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Abstract

Long-term carbon capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of
atmospheric CO2 and associated impacts of global climate change. Until recently, the significant below-ground CCS capacity
of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of global
carbon transfer. However, this reservoir of natural, free, and sustainable carbon storage potential is increasingly jeopardized
by alarming trends in coastal habitat loss, totalling 30–50% of global abundance over the last century alone. Human
intervention to restore lost habitats is a potentially powerful solution to improve natural rates of global CCS, but data
suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to
an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-
consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural
recovery.
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Introduction
As the varied consequences of a changing climate continue to

challenge our technical capacity [1] and political will [2] to

globally stabilize and manage greenhouse gas emissions, numerous

potential solutions have gained traction among the scientific

community [3] and general public [4]. Among these is the

industrial-scale artificial capture and long-term storage of

anthropogenic CO2 before it is released to the atmosphere and

contributes to the greenhouse effect. We already possess the

technical expertise to engineer such feats by pumping liquefied

CO2 into porous geological formations more than 1 km

underground [5]. However, uncertainty remains over the

considerable expense and potentially damaging side-effects of

such operations, including unforeseen geological de-stabilisation

and chronic CO2 leakage into marine and terrestrial environ-

ments, and ultimately into the atmosphere [6]. Additionally,

routine use of such procedures will be unlikely until at least 2025

[7].

Compared to the attention given to methods of artificial carbon

capture and storage (CCS), natural carbon sinks such as terrestrial

and aquatic vegetation have often been overlooked or considered

supplementary for management [8]. This disparity probably stems

from the quantified inability of such biological reservoirs to

compensate for the sheer volume of anthropogenic carbon

currently produced (,4406106 vs ,85006106 t C yr21,

respectively; [9,10]). Nevertheless, natural means of CCS are

immediately available, cost-effective, publicly supported, and offer

many complementary benefits such as the preservation of

biodiversity and other natural resources. When coupled with

current uncertainties regarding artificial CCS techniques, natural

approaches appear to warrant serious consideration as an

important contributor to managing the carbon problem.

As a carbon sink, the ocean can absorb up to one-third of

anthropogenic CO2 in the atmosphere [11]. It therefore seems

fortunate that coastal vegetation such as seagrasses, mangroves,

and salt marshes (Fig. 1A–C) capture and store carbon at non-

trivial amounts of 60–210 t C km22 yr21 [9,12], and do so with far

greater efficiency than their terrestrial counterparts (e.g. tropical

forests only store 2.3–2.5 t C km22 yr21; [9]). Under favorable

conditions, the majority of captured carbon may be stored as

below-ground biomass (e.g. peat) for decades to possibly thousands

of years.

Like most biological resources, however, coastal vegetation has

undergone extensive declines in global distribution and abundance

[13], culminating in the loss of , one-third of the world’s seagrass

meadows and mangrove forests, and more than one-half of salt

marshes, during the past century [14,15,16]. Losses have been,

and continue to be, largely driven by anthropogenic stressors,

including pollution (e.g. eutrophication, turbidity), altered sedi-

mentation regimes, and direct physical disturbance (e.g. reclaim-

ing coasts). To date, losses are thought to have reduced global

CCS rates by at least 25% [13], and continued losses may

exacerbate the carbon problem by exposing below-ground

biomass that can release hundreds to thousands of years worth

of stored carbon as it erodes and degrades (Fig. 1D). Precise

numbers on the potential magnitude of such ‘re-activation’ of

stored carbon are scarce, yet Cebrian [17] conservatively

estimated that the loss of the world’s mangrove forests to date

has resulted in the release of 3.96108 tonnes of previously stored

carbon.
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Given the enormity of the carbon problem, anything less than a

thorough consideration of all possible methods of mitigation could

appear neglectful. Thus, it is worth asking whether trends of

coastal habitat loss can be reversed to increase global CCS. If

future losses of habitat can be prevented such that they do not

occur at the expense of any gains, which is a significant challenge

given the magnitude of global exploitation of coastal environments

[18], facilitating natural recovery and expansion of habitats may

be a critical first step. However, many species of coastal plants

require decades to centuries to recover from disturbance because

they depend primarily on clonal expansion rather than sexual

reproduction for population growth [19]. Therefore, direct

intervention through habitat restoration may represent a way to

more rapidly improve rates of natural CCS. Habitat restoration is

a potentially powerful approach, but the task of re-creating

complex ecosystems presents many challenges that so far have

typically produced viable self-sustaining populations well below

parity of effort (e.g. 35–50% successful establishment of planted

seagrass units [20]) and have generally confined restoration

projects to small spatial scales (#1 ha: [21]).

