
RESEARCH CONTRll3UTIONS

Programming
Techniques and
Data Structures

A Generalized Implicit
Ellis Horowitz
Editor

Graph Coloring

MAREK KUBALE and BOGUSLAW JACKOWSKI

ABSTRACT: A generalized algorithm for graph coloring by
implicit enumeration is formulated. A number of
backtracking sequential methods are discussed in terms of
the generalized algorithm. Some are revealed to be partially
correct and inexact. A few corrections to the invalid
algorithms, which cause these algorithms to guarantee
optimal solutions, are proposed. Finally, some computational
results and remarks on the practical relevance of improved
implicit enumeration algorithms are given.

1. INTRODUCTION
It is well known that the problem of coloring the ver-
tices of a graph with a minimum number of colors so
that no adjacent vertices are the same color is probably
intractable. Not only is the general problem NP-com-
plete, but even a drastically simplified problem of de-
termining the 6-colorability of a a-regular planar graph
remains NP-complete [4, i’]. Also, the problem of deter-
mining the chromatic number of an arbitrary graph
within a worst-case ratio of less than z has been shown
to be NP-complete [6]. That is why no polynomial time
algorithm for exact graph coloring is likely to exist.

In general, there are three tree search strategies to
solve this classical combinatorial problem: maximal in-
dependent sets, dichotomous search, and implicit enu-
meration. The most flexible and space efficient of these
is the implicit enumeration (backtracking) approach. The
first coloring algorithm of this type is due to Brown [Z].
The main idea of his method is based on the following

0 1985 ACM oool-0782/85/0400-0412 750

simple backtracking rule. Suppose that the vertices of
graph G have been ordered in some way and are rein-
dexed so that vi is the ith vertex in this ordering. Then,
two steps: fotward and backward, are performed alter-
nately. The forward step colors the vertices sequen-
tially up to a vertex which cannot be colored because
of a lack of colors available to it. The backward step
moves sequentially back in search of the first vertex
which can be colored with another feasible color and
then the forward step is resumed, etc. If a new, better
coloring of G has been found, the algorithm attempts to
find the next one. The activity terminates when a back-
track reaches VI.

The forward step of Brown’s original algorithm can
be improved either by using a look-ahead procedure [2]
or by reordering yet uncolored vertices [6]. On the
other hand, the backward step turns out to be much
harder to refine. Chriatofides [3] was the first to at-
tempt to improve on the backward step. Unintention-
ally, he obtained an algorithm which does not always
find a chromatic coloration and which, moreover, fails
to terminate properly on some graphs. Brelaz [l], who
made a few errors and also arrived at a partially correct
approximation algorithm, was the next to improve
Brown’s coloring algorithm. A simple counterexample
to both algorithms is shown in Figure 1. Brelaz’s modi-
fication was corrected independently by Kubale and
Kusz [lo] and Peemoller [ll]. (Peemoller’s correction
seems to be closer to Brilaz’s intention.)

This article is motivated by the above-mentioned er-
rors. We begin by presenting, in the next section, a

412 Communications of the ACM April 1985 Volume 28 Number 4

concept of a generalized (frame) implicit enumeration
algorithm for graph coloring. In Section 3 we give a
survey of various instances of the general algorithm
and discuss its correctness and efficiency. Among them
we formulate corrections for Christofides’ and Br6laz’s
concepts in terms of the general algorithm. It should be
noted that although both algorithms presented in the
article differ from the originals, we use the appelations
“Christofides’ algorithm” and “Br6laz’s algorithm.” Nev-
ertheless, the main ideas remain unchanged and, there-
fore, such terminology seems fair to the originators. In
Section 4 we give computational results obtained by
applying implicit enumeration algorithms to coloring an
identical series of graphs generated at random. We con-
clude, in Section 5, with some remarks on the practical
relevance of the improved graph coloring algorithms.

