z(z + 1)(z + 2) · · · (z + n)
nz

= z lim
n→∞

n

z + n + 1
lim

n→∞

1 · 2 · · · n

z(z + 1)(z + 2) · · · (z + n)
nz

= zΓ(z) (B.2)

This is one of the basic identities of the Γ-function, and it is a difference

equation. It has been shown that the Γ-function of of a class of functions that
does not satisfy any differential equations with rational coefficients.

Lastly, we show the Γ-function is equivalent to the factorial function (up to
shifts). Compute Γ(1):

Γ(1) = lim
n→∞

1 · 2 · · · n

1 · 2 · · · n(n + 1)
n

= lim
n→∞

n

n + 1

= 1

80 B.2. The Γ-Function

Using this with (B.2), we have

Γ(2) = 1 · Γ(1) = 1

Γ(3) = 2 · Γ(2) = 2

...

Γ(n) = (n − 1) · · · 2 · 1 = (n − 1)!, n ∈ N.

Definite integral

Also due to Euler, we have

Γ(z) :=

∫ ∞

0

tz−1e−t dt, Re z > 0. (B.3)

We restrict z to avoid divergence of the integral. Many variations of (B.3)
appear, such as

Γ(z) = 2

∫ ∞

0

t2z−1et2

dt, Re z > 0 (B.4)

and

Γ(z) =

∫ 1

0

(

ln
1

t

)z−1

dt, Re z > 0. (B.5)

We see immediately that (B.4) is the Gauss error function, and can conclude

Γ(1
2) =

√
π.

Theorem B.1 The limit definition and definite integral definition are equiv-
alent.

Proof. To show that the integral and limit definitions are equivalent, consider
the functions

fn(z) =

∫ n

0

(

1 − t

n

)n

tz−1 dt, Re z > 0 (B.6)

for integral n > 0. Since limn→∞(1 − t/n)n ≡ e−t by definition, we conclude
that limn→∞ fn(z) = Γ(z) by (B.3).

Rewrite (B.6) with s = t/n for convenience:

fn(z)n−z =

∫ 1

0

(1 − s)nsz−1 ds. (B.7)

Using integration by parts, we have

fn(z)n−z =

[

(1 − s)n sz

z

]s=1

s=0

+
n

z

∫ 1

0

(1 − s)n−1sz d =
n

z

∫ 1

0

(1 − s)n−1sz ds.

(B.8)

Appendix B. Miscellaneous 81

Repeating this a total of n times gives

fn(z)n−z =
n(n − 1) · · · 21

z(z + 1) · · · (z + n)

∫ 1

0

sz+n−1 ds

=
1 · 2 · · · n

z(z + 1) · · · (z + n)

fn(z) =
1 · 2 · · · n

z(z + 1) · · · (z + n)
nz.

Letting n → ∞ gives us (B.1) identically, showing the definitions are equal. �

Infinite product

A third way of defining the Γ-function is via an infinite product due to Weier-
strass:

1

Γ(z)
:= zeγz

∞
∏

k=1

(

1 +
z

k

)

e−z/k (B.9)

where γ = 0.577216 . . . is the Euler-Mascheroni constant.

Theorem B.2 The infinite product definition is equivalent to the limit defi-
nition.

Proof. Rewrite (B.1) as

Γ(z) = lim
n→∞

1

z

n
∏

k=1

(

1 +
z

k

)−1

nz. (B.10)

Reciprocating and using n−z = e−z ln n, we have

1

Γ(z)
= z lim

n→∞
e−z ln n

n
∏

k=1

(

1 +
z

k

)

. (B.11)

Recall the nth harmonic number is Hn :=
∑n

j=1 j−1. Multiplying and
dividing by

eHnz =
n
∏

k=1

(

1 +
z

k

)

gives

1

Γ(z)
= z lim

n→∞
e(Hn−ln n)z

n
∏

k=1

(

1 +
z

k

)

e−z/k.

By definition,
γ = lim

n→∞
(Hn − ln n),

and thus we arrive at (B.9). �

82 B.3. The Lambert W -Function

1

1

2

2 3 4 5 6

Alternate branch

−1

−1

−2

−3
Principal branch

W (x)

x

Figure B.3. Plot of the Lambert W -function.

