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Abstract

“Robust standard errors” are used in a vast array of scholarship to correct standard
errors for model misspecification. However, when misspecification is bad enough
to make classical and robust standard errors diverge, assuming that it is nevertheless
not so bad as to bias everything else requires considerable optimism. And even if
the optimism is warranted, settling for a misspecified model, with or without robust
standard errors, will still bias estimators of all but a few quantities of interest. Even
though this message is well known to methodologists, it has failed to reach most ap-
plied researchers. The resulting cavernous gap between theory and practice suggests
that considerable gains in applied statistics may be possible. We seek to help applied
researchers realize these gains via an alternative perspective that offers a productive
way to use robust standard errors; a new general and easier-to-use “generalized infor-
mation matrix test” statistic; and practical illustrations via simulations and real ex-
amples from published research. Instead of jettisoning this extremely popular tool,
as some suggest, we show how robust and classical standard error differences can
provide effective clues about model misspecification, likely biases, and a guide to
more reliable inferences.
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1 Introduction

The various “robust” techniques for estimating standard errors under model misspecifi-

cation are extremely widely used. Among all articles between 2009 and 2012 that used

some type of regression analysis published in the American Political Science Review, 66%

reported robust standard errors. In International Organization, the figure is 73%, and in

American Journal of Political Science, it is 45%. Across all academic fields, Google

Scholar finds 72,300 articles using “robust standard errors,” and about 1,000 more each

month.1

Robust standard errors have a crucial role in statistical theory in a world where models

are almost never exactly right. They can be used in practice to fix a specific part of

model estimation, when special circumstances hold. However, they are often used in

applications as a default setting, without justification (sometimes even as an effort to

inoculate oneself from criticism), and without regard to the serious consequences their

use implies about the likely misspecification in rest of one’s model. Moreover, a model

for which robust and classical standard error estimates differ is direct confirmation of

misspecification that extends beyond what that the procedure corrects, which means that

some estimates drawn from it will be biased — often in a way that can be fixed but not

by using robust standard errors. Drawing valid substantive claims from a model that

evidence in the data conclusively demonstrates is at least partly misspecified is possible

in specialized circumstances, but only with considerable justification.

The problem at hand is not merely a lost opportunity to slightly improve inferences.

And this is not an example of the literature failing to live up to the high standards of

abstract statistical theory (or the methodological intelligentsia), or where fixing the prob-

lem would only occasionally make a practical difference. Instead, it appears that a large

fraction of the articles published across fields is based on models that have levels of mis-

specification that are detectable even in their own data and without new assumptions. For
1We conducted the search on 5/3/14 with the term “robust standard errors” (with the quotation

marks). This figure is an underestimate since it does not count other names such as White, Huber-White,

Eicker, Eicker-White, clustered, cluster-robust, panel-corrected, sandwich, heteroskedasticity-consistent,

autocorrelation-consistent, etc.
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every one of these articles, at least some quantity that could be estimated is biased. Ex-

actly how important the biases are in any one article from a substantive point of view is an

open question, but scholarly articles should be based on evidence rather than optimism.

Consider a simple and well-known example, in the best case for robust standard er-

rors: The maximum likelihood estimator of the coefficients in an assumed homoskedastic

linear-normal regression model can be consistent and unbiased (albeit inefficient) even if

the data generation process is actually heteroskedastic. And although classical standard

errors will be biased in this circumstance, robust standard errors are consistent so long as

the other modeling assumptions are correct (i.e., even if the stochastic component and its

variance function are wrong).2

Thus, the promise of this technique is substantial. However, along with the benefits

come some substantial costs. Even if the functional form, independence, and other spec-

ification assumptions of this regression are correct, only certain quantities of interest can

be consistently estimated. For example, if the dependent variable is the Democratic pro-

portion of the two-party vote, we can consistently estimate a regression coefficient, but

not the probability that the Democrat wins, the variation in vote outcome, risk ratios, vote

predictions with confidence intervals, or other quantities. In general, computing quantities

of interest from a model, such as by simulation, requires not only valid point estimates

and a variance matrix, but also the veracity of the model’s complete stochastic component

(King, Tomz and Wittenberg 2000, Imai, King and Lau 2008); if the specified model is

wrong, or if the author has given up the claim to correct specification by using robust

standard errors, valid estimators of these and other quantities become unavailable.

Fortunately, a simple, easy to understand, and more powerful alternative approach to

marshaling robust standard errors for real applications is nevertheless available: If your

robust and classical standard errors differ, follow venerable best practices by using well

known model diagnostics to evaluate and then to respecify your statistical model. If these

procedures are successful, so that the model now fits the data and all available observ-

2The term “consistent standard errors” is technically a misnomer because as N → ∞, the variance

converges to zero. However, we follow standard practice in the technical literature by defining a variance

estimator to be consistent when the variance of
√
N(β̂ − β) rather than β̂ is statistically consistent.
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able implications of the model specification are consistent with the facts, then classical

and robust standard error estimates will be approximately the same. If a subsequent com-

parison indicates that they differ, then revisit the diagnostics, respecify the model, and

try again. Following this advice is straightforward, consistent with longstanding method-

ological recommendations, and, as we illustrate in real examples from published work,

can dramatically change substantive conclusions. It also makes good use of the appropri-

ate theory and practice of robust standard errors.

To be clear, we are not recommending that scholars stop using robust standard errors

and switch to classical standard errors. Nor do we offer a set of rules by which one can

choose when to present each type of uncertainty estimate. Instead, our recommendation

— consistent with best practices in the methodological literature — is to conduct appro-

priate diagnostic procedures and specify your model so that the choice between the two

becomes irrelevant.3

In applied research, the primary difficulty following the advice the methodological

community recommends is understanding when the difference between classical and ro-

bust standard errors is large enough to be worth doing something about. The purpose

of this paper is to offer the exposition, intuition, tests, and procedures that can span the

3Our work only applies to model-based inference which, although the dominant practice, is not the only

theory of inference. Indeed, some researchers forgo models and narrow their inferences to certain quantities

that, under Fisher (1935), Neyman (1923), or other theories, can be estimated without requiring the as-

sumptions of a fully specified model (e.g., a sample mean gives an unbiased estimate of a population mean

without a distributional assumption). In these approaches without a model, classical standard errors are

not defined, and the correct variance of the non-model based estimator coincides with the robust variance.