The purpose of this study was twofold. Firstly, we quantified the

decline in global rates of CCS by mangroves, seagrasses, and salt

marshes due to their historical decline in abundance. Based on this

information, we (secondly) compared how rates of CCS might

improve under future scenarios of habitat recovery and restora-

tion. Of particular interest was to compare the long-term benefits

of using different intensities of habitat restoration to provide some

indication of the effort needed to produce a sizeable effect. While

we recognize that restoration of habitats provides numerous

benefits additional to CCS (e.g. nutrient cycling, coastal

stabilization, preservation of biodiversity), we focus on CCS as a

current topic of significant global concern and debate. Given the

considerable amounts of time and expense involved in most

restoration programs (e.g. seagrass averages US$48,700 ha21:

[20], adjusted to 2010 dollar value), coupled with their often

modest chances of success (35–50%: [20]), it is debatable whether

the investment of finite resources would instead be better directed

toward approaches that limit further habitat loss and promote

natural recovery.

Materials and Methods

Data used to quantify changes to global rates of CCS by coastal

vegetation were sourced from literature describing historical

habitat abundance and/or calculated rates of CCS. We focused

on seagrasses, mangroves, and salt marshes because they are well-

known for their capacity to store significant amounts of carbon for

long periods [8,13], and also because of their near-global presence

on tropical and temperate coasts. We note that forests of kelp and

other macroalgae also constitute a major coastal habitat,

particularly at temperate latitudes, but they are excluded from

this study because they are essentially ephemeral in their CCS

capacity; i.e., carbon captured in their tissue is released as the

plant decays or dies, with none of it stored below-ground since the

plants possess no root structure.

For each habitat, global CCS was calculated by multiplying

estimates of global habitat area, often averaged across several data

sources, by quantified rates of CCS per unit area. Few estimates of

CCS rates for each habitat are available in the literature, and so we

used the highest and lowest rates we could find to provide some

indication of variance in historical decline of CCS. While this is a

relatively simple method that does not include compounding

influences such as variation among species and latitudes, it

nonetheless provides similar estimates to studies using more

Figure 1. Major carbon-storing habitats on tropical and temperate coasts. Degradation and loss of (A) seagrass meadows, (B) mangrove
forests, and (C) salt marshes may release hundreds to thousands of years worth of stored carbon through exposure and breakdown of below-ground
biomass, shown in (D) for seagrasses. Photo credits: Andrew Irving.
doi:10.1371/journal.pone.0018311.g001
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complex methods (e.g. [13]), and forms a standard baseline for

relative predictions of increasing CCS under different scenarios of

future habitat recovery. Where possible, our calculated global CCS

was partitioned into decadal increments (i.e. the annual rate of

global CCS by that habitat in each decade) because of instances of

rapid habitat decline in particular decades (see Results). However,

sparse data describing habitat abundance sometimes limited this

approach, particularly in earlier years. Additionally, data describing

changes in CCS by salt marshes were restricted to the continental

USA because poor estimates of salt marsh abundance elsewhere

precluded calculations of their global abundance. Even so, patterns

observed in the USA are likely to be representative of many locales

since salt marshes are one of the most common habitats ‘‘reclaimed’’

during coastal development [14]. Table 1 provides a summary of

key values and data sources used in calculations.

Forecasting improvements to global CCS under different

scenarios of habitat recovery and restoration was done by

multiplying quantified rates of CCS per unit area by estimates of

global habitat area resulting from either natural recovery alone, or

natural recovery combined with restoration. Initially, it was hoped

that improvements could be calculated for all three habitats, yet

literature searches soon revealed that calculations could only be

reliably done for seagrasses because good estimates of global rates

of seagrass expansion (taken as indicative of recovery), as well as a

key synthesis of rehabilitation efforts [20], were available. While

results are therefore focused on seagrasses, similar patterns are

likely for mangroves and salt marshes, though probably over

different time scales (e.g. mangroves are slower growing and

therefore may take longer to recover).