2. A GENERALIZED IMPLICIT
ENUMERATION ALGORITHM
In principle, the generalized algorithm is based on
Brown’s original approach. Both basic steps, however,
are more sophisticated and require an additional de-
scription. As we know, the forward step colors the ver-
tices sequentially within a prescribed number of colors
up to a vertex which cannot be colored because of a
lack of feasible colors. Such a vertex is referred to as a
resumption point for the backward step. More precisely,
procedure FORWARDS successively associates the sets
of feasible colors (FC) with the vertices v,, v,+l, . . . , and
colors each of them with the first member of the re-
spective set. Roughly, the invariant for this procedure
is: “Graph G can be colored with ub colors and the
vertices zll, . . . , v,-] are colored with colors less than
ub” where ub is an upper bound on the chromatic num-
ber x(G). This step terminates when either a vertex
with the empty set of feasible colors has been encoun-
tered or all the vertices have been colored. The latter
means that a new complete coloring with less than ub
colors has been found and the upper bound can be
diminished. Eventually, the value of variable r is
changed to keep the following invariant for procedure
BACKWARDS: “Graph G can be colored with ub colors,
the vertices ~1, . . . , ~~-1 can be colored with colors less
than ub whereas v? cannot be colored with a color less
than ub.” Procedure BACKWARDS searches for the
highest numbered vertex among ~1, . . . , ~~-1, say vi,
the recoloring of which might have an influence on the
coloring of v*, v,+l, The vertices which are not
omitted by the checking process are called current pred-
ecessors (CP) of vr. If such a vertex vi is encountered, the
FC(i) set is decreased by Vi’s actual color to prevent it
from obtaining the same partial coloring. (The vertex is
referred to as a resumption point for the forward step.)
Finally, the assignment r c i is performed to keep the
invariant for the FORWARDS procedure, which ensues
immediately. Otherwise, BACKWARDS is exited with
r = 0. The algorithm terminates when either ub equals
a lower bound on the chromatic number or a backtrack
fails to find a vertex that can be recolored.

Research Contributions

Vl VS

v2
1, 6

FIGURE 1. A Counterexample to the Christofides and Brelaz
Algorithms

Here is a control abstraction for the general implicit
algorithm written in SPARKS language [8].

procedure IMPLICIT-ENUMERATION (G, n)
// G is any n-vertex graph given implicitly. C(l), //

:: ...I.
C(n) are used to retain colors assigned to //

vertices in the best solution found so far. C’(l), //

:: ...’
C’(n) comprise a current coloring (partial //

or complete). //
integer n, r, ub, lower-bound, upper-bound, C(1: n),
C’(l:n)
set CP, FC(1:n)
initialize lower-bound, upper-bound and vertex
order
CP+Qr+l
ub c upper-bound + 1

// to get at least one //
// complete coloring //

loop
call FORWARDS (r)
if ub = lower-bound then exit endif
call BACKWARDS (r)
if r = 0 then exit endif

repeat
print(‘The chromatic number =‘, ub, ‘coloring:‘, C)

end IMPLICIT-ENUMERATION

Both basic procedures are described in the following
form.

procedure FORWARDS (r)
global integer n, ub, C(1: n), C’(1 : n); global set FC(l: n)
integer i, r
for i’c r to n do

rearrange Vi, . . . , v.
// only if dynamic //
// reordering is applied //

determine FC(i) // for r = 1 or r < i //
if FC(i) = 0 then r c i; return endif
C’(i) c min(FC(i))

repeat

// color vi with smallest //
// feasible color //

// a new complete coloring has been found //
C c C’ // store the current coloring //
ub c max(C) // update the upper bound on x(G] //
r c least i such that C(i) = ub

end FORWARDS

April 1985 Volume 28 Number 4 Communications of the ACM 413

Research Contributions

prdcedure BACKWARDS(r)
global integer n, ub, C’(l:n); global set CP, FC(l:n)
integer i, r
determine initial CP
while CP # 0 do

i t max(CP); CP c CP - (i]
update CP // only if dynamic computation //

// of CP is applied //
FC(i) c FC(i) - (C’(i))
if FC(i) # 0 then r c i; return endif

repeat
r c 0 // none of current predecessors //

// can be recolored //
end BACKWARDS

The correctness of the genleral algorithm cannot be
proved until the semantics of the statements initialize,
deteimine, and update is gefined. This is a crucial point
of the algorithm, because by defining feasible colors,
current predecessors, an d a mode of initialization one
can obtain a wide range df coloring algorithms, both
exact and approximate. Hence, the general implicit al-
gorithm should be regarded as a frame al orithm,