For these approaches, our recommended comparison between robust and classical standard errors does not

apply.

The popularity of model-based inference may stem from the fact that models are often the easiest (or

the only) practical way to generate valid estimators of some quantities. Likelihood or Bayesian theories of

inference can be applied to an extremely wide range of inferences and offers a simple, standard approach

to creating estimators (King 1989a). The alternative approach that led to robust standard errors begins with

models but allow for valid inference under certain very specific types of misspecification and for only some

quantities of interest. It explicitly gives up the ability to compute most quantities from the model in return

for the possibility of valid inference for some (Eicker 1963, Huber 1967, White 1996).
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divide between theory and applied work. We begin with a definition of robust standard

errors in Section 2 and a summary of their costs and benefits in Section 3. We then intro-

duce existing formal tests of misspecification, including our extensions and generations

in Section 4. Then, for three important published analyses with applications using robust

standard errors, we show how our proposed procedures and tests can reveal problems,

how to respecify a model to bring robust and classical standard errors more in line (thus

reducing misspecification), how confidence in the new analysis can increase, and how

substantive conclusions can sometimes drastically change. To provide intuition, we intro-

duce the concepts underlying the examples first via simulated datasets in Section 5 and

then via replications of the original data from the published articles in Section 6. Section

7 concludes.

2 What are Robust Standard Errors?

We first define robust standard errors in the context of a linear-normal regression model

with possible misspecification in the variance function or conditional expectation. The

analytical expressions possible in this simple case offer considerable intuition. We extend

these basic ideas to any maximum likelihood models and then to more complicated forms

of misspecification.

2.1 Linear Models

We begin with a simple linear-normal regression model. Let Y denote an n × 1 vector

of random variables and X a fixed n× k matrix each column of which is an explanatory

variable (the first usually being a column of ones). Then the stochastic component of the

model is normal with n × 1 mean vector µ and n × n positive definite variance matrix

V (Y |X) ≡ Σ: Y ∼ N(µ,Σ). Throughout we denote the systematic component as

E(Y |X) ≡ µ = Xβ, for k × 1 vector of effect parameters β. For this exposition, we
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focus on the variance matrix which, thus far, has considerable flexibility:

Σ =


σ2
11 σ2

12 . . . σ2
1n

σ2
21 σ2

22 . . . σ2
2n

...
... . . . ...

σ2
n1 σ2

n2 . . . σ2
nn

 (1)

If we rule out autocorrelation by assuming independence between Yi and Yj for all i 6= j

after conditioning on X , then we specialize the variance matrix to

Σ1 =


σ2
11 0 . . . 0
0 σ2

22 . . . 0
...

... . . . ...
0 0 . . . σ2

nn

 (2)

Finally, if we also assume homoskedasticity, we are left with the classical linear-

normal regression model (Goldberger 1991). To do this, we set the variance matrix to

V (Y |X) = σ2I , where σ2 is a scalar and I is an n×n identity matrix. That is, we restrict

Equation 2 to Σ = σ2I or σ2
11 = σ2

22 = · · · = σ2
nn. (With this restriction, we could

rewrite the entire model in the simpler scalar form as Yi ∼ N(Xiβ, σ
2) along with an

independence (no autocorrelation) assumption.)

2.2 Estimators

Let y be an n × 1 observed outcome variable, a realization of Y from the model with

V (Y |X) = σ2I . Then the MLE for β is the familiar least squares solution b = Ay,

where A = Q−1X ′, Q = X ′X , with variance V (b) = V (Ay) = AV (y)A′ = Aσ2IA′ =

σ2Q−1. It is also well know that the MLE is normal in repeated samples. Thus, b|X ∼

N(β, σ2Q−1).

We can estimate σ2 with its MLE σ̂2 = e′e/n (or small sample approximation) and

where e = y − Xb is an n × 1 vector of residuals. The classical standard errors are the

square root of the diagonal elements of the estimate of V (b).

For illustration, consider estimates of two quantities of interest that may be estimated

from this model. First is β, which under certain circumstances could include a causal

effect. For the second, suppose the outcome variable is the Democratic proportion of

the two-party vote, and we are interested in, for given values of X which we denote x,
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the probability that the Democrat wins: Pr(Y > 0.5|X = x). This is straightforward

to calculate analytically under this simple model, but for intuition in the more general

case, consider how we compute this quantity by simulation. First, simulate estimation

uncertainty by drawing β and σ2 from their distributions (or in the more general case,

for simplicity, from their asymptotic normal approximations), insert the simulated values,

which we denote by adding tildes, into the stochastic component,N(Xβ̃, σ̃2I), and finally

add fundamental uncertainty by drawing Ỹ from it. Then, to compute our estimate of

Pr(Y > 0.5|X = x) by simulation, repeat this procedure a large number of times and

count the proportion of times we observe Ỹ > 0.5. A key point is that completing this

procedure requires all parts of the full model.

2.3 Variance Function Misspecification

Suppose now a researcher uses the classical linear-normal regression model estimation

procedure assuming homoskedasticity, but with data generated from the heteroskedastic

model, that is with V (Y |X) = Σ1 from Equation 2. In this situation, b is an unbiased

estimator of β. If the heteroskedasticity is a function of X , then b is still unbiased but

inefficient and with a classical variance estimator that is inconsistent because V (b) =

V (Ay) = AV (y)A′ = AΣ1A
′ 6= σ2Q−1. As importantly, and regardless of whether the

heteroskedasticity is a function of X , other quantities of interest from the same model

such as Pr(Y > 0.5|X = x) can be very seriously biased. This last fact is not widely

discussed in regression textbooks but can be crucial in applications.

Robust standard errors of course only try to fix the standard error inconsistency. Fixing

this inconsistency seems difficult because, although A is known, Σ under Equation 2 has

n elements and so it was long thought that consistent estimation would be impossible.

In other words, for an estimator to be consistent (i.e., for the sampling distribution of

an estimator to collapse to a spike over the truth as n grows), more information must be

included in the estimator as n increases, but if the number of quantities to be estimated

increases as fast as the sample size, the distribution never collapses.