The rate of natural seagrass recovery was based on global

measures of seagrass expansion presented in Table 1 of [16]. Note

that seagrass is in global decline because the overall rate of

expansion is overwhelmed by the rate of loss, yet some locations

exhibit greater rates of expansion than loss, which can be used to

calculate a nominal rate of recovery for forecasts described herein.

Over a 70-year period, [16] quantified 879 km2 of seagrass

expansion (against losses exceeding 9,000 km2) across study areas

totaling 11,592 km2 around the world. These measures equate to

an average global seagrass expansion rate of 1.08% per decade.

This value may be an underestimate since small-scale studies have

shown rates of recovery up to 7.5% yr21 [22]. Indeed, recovery is

likely to be greater that 1.08% per decade under favourable water

quality and physical conditions, but given the uncertainty

regarding favourable future coastal conditions [23] such values

are yet to be reliably determined. Furthermore, we use the value of

1.08% recovery per decade because this estimate is based on the

truly global synthesis of [16], which provides necessary parity for

the global scale calculations described herein.

The total global seagrass restoration effort has never been fully

quantified, but a comprehensive synthesis by [20] tallied a total of

0.78 km2 for the USA since the 1960s. Assuming an average

restoration success rate of 42% (after [20]), one can expect the

establishment of ,0.33 km2 of seagrass from the 0.78 km2

planted. Extrapolating efforts in the USA (supporting 7.1% of

the world’s seagrass: [24]) to the remainder of the world would

give a successful global seagrass restoration effort of 4.59 km2. In

other words, if the restoration efforts of the USA were replicated

throughout the world, 4.59 km2 of seagrass would have been

restored globally. This is certainly an overestimate because the

USA has a long history of seagrass restoration relative to many

other countries, but it nevertheless provides a quantifiable

benchmark for future restoration efforts.

Table 1. Summary of key data sources and values used in calculations of global historical CCS rates and future changes under
different habitat recovery and restoration scenarios.

(a) Historical global habitat
abundance 6103 km2 Time interval Seagrass (16) Mangrove (12, 15)

Salt Marsh (USA only)
(14, 34)

1879–1930 174.75

1930–1940 174.84 7721.609

1940–1950 174.57 7296.080

1950–1960 172.64 6474.491

1960–1970 173.04 5257.010

1970–1980 170.51 36957.64 4366.717

1980–1990 126.02 30567.51 3629.156

1990–2000 128.19 24177.38

2000–2006 125.54

(b) Quantified CCS rates:
t C km22 yr21 Seagrass Mangrove Salt Marsh

83 (9) 139 (9) 210 (9)

83 (13) 139 (13) 151 (13)

133 (8) 60 (12)

(c) Seagrass restoration
Area planted
(km2, USA only)

Average restoration
success rate

Expected area
restored (km2)

Potential global area
restored* (km2)

0.78 (20) 42% (20) 0.33 4.59

*Potential global area restored is based on extrapolating the amount of successful seagrass restoration in the USA, using the relative proportion of the world’s seagrass
contained within the USA (,7.1%). Given restoration efforts in the USA are likely greater than many other countries, this may over-estimate current global restoration
effort.
Data sources are listed in parentheses.
doi:10.1371/journal.pone.0018311.t001
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For the current study, future changes to global CCS by seagrass

meadows were calculated under a ‘recovery only’ scenario, where

seagrasses were allowed to recover at a rate of 1.08% per decade

from 2010 to 2100. Results were then compared to CCS rates

when this level of recovery was combined with seagrass restoration

at i) the current effort per decade (i.e. recovery + restoration of

4.59 km2 per decade), ii) 10-times the current effort per decade

(i.e. recovery+45.94 km2 per decade), and iii) 100-times the

current effort per decade (i.e. recovery+459.4 km2 per decade).

Finally, these forecasts were compared to a ‘continued decline’

scenario where loss of seagrass persists at the 1980–2000 average

rate of 0.02% per decade (calculated from Table S2 in [16]).