p1
any

instance of which requires a separate ana ysis. Also, the
time complexity of the algorithm depends on a particu-
lar definition of the above-niisntioned notions. How-
ever, taking into account only explicit constraints on a
solution space, we see that the number of backtracks
never exceeds n! regardless of the particular definitions
of the FC and CP sets. Thus the worst-case time for an
implicit enumeration algorithm $11 generally be
O((f(n) + b(n))n!) where f(n) and b(n) are polynomials
determining the complexity of FORWARDS and BACK-
WARDS, respectively.

3. A SURVEY OF CONCREITE REALIZATIONS
There are four basic algoiithms in the family of implicit
enumeration methdds.

1. Brown’s algorithm
2. Christofides’ algorithm
3. Br6laz’s algorithm
4. Korman’s algorithm

In this section we outline the main features of the
algorithms in their corrected form with a special refer-
ence to the following:

(il

(ii)
(iii)
(iv)

initialization,- that is, stating bounds on the
chromatic number, initial ordering of vertices,
etc.,
rearrangement of yet nncolored vertices,
computation of the sets of feasible colors FC(i),
computation of the set of current predecessors
CP.

3.1 Brown’s Two Algorithms [2]

3.1.1 Brown’s Ordinary Algolrithm
(i) The vertices are preordered in a greedy largest

first (GLF) manner. Namely, vl is a maximum degree

vertex of G and remaining vertices are ordered by
means of the following greedy principle: For every i =
2 9 . . . 9 n - 1, ‘ui is adjacent to more of the vertices zll,
. . . , Vi-1 than any other vertex Vi, i > i (ties are broken
by choosing the vertex of greater degree). The GLF or-
dering can be accomplished in time O(min(n’, m log n)).
Default values for lower bound and upper bound are 1
and n, respectively.

(ii) No rearrangement is performed.
(iii) Let PC(i) denote a set of prohibited colors for Vi,

that is, PC(i) = (c c ub: there is an adjacent predecessor
of Vi colored with c). Then

FC(i) = (1, 2, . . . , maix C’(j) + 1) - PC(i) - (ub).

To estimate the complexity of FORWARDS notice that
determining of FC(i) requires deg(vi) operations. There-
fore, one pass of FORWARDS takes at most O(m) time
plus, eventually, O(n) time to store coloration C’ and
actualize variables ub and r when a better solution has
been found. Thus a total of O(m + n) time must be used.

(iv) The definition of CP is trivial, namely

CP = (1, 2, . , r - 11,

where r is a value of parameter carried in to the BACK-
WARDS procedure. Since no updating is necessary,
BACKWARDS requires constant effort for each i and
O(n) time in all.

Remarks. Brown’s ordinary algorithm finds the lexico-
graphically first exact coloration with respect to the
GLF ordering of vertices in the following sense: Out of
two different complete solutions C = C(l), . . . , C(n) and
C’ = C’(l), . . . , C’(n), the coloring C is said to be prior to
C’ under a given vertex order if either C(1) < C’(1) or
C(1) = C’(l), . . . , C(i - 1) = C’(i - 1) and C(i) < C’(i) for
some i = 2, . . . , n.

3.1.2 Brown’s Algorithm with Look-Ahead
(i) Same as in Section 3.1.1.
(ii) Same as in Section 3.1.1.

(iii) Brown reduced the number of backtracks by in-
troducing the so-called look-ahead (LA) procedure to the
forward step. LA makes it possible to diminish the FC
sets by enlarging the PC sets. The new definition of
prohibited colors is PC(i) = {c < ub: there is an adjacent
predecessor of Vi colored with c or any of the adjacent
successors of vi can be colored only with c]. The im-
proved FORWARDS procedure can still run in linear
time O(m + n), but within a greater constant of propor-
tionality.

(iv) Same as in Section 3.1.1.

Remarks. The concept of looking ahead can be refined
further by ordering feasible colors by the number of
preventions, that is, the number of adjacent successors
of Vi which could possibly be assigned color c unless c is

414 Communications of the ACM April 1985 Volume 28 Number 4

Research Contributions

assigned to ZJ;. However, such a complex LA increases
the complexity of FORWARDS to the order of O(mn).