The solution to the inconsistency problem is technical, but we can give an intuitive

explanation. First define a k × k matrix G = X ′Σ1X and then rewrite the variance as
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V (b) = AΣ1A
′ = Q−1GQ−1 (the symmetric mathematical form of which accounts for its

“sandwich estimator” nickname). Interestingly, even though Σ1 has n unknown elements,

and so increases with the sample size, G remains a k×k matrix as n grows. Thus, we can

replace σ2
i with its inconsistent but unbiased estimator, e2i , and we have a new consistent

estimator for the variance of b under either type of misspecification (White 1980,p.820).

Crucially for our purposes, this same result provides a convenient test for heteroskedas-

ticity: Run least squares, compare the robust and classical standard errors, and see if they

differ. Our preference is for this type of direct comparison, since standard errors are on

the scale of the quantity being estimated and so the extent of differences can be judged

substantively.4 However, researchers may also wish to use formal tests that compare the

entire classical and robust variance matrices, as we discuss more in detail below (White

1980, Breusch and Pagan 1979, Koenker 1981, Koenker and Bassett 1982).

2.4 Other Types of Misspecification

We now go another step and allow for an incorrect variance function, conditional expec-

tation function, or distributional assumption. In this general situation, instead of using

b to estimate β in the true conditional expectation function E(Y |X) = Xβ, we treat

this function as unknown and define our estimand to be the “best linear predictor” —

the best linear approximation to the true conditional expectation function (see Goldberger

1991, Huber 1967). In any or all of these types of misspecification, b still exists and

has a variance, but differs from the classical variance for the same reason as above:

V (b) = V (Ay) = AV (y)A′ = AΣ1A
′ 6= σ2Q−1, resulting in the classical standard

errors being inconsistent. So long as no autocorrelation is induced, we can still use the

same estimator as in Section 2.3 to produce a consistent estimate of V (b). (For intuition

4Judging whether the difference between robust and classical standard errors is substantially meaningful

is not related to whether using one versus the other changes the “significance” of the coefficient of interest;

indeed this significance is not even necessarily related to whether there exists a statistically significant

difference between classical and robust standard errors. Instead, researchers should focus on how much

the uncertainty estimate (standard error, implied confidence interval, etc.) is changing relative to the metric

implied by the parameter or other quantity of interest being estimated; usually this is directly related to the

metric in which the outcome variable is measured and so should be meaningful.
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as to why an incorrect functional form can sometimes show up as heteroskedasticity, con-

sider what an omitted variable can do to the residuals: unexplained variation goes into the

variance term, which needn’t have a constant effect.)

Numerous generalizations of robust standard errors have been proposed for many dif-

ferent types of misspecification, and for which the intuition offered above still applies.

Versions of robust standard errors have been designed for data that are collected in clus-

ters (Arellano 1987), with serial correlation (Bertrand, Duflo and Mullainathan 2004),

from time-series cross-sectional (or panel) data (Beck and Katz 1995), via time series

cross-sections with fixed effects and inter-temporal correlation (Kiefer 1980), with both

heteroskedasticity and autocorrelation (Newey and West 1987), with spatial correlation

(Driscoll and Kraay 1998), or which estimate sample rather than population variance

quantities (Abadie, Imbens and Zheng 2011). These different versions of robust stan-

dard errors optimize variance estimation for the special cases to which they apply. They

are also useful for exposing the particular types of misspecification that may be present

(Petersen 2009).

2.5 General Maximum Likelihood Models

We now generalize the calculations above designed for the linear-normal case to any

linear or nonlinear maximum likelihood model. If f(yi|β) is a density describing the

data generating process for an observation, and we assume independence across obser-

vations, then the likelihood function is
∏n

i=1 f(Yi|β) and the log-likelihood is L(β) =∑n
i=1 log f(Yi|β).

The generalization of the White estimator requires the first and second derivatives of

the log-likelihood. The bread of the sandwich estimator, Q, is now the hessian Q =

L
′′
(β) =

∑n
i=1−

δ2 log f(yi|β)
δβ2

j
. The meat of the sandwich, G, is the square of the gradient

G =cov[L
′
(β)] =

∑n
i=1

[
δ log f(yi|β)

δβj

]T [
δ log f(yi|β)

δβj

]
. We then write the robust variance

matrix as: V (b) = Q−1GQ−1. All other results apply directly.
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3 Costs and Benefits of Robust Estimation under Mis-
specification

3.1 Uses

Models are sometimes useful but almost never exactly correct, and so working out the

theoretical implications for when our estimators still apply is fundamental to the massive

multi-disciplinary project of statistical model building. In applications where using a fully

specified model leads to unacceptable levels of model dependence and the assumptions

necessary for robust standard errors to work do apply, they can be of considerable value

(Bertrand, Duflo and Mullainathan 2004).

However, the more common situation for applied researchers is importantly different.

If we are aware that a model is misspecified in one of the ways for which researchers have

developed an appropriate robust standard error, then in most situations the researcher

should use that information to try to improve the statistical model (Leamer 2010). Only

in rare situations does it make sense to prefer a misspecified model, and so if information

exists to improve the chosen model, we should take advantage of it. If insufficient time

is available, then robust standard errors may be useful as a shortcut to some information,

albeit under greater (model misspecification) uncertainty than necessary.

Consider first the best case scenario where the model is misspecified enough to make

robust and classical standard errors diverge but not so much as to bias the point esti-

mates. Suppose also that we can somehow make the case to our readers that we are in this

Goldilocks region so that they should then trust the estimates that can be made. In this

situation, the point estimator is inefficient. In many situations, inefficiency will be bad

enough that improving the model by changing the variance function will be preferable

(Moulton 1986, Green and Vavreck 2008, Arceneaux and Nickerson 2009). Because our

point estimator is asymptotically normal, we can estimate β or any deterministic function

of it. This is sometimes useful, such as when a linear regression coefficient coincides with

a causal effect, or when a nonlinear regression coefficient is transformed into the expected

value of the outcome variable.