Results

Historical habitat losses and decline in CCS
Seagrasses, mangroves, and salt marshes have all experienced

substantial declines in abundance that has reduced the global CCS

achieved by these coastal habitats. The greatest changes have

occurred within mangrove forests, where world-wide habitat losses

exceeding 90,000 km2 since the 1970s have reduced their average

global rate of CCS from ,26.56106 t C yr21 to ,17.36106 t C

yr21 (Fig. 2A). Seagrass loss has occurred steadily since at least the

early 1900s, but rates of loss peaked dramatically during the 1970s

and 1980s, producing a rapid areal decline of over 44,000 km2

during this period alone. Concomitantly, rates of global CCS by

seagrass declined by ,46106 t C yr21 to current average CCS of

,16.76106 t C yr21. Lastly, data available for salt marshes in the

continental USA show a sustained rate of decline of ,5% cover

per decade since the 1930s, equating to losses approaching

20,000 km2 and a decline in average rates of CCS from

,6.66106 t C yr21 to ,3.16106 t C yr21.

Improvements to global CCS
Using a global seagrass recovery rate of 1.08% per decade [16]

and a conservative CCS rate of 83 t C km22 yr21 [9], natural

seagrass recovery alone may produce global rates of CCS of

,11.46106 t C yr21 by the year 2100, an increase of ,10%

above current rates (Fig. 2B). Continuing along this trajectory,

rates of CCS would reach 1920 levels (see ‘historical loss’ data:

Fig. 2B) sometime around the year 2340. This timeframe may be

shortened if rising CO2 increases seagrass productivity [25] and

reduces covers of calcareous epiphytic algae that smother

seagrasses [26].

Combining natural recovery with a global replication of current

seagrass restoration efforts (4.59 km2) each decade until 2100

would improve rates of CCS by just 0.1% above benefits provided

by natural recovery alone. Increasing seagrass restoration efforts

10-fold (45.94 km2 per decade) would provide a 0.9% improve-

ment over natural recovery, but a 100-fold increase to what would

likely require industrial-scale operations (459.4 km2 per decade)

boosts CCS by a further 9.3%, resulting in rates of ,11.86106 t C

captured yr21 (Fig. 2B). Such large-scale efforts would generate a

return to 1920 levels of CCS around the year 2260, ,80 years

sooner than relying on natural recovery alone.

Discussion

The link between rising concentrations of atmospheric CO2 and

associated impacts of climate change has been argued to be one of

the greatest challenges facing our understanding and management

of the world’s natural resources [27]. The sheer volume of

anthropogenic carbon produced from fossil fuels and industry,

,8,5006106 t C yr21 [9,10], outweighs the CCS capacity of any

natural habitat by at least an order of magnitude and immediately

suggests that artificial methods of CCS are the only realistic CCS

management option. However, artificial CCS methods, like most

Figure 2. Historical and future carbon capture and storage
rates (CCS) of coastal vegetation. (A) Extensive historical losses of
seagrasses, mangroves, and salt marshes have reduced the CCS
capacity of the coast. Points plotted represent the mean CCS for each
habitat over time, and are bounded by lines of maximum and minimum
rates of CCS published in the literature. Note that minimum rates for
mangroves overlaps with the range of values for seagrass (depicted
with purple shading). (B) Historical rates of CCS by seagrass are
compared to rates under future scenarios of natural habitat recovery, as
well as recovery combined with different intensities of restoration.
Increasing restoration efforts to 100-times current levels will produce
benefits to CCS that are similar to natural recovery alone. Rates of CCS
following current trends in continued global seagrass decline are also
plotted for reference. Data for calculating CCS rates were primarily
sourced from [8,9,12,13,15,16,34] (also see Table 1).
doi:10.1371/journal.pone.0018311.g002
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large-scale artificial management strategies [28], are currently

burdened with uncertainty regarding their cost-effectiveness, long-

term viability, and environmental dormancy. Natural CCS by

aquatic and terrestrial vegetation offers a sustainable, low-risk, and

potentially significant contribution toward managing the carbon

problem, provided alarming historical trends in habitat degrada-

tion and loss can be slowed, arrested, or ideally, reversed.

Coastal vegetation such as mangroves, seagrasses, and salt

marshes, have undergone extensive declines in abundance,

distribution, and CCS over the past century. Based on the data

available, we calculated a cumulative failure to capture at least

4346106 t of carbon due to habitat loss since the 1920s. This value

is certainly an underestimate, however, since data describing

historical losses are typically limited (Fig. 2A), the baseline values

used for calculations likely represent already impacted habitats

(especially for mangroves where the earliest reliable data comes

from the 1970s), and also because data for salt marshes, which

have the greatest CCS potential of the three habitats examined

[8], are restricted to the continental USA.