The backtracking algorithm with simple LA finds the
first chromatic coloring [5] whereas the solution pro-
duced by the complex LA algorithm need not be the
lexicographically first one.

3.2 Corrected Christofides Algorithm [3]
(i) No particular ordering is assumed; lower bound

and upper bound are determined as in Section 3.1.
(ii) Same as in Section 3.1.

(iii) Same as in Section 3.1.
(iv) In an effort to decrease the number of back-

tracks, Christofides reduced the CP set too drastically
and obtained a partially correct approximation algo-
rithm. To correct his definition of CP we need a notion
of path passing throughout increasingly indexed ver-
tices. Such a path is said to be monotonic. By the prede-
cessor set of ui we mean P(i) = lj < i: there is a mono-
tonic path from Vj to vi in G). Now, the initial CP set is
simply defined as

CP = CP U P(r).

No updating of the set is performed.
The P(i) sets can be precomputed just after the initial
vertex order is stated. For this purpose one can use any
efficient method for finding the transitive closure of a
directed graph, for example, [12]. Hence BACKWARDS
can be efficiently implemented in O(n) time.

Remarks. It is possible to incorporate looking ahead
into the Christofides algorithm. This can be done by
restricting FC (as in Section 3.1.2) and updating CP ac-
cording to the formula

CP = CP U jEyil P(j) - ii, . . . , 4,

where B(i) is the set of all uncolored neighbors of zl;
which could be assigned the only color c unless c is
assigned to Vi, It is convenient to construct the set B(i)
while searching for prohibited colors in FORWARDS.

Since the partial solutions of level i are lexicographi-
tally ordered, the method finds the first exact coloring
(unless a refined version of LA is used).

3.3 Corrected Brilaz Algorithm [l, 111
(i) The vertices are colored sequentially to obtain a

suitable ordering of the vertex set and both bounds on
the chromatic number of G. Brblaz suggests preordering
the vertices by means of a sequential with interchange
algorithm applied to a saturation largest first (SLF) order-
ing or the Mutula-Dsatur algorithm (a combination of
SLF and SL) as he calls it. The SLF algorithm, which is
a basis for both heuristics, repeatedly colors an unco-
lored vertex of the largest saturation degree with the
smallest possible color, where the saturation degree is
the number of adjacent distinctly colored vertices. Ties
are broken by choosing the vertex of greater degree.

The SLF with interchange algorithm takes O(mn) time
and the Matula-Dsatur algorithm needs O(min(n2, m log
n)) time. Each of the preconditioning algorithms ar-
ranges the vertex set so that initial vertices constitute
an initial clique (IC) of size at least 2 and the number of
colors used is usually close to minimum.

(ii) Same as in Section 3.1.
(iii) Same as in Section 3.1.
(iv) Br6laz also tried to reduce the CP set but he

made two errors. Herein we give Peemoller’s correction
to Brelaz’s dynamic updating of current predecessors.
The set of adjacent predecessors of Vi, AP(i), is partitioned
into nonempty sets AP,(I’), . . . , APb(i) such that AP,(I’) =
(j < i: Vj is colored with cl, c < ub. Let r, = min AP,(i).
Then the set of representatives for AP(i) is defined as

R(i) = 1 {ra, . . . ,
if AP(I’) = 0,

rb) - IC otherwise.

Now the initial set of current predecessors is

CP = CP U R(r).

Updating of the set is accomplished in BACKWARDS as
follows:

CP = CP U R(i).

BACKWARDS can be implemented to run in O(m + n)
time.

Remarks. As previously, the LA procedure can be in-
corporated into the algorithm. In this case additional
updating takes the form

CP = CP U jEyil R(j).

(In constructing (R(j) uncolored vertices are disre-
garded.) The Brelaz algorithm also finds the first exact
coloring in the lexicographic order sense.