However, because the full stochastic component of the model is ignored by this tech-
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nique, any quantity based on the predictive distribution of the outcome variable cannot

be validly estimated. For example, we would not be able to obtain unbiased or consis-

tent estimates of the probability that the Democrat will win, confidence intervals on vote

forecasts or counterfactual predictions, or most other related quantities. Since predictive

distributions of the values of the outcome variable are not available, we cannot use most

of the usual diagnostic procedures, such as posterior predictive checks, to validate that

we are indeed in the Goldilocks region or otherwise provide evidence that our modeling

strategy is appropriate.

To be more precise, consider a linear-normal regression model specification where ro-

bust and classical standard errors differ, meaning that the model is misspecified. Suppose

that we are in the best case scenerio where β̂ is unbiased, and the robust estimator of the

variance matrix is consistent. Now suppose we need to simulate from the model, as in

King, Tomz and Wittenberg (2000), in order to calculate some quantity of interest based

on the outcome, such as the probability that the Democrat wins. To do this, we need (1)

random draws of the parameters from their sampling distribution reflecting estimation un-

certainty (for example β̃ ∼ N(θ̂, V̂ (θ̂)), which is no problem), and (2) random draws of

the outcome variable from the model. If the model were correct, this second step would

be:

Ỹ ∼ N(Xβ̃, σ̃2) (3)

where β̃, σ̃2, and Ỹ denote simulated values. However, although step (1) still works under

misspecification, step (2) and Equation 3 do not apply. For a simple example of this,

suppose X is univariate and dichtomous and σ2 is 1 for X = 0 and 100 for X = 1, or

σ2
i = 100·Xi. Clearly in this case, it would make little sense to draw Y from a distribution

with any one value of σ2. If we were computing the probability that the Democrat wins,

we would need Pr(Y > 0.5|X) =
∫ 1

0.5
N(y|Xβ̃, 100 ·X)dy. Even if for some reason we

could believe that the normality assumption still applies under misspecification, using any

fixed value of σ2 to approximate 100 ·Xi would be a disaster for the substantive purpose at

hand since it would yield the wrong value of the probability for some or all observations.

Under standard model diagnostic checking procedures, empirical tests are available
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for questions like these; when using robust standard errors, we have the advantage of not

having to specify the entire model, but we are left having to defend unverifiable theoretical

assumptions. To be sure, these assumptions are sometimes appropriate, although they are

difficult to verify and so must be considered a last resort, not a first line of defense against

reviewers.

In general, if the robust and classical standard errors differ, the cause could be misspec-

ification of the conditional expectation function, such as omitted variable bias that would

invalidate all relevant point estimates, or it could be due to fundamental heteroskedas-

ticity that will make some point estimates inefficient but not biased, and others biased.

One reaction some have in this situation is to conclude that learning almost anything with

or without robust standard errors is hopeless (Freedman 2006). We suggest instead that

researchers take the longstanding advice in most textbooks and conduct appropriate diag-

nostic tests, respecify the model, and try to fix the problem (Leamer 2010). For example,

some authors have avoided misspecification by modeling dependence structures, and en-

suring that their fully specified models has observable implications consistent with their

data (Hoff and Ward 2004, Gartzke and Gleditsch 2008). But however one proceeds, the

divergence of the two types of standard errors is an easy-to-calculate clue about the verac-

ity of one’s entire inferential procedure, and so it should not be skipped, assumed away,

or used without comparison to classical standard errors.

3.2 Limitations

Finally, the difference between robust and classical standard errors provides an important

clue but cannot reveal all possible problems. No one type of robust standard errors is

consistent under all types of misspecification, and so no one such difference is a diagnostic

for all types of misspecification. Many different tests and diagnostic procedures should be

used to evaluate whether the assumptions of the model are consistent with the data. And

even then, omitted variables that are unrelated to those included, but still important, can

bias estimates in ways that no robust estimator can pick up. Indeed, this approach does

not address problems of endogeneity, measurement error, missing data, and others. As

such, any inference must always rely on some theoretical understanding. Nevertheless,
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that does not absolve researchers from checking whatever can be checked empirically by

studying the difference between robust and classical standard errors and other means.

In addition, no difference may exist between robust and classical standard error es-

timates, even when the model is misspecified. For example, the White (1980) test for

heteroskedasciticy and the Breusch and Pagan (1979) Langrange Multiplier test for het-

eroskedasticity may be less powerful when the errors are not normal (Ali and Giaccotto

1984). While methods have been offered to increase the power of the test (Koenker 1981,

Koenker and Bassett 1982) they are not powerful in the presence of every possible dis-

tribution of errors. Other issues that may alter the properties of robust standard errors

include small samples, especially for grouped data (Long and Ervin 2000, Donald and

Lang 2007, Wooldridge 2003), and certain types of correlations among the errors (Ali and

Giaccotto 1984, Caceres and Nielsen 2006).

4 A Generalized Information Matrix Test

For some purposes, a more formal test, leading to clear decision rules for the difference be-

tween robust and classical standard errors, may be useful. To compute this test, we would

need a statistic and corresponding null distribution to describe the difference between the

robust and classical variance matrices. This is the foundation for the information matrix

test proposed by White (1984) for the linear case, and extended in different ways with

different tests to other parametric models by others (Breusch and Pagan 1979, Koenker

1981, Koenker and Bassett 1982). In this section, we develop a single “generalized in-

formation matrix” (GIM) test that applies across all types of specific models and works

much better in small, finite samples.

To begin, note that the downside of the original information matrix test is that its

asymptotic distribution poorly approximates its finite sample distribution (Taylor 1987,

Orme 1990, Chesher and Spady 1991, Davidson and MacKinnon 1992). Since the statistic

is based on two high-dimensional variance matrices, a very large sample size is usually

necessary for the asymptotics to provide a reasonable approximation. Moreover, while

this test can technically be applied to any parametric model, the efficient form of the test is
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different for each individual model, resulting in complexity for the user (Lancaster 1984,

Orme 1988). As a result, general code for a diverse array of models is not straightforward

to create and does not presently exist in a unified form in any commonly used software.

The literature thus offers well developed theory but nevertheless a difficult path for

applied researchers. Our GIM test is designed to meet the needs of applied statistics as a

single, simple, and formal measure of the difference between robust and classical standard

errors that is easy to apply, does not rely on asymptotics, and works for any parametric

model.