B.3 The Lambert W -Function

The Lambert W -function, after Johann Heinrich Lambert, is the inverse of
the complex map z 7→ zez. The function W (z) therefore satisfies the functional
relation

z = W (z)eW (z). (B.12)

If z ∈ R and we consider only the real values of W , then W has is defined
(one one branch) over [−1/e, ∞), where W (−1/e) is the minimum. This is the
principal branch, and is monotonically increasing. The other branch, which we
will denote W−1, is defined over [−1/e, 0) with limx→0 W−1(x) = −∞.

dW

dz
=

W (z)

z[1 + W (z)]
for z 6= −1/e (B.13)

∫

W (x) dx = x

[

W (x) +
1

W (x)
− 1

]

+ C (B.14)

Bibliography

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. Dover,
New York, ninth Dover printing, tenth GPO printing edition, 1964.

[CC93] D. V. Chudnovsky and G. V. Chudnovsky. Hypergeometric and modu-
lar function identities, and new rational approximations and continued
fraction expansions of classical constants and functions. Contemporary

Mathematics, 143:117–162, 1993. 5.3

[Dav86] J. H. Davenport. The Risch differential equation problem. SIAM

J. Comput., 15(4):903–918, 1986. 12.2

[Gau23] Carl Friedrich Gauss. Werke, chapter Disquisitiones Gen-

erales Circa Seriem Infinitam 1 + αβ
1.γ x + α(α+1)β(β+1)

1.2.γ(γ+1) xx +
α(α+1)(α+2)β(β+1)(β+2)

1.2.3.γ(γ+1)(γ+2) x3 +etc., pages 125–126. Köngliche Gesellschaft

der Wissenschaft, 1823. 11.1

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algo-

rithms for computer algebra. Kluwer Academic Publishers, 1992. 4.2

[Gos78] Ralph William Gosper, Jr. Decision Procedure for Indefinite Hyperge-
ometric Summation. Proceedings of the National Academy of Science,
75:40–42, January 1978.

[IEE85] IEEE. IEEE standard for binary floating-point arithmetic. ACM SIG-

PLAN Notices, 22(2):9–25, February 1985. 5.1

[Koe98] Wolfram Koepf. Hypergeometric Summation: An Algorithmic Ap-

proach to Summation and Special Function Identities. Vieweg Verlag,
1998.

[PWZ96] M. Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A = B.
A. K. Peters, Ltd., 1996. 1

[Ris69] Robert H. Risch. The problem of integration in finite terms. Transac-

tions of the American Mathematical Society, 139:167–189, 1969.

[Wei10] Eric W. Weisstein. Generalized Hypergeometric Function — from
Wolfram MathWorld, February 2010. 1

84 Bibliography

[X3J94] ANSI Subcommittee X3J13. Programming language—Common Lisp.
Technical Report ANSI INCITS 226-1994 (R2004), American National
Standards Institute, Inc., 1994. 4.2

Index

Symbols
n-tuple . 12
nth harmonic number 81

A
abelian . 31
absolute value 50
accessor functions 12
adjunction . 39
algebraic . 41
algebraic extension 41
antidifference56
arbitrary precision arithmetic . . .24
associate classes 33
associates . 33

B
base .25
base types .11
bignum. .24
binary relation 17
binary splitting26

C
canonical form 19
canonizing function.20
commutative group31
commutative ring.31
constant . 7
constant field65
constructions . 8
constructor . 8

D
data-level equality 18
degree .39
dense. .55
dependent types 14
differential field 65
differential operator 65
dilogarithm. .78
discrete operator 55
divides . 32
divisor . 32
domain . 7

E
elemenetary function 65
elementary field 65
equivalence class 18
equivalence relation 18
Euclidean domain 36
exponent . 23
extension field 39

F
field . 32
field extension 39
form-level equality.18
forward difference 55
forward partial difference 55
function type 12