3.4 Korman’s Dynamic Reordering Algorithm [9]
(i) Same as in Section 3.1.
(ii) Korman noticed that during the forward step

some vertices appear to have fewer feasible colors than
others and such vertices should be colored first. His
dynamic rearrangement (DR) rule states simply: From the
set (Vi, . . , v,) of uncolored vertices choose a vertex
which can be colored with the smallest number of fea-
sible colors and replace it with Vi. The complexity of
FORWARDS with dynamic rearrangement is dominated
by the DR procedure which can run in time O(m + n),
but at a cost of some increase of the complexity of
BACKWARDS.

(iii) Same as in Section 3.1.
(iv) Same as in Section 3.1.

Remarks. The DR procedure plays a role similar to that
of LA. However, empirical investigations show that, in

April 1985 Volume 28 Number 4 Communications of the ACM 415

Research Contributions

T'ABLEL ComputationalResultefromtheAppliitionoflmplicitEnumeration AlgortthmstoColor
HydomG~phs

Average tima in CPU seconds

n d Brown Christofides beta2
8% 88L 88L

10 0.1 .l .l .l
0.3 .1 .l .1
0.5 .l .l .l
0.7 .l .l .l
0.9 .l .l .l

20 0.1 .3 .3 .3
0.3 A .4 A
0.5 .4 .5 .4
0.7 .4 .5 .4
0.9 .4 .5 .5

30 0.1 :86 .7
0.3 .9

5

q.5 5.0 5.2 5.2
0.7 1.7 1.8 1.s:
b.9 1.1 1.2 1.1

40 0.1 1.2 1.4 1.2
0.3 4.4 4.2 4.0
0.5 13.5 12.6 9.5
0.7 45.6 45.2 21.5
0.9 2.2 2.5 2.1 -

50 0.1 1.7 2.0 2.1
9.3 >207.8 >207.5 >207.3
0.5 m co

>25;.6 0.7 >259.7 >261.4
0.9 20.1 60.4 11.1 -

‘ 60 0.1 3.1 3.3 3.1
0.3 co F-244.9 B136.4
0.5 co 03 00
0.7
0.9 2197.6 >19;.7 >18:.3

01 means that all graphs required more t+n five CPU minutes
> means that at bast & gra@ required more than five CPU minutes.

Konnan

LF 8L

.O .l

.1 .l

.l .l

.l .l

.l .l

.l .2

.2 .2

.2 .3

.2 .3

.2 .3

.3 .5

.6 .6
1.1 1.9
1.8 2.0

.4 .6

.8 .9
6.9 3.7

10.1 5.5
5.7 9.1
6.9 1.4

1.0 1.3
93.8 >150.0

>222.5 m

z-283.3 ~-224.6
1.1 2.2

1.7 1.9
100.0 >189.6

m co

10;.1 8i.l

spite of the same complexity, the DR rule is much more
powerful than the simple LA.

Korman’s DR algorithms produces a chromatic colora-
tion which is lexicographically first with respect to the
final vertex order, that is, the vertex order just after the
chromatic coloring had been found.

A modification to the DR rule is also possible. For
instance, at restart after BACKWARDS coloring may be
done according to the latest arrangement of vertices
already colored or starting with the latest resumption
point. In any case a particular definition of dynamic
rearrangement affects only the efficiency of enumera-
tion since any algorithm with a DR-like procedure
leads to an exhaustive search regardless of the way
uncolored vertices are ordered.

It is also possible to incorporate Peemoller’s dynamic
updating of the CP set into the! algorithm.

4. COMPUTATIONAL RESULTS
In order to compare a relative speed-up of various im-
provements of Brown’s coloring algorithm on empirical
grounds, the implicit algorithms were coded in Pascal
and run on an R-32 computer (equivalent to an IBM
360/65). All the algorithms were programmed in the
versions of the previous section except the corrected
Brelaz algorithm which was implemented in the form
of [lo]. Since the efficiency of vertex sequential algo-
rithms is highly dependent on the way the vertices are
ordered, the following preparatory procedures arrang-
ing the vertices by their degree were implemented:
largest first (LF), smallest last (SL), saturation LF (SLF),
and saturation SL (SSL). The saturation procedures tend
to use the largest unavoidable color as soon as possible.
The LF ordering procedure ran in linear time while the
others required at most O(n’) additional time. All pro-

416 Communications of the ACM April 1985 Volume 28 Number 4

Research Contributions

TABLE I. Computational Results from the Appttttton of lmpttttt Enumerafton Atgortthmb to Cotor
Random Graphs (Confktuad.)