We first follow Dhaene and Hoorelbeke (2004) by using a parametric bootstrap for the

variance matrix of the test statistic (see Section 4.1). This allows for better small sample

performance, and easy adaptability to any parametric model. Then, unlike previous ap-

proaches, we extend this approach to clustered and time-series data, which are prevalent

in many fields. This allows users to compare and test for classical versus cluster or time-

series robust variance matrices (see Section 4.2). This extension makes it possible for us

to write easy-to-use, open source, R code that implements this test, and which we make

available as a companion to this paper.

4.1 An Introduction to Information Matrix Tests

For any maximum likelihood model, the classic variance matrix is the negative inverse

of the Hessian matrix, VC(b) = −Q−1. Since the robust variance matrix is defined as

VR(b) = Q−1GQ−1, where G is the square of the gradient, we have VC(b) = VR(b) when

G = −Q. A test of model misspecification then comes by evaluating E(G + Q) = 0,

which is true under the model.

To derive the test statistic, first, for observations y1 . . . yn, let D̂ij = 1√
n

∑n
i=1(Ĝij +

Q̂ij). Then stack the lower triangular part of the components into a vector d̂. And finally,

ω = d̂′V̂ −1d̂ is asymptotically χ2
q distributed, where q is the length of d̂; V̂ is an asymptotic

variance matrix, with a form derived by White (1984), but many modifications of it have

been proposed in the literature for different assumptions and models.

We derive the GIM test by estimating V with a parametric bootstrap, as in Dhaene

and Hoorelbeke (2004). To do this, we first estimate the MLE β̂ and test statistic d̂ for the
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data and the model we are estimating. We then draw nb samples from the assumed data

generating process, f(yi|β̂). For this new sample, we calculate the newly updated MLE β̂b

and the bootstrapped test statistic d̂b. We repeat this B times to generate B test statistics.

Last, we estimate V̂B with V̂B = 1
B−1

∑B
b=1(d̂b − d̄)(d̂b − d̄)′, where d̄ = 1

B

∑B
b=1 d̂.

This leads to the GIM test statistic ωB =
~̂
d′V̂B

−1 ~̂
d, which has a Hotelling’s T 2 distri-

bution and can be used to compute p-values directly. We use bootstrapped critical values

can be used to determine the signficance of the test.

4.2 The GIM Test for Clustered Standard Errors

We now extend the parametric bootstrap approach of Dhaene and Hoorelbeke (2004) to

accommodate data with clustering and time-dependence, so that GIM can test for the

difference between classical and either cluster-robust or autocorrelation-robust variance

matrices. This development then makes it possible to use this test in the vast majority of

applications in the social sciences.

By the same logic as the classic information matrix test, if clustering and time-dependence

is well modeled, so that the residuals have no clustering or time series pattern, then the

classical and cluster- or autocorrelation-robust variance matrices should be approximately

the same. We thus use the comparison between the two estimators to test for model mis-

specification. To do this, we first estimate the MLE β̂ and calculate the hessian Q. We

then estimate G based on the type of misspecification we would like to test for. In the

cluster-robust case, Gc is estimated by summing first within clusters and then over the

clusters.

Gc =

 n∑
j=1

∑
i∈cj

gi(Yi|θ̂)Tgi(Yi|θ̂)

 ,
where c is the cluster index. In the autocorrelation-robust case, Ga adds a weight to each

square of the gradient, depending on the lag the modeler expects to exist in the data:

Ga =
1

n

n∑
i=1

n∑
j=1

w|i−j|ĝiĝj.

where ĝ is the estimated gradient. The equation for the weight vector w depends on

what type of autocorrelation-robust variance matrix the researcher wants to estimate. For
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example, Newey and West (1987) use a weight vector 1 − l
L+1

, where l is the lag i − j

and L is the maximum lag.

Once the appropriate choice of G has been made and it is calculated from the data and

specified model, we calculate the test statistic:

D̂ij =
1√
n

n∑
i=1

(Ĝij + Q̂ij).

To bootstrap the variance matrix for this test statistic, we draw nb samples from the

data generating process of the model, f(yi|β̂). For each new sample, we calculate the new

MLE β̂b and the bootstrapped test statistic D̂b. Last, we estimate V̂B with

V̂B =
1

B − 1

B∑
b=1

(D̂b − D̄)(D̂b − D̄)′

where D̄ = 1
B

∑B
b=1 D̂b.

Finally, this leads to our GIM test statistic ωB = D̂′V̂B
−1
D̂, from which we calculate

p-values by bootstrapping.

4.3 Verification

We now evaluate the GIM test by conducting formal Monte Carlo simulations. To do this,

we first simulate data from a univariate normal distribution with mean µ = 5Z +X +Z2

and variance 1. (We draw covarates X and Z from a bivariate normal with means 8 and 5,

variances 1, and correlation 0.5). We then draw 100 samples with n = 200 from this data

generating process, run the GIM test on each, and obtain a p-value. Since the model is

correctly specified, a formal indication of whether the GIM test is working properly would

be that the computed p-values are uniformly distributed. Figure 1 graphs the cumulative

distribution of these results (plotting the percent of p-values less than each given value

of the probability). The uniform distribution of p-values does indeed show up in the

simulations and is reflected in the figure by the blue line closely approximating the 45

degree line.

We then evaluate the GIM test further by introducing different levels of misspecifica-

tion into the model and observing whether the test deviates as it should from uniform. We

create these misspecifications by taking the dependent variable to the power of ν before
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Figure 1: Cumulative distribution of p-values from the GIM test for correct specified sets,
and from increasingly misspecified data sets.

running the GIM test. In this simulation, larger values of Y will have a higher variance.

We run the GIM test for ν = {1, 3, 4, 5} and report results in Figure 1 (in blue, green, or-

ange, and brown, respectively). All misspecified simulations ν > 1 have p-values above

the 45 degree line, indicating that the p-values are not uniformly distributed, and indeed

as expected ν grows the results are skewed more toward lower, less uniform, p-values.

Higher levels of misspecification have a higher p-value line because the test has more

power to detect this misspecification.

5 Simulations

Although our GIM test offers a formal evaluation and decision rule for the difference

between robust and classical standard errors, we now develop some intuition by showing

how the GIM test compares to the rule-of-thumb difference between robust and classical

standard errors, using simulations with various misspecified functional forms.
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For intuition, we offer here three Monte Carlo experiments of the general analytical

results summarized in Section 2. We set up these experiments to highlight common im-

portant issues, and to also presage, and thus parallel, the empirical data we analyze, and

articles we replicate, in Section 6.

