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ABSTRACT: A generalized algorithm for graph coloring by 
implicit enumeration is formulated. A number of 
backtracking sequential methods are discussed in terms of 
the generalized algorithm. Some are revealed to be partially 
correct and inexact. A few corrections to the invalid 
algorithms, which cause these algorithms to guarantee 
optimal solutions, are proposed. Finally, some computational 
results and remarks on the practical relevance of improved 
implicit enumeration algorithms are given. 

1. INTRODUCTION 
It is well known that the problem of coloring the ver- 
tices of a graph with a minimum number of colors so 
that no adjacent vertices are the same color is probably 
intractable. Not only is the general problem NP-com- 
plete, but even a drastically simplified problem of de- 
termining the 6-colorability of a a-regular planar graph 
remains NP-complete [4, i’]. Also, the problem of deter- 
mining the chromatic number of an arbitrary graph 
within a worst-case ratio of less than z has been shown 
to be NP-complete [6]. That is why no polynomial time 
algorithm for exact graph coloring is likely to exist. 

In general, there are three tree search strategies to 
solve this classical combinatorial problem: maximal in- 
dependent sets, dichotomous search, and implicit enu- 
meration. The most flexible and space efficient of these 
is the implicit enumeration (backtracking) approach. The 
first coloring algorithm of this type is due to Brown [Z]. 
The main idea of his method is based on the following 
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simple backtracking rule. Suppose that the vertices of 
graph G have been ordered in some way and are rein- 
dexed so that vi is the ith vertex in this ordering. Then, 
two steps: fotward and backward, are performed alter- 
nately. The forward step colors the vertices sequen- 
tially up to a vertex which cannot be colored because 
of a lack of colors available to it. The backward step 
moves sequentially back in search of the first vertex 
which can be colored with another feasible color and 
then the forward step is resumed, etc. If a new, better 
coloring of G has been found, the algorithm attempts to 
find the next one. The activity terminates when a back- 
track reaches VI. 

The forward step of Brown’s original algorithm can 
be improved either by using a look-ahead procedure [2] 
or by reordering yet uncolored vertices [6]. On the 
other hand, the backward step turns out to be much 
harder to refine. Chriatofides [3] was the first to at- 
tempt to improve on the backward step. Unintention- 
ally, he obtained an algorithm which does not always 
find a chromatic coloration and which, moreover, fails 
to terminate properly on some graphs. Brelaz [l], who 
made a few errors and also arrived at a partially correct 
approximation algorithm, was the next to improve 
Brown’s coloring algorithm. A simple counterexample 
to both algorithms is shown in Figure 1. Brelaz’s modi- 
fication was corrected independently by Kubale and 
Kusz [lo] and Peemoller [ll]. (Peemoller’s correction 
seems to be closer to Brilaz’s intention.) 

This article is motivated by the above-mentioned er- 
rors. We begin by presenting, in the next section, a 
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concept of a generalized (frame) implicit enumeration 
algorithm for graph coloring. In Section 3 we give a 
survey of various instances of the general algorithm 
and discuss its correctness and efficiency. Among them 
we formulate corrections for Christofides’ and Br6laz’s 
concepts in terms of the general algorithm. It should be 
noted that although both algorithms presented in the 
article differ from the originals, we use the appelations 
“Christofides’ algorithm” and “Br6laz’s algorithm.” Nev- 
ertheless, the main ideas remain unchanged and, there- 
fore, such terminology seems fair to the originators. In 
Section 4 we give computational results obtained by 
applying implicit enumeration algorithms to coloring an 
identical series of graphs generated at random. We con- 
clude, in Section 5, with some remarks on the practical 
relevance of the improved graph coloring algorithms. 