Avemgs number of backtracks

n d Brown Christofiia Bmiaz Komdn

SSL SSL S9L LF SL

10 0.1 1 1 1 1 1
0.3 1 1 1 1 1
0.5 1 1 1 1 1
0.7 1 1 1 1 1
0.9 1 1 1 1 1

20 0.1 1 1 1 1 1
0.3 2 2 2 1 1
0.5 4 4 3 2 1
0.7 3 3 3 1 2
0.9 2 1 2 1 1

30 0.1 1 1 1 1 1
0.3 18 5 8 4 2
0.5 229 228 175 7 13
0.7 34 33 20 12 14
0.9 5 4 4 1 1

40 0.1 3 2 3 1 1
0.3 138 112 84 38 18
0.5 528 483 238 50 24
0.7 1379 1388 401 24 25
0.9 20 19 8 1 2

50 0.1 12 5 12 2 2
0.3 >5431 >7241 A898 328 >493
0.5 >5700 >8703 >5870 >751 >992
0.7 >8872 >8927 >5891 >943 >774
0.9 488 488 132 1 2

80 0.1 18 11 14 3 2
0.3 >7199 >8285 >4775 288 >520
0.5 >5751 >8911 >5872 z-838 >734
0.7 z-4425 >5585 s-3478 >714 >708
0.9 >4245 >4183 >2355 229 192

m means that all graphs required more than five CPU minutes
> means that at least one graph required more than five CPU minutes.

grams were executed on identical samples of pseudo-
random graphs generated according to the constant
density model with vertex number n = 10(10)80 and
graph density d = .1(.2).9. For each n and d three graphs
were generated. Each was colored by each program
within a five minute limit of CPU time. Table I contains
the best computational results of the four orderings ob-
tained for each program in question. Aside from aver-
age timing we give the average number of backtracks
required to color a graph since this parameter seems to
be a more objective measure of algorithmic complexity,
especially if a program terminates before the deadline.

In practice, graphs to be colored are usually sparse in
the sense that the number of edges m is much less than
n2/2. For this reason Figure 2 shows timing profiles of
the best and worst variants of the analyzed algorithms
plotted for graphs G with d = .l.

For more details on the extensive experimentally ob-
served computing times comparing various backtrack-
ing algorithms, see [lo].

5. CONCLUDING REMARKS
Results of the empirical investigations allow us to draw
the following conclusions.

1. Small graphs with II 4 30 can be colored effi-
ciently by any backtracking algorithm preceded by any
vertex ordering procedure. Nevertheless, simple meth-
ods, such as Brown’s with LF, are preferable.

2. The effectiveness of this family of coloring algo-
rithms decreases as the density of the graphs increases,
except for very dense graphs.

3. The efficiency of implicit enumeration algorithms
without dynamic reordering is highly dependent on the
initial arrangement of vertices. In this case the SSL

April 1985 Volume 28 Number 4 Communications of the ACM 417

Research Contributions

12

10

a

6

4

2

n(lime’)

d-0.1 /LF

/ - BROWN
- --- CHRISTOFIDES
- BRELAZ
1.w.........- KORMAN

10 io 30 40 5b 60 6

l lime in CPU-milliseconds

FIGURE 2. Timing Profiles from the Application of Backtracking
Algorithms to Color Random Sparse Graphs

ordering performs best overall and saves more back-
tracking than any improvement of the forward or back-
ward step.

4. Regarding the expectation of the time complexity,
the dynamic reordering of yet uncolored vertices estab-
lishes a great improvement even if compared to the
methods with LA.

5. If graphs to be colored (are sparse, then both the
Christofides algorithm, applied to the vertices presorted
by SL, and Korman’s dynamic reordering, preceded by
LF, can be recommended.

6. If graphs to be colored are not sparse, Korman’s
algorithm is decidedly superior to the others. In partic-
ular, Korman’s algorithm with LF preordering runs
faster on middle-density gra;phs whereas the method
with SL is preferable for dense inputs.