5.1 Incorrect Distributional Assumptions

In this first simulation, we use a linear-normal model to analyze data from a skewed,

non-normal process, and show how the more data deviate from the normal, the larger the

differences between robust and classical standard errors and, simultaneously, the more

our GIM test reveals a problem. Either way of looking at the results should clearly alert

the investigator to a problem.

To be more specific, we draw a random variable from a normal distribution with mean

µ = 5Z + X + X2. We then create the dependent variable by taking its power to a fixed

parameter ν. For larger values of the exponent, the distribution will be highly skewed,

with a long right tail.

For n = 1, 000, we draw the two explanatory variables X and Z from a bivariate

normal with mean parameters 8 and 5, variances 1, and correlation 0.5. Then, for each

value of the parameter ν from 1 to 3 (in increments of 0.002), we draw a normal random

variable M from a Normal distribution with mean µ = 5Z + X + X2, variance 1, and

then create Y = Mν . We then run a linear regression of Y on X , X2, and Z and calculate

robust and classical standard errors.

Figure 2 then gives results for each different degree of misspecification, as indicated

by the value of ν on the horizontal axis plotted by the difference between the classical

and robust standard error for the coefficient on the X2 term (at the bottom of the figure

on the vertical axis) and for the percent of GIM tests rejected (in the top portion of the

figure). As is evident, the difference between robust and classical standard errors become

dramatically different as the model becomes more misspecified (i.e., for larger values of

ν, to the right of the graph).
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Figure 2: Incorrect Distributional Form Simulation: robust and classical standard errors
diverge (on the vertical axis, bottom), and the GIM test rejects more (vertical axis, top),
when the degree of misspecification is larger (as indicated by the value of ν on the hori-
zontal axis).

5.2 Incorrect Functional Forms

We now study what happens when the systematic component of the normal model is mis-

specified. To do this, we generate the data from a linear-normal model with E(Yi|X) ≡

µi = β0 + β1Zi + β2Xi + β3X
2
i , but where the analyst omits X2

i , effectively setting

β3 = 0. The amount of misspecification is thus indicated by the value of β3 used to

generate the data. For each data set, we calculate the difference between the robust and

classical standard errors, as well as the GIM test, and show how both clearly reveal the

misspecification.

For n = 1, 000, we create two explanatory variables X and Z from a bivariate normal

with means 3 and 1, variances 1, and correlation 0.5. Then for values of β3 from 0 to

5 in increments of 0.005, we draw Y from a normal with mean 5Zi − Xi + β3X
2
i and

homoskedastic variance (σ2 = 1). For each, we run a linear regression of Y on a constant,
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Figure 3: Incorrect Functional Form Simulation. The difference between classical and
robust standard errors (bottom) and percent of GIM tests rejected (top) indicate little
problem with misspecification (at the left of the graph) but bigger differences reveal the
misspecification as it gets worse (toward the right).

X and Z (i.e., excluding X2).

For each of these simulated data sets, Figure 3 plots the difference between classical

and robust standard errors on the vertical axis (bottom) and GIM test (top) by the the

degree of misspecificatdion indicated by β3 on the horizontal axis. For simulations from

exactly or approximately at the correct data generation process (on the left), there is little

deviation between robust and classical standard errors. However, as the misspecification

grows, the standard error difference and the percent of GIM tests rejected grows fast,

unambiguously revealing the misspecification. A scholar who used one of these tests

would not have a difficult time ascertaining and fixing the cause of the problem.
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5.3 Incorrect Stochastic Component

For the third simulation, we generate data from a Negative Binomial regression model,

but estimate from its limiting case, a Poisson. The Poisson model is heteroskedastic to

begin with (with mean equal to the variance), and so this is a case of misspecification due

to overdispersion, where the variance is greater than the mean (King 1989b).

We begin with n = 1, 000 draws of two explanatory variables X and Z from a bi-

variate normal with means 0, variances 1, and correlation 0.5. We then draw Y con-

ditional on X from a negative binomial distribution with mean parameter E(Yi|X) ≡

λi = exp (1 + 0.1 · Zi − 0.1 ·Xi) and overdispersion parameter θ such that V (Yi|X) =

λi(1 + θλi), such that θ > 0 and the larger θ is the more the data generation process

diverges from the Poisson. For each data set we run an exponential Poisson regression of

Y on X and Z and compare the classical and robust standard errors.

Figure 4 gives the results, with the difference in standard errors (bottom) and percent

of GIM tests rejected (top) on the vertical axis and the degree of overdispersion (misspec-

ification) on the horizontal axis. As is evident, robust and classical standard errors are ap-

proximately equal when the data are nearly Poisson but diverge sharply as overdispersion

increases. Thus, we have a third example of being able to easily detect misspecification

with robust and classical standard errors.

6 Empirical Analyses

We now offer three empirical examples where robust and classical standard errors differ

and thus clearly indicate the presence of misspecification, but where this issue has gone

unnoticed. These correspond to the three sections in Section 5. We then apply our more

general GIM test, some of the other standard diagnostic techniques to detect the cause

of the problem, respecify the model, and then show how the standard error differences

vanish. We also highlight the sometimes large differences in substantive conclusions that

result from having a model that fits the data.

In all cases, we try to stick close to our intended purpose, and avoid exploring other

potential statistical problems. We thank the authors for making their data available and
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Figure 4: Incorrect Stochastic Component Simulation. The vertical axis gives the differ-
ence between the classical and robust standard errors (bottom) and percent of GIM tests
rejected (top). The horizontal axis gives θ, the degree of overdispersion. The larger θ is,
the more misspecification exists in the data.

making it easy to replicate their results; none should be faulted for being unaware of

the new methodological points we make here, developed years after their articles were

written.

6.1 Small Country Bias in Multilateral Aid

We begin by replicating the analysis in Neumayer (2003,Table 3, Model 4), who argues

that multilateral aid flows (from a variety of regional development banks and United Na-

tions agencies as a share of total aid) favor less populous countries. The original analysis

is a linear regression of multilateral aid flows on log population, log population squared,

GDP, former colony status, the distance from the Western world, political freedom, mili-

tary expenditures, and arms imports.