Can we rely on natural habitat recovery alone to regain lost

CCS capacity among coastal habitats? Will coastal habitat

restoration help improve global CCS? Using seagrasses as a

model system, global recovery at a modest rate of 1.08% per

decade over the next century may increase global CCS by

seagrasses by ,10% above current levels. However, this estimate

depends on there being no further decline in net seagrass

abundance, as well as the risky proposition that no major and as

yet unforeseen future events will impact seagrass abundance

during the decades to centuries needed for recovery [19]. Habitat

restoration is a challenging but potentially powerful tool for further

improving rates of CCS, yet the data suggest that efforts would

need to be dramatically increased above current levels in order to

contribute any significant effect beyond that gained through

natural recovery alone. Industrial-scale restoration operations, in

the order of 100s of kms restored per decade, may provide a

substantial boost of ,9% greater CCS above natural recovery

alone (Fig. 2B). In isolation, such improvements to seagrass CCS

would equate to the capture of ,0.14% of predicted annual

carbon emissions in 2100 (based on emission scenario A1B) [29].

While this proportion could certainly be improved by considering

recovery and restoration of additional aquatic and terrestrial

habitats, it still would not compensate for anthropogenic emissions

[9,10]. The cost of restoring such large amounts of seagrass could

average ,US$224 million yr21 (based on restoring 459.4 km2 per

decade), which may become cheaper if better techniques reduce

costs from the current estimate of ,US $48,700 ha21, and if

financial incentives can be provided through carbon trading

schemes.

If such restoration is possible, maintaining abundant and

optimally functioning coastal habitats may provide benefits against

a changing climate that go beyond improved CCS. The effects of

dense stands of terrestrial vegetation on local climatic conditions,

such as reducing temperatures and desiccation stress, are well-

known [30,31]. Recent evidence suggests that such effects may

represent disproportionately large buffers against forecast impacts

of climate change both on land [32] and in the sea (e.g. kelp

forests: Falkenberg, Russell and Connell unpubl. data). Thus,

present-day investment in the maintenance and expansion of

vegetation appears likely to not only improve global rates of CCS,

but may also provide additional future rewards by lessening

impacts of climate change.

Slowing or even reversing trends in net global habitat loss to

improve the natural CCS capacity of the Earth is far easier said

than done since CCS, and the benefits it may provide, is only one

aspect of a complex issue. Often, the original reasons for habitat

loss centre on direct tangible economic and social improvements.

For example, one of the greatest threats to mangrove forests is the

clear-felling of extensive areas to create space for commercial pond

aquaculture of fish and crustaceans [15]. Such practices are most

common in developing countries, particularly in SE Asia, and

although mangrove removal radically alters the local ecology [12],

the resulting land-use provides significant and much-needed socio-

economic benefits. While coastal environments around the world

have a long history of exploitation [18], it would ideally be

managed to minimize long-term environmental impacts while still

providing sustainable socio-economic rewards. Currently, such

outcomes appear in the minority, yet there is encouraging

evidence that it is achievable (e.g. sustainable rotating harvest of

,1000 ha yr21 of mangroves for wood since 1906: [12]).

Recognition of the value in reversing alarming trends of habitat

loss is certainly not new, yet the importance of achieving such

goals becomes clearer as we continue to learn about the numerous

benefits that optimally functioning habitats can provide. CCS

appears to be an increasingly valuable function of natural habitats,

and habitat restoration may offer a solution to increase natural

CCS at faster rates than through natural recovery alone. For

coastal habitats such as seagrasses, it appears that increases in

long-term CCS could be negligible unless restoration efforts can be

increased to industrial-scale operations and/or restoration success

rates can be improved through greater investment in research and

methodology [33]. If such outcomes are beyond our technical

expertise and political resolve, then questions must be asked about

whether resources currently used for expensive and time-

consuming restoration projects may instead be more wisely

invested in arresting further habitat loss and encouraging natural

recovery by mitigating pollutants and other impacts. While

restoration even on a small scale certainly provides many benefits

beyond CCS (e.g. habitat for other plants and animals, nutrient

cycling, etc.), it appears that one of the most effective opportunities

for mitigating climate effects is to reduce non-climate human

impacts that are under local control, and thereby encourage

natural habitat recovery.
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