2. A GENERALIZED IMPLICIT 
ENUMERATION ALGORITHM 
In principle, the generalized algorithm is based on 
Brown’s original approach. Both basic steps, however, 
are more sophisticated and require an additional de- 
scription. As we know, the forward step colors the ver- 
tices sequentially within a prescribed number of colors 
up to a vertex which cannot be colored because of a 
lack of feasible colors. Such a vertex is referred to as a 
resumption point for the backward step. More precisely, 
procedure FORWARDS successively associates the sets 
of feasible colors (FC) with the vertices v,, v,+l, . . . , and 
colors each of them with the first member of the re- 
spective set. Roughly, the invariant for this procedure 
is: “Graph G can be colored with ub colors and the 
vertices zll, . . . , v,-] are colored with colors less than 
ub” where ub is an upper bound on the chromatic num- 
ber x(G). This step terminates when either a vertex 
with the empty set of feasible colors has been encoun- 
tered or all the vertices have been colored. The latter 
means that a new complete coloring with less than ub 
colors has been found and the upper bound can be 
diminished. Eventually, the value of variable r is 
changed to keep the following invariant for procedure 
BACKWARDS: “Graph G can be colored with ub colors, 
the vertices ~1, . . . , ~~-1 can be colored with colors less 
than ub whereas v? cannot be colored with a color less 
than ub.” Procedure BACKWARDS searches for the 
highest numbered vertex among ~1, . . . , ~~-1, say vi, 
the recoloring of which might have an influence on the 
coloring of v*, v,+l, . . . . The vertices which are not 
omitted by the checking process are called current pred- 
ecessors (CP) of vr. If such a vertex vi is encountered, the 
FC(i) set is decreased by Vi’s actual color to prevent it 
from obtaining the same partial coloring. (The vertex is 
referred to as a resumption point for the forward step.) 
Finally, the assignment r c i is performed to keep the 
invariant for the FORWARDS procedure, which ensues 
immediately. Otherwise, BACKWARDS is exited with 
r = 0. The algorithm terminates when either ub equals 
a lower bound on the chromatic number or a backtrack 
fails to find a vertex that can be recolored. 
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FIGURE 1. A Counterexample to the Christofides and Brelaz 
Algorithms 

Here is a control abstraction for the general implicit 
algorithm written in SPARKS language [8]. 

procedure IMPLICIT-ENUMERATION (G, n) 
// G is any n-vertex graph given implicitly. C(l), // 

:: ...I. 
C(n) are used to retain colors assigned to // 

vertices in the best solution found so far. C’(l), // 

:: ...’ 
C’(n) comprise a current coloring (partial // 

or complete). // 
integer n, r, ub, lower-bound, upper-bound, C(1: n), 
C’(l:n) 
set CP, FC(1:n) 
initialize lower-bound, upper-bound and vertex 
order 
CP+Qr+l 
ub c upper-bound + 1 

// to get at least one // 
// complete coloring // 

loop 
call FORWARDS (r) 
if ub = lower-bound then exit endif 
call BACKWARDS (r) 
if r = 0 then exit endif 

repeat 
print(‘The chromatic number =‘, ub, ‘coloring:‘, C) 

end IMPLICIT-ENUMERATION 

Both basic procedures are described in the following 
form. 

procedure FORWARDS (r) 
global integer n, ub, C(1: n), C’(1 : n); global set FC(l: n) 
integer i, r 
for i’c r to n do 

rearrange Vi, . . . , v. 
// only if dynamic // 
// reordering is applied // 

determine FC(i) // for r = 1 or r < i // 
if FC(i) = 0 then r c i; return endif 
C’(i) c min(FC(i)) 

repeat 

// color vi with smallest // 
// feasible color // 

// a new complete coloring has been found // 
C c C’ // store the current coloring // 
ub c max(C) // update the upper bound on x(G] // 
r c least i such that C(i) = ub 

end FORWARDS 
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prdcedure BACKWARDS(r) 
global integer n, ub, C’(l:n); global set CP, FC(l:n) 
integer i, r 
determine initial CP 
while CP # 0 do 

i t max(CP); CP c CP - (i] 
update CP // only if dynamic computation // 

// of CP is applied // 
FC(i) c FC(i) - (C’(i)) 
if FC(i) # 0 then r c i; return endif 

repeat 
r c 0 // none of current predecessors // 

// can be recolored // 
end BACKWARDS 

The correctness of the genleral algorithm cannot be 
proved until the semantics of the statements initialize, 
deteimine, and update is gefined. This is a crucial point 
of the algorithm, because by defining feasible colors, 
current predecessors, an d a mode of initialization one 
can obtain a wide range df coloring algorithms, both 
exact and approximate. Hence, the general implicit al- 
gorithm should be regarded as a frame al orithm, 

p1 
any 

instance of which requires a separate ana ysis. Also, the 
time complexity of the algorithm depends on a particu- 
lar definition of the above-niisntioned notions. How- 
ever, taking into account only explicit constraints on a 
solution space, we see that the number of backtracks 
never exceeds n! regardless of the particular definitions 
of the FC and CP sets. Thus the worst-case time for an 
implicit enumeration algorithm $11 generally be 
O((f(n) + b(n))n!) where f(n) and b(n) are polynomials 
determining the complexity of FORWARDS and BACK- 
WARDS, respectively. 