The robust standard errors from this regression are starkly different from the classical
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Figure 5: Distribution of the dependent variable before (left) and after (right) the Box-Cox
transformation.

standard errors. For example, for the coefficient on log population of −3.13, the robust

standard error is almost twice that of the classical standard error (0.72 vs 0.37, respec-

tively). We can also compare the entire robust variance matrix with the classical variance

matrix, using the test we develop in section Section 4. In this case, the p-value of this test

is nearly zero (< 0.0009), indicating clear evidence of misspecification.

Given the high probability of misspecification, we proceed to standard diagnostics.

The most obvious characteristic of these data is its extreme skewness, as can be seen in the

long right tail in the left panel of Figure 5. (The same result appears in the residuals, which

we examine below in different ways.) We therefore use the Box-Cox transformation to

transform the dependent variable in a manner parallel to our simulation in Section 5.1.

We use Box-Cox parameter of 0.18, which is similar to a natural log but transforms to

normality better.5 The result, which appears in right panel of the same figure, is a much

more symmetric and approximately normally distributed variable.

Two other diagnostics we offer in Figure 6 are similarly revealing. The top left panel

is a plot of the residuals from the author’s model on the vertical axis by log population

5We drop the six observations in the data sets which were miscoded as negative.
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Figure 6: Evaluations of the original model (top row) and our alternative model (bottom
row), for both residual plots (left column) and QQ plots (right column).

on the horizontal. The result is an almost textbook example of heteroskedasticity, with

very low variance on the vertical axis for small values of log-population and much higher

variance for large values. After taking the log, the result at the bottom left is much closer to

homoskedastic. We also conduct a test for normality via a Q-Q plot for the original model

(top right) and the model applied to the transformed data (bottom right), which lead us to

the same conclusion that our modified model has corrected the misspecification. Finally,

we note that the GIM test is now not significant (p-value of 0.14).

For all these tests, the problem revealed by the difference between the classical and

robust standard errors has been corrected by the transformation. At this point, the theory
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Figure 7: Aid Flows and Country Size: Quadratic in the original misspecified model (in
blue), but monotonically increasing in the revised model that passes the specification tests
(in red).

(i.e., the full model) has been adjusted so that the observable implications of it, which we

are able to measure, are now consistent with the data, the result being that we should be

considerably more confident in the empirical results, whatever they are. In the present

case, however, it happens that the substantive results did change quite substantially.

Neumayer (2003) writes, “as population size increases, countries’ share of aid initially

falls and then increases. Multilateral aid flows thus exhibit a bias toward less populous

countries.” We replicate this quadratic relationship and represent it with the blue line and

associated confidence region in Figure 7. However, as we show above, the robust and

classical standard errors indicate the model is misspecified. In the model that passes this

specification test, which we display in red, the results are dramatically different: now the

bias in aid flows is clearly to countries with larger populations, for the entire range of

population in the data.
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6.2 The Effects of Trade Agreements on Foreign Direct Investment

For our second example, we replicate Büthe and Milner (2008,Table 1, Model 4), who

argue that having an international trade agreement increases foreign direct investment

(FDI). Their analysis model is linear regression with time-series cross-sectional data and

intercept fixed effects for countries, using cluster-robust standard errors. Their depen-

dent variable is annual inward FDI flows, and their independent variables of interest are

whether the country is a member of the General Agreement on Tariffs and Trade through

the World Trade Organization (GATT/WTO) and the number of preferential trade agree-

ments (PTAs) a country is party to.

We focus on the (1.08) coefficient on GATT/WTO membership for which the classical

standard error is 0.21, and the cluster robust standard error is almost twice as large, at 0.41.

The GIM test calculating the difference between the Discroll-Kraay auto-correlation con-

sistent and classical variance matrices indicates a significant difference between the two

matrices (with a p-value of < 0.0009). This result could suggest a significant amount

of heteroskedasticity in the data, which is at best indicates inefficiency for some quanti-

ties and bias in others, or it could suggest model misspecification that biases all relevant

quantities.

We applied the usual regression diagnostics and find that the source of the misspec-

ification is the authors’ detrending strategy. Büthe and Milner (2008) detrend because

“the risk of spurious correlation arises when regressing a dependent variable with a trend

on any independent variable with a trend”. This is an excellent motivation, and the au-

thors clearly followed or improved best practices in this area. However, they detrend each

variable linearly, even though many of the trends are unambiguously quadratic, and they

restrict the trend to be the same for all nations, which is also contrary to evidence in their

highly heterogeneous set of countries. The result is that their detrending strategy induced

a new spurious time series pattern in the data.

For mean cumulative PTAs and FDI inflows over time, Figure 8 presents the raw

data in a time series plot on the left. As the authors note, using data with trends like

this can lead to spurious relationships. They detrend both time series linearly, which we
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Figure 8: Comparison of Detrending Strategies: Raw data (left), the Büthe and Milner
(2008) attempt at linear detrending (center), and our quadratic detrending (right).

represent in the center figure and which, unfortunately, still has a very pronounced trends.

In some ways, this induces an even stronger (spurious) relationship between these two

variables. Our alternative specification detrends quadratically by country, illustrated in

the right graph, which results in transformed variables that are much closer to stationary.6

Further, the GIM test for heteroskedasticity and autocorrelation is no longer significant

(with a p-value of 0.81).

We provide more intuition for the exact source of the problem in Figure 9 by plotting

the residuals (and a smoothed loess line) over time for three example countries. We do this

for the original model (in black) and our modified model that detrends quadratically by

country (in red). The fact that individual countries exhibit such clear differences in time

series patterns reveals where the difference between cluster robust and classical standard

errors are coming from in the first place. That is, the problem stems from the fact that the

authors restricted the detrending to be the same in every country, when in fact the time

series pattern varies considerably across countries. Our alternative approach of modeling

the patterns in the data produces residuals with time series patterns that are closer to

stationary and similar across these regions, and as a result the robust and classical standard

errors are now much closer. Changing to a better fitting functional form parallels our

simulation in Section 5.2.
6For the purposes of this paper, we try to adhere to the author’s model as closely as possible. Instead of

detrending, an alternative approach would be to model the time series processes in the data more directly.
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Figure 9: Time Series Residual Plots for Three Sample Countries: original model (black)
and modified model (red), with dots for residuals and loess smoothed lines.
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Figure 10: Standardized Residuals for All Included Countries: Original model (left) and
our modified model (right).