Finally, we recall that our testing was carried out on
a series of random graphs. However, graphs arising in
practice may differ from our constant density samples.
For example, if a graph is disconnected or separable,
then Christofides’ and Brblaz’s algorithms may be supe-
rior to the others. This follows from the fact that these
methods are, in a sense, the most sensitive to the con-
nectedness of a graph among the implicit enumeration
algorithms for graph coloring. Moreover, in real-life
problems there are usually additional restrictions that
must be taken into consideration. These restrictions
may be reflected in some unavailability constraints im-
posed on the FC sets before coloring begins (e.g., such a
situation takes place when constructing class-teacher
timetables by the use of graph coloring). The unavaila-
bility constraints may be such that the initial ordering

of vertices cannot be realized on a vertex degree princi-
ple any more. Consequently, the CP set may contain so
few vertices that a considerable improvement on the
backward step is made possible. Again, the Christofides
and Brblaz-Peemdller algorithms seem to be well suited
for coloring such graphs. However, the best implicit
enumeration algorithm for graph coloring is presum-
ably Korman’s with Peemijller’s updating of current
predecessors.

Acknowledgments. The authors wish to thank Eugen-
iusz Kusz for stimulating discussions on the subject of
this article.

REFERENCES
1. Br&z, D. New methods to color the vertices of a graph. Commun.

ACM 22,4 (Apr. 1979). 251-256.
2. Brown, R.J. Chromatic scheduling and the chromatic number prob-

lem. Manage. Sri. 19,4 (Dec. 1972). 451-463.
3. Christofides, N. Graph Theory. An Algorithmic Approach. Academic

Press, London, 1975, pp. 70-71.
4. Dailey, D.P. Uniqueness of colorability and colorability of planar

4-regular graphs are NP-complete. Discrete Math. 30, (1980), 269-293.
5. Diirre, K. An algorithm for coloring the vertices of an arbitrary

graph. In Lecture Notes in Economics and Mathematical Sysfems. Vol.
78. P. Deussen Ed., Springer-Verlag, Berlin, 1973, pp. 82-89.

6. Garey, M.R.. and Johnson, D.S. The complexity of near-optimal
graph coloring. I. ACM 23, 1 (Jan. 1976), 43-49.

7. Garey. M.R.. Johnson, D.S.. and Stockmeyer, L. Some simplified NP-
complete graph problems. Theor. Comput. Sci. I, (1976). 237-267.

II. Horowitz. E.. and Sahni. S. Fundamentals ofcomputer Algorithms.
Computer Science, Potomac. Md.. 1978, pp. 614-621.

9. Korman, SM. The graph-colouring problem. In Combinatorial Opti-
mization. N. Christofides. A. Mingozzi, P. Toth, and C. Sandi. Eds.,
Wiley, New York, 1979. pp. 211-235.

10. Kubale. M.. and Kusz. E. Computational experience with implicit
enumeration algorithms for graph coloring. In Proceedings of the
WG’83 International Workshop on Graphtheoretic Concepts in Computer
Science. M. Nag1 and J. Perl, Eds., Trauner Verlag. Linz, 1983, pp.
167-176.

11. PeemGller, J. A correction to BrBlaz’s modification of Brown’s color-
ing algorithm. Commun. ACM 26,8 (Aug. 1983), 595-597.

12. Schmitz, L. An improved transitive closure algorithm. Computing 30.
4 (1983). 359-371.

CR Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems; G.2.2 (Discrete Mathematics]: Graph Theory-graph algorithms:
12.8 [Artificial Intelligence]: Problem Solving, Control Methods and
Search-backtracking, graph and tree search strategies

General Terms: Algorithms
Additional Key Words and Phrases: backtracking, chromatic num-

ber, computational complexity, graph coloring, implicit enumeration,
partial correctness.

Received 3/84: revised 9/84: accepted 12/84

Authors’ Present Addresses: Marek Kubale. Institute of Informatics,
Technical University of Gda6sk. Gda6sk. Poland. Boguslaw Jackowski.
Institute of Hydroengineering. Polish Academy of Sciences. Gdafisk.
Poland.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

418 Communications of the ACM April 1985 Volume 28 Number 4