G
GCD . 32

86 Index

generalized hypergeometric function
54

generalized hypergeometric series53
geometric series 53
Gosper’s algorithm 57
greatest common divisor 32
group . 31
Gudermannian function 77

H
hypergeometric 53

I
identities . 20
identity element 31
indefinite integration 66
indefinite sum 62
indefinite summation 56
indefinite summation problem . . 56
integral domain 31
intermediate field.39
inverse . 31
inverse Gudermannian function . 78
invertible . 33
irreducible. .35

K
kernel . 5

L
Lambert W -function 82
LCM . 32
least common multiple 32
leaves . 7
level-0 .19
level-1 .19
level-2 .19
limb. .25
list . 13

M

mantissa . 23
map . 8
mapping. .8
mathematical equality 18
minimal polynomial 47
multiple . 32
multiple precision arithmetic . . . 24

N
negative elements 49
normal form.21
normal part . 34
normalizing function 21
nullary . 7

O
object-level equality 18
ordered field.49

P
parametric type 14
Pochhammer symbol 53
positive elements 49
prime . 35
primitive element.39
product type 12
purely transcendental field.65

Q
quotient . 36

R
radix . 25
radix form. .24
real algebraic numbers.40
recursive type 13
reduced . 67
relatively prime 35
resultant . 45
ring . 31
Risch algorithm 66

Index 87

Risch differential equation 67
rising factorial53
rising product 53
root . 40

S
shift operator 59
sign . 50
significand. .23
stem . 7
strict linear ordering.49
sub-field .39
substitution . 9
subtype . 13
sum type . 13
super type. .13
suptype . 13
Sylvester matrix45
symbol . 7

T
telescoping . 56
term rewriting 5
transcendental.41
transcendental extension 41
type constructor13
type function operator.12
type product operator 12
type tags . 13

U
UFD . 35
unique factorization domain 35
unit . 33
unit normal . 33
unit normal factorization 35
unit normal GCD 33
unit normal LCM 34
unit part . 34

V
values . 7

variable . 7

Z
zero . 40

	Contents
	I The Algebraic Paradigm
	1 The Symbolic and Algebraic Paradigm
	1.1 Introduction

	2 Structure of Algebraic Programs
	2.1 Symbols, Variables, and Values
	2.2 Expressions
	2.3 Mappings and Constructions
	2.4 Substitution Semantics

	3 Values and Types
	3.1 A Discourse on Types

	II Computer Algebra Fundamentals
	4 Relations, Identities, Forms
	4.1 Relationships Between Values
	4.2 Equality in Computer Algebra
	4.3 Canonical Forms
	4.4 Normal Forms

	5 Arbitrary Precision Arithmetic
	5.1 Introduction
	5.2 Computer Representation
	5.3 High-Precision Evaluation of Hypergeometric Series

	III Abstract Algebra
	6 Basic Structures and Divisibility
	6.1 Algebraic Structures
	6.2 Divisibility and Factorization

	7 Polynomial, Rational, and Series Structures
	7.1 Univariate Polynomial Domains

	8 Field Extensions
	8.1 Algebraic and Transcendental Extensions

	IV Polynomials
	9 Polynomial Algorithms
	9.1 Sylvester Matrices and Resultants
	9.2 Polynomial Roots and Algebraic Numbers

	10 Algebra In the Reals
	10.1 Introduction
	10.2 Real Closed Fields

	V Series
	11 Hypergeometric Series
	11.1 Hypergeometric Series and Functions
	11.2 Series as Hypergeometric Functions
	11.3 Discrete Operators and The Summation Problem
	11.4 Gosper's Algorithm for Indefinite Summation
	11.5 Zeilberger's Algorithm for Definite Summation

	VI Integration
	12 Risch Integration
	12.1 Preliminaries
	12.2 Risch Algorithm: Input

	Appendix
	A Function Tables
	A.1 Elementary Functions
	A.2 Gamma and Friends
	A.3 Hypergeometric Identities
	A.4 Miscellaneous

	B Miscellaneous
	B.1 The Gudermannian Function
	B.2 The -Function
	B.3 The Lambert W-Function

	Bibliography
	Index