3. A SURVEY OF CONCREITE REALIZATIONS 
There are four basic algoiithms in the family of implicit 
enumeration methdds. 

1. Brown’s algorithm 
2. Christofides’ algorithm 
3. Br6laz’s algorithm 
4. Korman’s algorithm 

In this section we outline the main features of the 
algorithms in their corrected form with a special refer- 
ence to the following: 

(il 

(ii) 
(iii) 
(iv) 

initialization,- that is, stating bounds on the 
chromatic number, initial ordering of vertices, 
etc., 
rearrangement of yet nncolored vertices, 
computation of the sets of feasible colors FC(i), 
computation of the set of current predecessors 
CP. 

3.1 Brown’s Two Algorithms [2] 

3.1.1 Brown’s Ordinary Algolrithm 
(i) The vertices are preordered in a greedy largest 

first (GLF) manner. Namely, vl is a maximum degree 

vertex of G and remaining vertices are ordered by 
means of the following greedy principle: For every i = 
2 9 . . . 9 n - 1, ‘ui is adjacent to more of the vertices zll, 
. . . , Vi-1 than any other vertex Vi, i > i (ties are broken 
by choosing the vertex of greater degree). The GLF or- 
dering can be accomplished in time O(min(n’, m log n)). 
Default values for lower bound and upper bound are 1 
and n, respectively. 

(ii) No rearrangement is performed. 
(iii) Let PC(i) denote a set of prohibited colors for Vi, 

that is, PC(i) = (c c ub: there is an adjacent predecessor 
of Vi colored with c). Then 

FC(i) = (1, 2, . . . , maix C’(j) + 1) - PC(i) - (ub). 

To estimate the complexity of FORWARDS notice that 
determining of FC(i) requires deg(vi) operations. There- 
fore, one pass of FORWARDS takes at most O(m) time 
plus, eventually, O(n) time to store coloration C’ and 
actualize variables ub and r when a better solution has 
been found. Thus a total of O(m + n) time must be used. 

(iv) The definition of CP is trivial, namely 

CP = (1, 2, . , r - 11, 

where r is a value of parameter carried in to the BACK- 
WARDS procedure. Since no updating is necessary, 
BACKWARDS requires constant effort for each i and 
O(n) time in all. 

Remarks. Brown’s ordinary algorithm finds the lexico- 
graphically first exact coloration with respect to the 
GLF ordering of vertices in the following sense: Out of 
two different complete solutions C = C(l), . . . , C(n) and 
C’ = C’(l), . . . , C’(n), the coloring C is said to be prior to 
C’ under a given vertex order if either C(1) < C’(1) or 
C(1) = C’(l), . . . , C(i - 1) = C’(i - 1) and C(i) < C’(i) for 
some i = 2, . . . , n. 

3.1.2 Brown’s Algorithm with Look-Ahead 
(i) Same as in Section 3.1.1. 
(ii) Same as in Section 3.1.1. 

(iii) Brown reduced the number of backtracks by in- 
troducing the so-called look-ahead (LA) procedure to the 
forward step. LA makes it possible to diminish the FC 
sets by enlarging the PC sets. The new definition of 
prohibited colors is PC(i) = {c < ub: there is an adjacent 
predecessor of Vi colored with c or any of the adjacent 
successors of vi can be colored only with c]. The im- 
proved FORWARDS procedure can still run in linear 
time O(m + n), but within a greater constant of propor- 
tionality. 

(iv) Same as in Section 3.1.1. 

Remarks. The concept of looking ahead can be refined 
further by ordering feasible colors by the number of 
preventions, that is, the number of adjacent successors 
of Vi which could possibly be assigned color c unless c is 
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assigned to ZJ;. However, such a complex LA increases 
the complexity of FORWARDS to the order of O(mn). 

The backtracking algorithm with simple LA finds the 
first chromatic coloring [5] whereas the solution pro- 
duced by the complex LA algorithm need not be the 
lexicographically first one. 

3.2 Corrected Christofides Algorithm [3] 
(i) No particular ordering is assumed; lower bound 

and upper bound are determined as in Section 3.1. 
(ii) Same as in Section 3.1. 