To supplement the three examples in Figure 9, we present in Figure 10 loess smoothed

lines fit to residuals for each country, all together (standardized so they can appear in

one graph). While many countries show strong nonlinear residual trends in the original

specification (left panel), most of the trends in our alternative specification have now

vanished (right panel).

We conclude by noting that the conclusions of the authors change considerably. Un-

like in the original model, neither of the two variables of interest (GATT/WTO or PTAs)
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are still significantly correlated with FDI inflow. Figure 11 gives one visualization of this

relationship, showing both the elimination of the key result and the fact that robust and

classical standard errors differ dramatically in the authors’ original model but after ad-

justment they are approximately the same. As is obvious from the country-level results,

estimates of numerous country-level quantities would also differ between the two models.

We followed a detrending strategy here to stay as close as possible to the analytic

strategy in the original paper, but other approaches may be preferable for the substantive

purpose of estimating the impact of trade agreements on FDI inflows. In particular, some

of the variation attributed to uncertainty by these modeling approaches may be due to

heterogeneous treatment effects, as at least some interpretations of our auxiliary analyses

(not shown) may suggest. That is, it may be that trade agreements have a positive rela-

tionship with FDI inflows in some countries (e.g., Colombia) and a negative one in others

(e.g., the Philippines).

6.3 The Effects of Allies on Consequences for IMF Loan Conditions

Finally, we offer an example where the authors did not use robust standard errors, but

using them as we recommend makes it easy to detect clear evidence for misspecification

that can improve their inferences. This example shows how it would be productive for

robust standard errors to see even wider usage, but as a diagnostic rather than intended

elixir.

Thus Dreher and Jensen (2007, Model 7) claim that the International Monetary Fund

(IMF) will impose fewer conditions on loans for close allies of the U.S., because the U.S.

will be reluctant to threaten the successful election of the person in power. In contrast, if

a country is not allied with the U.S., the U.S. will influence the IMF to put the leader out

of power by imposing more conditions on a country prior to an election.

The authors fit a Poisson regression model. For their coefficient on U.S. support

(−9.55), the classical standard error is 3.73, whereas the robust standard error is sub-

stantially larger, at 6.28, a difference of substantive importance. For example, holding

constant other variables at their means, if the percent of vote for the U.S. shifts from 0.25

(its mean) to 0.5 (its maximum), the classical standard errors lead to a narrow confidence
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Figure 11: Comparison of Model Results: original (in black) and our modified model (in
red)

interval on the decrease in the expected number of conditions [−18,−12], whereas the

robust standard errors predict a much wider confidence interval at [−18,−3]. In addi-

tion, the GIM test for the difference between the robust and classical variance matrix is

sigificant, with a p-value of 0.0027.

In applying standard diagnostics, two problems are obvious. First, as with much count

data, these data are overdispersed; a score test gives a p-value of 0.00005 (Dean and

Lawless 1989). Second, no Letter of Intent in the entire data set has fewer than five

conditions. We interpret this as theoretical truncation — that is, by policy, the IMF always

includes at least five conditions.

We fix the first problem by switching from a Poisson to a negative binomial distribu-

tion and the second by truncating it. The result is a 0-to-4 truncated Negative Binomial

regression model, paralleling our simulation on the effects of changing to a better fitting

distribution in Section 5.1. In the new model, instead of the standard error on voting with

the U.S. differing by a factor of two, now the robust standard error is 6.76 and the classi-

cal standard error is 6.06. The information matrix test is also no longer significant (with a

p-value of 0.65).

The authors report that the number of conditions will “significantly” decrease when
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Figure 12: Model Comparison: The Dreher and Jensen (2007) model with misspecifica-
tion at the bottom in blue and our modified model in red, with confidence intervals.

countries have an election and U.S. support, but they do not examine the magnitude of

this effect. One many ways of doing this in substantive terms is reported in the blue line

near the bottom of Figure 12. This line gives the probability that the expected decrease

in conditions due an election is greater than three. For the author’s model, this is a nearly

flat line at zero. This result is coming from the fact that their data is highly overdispersed

even though they are assuming the variance is equal to the mean. In contrast, for our mod-

ified model, which appears in red (with confidence intervals), the change in the expected

decrease in conditions being greater than 3 is substantial, rising from a probability of 0.07

to about 0.20 as the proportion vote with the U.S. increases from only 0.4 to 0.6. This

is roughly what the authors’ theory implies should have be the case, even though due to

their misspecification, their results indicate otherwise.

7 Concluding Remarks

Scholarly work that includes robust standard errors which differ from classical standard

errors require considerably scrutiny. At best their estimators are inefficient, but in all like-

lihood estimators from their model of at least some quantities are biased. The bigger the

difference robust standard errors make, the stronger the evidence for misspecification. To

be clear, merely choosing to report only classical standard errors is not the solution here,

as our last empirical example illustrates. And reporting only robust standard errors, with-
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out classical standard errors, or only classical without robust standard errors is similarly

unhelpful.

Robust standard errors should be treated not as a way to avoid reviewer criticism or as

a magical cure all. They are neither. They should instead be used for their fundamental

contribution — as an excellent model diagnostic procedure. We strongly echo what the

best data analysts have been saying for decades: use all the standard diagnostic tests; be

sure that your model actually fits the data; seek out as many observable implications as

you can observe from your model. And use all these diagnostic evaluation procedures

to respecify your model. If you have succeeded in choosing a better model, your robust

and classical standard errors should now approximately coincide. As White (1980) orig-

inally wrote, robust variance estimation “does not relieve the investigator of the burden

of carefully specifying his models. Instead, it is hoped that the statistics presented here

will enable researchers to be even more careful in specifying and estimating econometric

models.”

As these simulations and examples illustrate, the consequence of using this procedure

as we recommend can be extremely consequential for substantive conclusions, the degree

of model dependence, and the extent of inefficiency and bias.
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