(iii) Same as in Section 3.1. 
(iv) In an effort to decrease the number of back- 

tracks, Christofides reduced the CP set too drastically 
and obtained a partially correct approximation algo- 
rithm. To correct his definition of CP we need a notion 
of path passing throughout increasingly indexed ver- 
tices. Such a path is said to be monotonic. By the prede- 
cessor set of ui we mean P(i) = lj < i: there is a mono- 
tonic path from Vj to vi in G). Now, the initial CP set is 
simply defined as 

CP = CP U P(r). 

No updating of the set is performed. 
The P(i) sets can be precomputed just after the initial 
vertex order is stated. For this purpose one can use any 
efficient method for finding the transitive closure of a 
directed graph, for example, [12]. Hence BACKWARDS 
can be efficiently implemented in O(n) time. 

Remarks. It is possible to incorporate looking ahead 
into the Christofides algorithm. This can be done by 
restricting FC (as in Section 3.1.2) and updating CP ac- 
cording to the formula 

CP = CP U jEyil P(j) - ii, . . . , 4, 

where B(i) is the set of all uncolored neighbors of zl; 
which could be assigned the only color c unless c is 
assigned to Vi, It is convenient to construct the set B(i) 
while searching for prohibited colors in FORWARDS. 

Since the partial solutions of level i are lexicographi- 
tally ordered, the method finds the first exact coloring 
(unless a refined version of LA is used). 

3.3 Corrected Brilaz Algorithm [l, 111 
(i) The vertices are colored sequentially to obtain a 

suitable ordering of the vertex set and both bounds on 
the chromatic number of G. Brblaz suggests preordering 
the vertices by means of a sequential with interchange 
algorithm applied to a saturation largest first (SLF) order- 
ing or the Mutula-Dsatur algorithm (a combination of 
SLF and SL) as he calls it. The SLF algorithm, which is 
a basis for both heuristics, repeatedly colors an unco- 
lored vertex of the largest saturation degree with the 
smallest possible color, where the saturation degree is 
the number of adjacent distinctly colored vertices. Ties 
are broken by choosing the vertex of greater degree. 

The SLF with interchange algorithm takes O(mn) time 
and the Matula-Dsatur algorithm needs O(min(n2, m log 
n)) time. Each of the preconditioning algorithms ar- 
ranges the vertex set so that initial vertices constitute 
an initial clique (IC) of size at least 2 and the number of 
colors used is usually close to minimum. 

(ii) Same as in Section 3.1. 
(iii) Same as in Section 3.1. 
(iv) Br6laz also tried to reduce the CP set but he 

made two errors. Herein we give Peemoller’s correction 
to Brelaz’s dynamic updating of current predecessors. 
The set of adjacent predecessors of Vi, AP(i), is partitioned 
into nonempty sets AP,(I’), . . . , APb(i) such that AP,(I’) = 
(j < i: Vj is colored with cl, c < ub. Let r, = min AP,(i). 
Then the set of representatives for AP(i) is defined as 

R(i) = 1 {ra, . . . , 
if AP(I’) = 0, 

rb) - IC otherwise. 

Now the initial set of current predecessors is 

CP = CP U R(r). 

Updating of the set is accomplished in BACKWARDS as 
follows: 

CP = CP U R(i). 

BACKWARDS can be implemented to run in O(m + n) 
time. 

Remarks. As previously, the LA procedure can be in- 
corporated into the algorithm. In this case additional 
updating takes the form 

CP = CP U jEyil R(j). 

(In constructing (R(j) uncolored vertices are disre- 
garded.) The Brelaz algorithm also finds the first exact 
coloring in the lexicographic order sense. 

3.4 Korman’s Dynamic Reordering Algorithm [9] 
(i) Same as in Section 3.1. 
(ii) Korman noticed that during the forward step 

some vertices appear to have fewer feasible colors than 
others and such vertices should be colored first. His 
dynamic rearrangement (DR) rule states simply: From the 
set (Vi, . . , v,) of uncolored vertices choose a vertex 
which can be colored with the smallest number of fea- 
sible colors and replace it with Vi. The complexity of 
FORWARDS with dynamic rearrangement is dominated 
by the DR procedure which can run in time O(m + n), 
but at a cost of some increase of the complexity of 
BACKWARDS. 

(iii) Same as in Section 3.1. 
(iv) Same as in Section 3.1. 

Remarks. The DR procedure plays a role similar to that 
of LA. However, empirical investigations show that, in 
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T'ABLEL ComputationalResultefromtheAppliitionoflmplicitEnumeration AlgortthmstoColor 
HydomG~phs 

Average tima in CPU seconds 

n d Brown Christofides beta2 
8% 88L 88L 

10 0.1 .l .l .l 
0.3 .1 .l .1 
0.5 .l .l .l 
0.7 .l .l .l 
0.9 .l .l .l 

20 0.1 .3 .3 .3 
0.3 A .4 A 
0.5 .4 .5 .4 
0.7 .4 .5 .4 
0.9 .4 .5 .5 

30 0.1 :86 .7 
0.3 .9 

5 

q.5 5.0 5.2 5.2 
0.7 1.7 1.8 1.s: 
b.9 1.1 1.2 1.1 

40 0.1 1.2 1.4 1.2 
0.3 4.4 4.2 4.0 
0.5 13.5 12.6 9.5 
0.7 45.6 45.2 21.5 
0.9 2.2 2.5 2.1 - 

50 0.1 1.7 2.0 2.1 
9.3 >207.8 >207.5 >207.3 
0.5 m co 

>25;.6 0.7 >259.7 >261.4 
0.9 20.1 60.4 11.1 - 

‘ 60 0.1 3.1 3.3 3.1 
0.3 co F-244.9 B136.4 
0.5 co 03 00 
0.7 
0.9 2197.6 >19;.7 >18:.3 

01 means that all graphs required more t+n five CPU minutes 
> means that at bast & gra@ required more than five CPU minutes. 

Konnan 

LF 8L 

.O .l 

.1 .l 

.l .l 

.l .l 

.l .l 

.l .2 

.2 .2 

.2 .3 

.2 .3 

.2 .3 

.3 .5 

.6 .6 
1.1 1.9 
1.8 2.0 

.4 .6 

.8 .9 
6.9 3.7 

10.1 5.5 
5.7 9.1 
6.9 1.4 

1.0 1.3 
93.8 >150.0 

>222.5 m 

z-283.3 ~-224.6 
1.1 2.2 

1.7 1.9 
100.0 >189.6 

m co 

10;.1 8i.l 

spite of the same complexity, the DR rule is much more 
powerful than the simple LA. 

Korman’s DR algorithms produces a chromatic colora- 
tion which is lexicographically first with respect to the 
final vertex order, that is, the vertex order just after the 
chromatic coloring had been found. 

A modification to the DR rule is also possible. For 
instance, at restart after BACKWARDS coloring may be 
done according to the latest arrangement of vertices 
already colored or starting with the latest resumption 
point. In any case a particular definition of dynamic 
rearrangement affects only the efficiency of enumera- 
tion since any algorithm with a DR-like procedure 
leads to an exhaustive search regardless of the way 
uncolored vertices are ordered. 

It is also possible to incorporate Peemoller’s dynamic 
updating of the CP set into the! algorithm. 

4. COMPUTATIONAL RESULTS 
In order to compare a relative speed-up of various im- 
provements of Brown’s coloring algorithm on empirical 
grounds, the implicit algorithms were coded in Pascal 
and run on an R-32 computer (equivalent to an IBM 
360/65). All the algorithms were programmed in the 
versions of the previous section except the corrected 
Brelaz algorithm which was implemented in the form 
of [lo]. Since the efficiency of vertex sequential algo- 
rithms is highly dependent on the way the vertices are 
ordered, the following preparatory procedures arrang- 
ing the vertices by their degree were implemented: 
largest first (LF), smallest last (SL), saturation LF (SLF), 
and saturation SL (SSL). The saturation procedures tend 
to use the largest unavoidable color as soon as possible. 
The LF ordering procedure ran in linear time while the 
others required at most O(n’) additional time. All pro- 
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TABLE I. Computational Results from the Appttttton of lmpttttt Enumerafton Atgortthmb to Cotor 
Random Graphs (Confktuad.) 

Avemgs number of backtracks 

n d Brown Christofiia Bmiaz Komdn 

SSL SSL S9L LF SL 

10 0.1 1 1 1 1 1 
0.3 1 1 1 1 1 
0.5 1 1 1 1 1 
0.7 1 1 1 1 1 
0.9 1 1 1 1 1 

20 0.1 1 1 1 1 1 
0.3 2 2 2 1 1 
0.5 4 4 3 2 1 
0.7 3 3 3 1 2 
0.9 2 1 2 1 1 

30 0.1 1 1 1 1 1 
0.3 18 5 8 4 2 
0.5 229 228 175 7 13 
0.7 34 33 20 12 14 
0.9 5 4 4 1 1 

40 0.1 3 2 3 1 1 
0.3 138 112 84 38 18 
0.5 528 483 238 50 24 
0.7 1379 1388 401 24 25 
0.9 20 19 8 1 2 

50 0.1 12 5 12 2 2 
0.3 >5431 >7241 A898 328 >493 
0.5 >5700 >8703 >5870 >751 >992 
0.7 >8872 >8927 >5891 >943 >774 
0.9 488 488 132 1 2 

80 0.1 18 11 14 3 2 
0.3 >7199 >8285 >4775 288 >520 
0.5 >5751 >8911 >5872 z-838 >734 
0.7 z-4425 >5585 s-3478 >714 >708 
0.9 >4245 >4183 >2355 229 192 

m means that all graphs required more than five CPU minutes 
> means that at least one graph required more than five CPU minutes. 

grams were executed on identical samples of pseudo- 
random graphs generated according to the constant 
density model with vertex number n = 10(10)80 and 
graph density d = .1(.2).9. For each n and d three graphs 
were generated. Each was colored by each program 
within a five minute limit of CPU time. Table I contains 
the best computational results of the four orderings ob- 
tained for each program in question. Aside from aver- 
age timing we give the average number of backtracks 
required to color a graph since this parameter seems to 
be a more objective measure of algorithmic complexity, 
especially if a program terminates before the deadline. 

In practice, graphs to be colored are usually sparse in 
the sense that the number of edges m is much less than 
n2/2. For this reason Figure 2 shows timing profiles of 
the best and worst variants of the analyzed algorithms 
plotted for graphs G with d = .l. 

For more details on the extensive experimentally ob- 
served computing times comparing various backtrack- 
ing algorithms, see [lo]. 

5. CONCLUDING REMARKS 
Results of the empirical investigations allow us to draw 
the following conclusions. 

1. Small graphs with II 4 30 can be colored effi- 
ciently by any backtracking algorithm preceded by any 
vertex ordering procedure. Nevertheless, simple meth- 
ods, such as Brown’s with LF, are preferable. 

2. The effectiveness of this family of coloring algo- 
rithms decreases as the density of the graphs increases, 
except for very dense graphs. 

3. The efficiency of implicit enumeration algorithms 
without dynamic reordering is highly dependent on the 
initial arrangement of vertices. In this case the SSL 
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FIGURE 2. Timing Profiles from the Application of Backtracking 
Algorithms to Color Random Sparse Graphs 

ordering performs best overall and saves more back- 
tracking than any improvement of the forward or back- 
ward step. 

4. Regarding the expectation of the time complexity, 
the dynamic reordering of yet uncolored vertices estab- 
lishes a great improvement even if compared to the 
methods with LA. 

5. If graphs to be colored (are sparse, then both the 
Christofides algorithm, applied to the vertices presorted 
by SL, and Korman’s dynamic reordering, preceded by 
LF, can be recommended. 

6. If graphs to be colored are not sparse, Korman’s 
algorithm is decidedly superior to the others. In partic- 
ular, Korman’s algorithm with LF preordering runs 
faster on middle-density gra;phs whereas the method 
with SL is preferable for dense inputs. 

Finally, we recall that our testing was carried out on 
a series of random graphs. However, graphs arising in 
practice may differ from our constant density samples. 
For example, if a graph is disconnected or separable, 
then Christofides’ and Brblaz’s algorithms may be supe- 
rior to the others. This follows from the fact that these 
methods are, in a sense, the most sensitive to the con- 
nectedness of a graph among the implicit enumeration 
algorithms for graph coloring. Moreover, in real-life 
problems there are usually additional restrictions that 
must be taken into consideration. These restrictions 
may be reflected in some unavailability constraints im- 
posed on the FC sets before coloring begins (e.g., such a 
situation takes place when constructing class-teacher 
timetables by the use of graph coloring). The unavaila- 
bility constraints may be such that the initial ordering 

of vertices cannot be realized on a vertex degree princi- 
ple any more. Consequently, the CP set may contain so 
few vertices that a considerable improvement on the 
backward step is made possible. Again, the Christofides 
and Brblaz-Peemdller algorithms seem to be well suited 
for coloring such graphs. However, the best implicit 
enumeration algorithm for graph coloring is presum- 
ably Korman’s with Peemijller’s updating of current 
predecessors. 
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